Browse by Publication
Up a level |
Number of items: 13.
2018
Villa, C;
Rubio, FJ;
(2018)
Objective priors for the number of degrees of freedom of a multivariate t distribution and the t-copula.
Computational statistics & data analysis, 124.
pp. 197-219.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2018.03.010
2017
Ghebremichael-Weldeselassie, Y;
Whitaker, HJ;
Douglas, IJ;
Smeeth, L;
Farrington, CP;
(2017)
Self-controlled case series with multiple event types.
Computational statistics & data analysis, 113.
pp. 64-72.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2016.10.010
Full text not available from this repository.
2013
Lee, D;
Lee, Y;
Paik, MC;
Kenward, MG;
(2013)
Robust inference using hierarchical likelihood approach for heavy-tailed longitudinal outcomes with missing data: An alternative to inverse probability weighted generalized estimating equations.
Computational statistics & data analysis, 59.
pp. 171-179.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2012.10.013
Full text not available from this repository.
Pantazis, N;
Kenward, MG;
Touloumi, G;
Eurocoord, CascadeCollaboration;
(2013)
Performance of parametric survival models under non-random interval censoring: A simulation study.
Computational statistics & data analysis, 63.
pp. 16-30.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2013.01.014
Full text not available from this repository.
2012
Daniel, RM;
Kenward, MG;
(2012)
A method for increasing the robustness of multiple imputation.
Computational statistics & data analysis, 56 (6).
pp. 1624-1643.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2011.10.006
2011
Sotto, C;
Beunckens, C;
Molenberghs, G;
Kenward, MG;
(2011)
MCMC-based estimation methods for continuous longitudinal data with non-random (non)-monotone missingness.
Computational statistics & data analysis, 55 (1).
pp. 301-311.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2010.04.026
Full text not available from this repository.
2010
Molenberghs, G;
Kenward, MG;
(2010)
Semi-parametric marginal models for hierarchical data and their corresponding full models.
Computational statistics & data analysis, 54 (2).
pp. 585-597.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2009.09.040
Full text not available from this repository.
White, IR;
Daniel, R;
Royston, P;
(2010)
Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables.
Computational statistics & data analysis, 54 (10).
pp. 2267-2275.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2010.04.005
Full text not available from this repository.
2009
Kenward, MG;
Roger, JH;
(2009)
An improved approximation to the precision of fixed effects from restricted maximum likelihood.
Computational statistics & data analysis, 53 (7).
pp. 2583-2595.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2008.12.013
Full text not available from this repository.
Sepulveda, N;
Paulino, CD;
Penha-Goncalves, C;
(2009)
Bayesian analysis of allelic penetrance models for complex binary traits.
Computational statistics & data analysis, 53 (4).
pp. 1271-1283.
ISSN 0167-9473
https://researchonline.lshtm.ac.uk/id/eprint/1086
Full text not available from this repository.
2008
Webb, EL;
Forster, JJ;
(2008)
Bayesian model determination for multivariate ordinal and binary data.
Computational statistics & data analysis, 52 (5).
pp. 2632-2649.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2007.09.008
Full text not available from this repository.
2006
Jansen, I;
Hens, N;
Molenberghs, G;
Aerts, M;
Verbeke, G;
Kenward, MG;
(2006)
The nature of sensitivity in monotone missing not at random models.
Computational statistics & data analysis, 50 (3).
pp. 830-858.
ISSN 0167-9473
DOI: https://doi.org/10.1016/j.csda.2004.10.009
Full text not available from this repository.
2001
Molenberghs, G;
Verbeke, C;
Thijs, H;
Lesaffre, E;
Kenward, MG;
(2001)
Influence analysis to assess sensitivity of the dropout process.
Computational statistics & data analysis, 37 (1).
pp. 93-113.
ISSN 0167-9473
https://researchonline.lshtm.ac.uk/id/eprint/17415
Full text not available from this repository.