Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance.


Phelan, J; Coll, F; McNerney, R; Ascher, DB; Pires, DE; Furnham, N; Coeck, N; Hill-Cawthorne, GA; Nair, MB; Mallard, K; Ramsay, A; Campino, S; Hibberd, ML; Pain, A; Rigouts, L; Clark, TG; (2016) Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med, 14 (1). p. 31. ISSN 1741-7015 DOI: 10.1186/s12916-016-0575-9

[img] Text - Published Version
License:

Download (1766Kb)

Abstract

Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance mutations to improve the design of tuberculosis control measures, such as diagnostics, and inform patient management.

Item Type: Article
Faculty and Department: Faculty of Epidemiology and Population Health > Dept of Infectious Disease Epidemiology
Faculty of Infectious and Tropical Diseases > Dept of Pathogen Molecular Biology
Research Centre: Antimicrobial Resistance Centre (AMR)
Centre for the Mathematical Modelling of Infectious Diseases
TB Centre
PubMed ID: 27005572
Web of Science ID: 373172500002
URI: http://researchonline.lshtm.ac.uk/id/eprint/2535998

Statistics


Download activity - last 12 months
Downloads since deposit
51Downloads
100Hits
Accesses by country - last 12 months
Accesses by referrer - last 12 months
Impact and interest
Additional statistics for this record are available via IRStats2

Actions (login required)

Edit Item Edit Item