Effects of creatine supplementation on housekeeping genes in human skeletal muscle using real-time RT-PCR.


Murphy, RM; Watt, KK; Cameron-Smith, D; Gibbons, CJ; Snow, RJ; (2003) Effects of creatine supplementation on housekeeping genes in human skeletal muscle using real-time RT-PCR. Physiological genomics, 12 (2). pp. 163-74. ISSN 1094-8341 DOI: https://doi.org/10.1152/physiolgenomics.00060.2002

Full text not available from this repository.

Abstract

The present study examined the validity and reliability of measuring the expression of various genes in human skeletal muscle using quantitative real-time RT-PCR on a GeneAmp 5700 sequence detection system with SYBR Green 1 chemistry. In addition, the validity of using some of these genes as endogenous controls (i.e., housekeeping genes) when human skeletal muscle was exposed to elevated total creatine levels and exercise was also examined. For all except 28S, linear relationships between the logarithm of the starting RNA concentrations and the cycle threshold (C(T)) values were established for beta-actin, beta2-microglobulin (beta2M), cyclophilin (CYC), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a linear response between C(T) values and the logarithm of a given amount of starting cDNA for all the genes tested. The overall intra-assay coefficient of variance for these genes was 1.3% and 21% for raw C(T) values and the linear value of 2(-C(T)), respectively. Interassay variability was 2.3% for raw C(T) values and 34% for the linear value of 2(-C(T)). We also examined the expression of various housekeeping genes in human skeletal muscle at days 0, 1, and 5 following oral supplementation with either creatine or a placebo employing a double-blind crossover study design. Treatments were separated by a 5-wk washout period. Immediately following each muscle sampling, subjects performed two 30-s all-out bouts on a cycle ergometer. Creatine supplementation increased (P < 0.05) muscle total creatine content above placebo levels; however, there were no changes (P > 0.05) in C(T) values across the supplementation periods for any of the genes. Nevertheless, 95% confidence intervals showed that GAPDH was variable, whereas beta-actin, beta2M, and CYC were the least varying genes. Normalization of the data to these housekeeping genes revealed variable behavior for beta2M with more stable expressions for both beta-actin and CYC. We conclude that, using real-time RT-PCR, beta-actin or CYC may be used as housekeeping genes to study gene expression in human muscle in experiments employing short-term creatine supplementation combined with high-intensity exercise.

Item Type: Article
Faculty and Department: Faculty of Public Health and Policy > Dept of Health Services Research and Policy
PubMed ID: 12419855
Web of Science ID: 180400100011
URI: http://researchonline.lshtm.ac.uk/id/eprint/12560

Statistics


Download activity - last 12 months
Downloads since deposit
0Downloads
273Hits
Accesses by country - last 12 months
Accesses by referrer - last 12 months
Impact and interest
Additional statistics for this record are available via IRStats2

Actions (login required)

Edit Item Edit Item