Comparing the Performance of Three Models Incorporating Weather Data to Forecast Dengue Epidemics in Reunion Island, 2018-2019.

Alessio Andronico ; Luce Menudier ; Henrik Salje ORCID logo ; Muriel Vincent ; Juliette Paireau ; Henriette de Valk ; Pierre Gallian ; Boris Pastorino ; Oliver Brady ORCID logo ; Xavier de Lamballerie ORCID logo ; +5 more... Clément Lazarus ; Marie-Claire Paty ; Pascal Vilain ; Harold Noel ; Simon Cauchemez ORCID logo ; (2024) Comparing the Performance of Three Models Incorporating Weather Data to Forecast Dengue Epidemics in Reunion Island, 2018-2019. The Journal of infectious diseases, 229 (1). pp. 10-18. ISSN 0022-1899 DOI: 10.1093/infdis/jiad468
Copy

We developed mathematical models to analyze a large dengue virus (DENV) epidemic in Reunion Island in 2018-2019. Our models captured major drivers of uncertainty including the complex relationship between climate and DENV transmission, temperature trends, and underreporting. Early assessment correctly concluded that persistence of DENV transmission during the austral winter 2018 was likely and that the second epidemic wave would be larger than the first one. From November 2018, the detection probability was estimated at 10%-20% and, for this range of values, our projections were found to be remarkably accurate. Overall, we estimated that 8% and 18% of the population were infected during the first and second wave, respectively. Out of the 3 models considered, the best-fitting one was calibrated to laboratory entomological data, and accounted for temperature but not precipitation. This study showcases the contribution of modeling to strengthen risk assessments and planning of national and local authorities.


picture_as_pdf
Andronico-etal-2024-Comparing-the-performance-of-three.pdf
subject
Published Version
Available under Creative Commons: Attribution-NonCommercial-No Derivative Works 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads