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We developed mathematical models to analyze a large dengue virus (DENV) epidemic in Reunion Island in 2018–2019. Our models 
captured major drivers of uncertainty including the complex relationship between climate and DENV transmission, temperature 
trends, and underreporting. Early assessment correctly concluded that persistence of DENV transmission during the austral winter 
2018 was likely and that the second epidemic wave would be larger than the first one. From November 2018, the detection 
probability was estimated at 10%–20% and, for this range of values, our projections were found to be remarkably accurate. 
Overall, we estimated that 8% and 18% of the population were infected during the first and second wave, respectively. Out of 
the 3 models considered, the best-fitting one was calibrated to laboratory entomological data, and accounted for temperature 
but not precipitation. This study showcases the contribution of modeling to strengthen risk assessments and planning of 
national and local authorities.
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The course of an epidemic depends on the level of immunity 
in the population and the underlying transmissibility of the 
pathogen. Often the latter is assumed constant. However, for 
arboviruses, this seems an oversimplistic assumption because 
transmissibility is strongly affected by climate [1–4]. It is there-
fore important to determine how inclusion of this understand-
ing in mathematical models may improve their ability to 
reproduce arbovirus epidemic dynamics.

Consider dengue as an example. Different approaches have 
been proposed to assess the association between climate and 
dengue transmission: Lambrechts et al [2] and Mordecai et al 
[3] used laboratory entomological data while Perkins et al [4] 

relied on epidemiological case data. Each of these approaches 
provides somewhat different characterizations of the associa-
tion between climatic variables and dengue transmissibility.

Here, we evaluate the forecasting performance of these dif-
ferent models describing the impact of climate on time-varying 
transmissibility of dengue virus (DENV), in the context of a 
large epidemic in Reunion Island, an overseas department of 
France in the Indian Ocean. For 40 years prior to this outbreak, 
DENV circulation had only been sporadic in the island despite 
the perennial presence of Aedes albopictus [5, 6]. Reunion 
Island experienced only 1 large DENV epidemic (serotype 2) 
in 1977–1978 [7, 8], as well as a large chikungunya virus 
(CHIKV) outbreak in 2005–2006 [9]. Both epidemics infected 
about a third of the population and demonstrated that large 
self-sustained arbovirus outbreaks were indeed possible. An 
important surge of dengue cases in early 2018 quickly became 
a cause for concern for local authorities given their past expe-
rience with CHIKV and DENV. To strengthen their risk assess-
ment, epidemiologists at Santé Publique France and its regional 
office in Reunion Island requested modelling support from 
Institut Pasteur to obtain quantitative estimates of risk and as-
sess uncertainties along the unfolding of the epidemic. This 
work provides a valuable test bed to assess (1) how generaliz-
able the association climate-DENV transmission is, and (2) 
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whether this knowledge can effectively be used to inform plan-
ning in newly affected locations.

METHODS

Epidemiological Data

Our models were fitted to weekly counts of confirmed cases re-
corded from epidemiological and laboratory surveillance on the 
island. The surveillance is based on the active participation of 
hospitals and general practitioners as well as public and private 
biological laboratories that report DENV infections. A confirmed 
case was defined as a patient with a positive reverse transcription 
polymerase chain reaction (RT-PCR) or seroconversion (4-fold 
increase in immunoglobulin G [IgG] titer between 2 samples tak-
en 2 weeks apart). Because it took about 1 week to consolidate the 
data, when recalibrating our models, we only included data up to 
2 weeks before the date of the analysis. The complete dataset is 
provided as a single CSV file (Supplementary Material).

Serological Data

The seroprevalence of DENV among blood donors in Reunion 
Island was estimated at 3.1% (95% confidence interval [CI], 
2.2%–3.9%) in 2008 [10], and only a few hundred dengue fever 
cases were reported between 2008 and 2018 [11, 12]. For our first 
assessments, we therefore assumed that 100% of the population 
was susceptible to DENV at the beginning of 2018. However, 
this assumption changed in May 2019 when new serological 
data from studies performed by the French blood bank 
(Établissement Français du Sang) using samples collected in 
August 2013 became available. These studies estimated the sero-
prevalence among blood donors at 24.1% in 2013 (Gallian and de 
Lamballerie, personal communication). Considering that indi-
viduals younger than 18 years old are not included in these sur-
veys and that 5 years had passed since 2013, we then assumed that 
the proportion of the population susceptible to DENV on 1 
January 2018 was 85% (Supplementary Material 1).

Mathematical Model

To characterize the dengue epidemic trajectory, we developed 
an SIR (susceptible-infectious-recovered) model in which the 
transmission rate β(t) varies with time according to:

β(t) = β0 · s(T(t), P(t)) 

where β0 is a constant to be estimated and s(T(t), P(t)) is a scal-
ing factor that depends on temperature (T ) and precipitation 
(P). Because there is still substantial uncertainty about the 
best way to model how the transmission of DENV (and other 
arboviruses) is influenced by climate conditions [1–4], we 
used 3 models for s(T(t), P(t)): 

• The first, by Lambrechts et al [2], was calibrated using labo-
ratory entomological data describing how the probability of 

DENV transmission for Aedes aegypti mosquitoes varies 
with the temperature and daily temperature fluctuations.

• The second, by Mordecai et al [3], was calibrated using a large 
amount of laboratory entomological data on Ae. aegypti and 
Ae. albopictus describing the effect of temperature on the 
mosquito lifecycle and the probability of transmission for 
dengue, chikungunya, and Zika viruses.

• The third, by Perkins et al [4], was calibrated using epidemi-
ological case data collected during chikungunya outbreaks in 
the Americas.

All 3 models capture the effect of temperature; the model by 
Perkins et al is the only one to also account for precipitation 
(see Supplementary Material 3 for more details).

We model the number of incident cases assuming a Poisson 
observation process. The likelihood of observing ZR

i incident 
cases on week ti given the expected number of infections ZS

i 
for that week is given by the density of a Poisson distribution:

P(ZR
i |Z

S
i , ρ) = dPoiss(ZR

i ; ZS
i · ρ) 

where ρ is the detection probability.
The number of infectious individuals at the start of the epidem-

ic (ie, in January 2018) and at the beginning of the second wave (ie, 
start of November 2018) were considered as free parameters.

In Supplementary Material 2 we present 5 variants of the 
model described above based on the SEIR (susceptible-exposed- 
infectious-recovered) model, that is, with different assumptions 
about the incubation and infectious periods (see also discussion 
in Supplementary Material 5).

DENV Natural History

The generation time for DENV (defined as the average time 
interval between consecutive infections) has been estimated to 
be between 2 and 3 weeks [13, 14]. We therefore considered 2 sce-
narios where the generation time was 15 and 21 days, respectively.

Detection Probability

The detection probability corresponds to the probability that a 
person infected with dengue is detected by the surveillance sys-
tem. It is the product of the proportion of infections that are 
symptomatic and of the proportion of symptomatic infections 
that consult a doctor and get tested. The proportion of infections 
that result in symptoms is poorly understood and depends on a 
number of factors, including host population genetics, the sero-
type as well as the genotype of the infecting virus, and the im-
mune history of the population. Rather than using a single 
value, we have therefore conservatively used the range between 
20% and 50% [15]. Based on local expert opinion, we assumed 
that between 50% and 80% of infected symptomatic individuals 
consult their doctor and have a sample collected for laboratory 
confirmation. Under these assumptions, we expect that the detec-
tion probability should lie between 10% and 40%; however, it is 
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not possible to estimate this parameter early on in the epidemic 
from case data only. To assess the impact of this parameter on 
our forecasts, we ran our model for fixed values of the detection 
probability between 10% and 40% and present scenarios where 
this probability is fixed to 10% and 40%. We also investigated 
how estimates of this quantity evolve as data accumulate.

Climatic Scenarios

To compute the scaling factors s(T(t), P(t)) at each time point, 
we relied on sinusoidal fits of daily temperature and precipita-
tion data provided by Météo France and spanning the time pe-
riod from 2004 to 2019 (Supplementary Material 4 and 
Supplementary Figure 5). To account for uncertainty in climate 
variables for dates following the time point at which the analy-
ses were performed, we considered 3 different scenarios: 

• average temperature scenario: average temperatures and pre-
cipitations calculated from the available data;

• cold temperature scenario: average temperatures calculated 
from the coolest year (ie, lowest yearly average temperature) 
in the dataset (2005); no difference in terms of precipitation;

• warm temperature scenario: average temperatures calculat-
ed from the warmest year (ie, highest yearly average tem-
perature) in the dataset (2015); no difference in terms of 
precipitation.

Estimation and Model Comparison

Parameters were estimated via Markov Chain Monte Carlo 
(MCMC) sampling with uniform noninformative priors. We 
used the deviance information criterion (DIC) for model com-
parison. Smaller DIC values indicate better adequacy to the 
data. Differences of DIC above 4 were considered substantial. 
The model was implemented in C++ and is available, together 
with the epidemiological and climate data used for the analyses, 
on GitHub. We assumed all model parameters were constant 
for the duration of the epidemic.

RESULTS

From the start of the epidemic in January 2018 to 10 
December 2019, more than 24 800 confirmed cases were noti-
fied (Figure 1A); 2405 cases presented to an emergency 

Figure 1. Epidemic curve, climate, and scaling factors modulating the transmission rate in the SIR (susceptible-infectious-recovered) model. A, Epidemic curve. The bars 
represent the weekly number of confirmed cases. B, Temperature in degrees Celsius and (C ) precipitation in mm. The climate model fitted to the last 15 years of data is 
represented by the black line while measurements during the study period are represented in color (colored lines represent the averages while the colored areas encompass 
the 2.5 and 97.5 percentiles). D, Scaling factor versus temperature. E, Scaling factor versus time for a typical year in Reunion Island.
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department, 732 cases were hospitalized, with 20 deaths—12 of 
which directly related to dengue [16]. Figure 1B and 1C show 
seasonal variations in temperature and precipitation.

Figure 1D shows that, from a theoretical perspective, the 
temperature at which transmission peaks and the seasonality 
of DENV transmission in Reunion Island change slightly 
whether we consider the model of Lambrecht [2], Mordecai 
[3], or Perkins [4]. In particular, the model by Lambrechts 
et al shows a less pronounced reduction of transmission 

during the austral winter months than the other 2 models 
(Figure 1E).

First Assessment in July 2018

Our first assessment was performed in July 2018. At that time, 
the main concern was the possible persistence of DENV trans-
mission during the austral winter 2018. Figure 2 shows the ep-
idemic trajectories anticipated by the different models in July 
2018 and up to January 2020. Our main conclusions at the 

Figure 2. Epidemic forecasts up to January 2020 from data available in July 2018 for different model variants. In each panel is indicated the combination of model 
(Lambrechts, Mordecai, or Perkins), generation time (GT = 21 or 15 days), and detection probability (ρ = 10% or 40%). Black circles represent data points used for model 
calibration while white circles represent future data points (not used for model calibration). Forecasts from the models are represented in color for different temperature 
scenarios. To improve the figure readability the y-axis of all panels is on a square root scale.
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time were that (1) uncertainties about the future course of the 
epidemic remained important; but (2) despite the substantial 
heterogeneities observed between models, all of them forecast-
ed that a second epidemic wave would occur; and (3) in most 
scenarios (11 of 12 scenarios), the second wave was forecasted 
to be larger than the first one. This pattern closely resembled 
the 2-wave chikungunya epidemic that hit Reunion Island in 
2005–2006 [9] and indicated that persistence of DENV trans-
mission during the austral winter 2018 was a likely scenario.

Model Comparison

While most models had similar statistical support at the beginning 
of the epidemic, as more data became available, the Lambrechts 
model with a generation time (GT) = 15 days had consistently 
lower DIC than other models (Figure 3A); that is, it provided a 
better fit to the data already observed. Early in the epidemic, there 

was not sufficient information in the data to estimate the detection 
probability ρ (Figure 3B), and we therefore presented forecasts for 
ρ contained within its expected range, 10%–40%. However, from 
about the start of the second wave (November 2018), scenarios 
with a detection probability around 10%–20% received stronger 
statistical support so that we started to put more emphasis on fore-
casts associated with these values.

Forecasts Over the Course of the Epidemic

Figure 4A–C shows the forecasts of all models (Lambrechts, 
Mordecai, or Perkins model; GT = 15 or 21 days; cold, average, 
or warm temperature scenario) for a detection probability ρ of 
10% and 40%, and with respect to 3 key metrics: the total number 
of cases observed since the beginning of the epidemic (Figure 4A); 
the number of cases at the second peak (Figure 4B); and the timing 
of the second peak (Figure 4C). Figure 4D–F shows the same 

Figure 3. Model comparison and detection probability estimated with data available at different times during the epidemic. A, Deviance information criterion (DIC) dif-
ference with respect to the best fitting model. Solid lines indicate models with generation time (GT) = 15 days, while dashed lines indicate models with GT = 21 days. The 4 
curves for each color and generation time combination correspond to detection probabilities ρ = 10%, 20%, 30%, and 40%. The dashed black line represents a DIC difference 
of 4, indicative of substantial model improvement. The thicker green line represents the best fitting model (Lambrechts, GT = 15 days, detection probability ρ = 10%). 
B, Detection probability estimated with data available at different times during the epidemic. The estimates were obtained by fitting the model by Lambrechts et al 
with GT = 15 days. Dots represent posterior means while the bars represent 95% credible intervals. The vertical dashed line in grey marks the switch to a model with 
an additional parameter (the proportion of infectious individuals at the beginning of the second epidemic wave). The grey line represents the epidemic curve.
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metrics but restricted to the model that performed best overall (ie, 
Lambrechts model with GT = 15 days).

We note that the most important sensitivity in forecasted 
metrics was driven by uncertainty about the detection probabil-
ity. The forecasted total number of cases (Figure 4A and 4D) 
and size of the second peak (Figure 4B and 4E) were indeed 
much larger and with wider forecasted ranges when the detec-
tion probability was assumed to be 40% than when it was 10%; 
the forecasted range for the timing of the second peak was 
also substantially wider for ρ = 40% (Figure 4C and 4F). 
Throughout the epidemic, forecasts performed under the sce-
nario of a detection probability of ρ = 10% have been 

remarkably accurate. As indicated earlier (Figure 3B), from 
November to December 2018, we started to get a strong signal 
from the data that the detection probability was in the lower 
range of values we considered (10%–20%). Although varying 
during the course of the epidemic, the cold temperature scenar-
io was the temperature scenario that most consistently yielded 
the most accurate projections (10 out of 18 times).

By comparing Figure 4D–F to Figure 4A–C, we note a further 
gain in the quality of forecasts when relying on the best perform-
ing model (Lambrechts with GT = 15 days), although the gain is 
less than that obtained by selecting the correct detection probabil-
ity. This model—with a detection probability of 10%—correctly 

Figure 4. Forecasting performance during the epidemic. A and D, Total number of observed cases. B and E, Intensity of the second peak (ie, number of incident cases at the 
second epidemic peak). C and F, Error on the timing of the second peak (in weeks), calculated as the difference in weeks between forecasted and observed values. The colored 
areas represent the 95% forecast intervals for simulations obtained by (A–C ) combining all models and all temperature scenarios and (D–F ) the best performing model 
(Lambrechts with GT = 15 days) for all temperature scenarios. Blue indicates a detection probability of 10%, while green a detection probability of 40%. A, B, D, and E, 
The horizontal dashed line represents values observed during the epidemic. C and F, The horizontal dashed line represents a delay of zero weeks. A–F, The vertical dotted 
line marks the switch to models with an additional parameter (the proportion of infectious individuals at the beginning of the second epidemic wave).
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forecasted both the total number of detected cases and the second 
peak intensity starting from April 2018 (Figure 4D and 4E). It also 
accurately forecasted the timing of the second peak from 
December 2018 onward (more than 4 months in advance), while 
having forecasted it on average 2 weeks earlier until then 
(Figure 4F).

Inferred Attack Rates and Immunity in the Population

Using data available as of August 2019, our best fitting model 
(Lambrechts with GT = 15 days) estimates a detection probabil-
ity ρ = 11% (credible interval [CrI], 10%–12%). This estimate is 
largely insensitive to assumptions about the generation time 
(Supplementary Figure 1). Figure 5 shows the immunity against 
DENV2 in the population of Reunion Island as reconstructed by 
this model. We estimate that 26% (CrI, 21%–33%) of the popu-
lation was infected during 1 of the 2 waves (8% and 18% in the 
first and second waves, respectively), which is roughly similar to 
the 35% attack rate estimated for the chikungunya epidemic in 
2005–2006 [9]. Assuming that it takes 2 weeks for infected indi-
viduals to seroconvert, our results are in good agreement with 
seroprevalence estimates from 2 independent serological studies 
among blood donors (Gallian and de Lamballerie, personal com-
munication) performed in April and October 2018 (Figure 5). 
Finally, our model estimates that the level of immunity against 
DENV2 after the 2 epidemic waves—and accounting for the ini-
tial level of immunity—was 41% (CrI, 36%–48%).

DISCUSSION

We compared 3 mathematical models to forecast the DENV 
epidemic in Reunion Island in 2018–2019 and strengthen 

the risk assessments of Santé Publique France. Our forecasts ac-
curately anticipated the observed epidemic trajectory and were 
used at a national and local level to inform planning and opti-
mize resource allocation.

Epidemic forecasting in a context of emergence or reemer-
gence is a difficult task because there is no historical record 
from the affected location that can be used to train predictive 
models. Here, we hypothesized that epidemiological and exper-
imental data characterizing the association between climate 
and DENV transmission outside Reunion Island could provide 
key insights on DENV epidemic dynamics in the island. Our 
model captured existing uncertainties about key drivers and 
parameters. In particular, different models were considered 
to investigate how assumptions about the association between 
climate and DENV transmission (3 models), the generation 
time of dengue (2 models), temperature trends (3 models), 
and the detection probability could impact our forecasts. In 
Supplementary Figure 6 we show that a model ignoring climate 
or considering a simple modulation of the transmission rate 
following temperature trends would not have been able to 
capture the epidemic dynamics.

Forecasts were particularly sensitive to the assumption 
about the detection probability of incident infections. From 
November to December 2018, our analyses indicated that about 
10%–20% of dengue infections were detected by the surveil-
lance system. For that range of values, forecasts for the total 
number of cases, the size, and timing of the second peak were 
remarkably accurate throughout the epidemic. The fact that 
we started to be able to estimate the detection probability 
around the beginning of the second wave is consistent with the-
ory that early in an epidemic, the exponential growth rate esti-
mate, which summarizes information about the transmission 
potential, is independent of the detection probability. These 
expectations are confirmed in Supplementary Figure 7, which 
shows the posterior distributions of the detection probability 
and the mean generation time obtained with data available at 
different times of the epidemic: the detection probability can 
only be estimated once we are quite advanced in the second 
wave, while the generation time is only available at the end of 
the first wave. While it is interesting to retrospectively ascertain 
when the estimation of these quantities became possible, trying 
to estimate them from the limited data we had at the start of the 
epidemic to inform projections was doomed to fail. Instead, we 
decided to explore the performance of a well-defined set of 
models informed by prior knowledge on dengue (GT = 15 or 
21 days, detection probability = 10%–40%). In such a context 
of limited data, we believe this approach is preferable to inte-
gration over vague priors, as it improves communication to 
policy makers, who can more easily understand sensitivity of 
projections to model parameters. At a more advanced stage 
of the epidemic, it is interesting to also explore the posterior 
distribution of model parameters and the associated projections 

Figure 5. Level of immunity forecasted against dengue virus 2 in the population 
of Reunion Island. The solid line corresponds to the posterior mean, while the 95% 
credible interval is indicated as a colored area. Independent results from 2 serolog-
ical surveys among blood donors performed during April and October 2018 are 
shown as black crosses.

16 • JID 2024:229 (15 January) • Andronico et al

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article/229/1/10/7438952 by London School of H

ygiene & Tropical M
edicine user on 29 January 2024

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiad468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiad468#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiad468#supplementary-data


(Figure 3B and Supplementary Figures 7 and 8). However, given 
that posterior estimates can be unstable (Figure 3B and 
Supplementary Figure 7), we believe it remains important to 
consider a broader range of parameter values than the one in 
the posterior distribution.

Given the sensitivity of forecasts to the detection probability, 
obtaining estimates of this parameter from independent data 
such as serosurveys in blood donors would have been extremely 
helpful to reduce uncertainties and strengthen confidence in 
our forecasts. This is a point we raised throughout the epidem-
ic, highlighting how modelling can be used to identify comple-
mentary studies that are essential to reduce key knowledge 
gaps. In some cases, the detection probability may exhibit im-
portant variations during the time course of an epidemic, be-
cause of the evolution of testing protocols or of health 
care-seeking behaviors [17] and it is important to be able to 
track these changes through time with regular serosurveys. In 
the absence of such data, we made here the simplifying assump-
tion that the detection probability was constant over time. In a 
sensitivity analysis (Supplementary Figure 4), we show that as-
suming a 3-fold increase in the detection probability at the start 
of the second epidemic wave would not impact the quality of 
our predictions for the epidemic curve of confirmed cases but 
would lower the estimated level of immunity in the population 
at the end of the second epidemic wave (32% vs 41%).

These 3 models were generated using different data sets, 
including epidemiological and laboratory experiments. The 
original intended purpose of these models was not necessarily 
to forecast epidemiological dynamics, as we have used them 
for here. For example, despite being the best fitting model, the 
Lambrechts model only focuses on differences in dissemination 
of the virus during midgut infection as a function of tempera-
ture and does not directly explore differences in mosquito den-
sity. However, mosquito densities also change with temperature 
and, in practice, we observe that this formulation also captures 
some of these differences. Similarly, the Lambrechts model was 
generated using Ae. aegypti data, rather than Ae. albopictus, the 
primary driver of transmission in Reunion Island. Consistent 
relationships between temperature and transmission potential 
have been observed for Ae. aegypti and Ae. albopictus, which 
may help explain this performance [18]. This highlights the rel-
evance of laboratory-generated data in applications to the field, 
despite clear differences in conditions (eg, constant temperature 
and the use of laboratory-reared mosquitoes). Given the com-
plexity of the association between climate and dengue transmis-
sion, we should not overinterpret results of this model 
comparison exercise. The relative performance of the different 
models may differ in different settings and it will therefore re-
main important to compare their performance in outbreaks in 
other locations.

In our models, we considered 3 climate trajectories (warm, 
cold, and average) for temperature and precipitation. However, 

such an approach imperfectly captures interannual variability, 
which may potentially reduce model predictive power. We found 
that temperatures measured during the epidemic period were 
close to expected temperatures (Figure 1B), but there were 
more discrepancies between observed and expected precipita-
tions (Figure 1C). This may have affected the predictive power 
of the Perkins model that uses precipitations. More generally, 
this suggests that it may be difficult to correctly capture and pre-
dict precipitation dynamics, which may affect the performance of 
models that utilize this indicator.

Our analysis evaluated the predictive performance of 3 models 
characterizing the association between climate and dengue trans-
mission, which is an important step to ascertain the relevance of 
these models. However, more research is needed to understand 
this association and improve forecasts of dengue risk. For exam-
ple, in the context of Reunion, models describing the spatiotem-
poral distribution of mosquito populations may help produce 
maps of dengue risk [19], while the integration of climate change 
forecasts into these models is necessary to anticipate its impact 
both on mosquito populations and dengue risks [20].

This study showcases the contribution of modeling to 
strengthen the risk assessments of national and local authorities 
and to provide quantitative support to inform planning and 
resource allocation, especially for scaling the reinforcement 
of vector-control activities and the implementation of a rapid 
diagnostic test strategy.
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