Recent Advances in Bioconjugate Vaccine Development

Brendan W Wren ORCID logo ; Catherine L Hall ; Vanessa S Terra ORCID logo ; Mark A Harrison ; Elizabeth Atkins ORCID logo ; Fauzy Nasher ORCID logo ; Ian J Passmore ORCID logo ; (2025) Recent Advances in Bioconjugate Vaccine Development. Vaccines, 13 (7). p. 703. DOI: 10.3390/vaccines13070703
Copy

Glycoconjugate vaccines, consisting of a protein component covalently linked to a glycan antigen, have led to a significant reduction in the global occurrence of bacterial meningitis and pneumonia. They provide robust, lasting immunity in all age groups. However, their production by traditional chemical conjugation approaches has drawbacks in terms of complexity, cost, and lack of flexibility in design, which explains their limited application to a few pathogenic bacteria in the past four decades. Protein glycan coupling technology (PGCT) or bioconjugation, where glycoconjugates are produced in purpose-engineered bacterial cells, is a useful alternative to chemical conjugation and promises an array of low-cost custom-made glycoconjugate vaccines with vast protein glycan combinations. The technology has undergone significant development since its inception, and new advances and refinements continually drive the field forward. Several bioconjugate vaccines are currently in clinical trials, demonstrating the potential of the technology. We will review the wide applicability of bioconjugation and recent developments in each of the components of the technology, namely, glycan expression, protein selection, and the coupling of selected glycan with proteins, all within custom-designed E. coli cells. These advances promise to deliver effective glycoconjugate vaccines for multiple unmet medical needs.


picture_as_pdf
Wren-etal-2025-Recent-advances-in-bioconjugate.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads