Luque-Fernandez, Miguel Angel; Schomaker, Michael; Rachet, Bernard; Schnitzer, Mireille E; (2018) Targeted maximum likelihood estimation for a binary treatment: A tutorial. Statistics in medicine, 37 (16). pp. 2530-2546. ISSN 0277-6715 DOI: https://doi.org/10.1002/sim.7628
Permanent Identifier
Use this Digital Object Identifier when citing or linking to this resource.
Abstract
When estimating the average effect of a binary treatment (or exposure) on an outcome, methods that incorporate propensity scores, the G-formula, or targeted maximum likelihood estimation (TMLE) are preferred over naïve regression approaches, which are biased under misspecification of a parametric outcome model. In contrast propensity score methods require the correct specification of an exposure model. Double-robust methods only require correct specification of either the outcome or the exposure model. Targeted maximum likelihood estimation is a semiparametric double-robust method that improves the chances of correct model specification by allowing for flexible estimation using (nonparametric) machine-learning methods. It therefore requires weaker assumptions than its competitors. We provide a step-by-step guided implementation of TMLE and illustrate it in a realistic scenario based on cancer epidemiology where assumptions about correct model specification and positivity (ie, when a study participant had 0 probability of receiving the treatment) are nearly violated. This article provides a concise and reproducible educational introduction to TMLE for a binary outcome and exposure. The reader should gain sufficient understanding of TMLE from this introductory tutorial to be able to apply the method in practice. Extensive R-code is provided in easy-to-read boxes throughout the article for replicability. Stata users will find a testing implementation of TMLE and additional material in the Appendix S1 and at the following GitHub repository: https://github.com/migariane/SIM-TMLE-tutorial.
Item Type | Article |
---|---|
Faculty and Department |
Faculty of Epidemiology and Population Health > Dept of Non-Communicable Disease Epidemiology Faculty of Public Health and Policy > Dept of Health Services Research and Policy |
Research Centre |
Cancer Survival Group Inequalities in Cancer Outcomes Network ?? 208138 ?? |
PubMed ID | 29687470 |
ISI | 434364600008 |
Related URLs |
Download
Filename: Targeted-maximum-likelihood-estimation-for-a-binary-treatment-A-tutorial.pdf
Licence: Creative Commons: Attribution 3.0
Download