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Abstract

Research on the health effects of temperature has expanded greatly in recent years, mainly due to the
occurrence of extreme weather events and predicted climate change scenarios. The development of
appropriate statistical methodology has been an important component of this research, and standard
approaches, primarily based on multi-city time series regression analysis, are now well established.
However, particular aspects of temperature-health associations, such as the non-linear and delayed
relationship and the joint handling of multi-city data, still pose important methodological problems.
During my PhD research, I have contributed to the development of statistical methods that address
two particular limitations of traditional approaches, focusing on the development of two modelling
frameworks: distributed lag non-linear models and multivariate meta-analysis. The former is a class
of models that specify simultaneously non-linear and delayed exposure-response relationships in time
series data, while the latter is an extension of traditional meta-analysis for the combination of multiple
correlated outcomes across studies, that is also applicable to multi-parameter associations. These
methods are placed within the traditional two-stage approach that is adopted in temperature-health
studies. The first stage is city-specific, with analyses deriving the estimated relationship within cach
city. The second-stage is meta-analytical procedure for combining the results from the first stage. 1
have implemented these modelling frameworks in two packages within the statistical environment R.
In this PhD thesis I present a series of publications which summarize my research work. Their content
focuses on three key aspects: the development of the statistical methodology, the implementation of
the software, and the application of the methods to real data. The papers are preceded by an epidemi-
ological and statistical introduction to the topic, and followed by a final discussion where I illustrate
potential future developments and provide some conclusions. These methodological advancements
contribute several improvements over standard methods that are applied to investigate temperature-
health associations in time series data, and may be easily extended to other research fields and study
designs.
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Preface

This PhD thesis consists of a collection of research papers, commentaries and software documentation.
Although these publications are focused on the same research topic, they have been published, or sub-
mitted, as independent research contributions. Inevitably, concepts and definitions are often repeated
in different papers, and, more importantly, their content is not uniformly linked and standardized. The
thesis is therefore divided into three main parts, where the selected publications are preceded by an
introduction and followed by a final discussion. The aim is to "tell the story” of my research activity
during the PhD project, presenting my contribution to the topic as a coherent body of work.

The introduction in Part I contains two main chapters. The epidemiological and statistical context
of temperature-health studies is illustrated in Chapter 1, focusing in particular on the methodological
aspects of the association under study. Chapter 2 offers a summary of the publications, also introducing
the main statistical developments and the related software implementation. In Part I11, Chapter 12, 1
provide a final discussion and describe potential directions for future research.

Part II includes the selected nine publications in different chapters. The order has been chosen to
reflect the progressive research steps of the PhD project. The first publication in Chapter 3 is an
example of standard analysis of temperature-health associations. The paper in Chapter 4 discusses
the methodological advancements and limitations of the studies in this field, and anticipates the two
main statistical developments I wish to present, described in two blocks of papers in Chapters 5-7
and 8-9, respectively. The last Chapters 10 and 11 include two publications where the two statistical

frameworks are applied for substantive analyses.
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Chapter 1

Epidemiological and statistical context

1.1 Temperature and health

Exposure to extreme temperatures has long been recognized as a threat to health, and, in the last

decade, this association has been intensely scrutinized by the scientific community. This growing

interest has been stimulated by specific episodes of extreme weather, characterized by an exceptional

increase in mortality and other health outcomes. Particularly infamous events have been reported as

public health disasters, for example the heat waves in Chicago during July 1995 (Semenza et al., 1996,
1999) or in France during August 2003 (Le Tertre et al., 2006; Poumadere et al., 2005).

More generally, the need to deepen our understanding of the relationship between extreme temperature

and health is motivated by the mounting evidence about climate change. Over the past century, the

overall global surface temperature has increased by 0.4-0.8°C, and the global sea level has risen 10-25

cm from the melting of the polar ice caps (National Reasearch Council (NRC), 2000). The scenarios

for the next decades predict an increased intensity and frequency of extreme temperature events, in

particular heat waves (Luber and McGechin., 2008; Mechl et al., 2000), and several studies have foreseen

an increased health impact (Kalkstein and Greene, 1997; O'Neill and Ebi, 2009; Patz et al., 2005).

16



CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT

Thus, it is no surprise if, during recent years, the epidemiological literature assessing the health effects
of temperature has greatly expanded: Gosling et al. (2009) provides a critical review of the literature
on this issue, acknowledging the inter-disciplinary nature of the topic and examining the findings
presented in epidemiological, environmental and climatological journals. A comprehensive review of
the epidemiological evidence on the effects of hot temperatures published between 1970 and 2008,
together with a thorough discussion on methodological issues, is offered by Basu and Samet (2002a)
and Basu (2009). Kovats and Hajat (2008) have performed a similar assessment, focusing on the public
health implications of temperature-related mortality and morbidity. Studies on the the health effects
of cold temperatures are instead less common (Analitis et al., 2008; Carder et al., 2005; Eurowinter

Group, 1997; Gorjanc et al., 1999; Hajat and Haines, 2002; Wilkinson et al., 2004).

Temperature indexes

The assessment of temperature-health associations commonly relies on ambient temperatures and other
meteorological variables measured at central weather stations, characterizing the average exposure ex-
perienced by individuals living in the same city or region (Basu and Samet, 2002a; Gosling et al.,
2009). The exposure is usually collected at equally-spaced times, commonly on a daily basis, describ-
ing the temporal variability of temperatures. Different exposure indexes have been proposed, from
maximum (Armstrong et al., 2010) or minimum temperature (Schwartz, 2005) measured within each
day, or most frequently mean temperature, defined as the average between maximum and minimum

or between the hourly measurements (Hajat et al., 2002; Pattenden et al., 2003). Composite indexes

with a combination of dry-bulb temperature and measures of humidity (relative humidity or dew-point

temperatures) have been also proposed, for example apparent temperature (Michelozzi et al., 2007;

Stafoggia et al., 2006) or the humidex (Conti et al., 2005, 2007). Each measure has a specific charac-
terization: composite indexes are commonly build as surrogates of the thermal stress of the body, a
perceived temperature which depends also on humidity. In addition, in the ecological approach based
on aggregated exposure measurements, the estimated effects of maximum and minimum temperature

are frequently interpreted as the specific risk for exposures experienced by individuals during day and

night time, respectively, and their comparison fosters additional hypotheses on the causal pathway
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT

linking temperature and health outcomes. Barnett et al. (2010) have provided an assessment of the
predictive ability of different exposure indexes in a large datasct including 107 cities in the USA,
concluding that no measure shows a significant and coherent improved performance.

Some investigations have instead applied micro-environmental models to determine the personal ex-
posure as the time-weighted average concentration in the different locations where participants in a
study spend their time (Basu and Samet, 2002b), but this method is considered expensive as well im-
practical to be broadly implemented in epidemiological studies. Recently, more sophisticated studies
have assessed the exposure at a finer geographical grid, using model-based predicted temperature in
small-arca analysis (Aylin et al., 2001). Such approaches allow the inspection of further issues such

as the urban heat island or effect modification by small-area characteristics, for example deprivation

indexes, building type and land use characteristics.

Adaptation and susceptibility
The assessment of temperature as a risk factor for human health needs to accommodate the additional

complexity of the adaptation of populations to their own climate. A suitable index to measure this

phenomenon is the comfort range, the temperature band at which a specific population experiences the

lowest risk. The limits of this range are commonly interpreted as the threshold values beyond which

the risk increases above the baseline level for both cold and hot temperatures (Gosling et al., 2009).

Several studies on all-cause mortality have reported that the range of minimum effects vary in different

climates, with populations living in colder and hotter regions showing lower and higher thresholds,

respectively, for both cold and heat effects (Baccini et al., 2008; Eurowinter Group, 1997; Ke
et al., 2000; McMichael et al., 1998).

atinge
Moreover, some evidence suggests that urban populations are

more susceptible to extreme heat events, if compared to people living in non-urbanized arcas (McGeehin

and Mirabelli, 2001; Smoyer et al., 2000).

The health risk associated with extreme temperature is modified by several variables. Kovats and

Hajat (2008) categorized these risk factors in intrinsic and extrinsic: the former relates to features of

individuals, while the latter refers to environmental and behavioural aspects. Intrinsic characteristics

which have been assessed as potential modifiers of the relationship between temperature and health
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT

are aging (Filleul et al., 2004; Hajat et al., 2007), sex (Bell et al., 2008; Stafoggia et al., 2006) and
clinical of patho-physiological factors (Medina-Ramn et al., 2006; Stafoggia et al., 2008a; Wilkinson
et al., 2004). The evidence for a differential effect of race (Basu and Ostro, 2008; Medina-Ramn et al.,
2006) might be explained in terms of different patterns by racial groups of extrinsic factors which
have been found to modify the association, such as socio-economic characteristics (Borrell et al., 2006;
Gouveia et al., 2003; Rey et al., 2009) and housing (Vandentorren et al., 2006). Several studies also
reported an interaction with air pollution, although the evidence is not conclusive (Carder et al., 2008;
Rainham and Smoyer-Tomic, 2003; Stafoggia et al., 2008b).

The adaptation of individuals to different climates is paramount for the prediction of the future bur-
den of climate change, and several studies have assessed geographical and temporal variations in the
temperature-mortality association (McGechin and Mirabelli, 2001; Medina-Ramon and Schwartz, 2007;
Michelozzi et al., 2006). Interestingly, some studies reported a progressive reduction in heat-related
mortality along the last century, despite the aging of populations (Barnett, 2007; Carson et al., 2006).
This trend is likely to reflect improvements in social, environmental. behavioural. and health-care
factors: in particular, the increased prevalence of air conditioning seems to play an important role in
decreasing heat-related deaths (Davis et al., 2003; ONeill et al., 2005). In addition, some investigators
have reported that heat waves occurring early in the summer are associated with a higher mortality
risk than extreme cvents assessed later in the hot season (Baccini et al., 2008; Hajat et al., 2002),

suggesting a short-term adaptation of population to changing climate.

1.2 Study designs and analytical approaches

The vast majority of studies assessing the health effects of temperature rest upon ecological study

designs that use aggregated data. Most studies examine the relationship between ambient tempera-

ture and the number of cases in a defined period, frequently all-cause and cause-specific mortality or

morbidity. The outcome is usually routinary collected for administrative purposes on a daily basis,

and associated with the exposure averaged on the same temporal scale, as described in Section 1.1.

The preferred approach to investigate temperature-mortality associations is through time series re-

gression analysis, a popular analytical tool in environmental epidemiology (Bell et al., 2004; Touloumi
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT

et al., 2004; Zeger et al., 2006). In this approach the series of daily counts and ambient levels of
temperature are compared, while controlling for potential confounding variables such as long-term
and seasonal trends, air pollution and influenza epidemics. The standard model assumes Poisson re-
sponses, allowing for overdispersion. This analytical framework has been widely used in recent years,
and has been thoroughly reviewed and extended by Armstrong (2006). A brief overview is provided
in Section 1.3.

Alternative methods proposed for studying the effects of temperature are the case-crossover (Basu and
Ostro, 2008; Bell et al., 2008; Medina-Ramn et al., 2006; Stafoggia et al., 2006), case-only (Armstrong,
2003; Medina-Ramon and Schwartz, 2007; Schwartz, 2005), and case-control (Naughton et al., 2002;
Semenza et al., 1996). Descriptive studies or simple analyses of specific heat waves have been published
as well (Basu and Samet, 2002a).

Many studies on temperature-health associations are focused on the analysis of specific episodes, gen-
erally referred to as periods characterized by unusual weather patterns, such as heat waves and cold
spells. In these analyses, the excess risk during the event can be estimated through contrast with
comparable referent periods, usually chosen as the same days in the previous years (Conti et al., 2007;
Huynen et al., 2001) or the other non-event days in the same month (Hoffmann et al., 2008; Knowlton
et al., 2009). Alternatively, the health impact is computed including an indicator variable for specific
weather events in a time series regression models (Hajat et al., 2002; Huynen et al., 2001; Rey et al.,
2007). Although a common definition has not yet been reached (Gosling et al., 2009), the extreme
episodes are commonly identified in terms of both intensity and duration, labelling as heat wave days
those with temperature above a threshold for a minimum number of days (Robinson, 2001).

Other investigators have treated temperature as a continuous risk factor, including daily values in the
time series regression model and thus estimating the proper exposure-response relationship (Anderson
and Bell, 2009; Armstrong et al., 2010). This approach provides a more detailed assessment of the
association between temperature and various health outcomes, allowing the simultaneous estimation
of cold and heat effects and the inspection of the comfort range or point of minimum effect described
in Section 1.1 (Curriero et al., 2002). A few studies have also investigated the association between

heat, heat waves and mortality, by including both a heat wave indicator and a continuous term for
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT

temperature in a regression model (Anderson and Bell, 2009; Hajat et al., 2006; Rocklov and Forsberg,
2008). The rationale behind this methodology is that the effect of heat may be described as the sum
of two contributions: an increased risk due to the independent effects of daily temperature levels, and

an additional risk due to duration of heat sustained for several consecutive days.

1.3 Time series analysis in environmental epidemiology

Time series analysis is a common analytical tool applied in many different fields, from econometrics and
ccology to physics and engineering. Commonly in these subject-areas, the main purpose is to predict
future outcomes given the sequence of past observations: from a statistical perspective, the focus of the
analysis is on specifying the proper auto-correlation structure of the series (Diggle, 1990), in order to
provide reliable predictions. In contrast, in many applications in biomedical research, and particularly
in environmental epidemiology, the scope of time series analysis is shifted from prediction to estimation,
and the analysis is commonly carried out through standard regression techniques. The aim is not to
predict future occurrences given an observed series, but to provide an appropriate description of the
association between the exposure and outcome series, controlling for potential confounders (Zeger
et al., 2006). Still, the ordered temporal structure of the observations needs to be accounted for.

In applications in temperature-health studies, the time series regression model usually contains the
series of daily measurements of health outcome and temperature as dependent and independent vari-
ables, respectively. Control for potential confounders is achieved by including series for additional
variables. In the standard formulation, the model includes terms for controlling for seasonal and long-
term trends, which remove the effect of measurable or un-measurable confounding factors acting in
long temporal frames (Dominici et al., 2003a; Peng and Dominici, 2008). Recently, the use of a spline
function of time to model the trend components has been favoured: the main concern is the selec-
tion of the appropriate amount of smoothing, corresponding to the selection of the optimal number
of (effective) degrees of freedom (df) per year (Peng et al., 2006). Residual confounding effects are
controlled by adding other variables showing short-term variation, such as air pollution, humidity and

day of the week.

The analysis may focus on the whole continuous series, or be restricted to scasonal data. In the former,
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT

a single spline function of time is usually preferred, producing an irregular seasonal trend which is
believed to control for additional confounding effects operating at medium timescales. Commonly. in
seasonal analyses, the scasonal and long-term trends are instead controlled with separate terms.

The standard design of modern time series studies in environmental epidemiology is based on a two-
stage procedure involving multiple populations, commonly cities (Katsouyanni et al., 1997; Samet
et al., 2000b). This approach guarantees against un-representativeness of single-city results, and offers
a method to investigate heterogeneity and effects modification (Dominici et al., 2003b). The analytical
framework adopted in this context has been described as a two-stage hierarchical model, with a first-
stage analysis which provides city-specific estimates to be then pooled in a second-stage meta-analysis
(Dominici et al., 2000). A single-step analysis, based on hierarchical models, is considered unfeasible
given the complexity of the first-stage model, with a high number of parameters used to specify, for

example, seasonal and long-term trends.

1.4 Methodological aspects in temperature-health studies

As mentioned earlier (Section 1.2), time series regression analysis has gained popularity in recent years
for the assessment of the short-term effects of environmental stressors: in particular, this approach
has been frequently used in order to estimate the health effects of air pollution. Almost 15 years ago,
Schwartz et al. (1996) offered a comprehensive overview of the methodological problems, and since
then, standard, well-grounded statistical methods have been developed for the application of time
series analysis in this field (Dominici, 2004).

Temperature is usually included as a potential confounder in models assessing the health effects of air
pollution. However, new and challenging methodological issues arise when temperature becomes the
exposure of interest. In spite of this, many of the studies on health effects of temperature have applied
the same methodology, and only few methodological works have systematically re-assessed it for the

new context (Armstrong, 2006). These issues are briefly described in the next sections.
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CHAPTER 1. EPIDEMIOLOGICAL AND STATISTICAL CONTEXT

Non-linearity

While the exposure-response association between all-cause and cause-specific mortality and different
air pollution indexes is commonly assumed as linear (Bell et al., 2006; Danicls et al., 2000; Dominici
et al., 2002; Schwartz et al., 2002), the relationship with temperature is usually described as U, V or
J-shaped (Braga et al., 2001a; Curriero et al., 2002; Hajat et al., 2007).

A simple approach to deal with non-linear effects is to assume a threshold-type association, with the
risk increasing linearly beyond a specific temperature values: this method includes the definition of
bathtub-shaped relationships, with two distinct thresholds for cold and heat and a flat region in between
(Pattenden et al., 2003), or the so-called V-model, with a specific point of minimum effect (Ballester
et al., 1997; Huynen et al., 2001; Nafstad et al., 2001). Season-specific analyses simplify the relationship
further, assuming a linear relationship within the season (Analitis et al., 2008; Zanobetti and Schwartz.
2008), or an hockey-stick model with a single threshold (Armstrong et al., 2010; Baccini et al., 2008;
Eurowinter Group, 1997). Muggeo (2008) proposed an interesting algorithm to simultaneously estimate
both threshold and slopes, recently implemented in a statistical software (Muggeo, 2010).
Threshold-type models show some advantages in terms of interpretation and communication, with
the effect being summarized by a single estimate of linear increase in risk, and the threshold value
informing about the adaptation of populations to different climates. However, these approaches are

based on strong assumptions on the shape of the exposure-response relationship, which could generate

important biases, if wrong (Hajat et al., 2006). An alternative options is to apply polynomial (Braga
et al., 2001a, 2002) or spline functions (Anderson and Bell, 2009; Armstrong, 2006; Curricro et al.,

2002), in order to model flexibly a smooth non-linear association.

Delayed effects and harvesting

Typically, exposure to environmental stressors generates effects delayed in time: a specific exposure

events produces a risk which lasts well beyond the exposure period itself. Several time series analyses

of temperature have reported that the exposure to extreme temperatures affects health for a period

lasting days or weeks for exposures to extremely hot and cold days, respectively (Anderson and Bell,

2009; Braga et al., 2001a,b; Carder et al., 2005). The simplest methods to allow for lagged effects in a
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time series analysis is to include the moving average of the exposure on the same and previous days,
up to a maximum lag period. This method has been frequently used in air pollution studies (Dominici,
2004). and also applied to estimate the delayed effect of temperature (Anderson and Bell, 2009).
Furthermore, the complexity increases in the presence of so-called harvesting effect (or mortality dis-
placement): the phenomenon that arises when a stressor affects mainly a pool of frail individuals.
whose events are only brought forward by a brief period of time by the effect of exposure (Rabl, 2005;
Schwartz, 2001). For non-recurrent outcomes, the depletion of the pool following a stress results in
some reduction of cases few days later, thereby reducing the overall long-term impact. Some investi-
gators assessed the presence of harvesting in temperature-health associations, but the evidence is still
unclear (Goodman et al., 2004; Hajat et al., 2005).

A detailed analysis of delayed effects and harvesting would require the specification the distribution of
the effects at different times after the event, modelling the relationship between an CXPOSUre OCCUrrence

and a sequence of future outcomes.

Pooling the results

The health effects of environmental factors are often assessed through multi-site studies. In the context
of air pollution, the usual framework consists in a two-stage hierarchical analysis with a common site-
specific model and then the application of meta-analytic techniques to pool the results (Dominici et al.,

2000; Samoli et al., 2008). This approach ensures that the heterogeneity between different locations is

properly accounted for, allowing model parameters to vary across sites, but at the same time avoiding

additional variability and potential biases due to differential modelling choices (Dominici et al., 2003b;
Touloumi et al., 2004). Meta-regression methods are commonly applied to assess the effect modification
of site-level characteristics.

However, the non-linear association between temperature and health outcomes poses further problems

for the pooling of more complex relationships estimated from the first-stage model, which cannot be
adequately summarized by a single parameter. More sophisticated methods are needed to combine

estimates of complex non-linear and delayed associations between temperature and health outcomes.
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Chapter 2

Contribution of selected publications

In this chapter I provide a summary of my contribution to the research on statistical methods in

studies on temperature-health associations, illustrating the content of my publications on the topic.

In the next Section 2.1, I will first introduce two important methodological developments which may

be applied to extend the ordinary methods, addressing the problems described in Section 1.4. The

implementation of these methods on the statistical environment R is illustrated in Section 2.2. Finally,

Section 2.3 will provide an overview of the publications. also highlighting my role in the various steps

from study planning to article publication.

2.1 Methodological developments
The methodological content of the publications included in Part II focuses on two main statistical

techniques: distributed lag non-linear models (DLNMs) and multivariate meta-analytic methods. These

two analytical frameworks are described in detail in the related publications: here I provide a simple

summary to introduce the main concepts.
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Distributed lag non-linear models

Delayed effects may be defined following two different, but nevertheless complementary, perspectives:
an exposure in a given day exerts an increased risk in multiple future days (forward), or the risk in a
given day is caused by multiple exposures occurring in multiple previous days (backward). The basic
idea of distributed lag models (DLM) for modelling delayed effects in time series data is therefore
quite simple: in a regression model, the outcome for a given day is related to a linear predictor which
includes multiple terms for current and lagged exposures, up to a maximum lag period. For long lag
periods, the effects at different lags are constrained through a pre-specified function, whose coefficients
are the only parameters estimated by the regression model.

The first formulation, based on a polynomial function, was originally adopted in econometrics to
model capital expenditures (Almon, 1965), and recently re-proposed for epidemiological time series
data (Schwartz, 2000). Although elegant and simple, this approach may nevertheless be applied only
to linear dependencies. The extension to model non-linear and delayed exposure-response relationships
brought to the development of DLNMs, firstly conceived and applied by Armstrong (2006). Although
the algebraic definition is relatively complex, requiring the use of tensor product matrices, the idea
is straightforward: the association is modelled through two independent functions, describing the

relationship in the dimension of predictor and lags, respectively.

Multivariate meta-analysis and meta-regression

The standard design adopted in environmental epidemiology is based on a two-stage analysis, as de-

scribed in Section 1.3. City-specific estimates are obtained from first-stage regression models following

a common specification, and are then pooled in a second-stage meta-analysis. However. the association

between temperature and health outcomes is usually non-linear and with delay. Previous investigations

have proposed approaches to simplify the relationships, as described in Section 1.4, or to summarize

it, for example computing average slopes (Curriero et al., 2002), or estimating a single relative risk

measure for specific absolute or relative (distribution percentiles) temperatures (Anderson and Bell
TS o1,

2009; Stafoggia et al., 2006).

However, these methods may not be appropriate for describing the complex pattern of health effects
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of temperature. A solution is to retain the complexity of relationship as estimated in the first-stage
model, describing the association with multiple parameters. The estimates can be then combined using
a multivariate meta-analysis, a method originally proposed to pool multiple correlated outcomes in
randomized clinical trials (Berkey et al., 1996, 1998). This approach allows the synthesis of complex
multi-parameter associations, producing average relationships across cities and providing a way to
examine heterogeneity and effect modification through multivariate meta-regression.

The methodology of multivariate meta-analysis is the object of current research (Jackson et al., 2011 )s
although its statistical development can be easily described within the framework of linear mixed
models (Verbeke and Molenberghs, 2000). Even if this technique has been already applied in the
context of environmental epidemiology for multi-parameter associations (Analitis et al., 2008; Dominici

et al., 2002; Samoli et al., 2003, 2005, 2009), a methodological overview has not been presented yet.

2.2 Software implementation

The statistical methods described in Section 2.1 have been implemented within R (R Development,
Core Team, 2011), a free programming language and software environment for statistical computing
and graphics. R was created by Ross Thaka and Robert Gentleman in 1996 at the University of
Auckland, New Zealand (Thaka and Gentleman, 1996). The software is now maintained and developed
by the R Development Core Team. The basic distribution may be extended via specific packages,

a structured collection of functions built to produce specific statistical computations. Packages are

usually documented through help pages and optionally vignettes, documents which include a detailed
description, references and code examples. The packages may be included in the Comprehensive R
Archive Network (CRAN), and then downloadable through R.

The choice to create the two R packages has been motivated by several considerations. First, the

two approaches are based on relatively complex statistical methods, and on routines which require

non-trivial computing skills in order to provide stable and trustworthy results. The availability of

fully-documented packages in a freely-available software can promote the application of the methods

by other rescarch teams. Second, the implementation has required a long series of tests on the original

scripts, and the analysis and results are hopefully less prone to errors and bugs. Finally, the production
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of the packages involves the generalization of the methodologies beyond the specific data and models
I have used in my research. The packages are therefore expected to be applicable in a wider range of

analyses and potentially easier to improve and extend.

The R package dinm

Distributed lag non-linear models have been implemented in the R package dinm (http://cran.
r-project.org/web/packages/dlnm/index.html). The package was first released on CRAN on the
15¢ of July 2009. The current version is 1.4.1, after 17 updates.

The package dlnm contains functions for building basis matrices to specify DLMs and DLNMs, and then
to predict and plot the results for a fitted model. The first function, crossbasis(), is used to define
the two basis matrices to model the relationship in the dimensions of predictor and lags, respectively,
then combining them in a so-called cross-basis matrix obtained by a tensor product. Different models
may be defined by choosing different functions for the 2 dimensions. The model is fitted using standard
regression functions which include the cross-basis matrix, and the results are predicted over a set of
values using the function crosspred(). A method function plot () is used to graph the estimated
association.

A dataset with the time series data of mortality, temperature and air pollution for Chicago in the period
1987-2000 (Samet et al., 2000a) is included in the package and used in the examples. Documentation
of the package is provided through the help pages of the functions, and the package vignette included

in Chapter 7.

The R package mvmeta

Multivariate meta-analysis and meta-regression have been implemented in the R package mvmeta
(http://cran.r-project.org/web/packages/mvmeta/index.html). The package was first released
on CRAN on the 9" of May 2011. The current version is 0.2.3, after 4 updates.

The main function in the package is mvmeta(), which performs fixed and random-effects multivariate
meta-analysis and meta-regression. This regression-type function contains a formula which specifies

the outcomes and linear predictors, and calls internal functions to compute maximum likelihood and
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restricted maximum likelihood estimates through a Quasi-Newton algorithm. Additional functions
are used, among other purposes, to obtain predictions and best linear unbiased predictions, to run a
multivariate heterogeneity test and to compute fit statistics.

The dataset berkey98, used in the examples, contains the results of 5 published trials comparing
surgical and non-surgical treatments for medium-severity periodontal discase (Berkey et al., 1998).

Documentation of the package is provided through the help pages of the functions.

2.3 Overview of the publications

The nine publications included as chapters in Part IT summarize my research activity within the PhD
project. They include six research papers, two commentaries and a package vignette. 1 am the first-
author on eight, and the sole author on two. Seven contributions have already been published (one as
on-line version only), one has been accepted for publication and the last one has been submitted.

The order of the publications has been carefully chosen to best describe a coherent rescarch project.
However, the manuscripts have been published or submitted as independent contributions, and the
text included in the different chapters is not consistently linked. The purpose of this section is to
provide the reader with a summary of each publication, progressively illustrating the conceptual and

methodological steps undertaken during my research.

Research paper |

The first research paper, originally published as Gasparrini et al. (2011) and included in Chapter 3, is
a thorough assessment of the effects of high temperatures on a long list of different causes of death, in 9
regions of England and in Wales. This investigation adopts a standard time series analysis on multiple
regions, assuming a linear threshold relationship above region-specific percentiles to summarize the
linear increase in log-relative risk per 1°C increase in summer temperature. The estimates of this
single parameter are then pooled across regions using a traditional univariate meta-analysis. The

relatively simple analytical approach is consistent with the rescarch question, and appropriate to

provide a comparative assessment of the effects of temperature by different causes of death. However

the analysis does not exploit any of the methodology I developed during my PhD research, and is
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included here as an example of simple approach, which may be extended by the methods described in
Section 2.1 and in the following publications.

As the first author of the paper, I took an active role in discussing the study design, research question,
and the relevant epidemiological and public health issues. 1 independently conducted the analysis,
discussing the analytical approaches and results with the second author, and the interpretation and
conclusions with the research team. I took the lead on writing the manuscript and acted as corre-

sponding author during the submission process, drafting the responses to reviewers and changes to the

various versions.

Commentary |

This publication originally appeared in Gasparrini and Armstrong (2010) and is included in Chapter 4.
After the release on CRAN of the dinm package in July 2009 and the on-line publication of the
methodological paper on DLNMs (Gasparrini et al., 2010) in May 2010, I was offered by the editor
of the journal to write a commentary on the article by Barnett et al. (2010). This paper presented a
sophisticated analysis on the comparative assessment of different temperature indexes, using both the
DLNM methodology and the R package. The aim of the commentary is to elucidate the development
and application of these analytical tools, and more generally to offer a critical overview on the statistical
issues and potential advancements in studies on temperature-health associations. In the context of
my PhD research, this publication takes stock of the statistical approaches available for assessing
the health effects of temperature and indicates potential research directions to improve the standard
models proposed in the first research paper presented above. The developments are then described in
the two blocks of methodological papers presented below.

As the first author of the commentary, I decided upon the structure and contents, in agreement with

the co-author, and took the lead in writing up and submitting the manuscript.

Research paper |l

This research paper was originally published as Gasparrini et al, (2010) and included in Chapter 5.

Together with the fourth research paper included in Chapter 9, it represents the main methodologi-
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cal output included in my PhD thesis. It is the first of a block of three publications illustrating the
methodology and software implementation of DLNMs. In this contribution, I aim to extend and inte-
grate the development of this class of models firstly proposed by Armstrong (2006). In particular, I
endeavour to establish a general methodological framework to describe non-linear and delayed associ-
ations in time series data, also providing a consistent algebraic definition of DLNMs. This step offers
some advantages in clarifying the development of the models and interpretation of the results, and is
of paramount importance for future extensions, as described in Section 12.1.

As the first author of the paper, I structured the methodological description of DLNMs, in agreement
with the co-authors, and developed the algebra for this model family. I independently choose the
example included in the paper and performed the analysis. I was the lead author of the manuscript

and acted as corresponding author during the submission process, drafting the responses to reviewers

and changes to the various versions.

Research paper Il

This article was originally published as Gasparrini (2011) and included in Chapter 6. In this contribu-
tion I illustrate the software implementation of DLMs and DLNMs in the R package dinm. Although it
may represent a peer-reviewed version of the documentation of the package included in the vignette in
Chapter 7, the paper actually offers additional insights, reconsidering the main conceptual and practi-
cal steps to define this modelling framework and linking the algebraic formulation with the use of the
functions in the package. The manuscript is written using the R function Sweave () , a tool that allows
embedding the R code and associated results within the text in the document. Given the lapse of
time since the publication of the methodological paper on DLNMs presented above (Gasparrini et al.,
2010), I also took the opportunity to present further research advancements, discussing the concep-
tual framework of DLNMs and addressing relevant issues such as modelling strategies and research
directions.

As the sole author of the paper, I autonomously conceived the outline and contents of the article.
I wrote the software and package and exploited it in the example illustration. I also drafted the

manuscript and dealt with all the submission issues.
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Package vignette

This document accompanies the R package dinm, and represents its main documentation. The version
for the release 1.4.1 of the package is included in Chapter 7, and an updated version is available
at http://cran.r—project.org/web/packages/dln.m/vignettes/dlanverview.pdf. The content
of the document is partly similar to what presented in the third research paper in Chapter 6, but
adopting a more practical perspective. After some information on the installation of the package and
a brief summary of the theory of DLNMs, the vignette illustrates in details the use of the functions,
thoroughly describing their arguments and specificities, and provides multiple examples on the use of
the package for increasingly complex analyses. The vignette is updated at each release of a new version
of the package.

As the sole author of the vignette, I autonomously conceived the outline and contents of the docu-

ment. | wrote the software and package and applied it in the example illustration. I also drafted the

manuscript and dealt with all the publication issues.

Commentary |l

This document has been accepted for publication, and is included in Chapter 8. It is the first of a
block of two publications on multivariate meta-analytical techniques. It represents a commentary to
the article by Jackson et al. (2011), which arose from an event organized at the Royal Statistical Society
in London in January 2010 on multivariate meta-analysis, where I was invited as discussant together
with the co-author of the commentary. Our contribution focused on the application of multivariate
meta-analysis to combine estimates of non-linear associations specified by multiple parameters. The
commentary provides a brief overview of methodological issues and discusses advantages and limitations
if compared to alternative traditional approaches, and may be considered a preamble to the fourth
research paper included in Chapter 9.

As the first author of the commentary, I structured the contents of the manuscript, in agreement with

the co-author, and performed the analysis for the example illustration. I also drafted the manuscript

and dealt with all the submission issues.
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Research paper IV

This paper has been submitted for publication. and is included in Chapter 9, together with the docu-
ment added in the on-line appendix. Along with the second research paper included in Chapter 5, this
represents the main methodological output included in my PhD thesis. In this contribution, 1 offer
a methodological overview on the use of multivariate meta-analysis and meta-regression to synthesize
multi-parameter associations, formalizing and extending previous applications of the method. T also
take advantage to present the second R package mvmeta, which is used to perform the analysis for the
example illustration, involving a multi-city time series dataset. The paper illustrates the development
of the methodology within the framework of linear mixed models, focusing on maximum likelihood
and restricted maximum likelihood estimation, and discusses methodological issues and future devel-
opments. The R code is included as an on-line appendix, so the analysis may be completely reproduced
and extended.

As the first author of the paper, I outlined the description of the methodology of multivariate meta-
analysis and meta-regression, in agreement with the co-authors, and extensively revised the existing
literature. I independently choose the examples included in the paper and performed the analysis. |
autonomously produced the R routine and implemented it in the related R package. 1 was the lead

author of the manuscript and submitted the draft, acting as corresponding author

Research paper V

This article was originally published as Goldberg et al. (2011) and included in Chapter 10. It is the
first of a block of two publications exploiting the two proposed methodologies for substantive analyses
on temperature-health associations. This paper applies distributed lag non-linear models to investigate
the relationship between cold and hot temperatures with mortality, using the dataset for a single city
in temperate climate. The analysis assesses the relationship with mortality for all-cause, cardiovascular
and respiratory mortality, exploring both overall and lag-specific effects.

In contrast to the other publications included in this PhD thesis, I am not the first author of this article.

My contribution focused on discussing the modelling approaches and the interpretation of the results
sults,

given my expertise in the methodology of distributed lag non-linecar models and on the epidemiological
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issues related to temperature-health associations. Morcover, as author of the R package dinm, T acted

as an expert on the use of the software, providing routines with examples and checking the final code

Research paper VI

This paper was originally published as Gasparrini and Armstrong (2011) and included in Chapter 11,
together with the document added in the on-line appendix. It illustrates an analysis on a multi-
city dataset, and offers some substantive evidence on the association between high temperature, heat
waves and all-cause mortality. It represents an excellent example of my contribution to the rescarch
in the field, employing at the same time the two methodologies of distributed lag non-linear models
and multivariate meta-analysis. The paper clearly shows the advantages of the application of these
more sophisticated statistical approaches, if compared to simpler traditional methods. The R code is
included in the on-line appendix, so the analysis may be completely reproduced and extended.

As the first author of the paper, I took an active role in discussing the study design, research question,
and the modelling approaches, in agreement with the co-author, also extensively revising the existing
literature. I independently conducted the analysis, discussing the analytical issues, results, interpre-
tation and conclusions with the co-author. I took the lead on writing the manuscript and acted as
corresponding author during the submission process, drafting the responses to reviewers and changes

to the various versions.
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The effect of high temperatures on cause-specific
mortality in England and Wales

Antonio Gasparrini, Ben Armstrong, Sari Kovats, Paul Wilkinson

ABSTRACT

Objectives Several observational studies have suggested
an association between high temperatures and all-cause
mortality. However, estimates on more specific mortality
outcomes are sparse, and frequently assessed in studies
using different analytical methods.

Methods A time series analysis was performed on 10
regions in England and Wales during the summers
(June—September) of 1993—2006. Average percentage
linear increases in risk for a 1°C increase in temperature
above region-specific thresholds and attributable deaths
were computed by cause-specific mortality and age
groups (0—64, 65—74, 75—84, 85+).

Results There was evidence of increased mortality with
heat for almost all cause-of-death groups examined, with
an overall increase in all-cause mortality of 2.1% (95% Cl
1.6% to 2.6%) for a 1°C rise above the regional heat
threshold. Among main causes, the steepest increase in
risk was for respiratory mortality (+4.1% (3.5% to 4.8%)
per 1°C). It was much smaller for cardiovascular causes
(+1.8% (1.2% to 2.5%)) and myocardial infarction
(+1.1% (0.7% to 1.5%)), but comparatively high for
arrhythmias (+5.0% (3.2% to 6.9%]) and pulmonary
heart disease (+8.3% (2.7% to 14.3%)). Among non-
cardiorespiratory causes, the strongest effects were for
genitourinary (+3.8% (2.9% to 4.7%)) and nervous
system (+4.6% (3.7% to 5.4%)) disorders. 33.9% of
heat deaths were attributable to cardiovascular causes,
24.7% to respiratory causes and 41.3% to all other
causes combined.

Conclusions These results suggest that the risk of heat-
related mortality is distributed across a wide range of
different causes, and that targeting of preventative
actions based on pre-existing disease is unlikely to be
efficient.

INTRODUCTION

Periods of high temperature in England and Wales
are likely to increase in frequency and intensity as
a result of climate change,' * and, unless protective
measures are taken,” so too their attendant impact
on mortality and morbidity.*

In England, the strategy for the prevention of
heat-related health effects is outlined in the
Department of Health’s Heatwave Plan, launched
in 2004 and subsequently revised.” The plan
includes both a weather-based warning system, and
advice to primary and social care professionals and
to the general public. The identification of indi-
viduals at high risk of heat-related mortality or
morbidity is a key part of the plan. It defines at risk
people as those with serious chronic conditions
(especially heart or breathing problems), mobility
problems (eg, Parkinson’s disease or a previous

» A number

of observational studies have
suggested an association between hot temper-
atures and all-cause, cardiovascular and respi-
ratory mortality.

> Estimates on the effect of heat on more specific
mortality outcomes are sparse, and frequently
assessed in studies relying on different analyt-
ical methods.

» Analysis of the association between heat and an
extensive list of mortality outcomes, based on
a common analytical approach, indicates a very
widely distributed risk in relation to contributing
cause.

> This suggests that targeting preventative
actions based on assessment of existing
diseases is unlikely to be an efficient strategy.

stroke) and serious mental health problems. In
addition, people on certain medications and those
who misuse alcohol or drugs are considered at risk.
However, to date, evidence concerning the degree to
which risk is concentrated in these groups has been
very limited, and it is unclear, even in theory,
whether targeting these groups would prevent
a large number of heat deaths.

The aim of this contribution is to assess heat-
related mortality in relation to a wide range of
causes using data for England and Wales in the
period 1993—2006. The analysis may help define
high-risk groups and estimate the effectiveness of
preventive actions undertaken so far. In addition,
the comparative assessment of multiple causes of
deaths could help formulate or assess hypotheses
on the underlying pathophysiological mechanisms

in the association between high temperature and
human health.

METHODS

Weather and mortality data

In order to account for the different climates
within the UK, a meteorological data series was
created for each Government Office Region in
England and Wales. Data on minimum and
maximum dry-bulb and dew point temperatures
were obtained from the British Atmospheric Data
Centre. Relative humidity was calculated using the
average from dew point and dry-bulb temperatures
at 9:00 h and 15:00 h. For each measure we used
only data from stations reporting on 75% of days
between 1993 and 2006, with a mean of 29 stations
contributing to each regional series (range: 7 in
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London to 44 in Wales). The temperature series are highly
correlated within regions (mean r=0.95, range 0.94—0.98) and
station means vary little within region (mean SD 0.7°C, range
0.3—1.1°C). Missing values in day / in station j were imputed
using a combination of period average of the station ; and
a weighted average of the other regional stations. We then
combined the values for day / from all monitoring stations in
each region using a weighted average with weights equal to the
populations residing closest to each station. Details of these
methods have been previously described.® ”

Individual death record data were obtained from the Office for
National Statistics, including date of death, age, underlying
cause of death and postcode of residence at time of death. A
broad list of 33 causes of death potentially associated with heat
was selected, based on published epidemiological and physio-
logical evidence regarding chronic diseases previously reported to
be affected by hot weather. ICD-9 codes were used for the period
1993—2000 and ICD-10 for 2001—2006 (see online eTable 1 for
the full list). Data were also disaggregated into five age groups:
all, 0—64, 65—74, 75—84, 85+ years of age). The data were
collapsed to series of daily counts for each region, for the
specified age/cause-of-death subgroups.

Statistical analysis
The region and age-specific association between temperature
and each outcome was assessed by time series analysis. Given
the focus of the analysis on the effect of heat, we restricted the
period of observation to the summer months (June—September).
The different methods used to express the relationship between
temperature and health outcomes have been extensively
reviewed in previous work,® and modelling choices in this
contribution are based on an extensive assessment performed on
the same dataset for all-cause mortality.” We rely on a simple
model, choosing a parameterisation where the effect of the
average of the same and previous day’s maximum temperatures
(lag 0—1) is assumed to follow a log-linear increase in risk above
a heat threshold, suggested as a reasonable and transparent
approximation to more complex non-lineag %odel_s. Lag choices
are based on previous research in the UK,” " while maximum
temperature was chosen as the index providing the best fit in an
analysis of all-cause mortality. In order to achieve comparable
estimates for different regions and outcomes, we fixed the
threshold to the 93rd percentile of region-specific year-
round distribution of lag 0—1 maximum temperature (reported
in table 1), the value showing the best fit for overall mortality.
The model follows a standard form for time series regression
of season-specific data.'! '? Here the expected number of deaths

Table 1
(June—September)

E(Y,)=u, in day i for each region r, assumed to follow an
overdispersed Poisson distribution, is described by the formula:

K
log(u;y) = a + B.(ti —t0) . + Y gelxeir)
k=1

where a is an intercept and g, functions are modelling the effects
of confounders x;. These terms included indicator variables for
day of the week, natural cubic splines with 4 degrees of freedom
(equally spaced knots) of day of the year in order to control for
within-summer seasonal variation, and linear and quadratic terms
of time to describe the long time trend. The effect of relative
humidity is included with natural cubic splines with 3 degrees of
freedom (knots at equally spaced quantiles of distribution). The
region-specific coefficient §, describes the log-linear increase in
deaths for a unit increase in lag 01 temperature 1 above the
threshold 1, with (1—1,), as a threshold term assuming value
(t—to) if 1>19 and 0 otherwise. The analyses were repeated sepa-
rately for each outcome and age category in the 10 regions.
Coefficients §, were pooled to derive the average (3" across regions,
estimated using a random effect meta-analysis through restricted
maximum likelihood.'® The results are reported as pooled relative
risk exp(8"”) or percentage increase (exp(B")—1)x100 related to
a 1°C increase above the region-specific heat thresholds, and as
numbers and fractions of deaths attributable to days with
temperatures exceeding such thresholds. Heterogeneity is
measured with the I* statistic, measuring the proportion of total
variation due to difference between regions.'* Attributable deaths
n;, in each day i for region r were computed through the formula
#, =N, (RR;~1)/RR,, with RR,=exp(,(t,~to)+) and N, as
the total number of deaths. Daily attributable deaths are then
summed over days and regions. We do not present means where
estimates did not converge in any region, due to the small number
of death in some subgroups. A sensitivity analysis on modelling
choices for controlling seasonal and long time trends was carried
out. All analyses were performed with R software, v 2.12.0."°

RESULTS

Descriptive statistics for each region are reported in table 1.
During the period considered in the analysis (summer months in
1993—2006), a total of 2285519 deaths occurred in England and
Wales, with an average of 134 each day per region. Regions show
some differences in the distribution of maximum temperature,
with the 93rd centiles (thresholds) increasing from 20.9°C for
the North East to 24.7°C for Greater London.

The main results are plotted in table 2, which shows
the pooled estimates of effect (percentage increase in risk for

Descriptive statistics for overall mortality and maximum temperature by each region

Daily mortality Maximum temperature (°C)
Region Mean Range Mean Range Threshold*
North East 12.0 41-104 18.4 8.9-29.4 20.9
North West 189.0 138-249 19.3 11.5-32 216
Yorkshire and Humber 1318 90—-180 19.5 10.5-30.3 204
West Midlands 136.2 93186 203 9.9-33.8 23.0
East Midlands 107.0 70-156 20.3 9.7-323 230
Wales 83.8 45-119 19.4 11.8-31.7 216
East 1322 87187 21.2 10.3-34.4 239
South East 2004 147-308 21.0 10.2-34.0 235
South West 136.1 98187 201 121-31.2 223
Greater London 149.7 102—-280 21.8 10.7-37.3 24.7
*93rd percentile of year-round (January—December) lag 01 p distribution,
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Table 2 Total number of deaths, pooled estimates of effect (% increase, with 95% Cl) related to a 1°C
increase above the region-specific heat thresholds and attributable burden for each cause of death

Percent increase in
mortality per 1°C increase

above heat threshold Attributable deaths

n % 95% CI n %

All causes 2285519 2.4 1.6 t0 2.6 23617 100
Cardiovascular diseases 904131 1.8 1210 2.5 8005 339
Stroke 235681 25 1.6 t0 3.4 2864 121
Ischaemic heart diseases 475235 1.7 121022 3725 15.8
Myocardial infarction 230343 1.1 07115 n2 47
Chronic ischaemic heart diseases 237973 2.3 1.6 t0 3.0 2598 11.0
Atrial fibrillation 10001 45 27106.3 210 0.9
Atrio-ventricular conduction disorders 469 58 -2.810 15.1 9 0.0
Arrhythmias 5226 5.0 321069 132 0.6
Pulmonary embolism 18679 14 0.0t 2.7 118 05
Heart failure 38611 36 241048 658 28
Sudden cardiac death 218 36 ~851t017.2 1 0.0
Pulmonary heart diseases 1015 83 2710143 37 0.2
Respiratory 289516 41 3510 4.8 5841 24.7
Chronic obstructive pulmonary disease 87980 43 3.61t0 5.1 1821 1.7
Asthma 5307 5.5 281083 133 0.6
Respiratory infections 157 206 42 351050 3194 135
Other 1091872 18 14 10 2.2 9764 913
Endocrine diseases 32437 29 1710 4.2 446 19
Diabetes 25554 3.0 1.8 10 4.2 360 1.5
Genitourinary system 37327 38 2910 4.7 723 31
Urinary system 33300 43 331053 726 31
Mental diseases 48022 31 1.710 4.6 776 33
Organic mental disorders 38019 35 2.0t0 5.1 695 29
Psychoactive substance use 2542 31 -2.6109.1 12 0.1
Schizophrenia 3856 0.9 -311052 1 0.0
Nervous system 49549 46 371054 1118 4.7
Extra-pyramidal disorders 14105 55 4010 7.0 382 16
Other disorders of the nervous system 14514 33 181049 236 1.0
External causes 72844 30 231036 1037 44
Accidents/injuries 46199 2.1 1910 3.6 614 26
Intentional self-harm 15935 2.8 1410 4.3 202 09
Sudden infant death 967 -0.8 ~6.81055 -8 -0.0

each 1°C increase above the regions-specific heat threshold) and
attributable deaths for each mortality outcome (see online
eTable 1 for ICD-9 and ICD-10 codes). The age-specific estimates
are included in figure 1 (see online eTable 2 for a complete list of
age-specific values). The analysis by main causes shows the
typical trend of risk by age, with an estimated increase for
overall mortality of 2.1%, ranging from 1.3% in 0—64 year olds
to 3.0% in 85+ year olds. Thus, ambient heat is responsible for
1.03% of the overall mortality that occurred in the summer
months during the study period, equating to approximately
23617 deaths. The results confirm the higher risk for respiratory
as compared to cardiovascular mortality, with an increased risk
of 4.1% and 1.8%, respectively. However, the attributable burden
is higher for the latter, with 8005 attributable cases compared to
5841 for the former. While the risk for cardiovascular mortality
increases with increasing age, the effect by respiratory causes is
consistent across age groups. Non-cardiorespiratory (‘other’)
deaths were also associated with heat, with similar slopes and
age-specific effects as cardiovascular causes.

Within cardiovascular causes, the highest estimated risk was
found for atrial fibrillation (4.5%), arrhythmias (5.0%) and
pulmonary heart disease (8.3%). We found a much lower
additional risk per 1°C increase in heat for myocardial infarc-
tion (1.1%) and ischaemic heart diseases (1.7%), although

these causes are associated with large absolute risks. Stroke
and heart failure show a strong pattern by age. The increases
for respiratory causes are higher and less heterogeneous, both
between causes and age groups, than for cardiovascular causes,
ranging from 4.2% for respiratory infections to 5.5% for
asthma.

There was also a significant heat-related risk for most non-
cardiorespiratory outcomes, with increases of 2.9% for endo-
crine, nutritional and metabolic disorders, 3.8% for diseases of
the genitourinary system, 3.1% for mental and behavioural
disorders, and 4.6% for diseases of the nervous system. External
causes showed an increase of 3.0%, with a slightly higher risk for
deaths among those aged 064 than for older age groups.

Table 2 and online eFigure 1 show that there is no clear rela-
tionship between cause-specific heat-mortality and the number
of heat attributable deaths. Most notably, ischaemic heart
disease and myocardial infarction both had comparatively small
temperature—mortality relationships (smaller point estimates
than for all non-cardiorespiratory causes combined) but account
for sizeable fractions of the overall burden of heat deaths, while
some of the causes with strong temperature—mortality rela-
tionships, such as arrhythmias, asthma and nervous system

disorders, account for a comparatively small fraction of the
overall heat mortality burden.
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Figure 1 Pooled estimates of relative risk (with 85% Cl) related to a 1°C increase above the region-specific heat thresholds for each cause-of-death

and age group.

Region-specific estimates for broad causes (all-cause, cardio-
vascular disease, respiratory, other) are illustrated in figure 2.
Estimates of the increase in risk for each 1°C above the region-
specific heat threshold are substantially heterogeneous across
regions, with I? statistics (the proportion of variance estimated
to be true between-region variation) ranging between 67% and
92% for these causes of deaths. However, although heteroge-
neous, the cause-specific heat slopes show broadly similar rela-
tionships to each other across regions, with the gradients being

| & All-cause © Repiralory
=7 o cvo © Other
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&
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N-East N-West York&Hum E-Mid W-Mid Wales East S-East S-West London
Regions

Figure 2 Region-specific estimates of relative risk (with 95% Cl)
related to a 1°C increase above the region-specific heat thresholds for
broad causes of death. CVD, cardiovascular disease.
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generally steeper in London and other warmer regions, as
previously reported for all-cause mortality.”

In order to assess the sensitivity of the results to the model-
ling choices, we repeated the analysis on broad causes increasing
to 6 the degrees of freedom of the spline for seasonality and/or
including a cubic term for long time trend. The results are robust
to these choices, with the percentage change in the effects

(measured as percentage increase) for the four broad causes
ranging in the order of 0.1-7.5%.

DISCUSSION

This study provides detailed evidence from England and Wales
on the relationship between high temperature and mortality by
cause-of-death and age. Comparability of the results by cause is
enhanced by the application of a common analytical framework
and modelling choices.

One of the notable observations of this analysis is the
apparently widespread effect of heat, with evidence of a heat-
related increase in mortality for almost all of the cause-of-death
and age groups analysed. The effect of heat generally increases
by age, as reported by other investigators.' '/ Ageing induces
physiological changes in thermoregulation and homeostasis,
together with the increased prevalence of chronic conditions and
use olf8 rlr‘x)edication, which are likely to increase vulnerability to
heat.™ ™ There were some variations in the pattern of risk with
age, with relatively steep gradients for stroke and heart failure,
for example, and flatter slopes for respiratory diseases.
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Although heat risk is often thought of mechanistically in terms
of its effects on the cardiovascular system, it is noteworthy that
relative risks for cardiovascular causes in general were no higher
than those of most other causes of death and appreciably lower
than those of respiratory causes. Of particular note is the rela-
tively low relative risk for myocardial infarction, which has an
underlying thrombotic genesis. This argues against changes in
the coagulation properties of the blood as a major pathway for
heat-related mortality risk, although numerically, myocardial
infarction still contributes substantially to the excess burdens of
deaths. However, the excess risks appear somewhat higher for
stroke, which also is partly a thrombotic phenomenon.

Although the estimates are very imprecise, it appears that
some of the highest cardiovascular excess risks are for pulmo-
nary heart disease. Pathophysiologically, this may tie in with the
relatively high excess risks for respiratory categories in general,
and perhaps suggests critical exacerbation of right heart failure
or other circulatory decompensation in the context of increased
demand for cardiac output (for cooling) but limited reserve.
Heart failure in general showed relatively high excess risks. Also
of note is the comparatively high excess risks for arrhythmias
and atrial fibrillation in particular, which have been noted
previously.'” 2° The reasons for the large excess relative risk for
this cause-of-death group are not clear, but such arrhythmias
may contribute to cardiovascular compromise.

We found an important risk for chronic diseases such as
diabetes mellitus, as well as for diseases of the genitourinary
system, which may well reflect adverse effects on fluid and
electrolytic balance, especially in those on medication.* *° The
higher risk for nervous system diseases and mental disorders is
likely to be related to impaired perception of environmental
conditions and impaired ability to take actions to protect
health.'® ' Note the relatively high excess risks for extra-pyra-
midal disorders, which includes Parkinson’s disease.

Our results on the overall relationship between heat and all-
cause mortality are broadly compatible with evidence from the
USA,'® =% the UK,” ** *° and elsewhere. In particular, two
recent studies summarise the effects for 107 U.S.A. communities
and 15 European cities, and report an average increase of around
3% for 1°C increase in temperature.'? ?° Where cause-of-death
has been examined, mainly for cardiovascular and respiratory
deaths as broad groupings, the evidence has generally shown
larger effect on respiratory causes,” ¥’ *° while some studies of
other causes have found a marked increase also for nervous
system diseases and mental illness.'” * > However, a compre-
hensive analysis of specific causes of death in relation to high
temperatures has rarely been reported.

Our analytical approach is based on a simple linear-threshold
model with cut-offs at percentiles of region-specific distribu-
tions. This choice is coherent with the findings of the systematic
assessment by Armstrong and colleagues for all-cause mortality,
performed on the same data.” In their analysis, the linear
threshold model performed only marginally less well compared
to more complex models with non-linear terms, although some
evidence of non-linearity for extremely hot temperatures was
also reported. Here, given our focus on the relative impacts of
heat on different causes of death, we favoured interpretability
over flexibility, but the presence of bias in the analysis of cause-
specific mortality due to this approximation cannot be entirely
ruled out. The same applies to other complexities in the
temperature—mortality association, such as harvesting and
time-varying effects.

The adoption of region-specific thresholds assumes the
(partial) adaptation of populations to their own climates,

a phenomenon previously reported.'” >> Nonetheless, a substan-
tial heterogeneity still remains, and we measured a North—
South gradient in the supra-threshold linear effect, reported
previously in detail for all-cause mortality.” However, given the
relative similarity in these patterns across different causes, as
illustrated in figure 2, we do not expect important biases in our
comparative assessment.

The analyses do not account for the potential mediating,
confounding or modifying effects of air pollution, in particular
ozone, as these measures were not available for regional data.
While some studies have reported some evidence of effect modi-
fication by particulates and ozone in the temperature—mortality
association, ®! other investigators have measured a relatively
small confounding effect.”® ** A recent study exploring the
heat—ozone interaction in 15 British conurbations, a subset of the
data used here, has found that the effect of temperature was
robust to the confounding or modification effect of ozone.” In
particular, the effect of ozone seems to disappear when maximum
temperature is used, the same temperature metric adopted in our
analysis. However, these results are not conclusive and the chance
that the estimated effects are partly due to unmeasured air
pollution should be taken into account.

Although vulnerability to heat in those with recognised
chronic diseases is not directly estimated in these cause-specific
mortality analyses, the widespread heat-related increased
mortality in many cause-of-death groups suggests that many
groups of individuals with recognised disease conditions would
need to be targeted if preventative actions were to cover most of
the population-level risk of heat mortality. Indeed, in the case
of cardiovascular disease, for example, which numerically
contributes the largest group of excess heat deaths despite a
comparatively low relative risk, it is reasonable to assume that
pre-existing disease may often not be even recognised. Thus,
heat death may be little more predictable than death in general.
And, while of course it is appropriate in clinical settings to pay
attention to those who may be at relatively greater risk during
periods of heat, the observed increase in heat mortality in a wide
range of cause-of-death groups suggests the need to pursue
a broad-based population strategy for prevention as well as
targeted strategies. This has evident implications for the
emphasis in the Heatwave Plan in England and elsewhere.
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The association between extreme temperatures and health outcomes has been frequently investigated
during the last few years. This assessment is usually based on a time series design, a framework which
has gained a substantial development in the last two decades. In this contribution we offer an overview
of the recent methodological advancements which provide new statistical tools to examine the health

effects of temperature in a time series setting, highlighting at the same time the main limitations that
still affect this research area.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The increase in frequency and intensity of extreme weather
events predicted in the near future (Luber and McGeehin, 2008) is
arousing a growing interest, in the scientific and public health
communities (Basu, 2009; Basu and Samet, 2002; Gosling et al.,
2009). Several studies have investigated the association between
mortality and both hot and cold temperatures, reporting
increased risks in populations exposed to a wide range of climates
(Analitis et al., 2008; Anderson and Bell, 2009; Baccini et al., 2008;
McMichael et al., 2008). These studies are usually based on a time
series design, where the series of daily counts of death or
hospitalisations and ambient levels of temperature are compared,
while controlling for potential confounding variables such as
long-term and seasonal trends, air pollution and influenza
epidemics. The purpose of these studies is to estimate the change
in the counts of events associated with ambient temperature on
the same day and on previous days (so-called lagged effects).
Statistical approaches focus on regression methods within the
generalized linear or additive modelling frameworks (GLM or
GAM, respectively), assuming a Poisson distribution of the
response (daily counts), and usually accounting for overdispersion
(arising when the observed variance is greater than the expected
number of daily events, differently from the standard Poisson
assumption). Time series studies on temperature have benefitted
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from the remarkable statistical developments, achieved in the last
two decades, to quantify the short-term effects of air pollution
(Bell et al., 2004; Dominici, 2004; Schwartz et al., 1996; Touloumi
et al., 2004).

In a paper published in this issue of the Journal, Barnett et al.
(this issue) performed an analysis to examine the relationship
between mortality and different temperature indexes, using a
large dataset from 107 cities in the USA over a 14 years period.
The analytical approach proposed by the authors highlights the
flexibility and effectiveness of time series methods to attain
sophisticated inferential deductions about complex associations.
However, this complexity requires elaborate statistical tools that
might appear obscure to many readers inexperienced with time
series methods. In this contribution we attempt to review and
elucidate recent advances in and limitations of this study design
when applied to examine temperature-health associations,
focussing mostly on the statistical issues.

2. Temporal decomposition

The time series design is characterized by a distinctive
temporal structure of the data, with observations collected at
prdered and equally spaced time points. In applications
in environmental epidemiology, these time periods usually
correspond to days, the smallest unit of time for which health
outcome data are collected routinely. The main feature of the
analytical methods is the temporal decomposition of the outcome
and exposure series, where the variability is partitioned into
contributions related to different timescales (Dominici et al.,
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2003a; Zeger et al., 2006). From an epidemiological perspective,
the temporal partition of contributions to the exposure-response
function addresses different issues. First, an exposure may lead
to multiple physiological mechanisms operating at different
timescales, whose effects can be disentangled by decomposing
the series. In addition, specific confounding factors can act at
different temporal frames; hence, the decomposition may
produce virtually unbiased estimates at specific timescales in
the presence of unmeasured confounders, if such factors act on
longer temporal frames.

In the first methods that were proposed, the partition of both
the response and exposure series was obtained by Fourier series
decomposition (Zeger et al., 1999) or seasonal-trend decomposi-
tion using LOESS functions (Schwartz, 2000b; Schwartz, 2001),
and then the correlations between components at corresponding
timescales were estimated. In current applications, the decom-
position is directly achieved through regression models, applying
functions to describe seasonality and long-term trends, thus
filtering out the effects of unmeasured factors that change slowly
in time (Peng and Dominici, 2008). This approach leaves only the
residual shorter-term variation to be explained by other factors
that have day-to-day variability, like temperature. Originally,
harmonic functions based on pairs of sine-cosine terms of day of
the year were used to model the cyclic seasonal component
(Hunsberger et al., 2002; Stolwijk et al., 1999), with non-linear
functions of time like polynomial terms to describe the long-term
trend. Recently, the use of a single spline function of time has
been favoured, producing an irregular seasonal trend which is
believed to control for additional confounding effects operating at
medium timescales. The main choices are based on regression
splines within GLM or penalized splines within GAM (Ruppert
et al., 2003; Schimek, 2009).

Independently of the type of spline and modelling framework,
the main concern is the selection of the appropriate amount of
smoothing in order to avoid residual confounding, but at the same
time leaving a temporal window with enough variability to be
explained by temperature. This choice corresponds to the
selection of the optimal number of (effective) degrees of freedom
(df) per year in the spline for time.

3. Exposure-response relationship

Temperature usually shows a typical association with health
outcomes, characterized by non-linear and delayed effects.
Empirically, risk may increase at both hot and cold temperatures,
with the exposure-response relationship being described as U, V
or J-shaped (Curriero et al., 2002; Hajat et al., 2007; Pattenden
et al, 2003). In addition, the effect of an exposure to extreme
temperatures is not limited to the same day, but persists for a
period of time, typically from a few days for heat to some weeks
for cold (Anderson and Bell, 2009; Braga et al., 2001). When
assessing non-recurrent outcomes, an additional complexity is
given by the harvesting effect: if temperature mainly affects a pool
of susceptible individuals who would have otherwise experienced
the outcome a few days later, the depletion of the pool after an
extreme event will result in a decreased occurrence in those
days (Hajat et al., 2005; Schwartz, 2000b). This anticipation
(displacement) of the outcome will be measured as an increase in
risk in the very first days, followed by a decrease some time later,
with a smaller net effect.

These aspects require the application of subtle statistical
approaches to accurately express in a regression model the
exposure-response relationship for temperature effects, whose
estimates usually require careful interpretation. The issue of
non-linearity has been addressed in different ways, using a

threshold parameterization to describe linear effects of cold and
heat below and above specific cut-off temperatures, or alterna-
tively relying on spline functions within GLM or GAM, as those
previously described (Armstrong, 2006). The problem of delayed
and harvesting effects has been tackled in air pollution studies,
proposing the so-called distributed lag models (DLMs), where the
linear but delayed effects were modelled including multiple
lagged exposures (Schwartz, 2000a). In practice, the health effect
in day t of the series is explained in terms of exposures at days
t—¢, with ¢ as the lag in the interval 0,...,L, and L as the maximum
lag period. If the lag period considered is long, the distribution of
effects can be modelled through a mathematical function: for
example, strata (Welty and Zeger, 2005), polynomials (Goodman
et al,, 2004) or splines (Zanobetti et al., 2000) can be used to avoid
collinearity in the model.

Despite the availability of well-developed methods to describe
flexible but un-lagged exposure-response relationships, or alter-
natively flexible distributed lag models for simple linear depen-
dencies, these two issues have been rarely addressed together.
Extensions to DLMs have been proposed, applying distributed
lag functions to each term of polynomial (Braga et al., 2001),
linear piecewise (Roberts and Martin, 2007) or threshold func-
tions (Muggeo, 2008). Nonetheless, these methods remain some-
what limited in their ability to describe complex dependencies.
Recently, we have proposed a new modelling framework which
can describe flexible relationships both in the space of the
predictor and the lag dimension, leading to the family of
distributed lag non-linear models (DLNMs) (Armstrong, 2006;
Gasparrini et al, 2010). The core of this methodology is the
specification of two independent functions to model the relation-
ship along the two dimensions of predictor (temperature) and
lags, respectively, given a menu of available choices. These two
functions are then combined to form cross-basis variables to be
included in the regression model, whose estimated parameters
describe the bi-dimensional effect.
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temperature at lag 3 and 10 (dashed lines). Chicago 1987-2000.
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Figs. 1 and 2 show the application of the DLNM methodology to a
time series of non-accidental deaths in Chicago, lllinois, during the
period 1987-2000, using the same database that Barnett and
colleagues analysed (Samet et al,, 2000a, 2000b). In this example,
we defined a cross-basis for temperature choosing a quadratic spline
with 5 df for the space of temperature, and a natural cubic spline
with 5 df for the space of lags, with 25 total parameters included.
Fig. 1 shows the bi-dimensional relative risk (RR) surface for non-
accidental mortality using a reference value of 21 °C, the empirical
point of minimum mortality: the dashed lines represent the effects
by lags for specific temperatures (=10 and 30 °C), and conversely
the effects by temperature at specific lags (3 and 10 days). These
effects are also reported, together with confidence intervals, in the
top of Fig. 2. Lag-specific effects have a two-fold interpretation: each
of them represents the increase in risk in a day t given a unit
increase in temperature at day t—¢ (backward interpretation, from
outcome to exposure), or alternatively the increase in risk related to
a unit increase in temperature at the day t during the following t + ¢
day (forward interpretation, from exposure to outcome). The overall
effects are computed by the sum of lag contributions, and are
illustrated in the bottom of Fig. 2. The results from this model
suggest a strong and immediate effect of heat in the first 5 days,
followed by a decrease after around 10 days, potentially interpreted
as harvesting; cold temperatures display a more delayed effect,
lasting up to 15 days.

The DLNM modelling framework is implemented within the
software R (R Development Core Team, 2010) in the package

‘dinm’ (Gasparrini and Armstrong, 2010). Further information
about the analysis for Chicago and the package can be found at

http:/ [cran.r-project.org/web/packages/dInm/vignettes/dinmOver
view.pdf.

4. Pooling the results

The health effects of environmental factors are assessed often
through multi-site studies, using a two-stage hierarchical analysis
with a common site-specific model and then the application of
meta-analytic techniques to pool the results (Dominici et al.,
2000; Samoli et al., 2008), the same strategy used by Barnett and
colleagues. This approach ensures that the heterogeneity between
different locations is properly accounted for, allowing model
parameters to vary across sites, but at the same time avoiding
additional variability and potential biases due to differential
modelling choices (Dominici et al., 2003b; Touloumi et al., 2004).
Meta-regression methods are commonly applied to assess the
effect modification of site-level characteristics.

Air pollution studies are consistent with a linear exposure-
response relationship, summarizing the effect with a single
coefficient estimating the log-RR for a unit increase in exposure.
The non-linear effect of temperature poses additional challenges,
and several solutions have been proposed. First, the exposure-
response relationship may be simplified assuming linear depen-
dencies beyond site-specific thresholds (Baccini et al., 2008;
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McMichael et al., 2008), or alternatively restricting the analysis to
specific seasons, where strong deviations from linearity are not
expected (Analitis et al., 2008; Zanobetti and Schwartz, 2008).
An alternative solution is to produce a summary measure of
the estimated non-linear relationship, for example computing
average slopes (Curriero et al., 2002), or estimating a single RR for
specific absolute or relative (distribution percentiles) tempera-
tures (Anderson and Bell, 2009; Stafoggia et al., 2006). The use
of site-specific thresholds or relative temperatures is usually
preferred, in order to take into account the adaptation of
populations to their own climate. A standard meta-analysis is
then carried out for these single parameters.

The methods illustrated above have limitations: constraining
the exposure-response to a simple shape could generate biased
results, especially when assessing lag-specific effects. Even if
strong assumptions are not formulated on the single-site models,
pooling only simple summary measures of these mi_ghF lose
important features of a complex association. More sophisticated
approaches rely on multivariate meta-analyt.ical techniques,
applied to relationships described by multiple parameters
(Jackson et al., 2010; van Houwelingen et al., 2002), which are
simultaneously pooled while accounting for their correlations
within each site-specific model. These methods have been used to
investigate dose-response functions (Baccini et al., 2008;
Dominici et al., 2002; Samoli et al, 2005) or distributed lag
curves (Analitis et al., 2008; Samoli et al., 2009) in multi-site
studies. However, this approach is suitable only for associations
expressed by a limited number of parameters. It is currently
computationally infeasible, for example, to pool surfaces as the
one illustrated in Figs. 1 and 2. An interesting compromise is the
meta-smoothing method (Schwartz and Zanobetti, 2000), where
simple univariate meta-analyses can be applied to pool the effects
for any combinations of temperature values and lags, without
accounting for correlations. Further research is needed to assess
the presence and extent of biases in this type of approach for
point estimates and standard errors if compared to proper
multivariate methods (Riley, 2009), and to develop approaches
to investigating heterogeneity in temperature-health association
over sites (multivariate meta-regression).

As it is, investigators must balance the advantages of keeping
information from the site-specific model with the need to reduce
the number of parameters (summary measures) to make second-
stage meta-analytical methods feasible. This choice also depends
on the aim of the investigation and the availability of data.

5. Model selection

In contrast to analyses performed in many other subject-areas,
the regression models applied in time series data for environ-
mental factors are based on a limited number of predictors, such
as day of the week, indicators for holiday periods and influenza
epidemics, weather and pollution variables. The predictors to be
included in the model are typically defined a priori, in particular
in multi-site studies. In air pollution research, the critical
choice to select the final model thus commonly focuses on
the specification of the functions to account for seasonal and
long-term trend, as discussed above in Section 2. Several
contributions have addressed this issue, comparing alternative
selection criteria (Baccini et al., 2007; Burnett et al., 1997; Peng
et al,, 2006; Touloumi et al., 2006): the main options are based
on Akaike or Bayesian information criteria (AIC and BIC,
respectively), (generalized) cross-validation techniques, minimi-
zation of the partial auto-correlation function of the residuals
(PACF) or the related white noise test. The first 3 statistics aim to
maximize the ability of the model to predict new observations

arising from the same phenomenon which produced the data,
while the last two intend to minimize the correlation between
residuals from proximate observations in the series, to match the
standard assumption of uncorrelated residuals. While these
models fit statistics and residual analyses provide helpful insight,
as criteria none can guarantee control of confounding (Peng et al.,
2006). More complex approaches remain in the domain of
statistical theory (Crainiceanu et al, 2008; Dominici et al.,
2004). This leaves this aspect of model choice controversial, and
makes analyses of sensitivity of key findings to variations in
model choices very important.

When temperature is the focus of the analysis, similar
considerations apply but additional issues should be taken into
account. First, given the stronger association of temperature than
of pollution with season, the optimal amount of smoothing to
control for time may not be the same as that applied when air
pollution is the exposure of interest. Second, given the longer lag
often suggested for temperature (Anderson and Bell, 2009; Braga
et al., 2001) there is more tension between the need to control
confounding by unmeasured factors causing medium-term fluc-
tuations in mortality (favoring many degrees of freedom in the
time smooth) and the need to leave variation from which effects
of interest can be estimated (favoring fewer degrees of freedom).
Finally, when the objective is to investigate temperature-
mortality relationships in their own right, there is usually a
trade-off between complete description of all patterns not
explicable by noise (many criteria often select quite complex
models) and simplicity of interpretation. Specific study purposes
may suggest different trade-offs.

The analysis performed by Barnett and colleagues illustrates
some of these issues. A cross-validation procedure is specifically
Justified for the purpose of comparing the predictive ability of
different temperature indexes, which might turn out to be useful,
for example, to assess the future burden of climate change. In
their analysis, the performance of the selection criteria is thus
consistent with the research question. In other circumstances, for
example when the goal is to obtain unbiased estimates of the
€xposure-response relationship or to control for confounding
effects, the choice of selection criteria may be different (Dominici
et al., 2008; Peng et al., 2006).

6. Implication of the ecological design

Ecological studies are defined as those in which the unit of the
analysis is represented by aggregated or grouped observations
(Last, 2001): the evidence from these research designs is
interpreted with caution, given the inherent risk of biases due
to the lack of information about individual characteristics
(Greenland and Robins, 1994). Two of the main limitations that
have been emphasized are the presence of unmeasured con-
founders, and error due to measures being collected from
monitors at central sites, which do not represent personal
exposures, which vary.

However, for investigating acute effects of environmental
stressors (ambient temperature or air pollution) that change over
time, the limitations inherent in ecological designs are offset by
advantages. Many individual factors such as genetic make-up do
not vary over time so cannot confound. Others, such as diet or
smoking, vary only slowly so their effects are filtered out by the
smooth function of time as discussed in Section 2. Moreover,
variation in exposure across individuals is not the problem that it
first appears to be. While there may be large variation in
temperature or air pollution over a city, changes in daily
population averages are usually much better reflected by the
central monitor. This implies that the error in assigning
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individuals to central site levels is primarily of a Berkson-type,
which in linear models does not lead to bias in estimates of effect
in linear models, though it reduces the precision (Armstrong,
1998; Zeger et al., 2000). Thus, results from time series studies in
this context are considered more robust than those achieved from
other ecological designs.

Nevertheless, there are some reasons for caution in interpret-
ing ecological time series studies of the effects of temperature.
Berkson error may be a more relevant problem for studies of
temperature than of air pollution effects, because of the non-
linearity of most temperature-health relationships. For example,
if a threshold-linear model pertained at the individual level,
variation of temperatures across the city would blur the thresh-
old, even if the between-day time fluctuations in individuals were
perfectly correlated with those of the central site measurements.
There are also implications of the ecological design for assessment
of harvesting and, more broadly, of the lag pattern of the effect.
Elegant conceptual frameworks have been proposed to character-
ize this phenomena (Rabl, 2005; Schwartz, 2000b), but it may not
be appreciated that the apparent post-exposure protective effect
in the presence of harvesting is not a real effect acting at the
individual level, but an artefact of the ecological nature of the
design. The measured decrease in risk is explained by the change
in the structure of the underlying population after the depletion
of the pool of frail individuals. More generally, lag curves such as
those depicted in Fig. 2 are likely to be the results of the sum of
delayed positive effects and harvesting, and should not be
automatically interpreted as the temporal representation of some
physiological mechanism linking temperature and mortality.

7. Conclusions

Time series analysis represents a valuable tool to assess the
acute health effects of environmental factors that fluctuate over
time. The recent developments described above address some of
the main problems regarding its application in temperature-
health studies, providing flexible methods to investigate this
complex association. These investigations are relatively simple to
conduct because of the routinely collected data, available in most
locations. However, it is important to consider that this ecological
design still has some limitations, which need.to be kept in mind
when planning a study or interpreting analytical results.

In addition, these new approaches face new challenges related
to the complexity of the analytical methods, mainly due to the
need to select a model from a large number of alternatives. As
highlighted by Barnett and colleagues, the estimate of the
association is particularly sensitive to the choice of functions,
lag period and other model parameters, and available selection
criteria are still limited to reliably identify a “best” model. An
extensive sensitivity analysis on the various modelling choices is
therefore always recommended.
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Distributed lag non-linear models

A. Gasparrini**!, B. Armstrong® and M. G. Kenward®

Environmental stressors often show effects that are delayed in time, requiring the use of statistical models that are ﬂ?xib.le enough
to describe the additional time dimension of the exposure-response relationship. Here we-develop the family of distributed l'ag
non-linear models (DLNM), a modelling framework that can simultaneously represept non-l_mc_ar exposure-response dcpqndencles
and delayed effects. This methodology is based on the definition of a ‘cross-basis’, a bl-d'lmensmnal space of_ funcfmns th‘at
describes simultancously the shape of the relationship along both the space of the predictor and the Iafg dimension of its
occurrence. In this way the approach provides a unified framework for a range ol: models that have previously been us:ed' in
this setting, and new more flexible variants. This family of models is implemented in the package dlnm within the statistical
environment R. To illustrate the methodology we use examples of DLNMs to represent the relationship between temperature
and mortality, using data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) for New York during

the period 1987-2000. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: distributed lag; time series; smoothing; delayed effects

e

L. Introduction

_Somelimcs the effect of a specific exposure event is not limited to the period when it is observed, but it is delayed
I time, This introduces the problem of modelling the relationship between an exposure OCCUITence and a sequence of
future outcomes, specifying the distribution of the effects at different times after the evem'(dchped Iags.).'Ulumalcly,
this siep requires the definition of the additional lag dimension of an exposure-response relationship, describing the rime
Structure of the effect. g i .
This situation occurs frequently when assessing the short-term effects of environmental stressors: s§veral time-series
Studies have reported that the exposure to high levels of air pollution or extreme emperatures affect health for a
PeriOd lasting some days after its occurrence [1,2]. Furthermore, the complexity increases in the presence of so-called

harvesting’: the phenomenon that arises when a stressor affects mainly a pool of frail individuals, whose events are only

rought forward by a brief period of time by the effect of exposure [3,4]. For non-recurrent outcomes, the depletion
of the pool following a stress results in some reduction of cases few days later, thereby reducing the Eree Xug
iImpact, For both these reasons, the estimate of the effect depends on the appropriate specification of the ]ag dlmgnslon
.of the dependency, defining models flexible enough to represent simultaneously the exposure-response relationship and
1S temporal structure. . i i istri
Among the various methods that have been proposed to deal with delayed effects, a major role is pl.aycc.i by.d:srrzbu.zed
lag models (DLM), recently used to quantify the health effect and assess thg presence of harvesting in air pollution
and temperature studies [2, 5, 6]. The main advantage of this method is that it allows the model to contain a detailed
epresentation of the time-course of the exposure—response re

effect in he presence of delayed contributions or harvesting. : fies @
ile conventional DLMs are suitable for describing the lag structure of linear effects, they show some limitations

When used (o represent non-linear relationships. We propose a solution, to relax further the assumptions on the shape of
the relationship and extend this methodology to distributed lag non-linear models (DLNM), a family of models which
Can describe, in a flexible way, effects that vary simultaneously both along the space of the predictor and in the lag

Jationship, which in turn provides an estimate of the overall
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dimension of its occurrence. In this way the class of DLNMs also provides a unifying framework for existing simpler
methods.

DLNMs have been previously described only briefly in epidemiological terms [7]: the aim of this paper is to develop
this method rigorously, and to describe implementation in the specifically written package d1nm included in the statistical
software R [8], providing an illustrative example of its application using a real data set. In Section 2 we briefly describe
the basic model used in time series analysis and introduce the idea of basis as a general way to describe a non-linear
relationship between a predictor and a response. In Section 3 we outline the additional complexity of effects delayed
in time and provide a general representation of simple DLMs. In Section 4 we use the results obtained in the previous
sections to define the general framework of DLNMs which includes all the models previously described as special cases.
An application of this methodology to modelling the effect of temperature on mortality for New York is illustrated in
Section 5. In Section 6 we provide some discussion and propose possible further developments.

2. The basic model

2.1. A general representation

A general model representation to describe the time series of outcomes Y; with =1, ...,n is given by
J K
g =0+ 3" 50 B+ Y veugk, (1)
J=1 T k=1

where = E(Y), g is a monotonic link function and Y is assumed to arise from a distribution belonging to the exponential
family [9, 10]. The functions s; denote smoothed relationships between the variables x; and the linear predictor, defined
by the parameter vectors B;. The variables uy include other predictors with linear effects specified by the related
coefficients 7. The functions s; might be also specified through non-parametric methods based on generalized additive
models [11, 12]. However, in the present development we rely on a completely parametric approach.

In time series analyses of environmental factors the outcomes Y; are commonly daily counts, assumed to originate
from a so-called overdispersed Poisson distribution with E(Y)=, V(Y)=¢pu, and a canonical log-link in (1). These
studies have taken advantage of the substantial improvements, during the last years, of statistical methods to quantify
the short-term effects of air pollution [13, 14]. Usually these include a smooth function of time to capture the effect of
confounders changing slowly over time, expressed as seasonality or long-time trends. Non-linear effects of metereological
factors such as temperature and humidity are included as well. Categorical variables such as days of the week or age
groups are modelled as factors. Although air pollution is commonly described by a linear relationship, this assumption
may be relaxed in order to assess non-linear effects.

Here we focus on a general function s specifying the potentially non-linear and delayed effect of the predictor x,
often referring, without loss of generality, to air pollution or temperature.

2.2. Basis functions

The relationship between x and g(u) is represented by s(x), which is included in the linear predictor of a generalized
linear model as a sum of linear terms. This can be done through the choice of a basis, a space of functions of which
we believe s to be an element [12]. The related basis functions comprise a set of completely known transformations
of the original variable x that generate a new set of variables, termed basis variables. The complexity of the estimated
relationship depends on the type of basis and its dimension.

Several different basis functions have been used to describe the potentially non-linear health effects of environmental
factors, the choice depending on the assumptions about the shape of the relationship, the degree of approximation
required by the specific purposes of the investigation, and interpretational issues. Among completely parametric methods
the main choices typically rely on functions describing smooth curves, such as polynomials or spline functions [151’
or on the use of a linear threshold parameterization, represented by a truncated linear function (x — x :
(x —x) when x>k and O otherwise [16].

A general representation of the simple models described above is given by

)+ which equals

s(x: )=z B 2)

with 2;. as the rth row of the n x vy basis matrix Z, obtained by the application of the basis functions to the original

vector of exposures X. Z can be then included in the design matrix of the model in (1) in order to estimate the related
unknown parameters f defining the shape of the relationship.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2224-2234
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3. Delayed effects

3.1. An additional dimension

In the presence of delayed effects, the outcome at a given time  may be explained in terms of past exposures x, ¢, with
¢ as the lag, representing the period elapsed between the exposure and the response. A comparatively simple approach
is to apply a transformation to the original vector of ordered exposures x, deriving the n x (L + 1) matrix Q, such as
1T

i =125y o0 5 Kpeills oo s By 3)

with L defining the maximum lag and q.; =x (the first column of Q). We can also define €=10, ..., ¢, ..., L]" as vector
of lags corresponding to the L+1 columns of Q.
This step specifies the additional lag dimension of the exposure-response relationship. Ultimately, the aim of the

modelling framework proposed here is to simultaneously describe the dependency along two dimensions: the usual
predictor space and in the new lag dimension.

3.2. Distributed lag models

When a linear relationship is assumed, the delayed effects can be naturally described by distributed lag models (DLM).
This methodology allows the effect of a single exposure event to be distributed over a specific period of time, using
several parameters to explain the contributions at different lags. These models have been extensively used to assess the
lagged effects of environmental factors. The simplest formulation is an unconstrained DLM, specified by the inclusion
of a parameter for each lag [5, 17]. Unfortunately, the precision of the estimates for the effects at specific lags is often
very poor, due to the high correlation between exposures in adjacent days and the resulting collincarity in the model [1].
To gain more precision in the estimate of the distributed lag curve, it is possible to impose some constraints, for example
assuming a constant effect within lag intervals [18], or describing a smooth curve using continuous functions such as
polynomials [5, 19] or splines [6]. A simple model with the moving average of the exposures in the previous L days as
a predictor can be considered as a special case of a DLM: such a model has been extensively used in the field of air
pollution epidemiology [20] and sometimes used as well to quantify the effects of temperatures [21].

The algebraic notation for this class of models has only been given previously for polynomial DLMs [5]. Using the
development provided in Sections 2.2 and 3.1, it is possible to formulate a simpler and general definition of DLM, in
which the shape of the distributed effects along lags is specified by a proper basis. In matrix notation

S(xy3 'I)=(I;ICPI, 4)

where C is an (L + 1) x v matrix of basis variables derived from the application of the specific basis functions to the lag
vector £, and 5 a vector of unknown parameters. The addition of the supplementary dimension in (3) provides a structure
for the application of the basis matrix C, in order to describe the effects of lagged exposures. All the different DLLMs
described above can be derived from (4), by specifying the correspondent basis matrix: C=1 (a vector of ones) for the
moving average model, C=I (an identity matrix) for the unconstrained DLM, or C defined as a series of polynomial or
splines functions of £ for DLMs describing the effect as a smoothed curve along lags.

From (4) we can define

We OO )

with W the matrix of the vy transformed variables that are included in the design matrix to allow estimation of the

parameters 5. The interpretation of the estimated parameters # is aided by construction from them of the implied linear
effects p at each lag, following:

B=Ci,
V(B = CV(iCT, ©6)

Here the choice of the basis to derive C can be considered as the application of a constraint (o the shape of the
distributed lag curve described by B.
Despite the specification of the basis functions in (4) being slightly different to that in (2), i.e. being applied to the

vector £ instead of the exposure series X itself, their goal is conceptually similar to describe the shape of the relationship,
the former along distributed lags and the latter in the space of x.

Copyright © 2010 John Wiley & Sons, Ld. Statist. Med. 2010, 29 2224-2234
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4. Distributed lag non-linear models

As described in Sections 2 and 3, there are well-developed methods to describe flexible exposure—response relationships
for simple lag models, or alternatively flexible DLMs for simple linear effects, but rarely are these two components
modelled simultaneously. Extensions to describe non-linear effects have been proposed, using a piecewise parameteriza-
tion or polynomials, for which a DLM can be constructed by applying the constraint matrix C to each term of a threshold
[22] or piecewise function [23] or to the linear and quadratic terms [2], respectively. Nonetheless, these methods remain
somewhat limited in their ability to describe this complex dependency.

A useful generalization is achieved through the generation of a new model framework which can describe non-linear
relationships both in the space of the predictor and along lags, leading to the family of DLNM.

4.1. The concept of cross-basis

While the algebraic notation of DLNMs can be quite complex, involving three-dimensional arrays, the basic concept,
which rests on the definition of a cross-basis, is straightforward. Extending the idea of basis described in Section 2,a
cross-basis can be pictured as a bi-dimensional space of functions describing simultaneously the shape of the relationship
along x and its distributed lag effects. Choosing a cross-basis amounts to choosing two sets of basis functions, which
will be combined to generate the cross-basis functions.

4.2. The algebra of DLNM

To model the shape of the relationship in each of the two spaces we are considering, we need to apply simultaneously the
two transformations described in Sections 2 and 3. First, as in (2), we choose a basis for x to define the dependency in the
space of the predictor, specifying Z. Then we create the additional lag dimension, as in (3), for each one of the derived
basis variables of x stored in Z. This produces a n x v, x (L +1) array R, which represents the lagged occurrences of
each of the basis variables of x. The construction is symmetric, in the sense that the order of the two transformations
can be reversed, applying the basis functions directly to each column of the matrix Q.

Defining C, the matrix of basis variables for £ seen in (4), a DLNM can then be specified by

Uy U
o T
sGaim)= ZHeruf~k'1,~k=wIm (7
J=lk=
where ry;. is the vector of lagged exposures for the time ¢ transformed through the basis function J. The vector w;,. is
obtained by applying the vy -vy cross-basis functions to x;, similarly to (5). We keep the same notation to emphasize
the fact that the DLM specified in (4) is a special case of the more general DLNM in (7). To reach a compact formula
for W of a similar form to (5), we need to present it as a tensor product. Defining P;

: : A : j as the operator permuting the
indexes i and j of an array and assuming a generic i X j matrix as a i X j x 1 array,

it follows that
A=1"®R)01& P, 3(C)217) (8)

with 1 indicating vectors of ones with appropriate dimensions. The symbols ® and © represent the Kronecker and
Hadamard products, respectively. The n x (vy-v¢) x (L+1) array A is then re-arranged, summing along the third dimen-
sion of lags to obtain the final matrix of cross-basis functions W. The equation in (8) is a modified version of the formula
used to implement smoothing on a multidimensional grid through tensor product bases [24,
the cross-basis approach lies in the dimensions considered in the model. While the ori
to describe a smooth surface in the space of two distinct variables, the DLNM €xX
the space of a variable and in its lag dimension.

25]. The main difference in
ginal method provides a framework
presses simultaneously the effects in

4.3. Interpreting a DLNM

Despite its complex parameterization, estimation of and inference about the parameters of a DLNM raise no more
problems than any other generalized linear model, and can be carried out with common statistical softwares after the cross-
basis variables have been specified. Nonetheless, while the interpretation of the simpler DLM in (4) is straighlforwa};i
consisting in reporting the estimated linear effects f in (6) for each lag, the results of a more complex DLNM wil};
smoothed non-linear dependencies are harder to summarize. One solution is (o build a grid of predictions for each lag

and for suitable values of exposure, using three-dimensional plots to provide an overall pi g
: : - g all picture o
along the two dimensions. P f the effects varying

Given a vector X” of the m exposure values used for prediction and the resultant m x vy

: : matrix Z”, th S i
m x vy x (L +1) array R” can be derived by repeating the matrix Z” L+ 1 times along t Sl

he dimension of the lags. The

Copyright © 2010 John Wiley & Sons, Ltd. N ——
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computation of R? is slightly different than for the array R used in the estimation process in (7). In this case the
interest lies in the prediction of the effects at each lag given an exposure, not in the temporal sequence of the exposures
themselves. The final array A” follows simply substituting r;;. with r,"], in (7) or R with R” in (8).

The prediction grid, expressed with the m x (L +1) matrix of predicted effects E and related matrix of associated

standard errors E*, can be derived using the vector of estimated coefficients #, computed from the model fitted including
the matrix of cross-basis functions W. For each lag ¢

e =A’j )

and, given V(i) the variance-covariance matrix of the estimated coefficients

ef§'=\/diag(A.’,’l V(ﬁ)A(’f). (10)

This grid is useful to compute the estimates of the effects by exposure at lag £, or by lag at exposure x,, simply
taking e.;, and ey, respectively.

Finally, an estimate of the overall effect can be computed by summing all the contributions at different lags. The

vector ey, and associated standard errors e{"{,’l, obtained summing the contributions at each lag, specify the effects by
exposure over the whole lag period. They are obtained from

e =W~p C11)

and

el = \/diag( WPV WrT). A

5. An application

5.1. Data and model choices

We apply DLNMs to investigate the effect of temperature on overall mortality for the city of New York, during
the period 1987-2000. The data set is taken from the National Morbidity, Mortality, and Air Pollution Study
(NMMAPS) [26], available publicly through the Internet-based Health and Air Pollution Surveillance System website
(http://www.ihapss.jhsph.edu). It includes 5114 daily observations of overall and cause-specific mortality, weather and
pollution data.

The analysis is based on the model in (1), fitted through a generalized linear model with quasi-Poisson family, with
the following choices regarding the control of confounders: natural cubic splines of time with 7 degrees of freedom (df)
per year to describe long-time trends and seasonality; indicator variables for day of the week; natural cubic splines with
3 df at equally spaced quantiles for the average of dew point temperature at lag 0-1; linear terms for the average of
ozone and CO at lag 0-1. These choices are motivated by several methodological and substantive papers on time-series
analyses [21, 26, 27].

The effect of mean temperature has been investigated through the choice of two bases to describe the relationship in
the space of temperature and lags; we illustrate a flexible model with natural cubic splines to describe the relationship in
each dimension. The knots were placed at equally spaced values in the range of temperature, to allow enough flexibility
in the tails, and at equal intervals in the logarithmic scale of lags, to allow more flexibility in the first part of the
distributed lag curve, where more variability is expected [22,28]. The maximum lag L was set to 30 days. Simpler
models with the moving average of temperature in previous days have been fitted for comparison.

We have based the choice of the number of knots, which defines the df in each dimension, on modified Akaike and
Bayesian information criteria for models with overdispersed responses fitted through quasi-likelihood [11, 27), given by:

QAIC=-22(B)+2¢k and QBIC=—22(0)+log(n)dk, i
where  is the log-likelihood of the fitted model with parameters 0 and 4> the estimated overdispersion parameter,
whereas k and n are the number of parameters and number of observations, respectively. The best model is chosen that
minimizes the criteria above.

All the analyses were performed with the software R, version 2.10.1 [8], using the package dlnm, version 1.1.1,

developed by the first two authors and publicly available on the R comprehensive archive network (CRAN). The code
of the main analysis is included in Appendix A.

Copygt © 2010 John Wiley & Sons, Led. Statist. Med. 2010, 29 2224-2234
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Figure 1. 3-D plot of RR along temperature and lags, with reference at 21°C.

5.2. Results

When used to compare different modelling choices, the QAIC led to a comparatively complex model, with 11 df for
the space of the predictor and 5 df for the lag dimension, and a total of 55 parameters used to define the relationship.
In contrast, the QBIC indicated a 5x 5 df model, with 25 df spent to describe the overall effect. In the absence of any
knowledge about the performances of these criteria within the DLNM framework, we chose the latter as our final model
on the grounds of parsimony.

An overall picture of the effect of temperature on mortality is provided in Figure 1, showing a 3-D graph of the
relative risk (RR) along temperature and lags compared with a reference value of 21°C, the point of overall minimum
mortality. The plot shows a very strong and immediate effect of heat, and suggests a more delayed effect for extremely
hot temperatures. The maximum effect of cold temperatures is reached approximately at lag 2-3. Inspection of the graph
at longer lags suggests some harvesting for extreme temperatures.

Although the 3-D plot is a useful tool for summarizing the overall relationship in the two dimensions, uncertainty in
the estimates cannot be included. In order to provide a more specific assessment of the relationship, we can plot the
effects for specific temperatures or lags. Figure 2 shows the RR by temperature at specific lags (0, 5, 15 and 28) and
by lag at specific temperatures (—10.8, —2.4, 26.5 and 31.3°C), corresponding approximately to 0.1th, 5th, 95th and
99.9th percentiles of temperature distribution (termed as moderate and extreme cold and heat). The overall effect of
temperature, summing up the contributions for the 30 days of lag considered in the analysis, is included below. The shape
of the temperature-mortality relationship seems to change along lags, with a different points of minimum mortality for
lag 0 and 5 (first two graphs on top left). This plot confirms the more delayed effect of extreme heat if compared with
moderate hot temperatures, with a significant risk lasting up to 10 and 3 days, respectively (third and fourth graphs
from top right). Nonetheless, only extreme hot temperatures suggest a possible harvesting effect, starting after 15 days
of lag. The overall estimated RR versus 21°C is 1.24 (95 per cent CI: 1.13-1.36) and 1.07 (95 per cent CI: 1.03-1.11)
for extreme and moderate heat, respectively. Cold temperatures show a completely different pattern, with the effect of
moderate cold sustained up to 25 days of lag (first two graphs on top right). In addition, the effect of cold seems to

level off, with a slightly higher overall RR of 1.30 (95 per cent CI: 1.20-1.40) for moderate cold, compared to 1.20
(95 per cent CI: 1.04-1.39) for extreme cold (graph below).

To compare this DLNM with simpler alternatives, models with the movin
same spline functions for the space of temperature have been fitted. The fo
of heat, but shows a weaker effect of low temperatures, with an estimate
moderate cold. This difference is probably due to underestimation, give
lasting longer than 2 days. Conversely, the moving average model with
lower estimates for hot temperatures, with a RR of 1.01 (95 per cent CI: 0.

g average of lag 0-1 and lag 0-30 and the
rmer provides similar estimates for the effect
d RR of 1.06 (95 per cent CI: 1.03-1.09) for
n the fact that low temperatures exert effects
lag 0-30 shows similar effects for cold, but
97-1.04) and 1.06 (95 per cent CI: 0.97-1.17)
T ——————

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2224-2234
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Figure 2. Plot of RR by temperature at specific lags (top left), RR by lag at 0.1th, 5th, 95th and 99.9th percentiles of temperature
distribution (top right) and overall RR (below). Reference at 21°C.
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for moderate and extreme heat, respectively. It is plausible that averaging over 31 days could cause some bias in the
estimates, considering that each previous exposure within the lag period is assumed to provide the same contribution to
the effect on cach day. The criteria above indicate a better fit of DLNM, with a difference of 571 and 517 for QAIC
and of 468 and 445 for QBIC if compared with lag 0—1 and 0-30 moving average models, respectively.

A sensitivity analysis has been carried out to assess the impact of model choices. In particular, we evaluate changes
in the estimated overall effect (as described in the bottom of Figure 2) associated with varying the df used to specify the
cross-basis functions (along both dimensions) and the seasonal and long-term trend component. Increasing the number of
knots in the space of temperature produces a much less smoothed curve, probably due to overfitting, while no appreciable
change is noted with different choices for spline in the lag dimension. Using more df to control for season and long-time
trend does not affect the estimates, apart from a less pronounced decrease in the temperature-mortality curve at very
low temperature. In addition, the inspection of lag and temperature-specific curves reveals that the supposed negative
effect of heat at long lags, attributed to harvesting, completely disappears when increasing the seasonal control. This is
plausible, given that the effects of models with an extended lag periods are more sensitive to the seasonal component.

6. Discussion

In this paper we have described the class of DLNMs, the members of which can be used to model the effect of factors
showing at the same time non-linear dependencies and delayed effects. The specification of a DLNM is conceptually
simple but flexible enough to allow a wide range of models including simple previously used as well as more complex
new variants. The conceptual simplicity has allowed construction of an R package to fit this wide range of models.

One difficulty highlighted by this abundance of choice (basis types, number and placement of knots, maximum lag)
is what criteria can be used to chose between alternatives. In the example above we used information criteria to guide
choice of number of knots, but a priori arguments for choice of basis types and maximum lag. A previous discussion
on choice of DLNM from an epidemiological perspective emphasized compromise between sufficient complexity to
capture detail and sufficient simplicity to allow interpretation [7]. Because there is no consensus on what comprises
an ‘optimal’ model, sensitivity analyses are particularly important, allowing dependence of key conclusions on model
choice to be assessed. The broad range of DLMNs facilitates this. Regression diagnostics, such as residuals and partial
autocorrelation plots, may also be helpful. In addition, we have discussed choice of DLNM assuming that it focuses on
the variable of interest (temperature in our example). There is also a problem of model selection for covariates, some
parts of which might also be DLNMs. This problem, sometimes referred to as adjustment uncertainty, has received some
attention in time series studies of pollution [29,30] as well as generally [31]. Again no consensus has emerged on what
approach is optimal, and analyses of sensitivity to this component of model choice is also important.

The current implementation of DLNMs as illustrated in Section 5 is based on a completely parametric method,
where the cross-basis dimension v, x v/ equals the number of df spent to describe the relationship. Recently, interesting
alternatives based on penalized regression with low-rank smoothers have been proposed to deal with non-linear effects

[32, 33], and also applied to describe the distributed lag curve [6, 22]. Although completely parametric approaches seems

to be preferred to control for season and long-term trend in time series data [27, 34, 35], the penalized methods could
show some advantage in the bi-dimensional framework of DLNM. This issue represents an opportunity for further
development, and could benefit from the research already carried out on penalized tensor-product smoothers [25, 36].
In addition, the algebraic definition in Section 4 is still valid in this new context, and only the estimation algorithm to
derive i and V() actually changes.

The development of DLNMs described in Section 4 involves only a comparatively complex parameterization of the
lagged exposure series, as expressed by (7). Although our application has involved the use of an overdispersed Poisson
log-linear model, we do emphasize through the development and notation in (1), that this framework has very general
applicability, for example to time series data with other outcome distributions. More importantly,
fairly general, and can be easily translated in other study design and regression models.

The analysis of the data for New York during the period 1987-2000 offers some evidence for the potential of this
framework to highlight complex dependencies of environmental factors, which would be largely obscured when using
simpler models. We believe this approach represents a useful tool to
environmental studies and other scientific fields.

the main concept is

gain understanding of phenomena investigated in

Appendix A: R code

The following code reproduces the main analysis and graphs included in Section 5. The

ackages dl d
NMMAPS1ite may be downloaded directly through R from the CRAN. Mo Eh e, i
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A detailed overview of the capabilities of the package d1nmis illustrated in the vignette included in the implementation,
available typing vignette (“*dlnmOverview") in R.

require (dlnm) ; require (NMMAPSlite)

HEHSHAHFHHHHARAH AR AR AR SRR RS
# LOAD AND PREPARE THE DATASET
HHHSHAHFHAHHHAHRHRHRHRHHHS AR S

initDB()

data <- readCity ("ny", collapseAge = TRUE)

data <- datal[,c("city", "date", "dow", "death", "tmpd", "dptp", "rhum",
"o3tmean", "o3mtrend", "cotmean", "comtrend") ]

# TEMPERATURE: CONVERSION TO CELSIUS

data$temp <- (data$tmpd-32)*5/9

# POLLUTION: O3 AND CO AT LAG-01

data$o3 <- data$o3tmean + data$o3mtrend

data$co <- data$cotmean + data$comtrend
data$o301 <- filter (data$o3,c(1,1)/2,side=1)
data$co0l <- filter (data$co,c(1,1)/2,side=1)

# DEW POINT TEMPERATURE AT LAG 0-1

datas$dp0l <- filter (data$dptp,c(1,1)/2,side=1)

SHHHHEHHHH AR HH AR H AR AR R RS HH
# CROSSBASIS SPECIFICATION
FHAHHEHHE R AR R AR R

# FIXING THE KNOTS AT EQUALLY SPACED VALUES

range <- range (data$temp,na.rm=T)

ktemp <- range[l] + (range[2]-range[1])/5*1:4

# CROSSBASIS MATRIX

ns.basis <- crossbasis(data$temp, varknots=ktemp, cenvalue=21,
lagdf=5,maxlag=30)

SHEHHHHHFHERFRHHHH AR AR R AR S
# MODEL FIT AND PREDICTION
SHEHHHHHFHEHREHHHRRHRRA R RS RS

ns <- glm(death ~ ns.basis + ns(dp01,df=3) + dow + 0301 + co01 +
ns (date,df=14*7) , family=quasipoisson(), data)
ns.pred <- crosspred(ns.basis,ns,at=-16:33)

SHAHHFHFHHEHRAHHHHHAH AR RS RS
# RESULTS AND PLOTS
BT R B 0

# 3-D PLOT (FIGURE 1)
crossplot (ns.pred, label="Temperature")
# SLICES (FIGURE 2, TOP)
percentiles <- round(quantile(data$temp,c(0.001,0.05,0.95,0.999)),1)
ns.pred <- crosspred (ns.basis,ns,at=c(percentiles, -16:33)) :
crossplot(ns.pred,"slices",var=percentiles,lag=c(0,5,15,28),
label="Temperature")
# OVERALL EFFECT (FIGURE 2, BELOW)
crossplot (ns.pred, "overall", label="Temperature",
title="Overall effect of temperature on mortality

Copyright © 2010 John Wiley & Sons, Ltd.
Statist. Med. 2010, 29 2224-2234
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New York 1987-2000")

# RR AT CHOSEN PERCENTILES VERSUS 21C (AND 95%CI)

ns.pred$allRRfit [as.character (percentiles) ]

cbind (ns.pred$allRRlow,ns.pred$allRRhigh) [as.character (percentiles), ]

HHHHFHHHHHHHAHAAHAHRAHAFHAAHHS

# THE MOVING AVERAGE MODELS UP TO LAG x (DESCRIBED IN SECTION 5.2)
# CAN BE CREATED BY THE CROSSBASIS FUNCTION INCLUDING THE
# ARGUMENTS lagtype="strata", lagdf=1, maxlag=x
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Abstract

Distributed lag non-linear models (DLNMSs) represent a modeling framework to flexibly
describe associations showing potentially non-linear and delayed effects in time series data.
This methodology rests on the definition of a crossbasis, a bi-dimensional functional space
expressed by the combination of two sets of basis functions, which specify the relationships
in the dimensions of predictor and lags, respectively. This framework is implemented in
the R package dlnm, which provides functions to perform the broad range of models within
the DLNM family and then to help interpret the results, with an emphasis on graphical
representation. This paper offers an overview of the capabilities of the package, describing
the conceptual and practical steps to specify and interpret DLNMs with an example of
application to real data.

ywords: distributed lag models, time series, smoothing, delayed effects, R.
eYWor g : )

1. Introduction

The main purpose of a statistical regression model is to define the relationship between a set
of predictors and an outcome, and then to estimate the related effect. A furthe
arises when the dependency shows some delayed effects: in this case.
predictor (let us call it an ezposure event) affects the outcome for a lapse of time well beyond
the event period. This step requires the definition of more complex models to characterize
the association, specifying the temporal structure of the dependency.

I complexity
a specific occurrence of a

1.1. Conceptual framework

The specification of suitable statistical models for delayed effect
their results, is aided by the development of a proper conc
of this framework is the definition of an addition

, and the interpretation of
eptual framework. The key feature
al dimension to characterize the association,
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which specifies the temporal dependency between exposure and outcome on the scale of lag.
This term, borrowed by the literature on time series analysis, represents the time interval
between the exposure event and the outcome when evaluating the delay of the effect. In case
of protracted exposures, the data can be structured by the partition in equally-spaced time
periods, defining a series of exposure events and outcomes realizations. This partitioning
also defines lag units. Within this time structure, the exposure-response relationship can
be described with either of two opposite perspectives: we can say that a specific exposure
events produces effects on multiple future outcomes, or alternatively that a specific outcome
is explained in terms of contributions by multiple exposure events in the past. The concept
of lag can then be used to describe the relationship either forward (from a fixed exposure to
future outcomes) or backward in time (from a fixed outcome to past exposures).

Ultimately, the main feature of statistical models for delayed effects is their bi-dimensional
structure: the relationship is simultaneously described both along the usual space of the
predictor and in the additional dimension of the lags.

1.2. Distributed lag models

The issue of delayed effects has been recently addressed in studies assessing the short term
effects of environmental stressors: several time series studies have reported that the exposure
to high levels of pollution or extreme temperatures affects health for a period lasting some

days after the its occurrence (Braga et al. 2001; Goodman et al. 2004; Samoli et al. 2009;
Zanobetti and Schwartz 2008).

The time series study design offers several advantages in order to deal with delayed effects.
given the defined temporal structure of the data and the straightforward definition of the lag
dimension, where the time partitioning is directly specified by the equally-spaced and ordered
time points. In this setting, delayed effects are elegantly described by distributed lag models
(DLMs), a methodology originally developed in econometrics (Almon 1965) and recently been
used to quantify health effects in studies on environmental factors (Schwartz 2000: Zanobetti
et al. 2000; Muggeo and Hajat 2009). This methodology allows the effect of a single exposure
event to be distributed over a specific period of time, using several parameters to explain the
contributions at different lags, thus providing a comprehensive picture of the time-course of
the exposure-response relationship.

Conventional DLMs rely on the assumption of a linear effect between the exposure and the
outcome. Some attempts to relax this assumption and explore delayed effects of factors show-
ing non-linear relationships have been proposed (Roberts and Martin 2007; Braga et al. 2001).
In particular, Muggeo (2008) introduced a methodology based on constrained segmented pa-
rameterization, assuming distributed lag linear effects of hot and cold temperatures beyond

two thresholds. This methodology is implemented in an R package presented in a previous
issue of this Journal (Muggeo 2010).

More recently, a general approach has been proposed to further relax the linearity assumption,
and flexibly describe simultaneously non-linear and delayed effects. This step has lead to the
generation of the new modeling framework of distributed lag non-linear models (DLNMs)

(Gasparrini et al. 2010; Armstrong 2006), implemented in the R package dlnm (G

asparrini
and Armstrong 2010).
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1.3. Aim of the paper

The package dlnm within the statistical environment R (R Development Core Team 2011)
offers a set of tools to specify and interpret the results of DLNMs. The aim of this paper is
to provide a comprehensive overview of the capabilities of the package, including a detailed
summary of the functions, with an example of application to real data. The example refers
to the effects on all-cause mortality of two environmental factors, air pollution (ozone) and
temperature, in the city of Chicago during the period 1987-2000. A thorough methodological
description of DLNMs, together with the complete algebraical development, have been given
elsewhere (Gasparrini et al. 2010). In this paper I reconsider the main conceptual and practical
steps to define a DLNM, predict the effects and interpret the results with the aid of graphical
features. The description of the functions included in the package and the related code for
each step will be presented. The code is also available as supplemental material.

The paper is structured as follows: Section 2 considers the general problem of mode
lincar or delayed effects, with an overview of the statistical approaches proposed so far. In
the next three Sections, the development of the methodology is illustrated in details, showing
the specification (Section 3), effect prediction (Section 4) and representation (Section 5) of
DLNMs. Section 6 shows an example of alternative modeling approaches and the issue of
model selection, while Section 7 discusses specific data requirements. Section 8 describes
potential future developments. Final comments are provided in Section 9.

ling non-

The package dlnm (current version 1.4.1) is expected to be loaded in the session, by typing:

R> library("dlnm")
Complementary information on the capabilities of the package,

amples of application to real data, can be found in the vignette
is included in the implementation of the package, and can be

together with additional ex-
dlnmOverview. This document
visualized by typing:

R> vignette("dlnmOverview", package = "dlnm")

2. Non-linear and delayed effects

In this section I present the basic formulation for a time series model, then introducing the
methods to describe non-linear and then delayed effects. the latter through the specification of
simple DLMs. The developtment will be formulated in such a way to facilitate the introduction
of the DLNM framework in Sections 3-5.

2.1. The basic model

A model for time series data may be generally represented by:

J K
9(me) = a+ ) sj(ay; B)) + ) wun, (1)
j=1

k=1

where p; = E(Y), g is a monotonic link function and Y; is a series of outcomes with ¢ =
1,...,n, assumed to arise from a distribution belonging to the exponential family (Dobson

and Barnett 2008). The functions sj specify the relationships between the variables x; and
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the linear predictor, defined by the parameter vectors B;. The variables u; include other
predictors with linear effects specified by the related coefficients ~;.

In the illustrative example on Chicago data described in Section 1.3, the outcome Y; is daily
death counts, assumed to originate from a so-called overdispersed Poisson distribution with
E(Y) = p, V(Y) = ¢u, and a canonical log-link in (1). The analysis follows a conventional
approach used in time series studies on environmental epidemiology (Dominici 2004; Touloumi
et al. 2004), where the association between daily ozone and temperature levels on mortality is
controlled for other confounding factors like seasonal and long time trend and day of the

However, the framework is general and applies to every outcome and predictors me
collected as time series data.

week.
asures

The non-linear and delayed effects of ozone and temperature are modeled through as particular
functions s; which define the relationship along the two dimensions of predictor and lags.
2.2. Non-linear exposure-response relationships

The first step in the development of DLNMs is to define the relationship in the space of the
predictor. Generally, non-linear exposure-response dependencies are expressed in regression
models through appropriate functions s. Within completely parametric approaches, several
different functions have been proposed, each of them characterized by diffe
and degree of flexibility. The main choices typically rely on functions describing smooth
curves, like polynomials or spline functions (Braga et al. 2001; Dominici et al. 2004)
use of a linear threshold parameterization (Muggeo 2010; Daniels ef al. 2000)
stratification through dummy parameterization.

rent assumptions

; on the
; or on the simple

All of these functions apply a transformation of the original predictor to generate a set of
transformed variables included in the model as linear terms. A useful generalization is achieved
introducing the concept of basis: a space of functions of which we believe s to be an element
(Wood 2006). The related basis functions comprise a set of completely known transformations

of the original variable = that generate a new set of variables, termed basis variables. An
algebraic representation may be given by:

s a0
s(z; B) = z,.8 (2)
with ;. as the t"* row of the n x v, basis matrix Z. In the parametric approach adopted here,
the basis dimension v, equals the degrees of freedom (df) spent to define the relationship
in this space, and is proportional to the degree of flexibility of the function. The unknown
parameters (3 can be estimated including Z in the design matrix of the model in (il

This first step in the definition of DLNMs is performed in the package dlnm with the func
mkbasis(), used to create the basis matrix Z. The pur
a general way to include non-linear effects of z, with
arguments of mkbasis(). As an example, I build a b
functions to the vector x = [1,...,5]T:

tion
pose of this function is to provide

different choices specified as different
asis matrix applying the selected basis

R> mkbasis(1:5, type = "bs", df = 4, degree = 2, cenvalue = 3)
$basis

bi b2 b3 b4
[1,] -0.12500 -0.75000 -0.12500 0.0000
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[2,] 0.53125 -0.46875 -0.12500 0.0000
[3,] 0.00000 0.00000 0.00000 0.0000
[4,] -0.12500 -0.46875 0.53125 0.0625
(5,1 -0.12500 -0.75000 -0.12500 1.0000

$type
[1] "hs!

$df
(1] 4

$degree
f1iE2

$knots
33.33333% 66.666677,
2.333333 3.666667

$bound
S H [ R

$int
[1] FALSE

$cen
[1] TRUE

$cenvalue
Gl

The result is a list object storing the basis matrix and the arguments defining it. In this

case, the chosen basis is a quadratic spline with 4 df, defined by the arguments type, df and
degree. The basis variables are centered to the value of 3.

Different types of basis may be chosen through the second argument type. The available
options are natural cubic or simple B-splines (type = "ns" or "bs", through a call to the
related functions in the package splines); strata through dummy variables ("strata"); poly-
nomials ("poly"); threshold-type functions such as low, high or double threshold or piecewi:ee
parameterization ("lthr", "hthr", "dthr"); and simply linear ("1in"). The argument df
defines the dimension of the basis (the number of its columns, basically the number of trans-
formed variables). This value may depend on the argument knots (which overcomes df)
specifying the position of the internal knots for types "ns" and "bs" (with boundary knot;
specified by bound), the cut-off points for "strata" (defining right-open intervals) and the
thresholds/cut-off points for "1thr", "hthr" and "dthr". If not defined (as in the example
above), the knots are placed at equally-spaced quantiles by default, and the boundary knots

at the range of the predictor values. The argument degree select the degree of polynomial
for "bs" and "poly". ;
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The arguments cen and cenvalue are used to center the basis for continuous functions (types
"ns", "bs", "poly", and "1in"), with default to the mean of the original variable if cenvélue
is not provided. An "intercept” can be included with the argument int. set by default at
FALSE to avoid identifiability problems. The concept of intercept is different het‘weon bases:
types "ns" and "bs" apply a complex parameterization where the intercept is implicitly built
within the basis variables (see the related help pages typing ?ns and ?bs); in type "stfata".
the intercept corresponds to the dummy variable for the baseline stratum (the first one by
default), which is excluded if int = FALSE; the intercept is the usual vector of 1's in the ot,h(,;r
types. See the help page (typing ?mkbasis) for additional information.

2.3. Delayed effects

The second step to define a DLNM is to specify the function to model the relationship in the
additional dimension of lags, allowing for delayed effects. In this situation, the outcome Y, at
a given time ¢ may be explained in terms of past exposures ¢ ¢, with £ as the lag. Given a
maximum lag L, the additional lag dimension can be expressed by the n x (L + 1) matrix Q,
such as:

@ = [Tt ..,Tmgy..., 21" (3)
with q;. as the t'" row of Q. The vector of lags £ = [0,...,¢,..

) - ] ) -, L]" corresponds to the scale
of this additional dimension.

Simple DLMs allow for delayed effects of linear relationships using a function to describe
the dependency between the outcome and lagged exposures. Several alternatives have been
proposed, from an unconstrained DLM (simply a parameter for each ¢ with £ € £) (Hajat
et al. 2005), to the use of strata (Pattenden et al. 2003), polynomials (Schwartz ‘2()()()).()1'
splines (Zanobetti et al. 2000; Armstrong 2006). A compact, and general algebraic definition
of a DLM is given by (see Gasparrini et al. 2010, Section 3.2):

s(zi;m) = q/ Cn (4)

where C is an (L +1) x vy matrix of basis variables derived from the application of the specific
basis functions to the lag vector £, and 1 a vector of unknown parameters. This basis matrix
is used to define the relationship along the lag dimension. All the DLMs described ab;)vv
differ only in the choice of the basis to derive the matrix C. :

This second step is carried out in dlnm through the function mklagbasis (), which calls
mkbasis() in order to build the basis matrix C. For example:

R> mklagbasis(maxlag = 5, type = "strata", knots = c(2, 4))

$basis

bl b2 b3
lag0 1 0 O
lagi 1" 0 O
Jag2 0 1SN0
lag3 0 1 O
lagd 0 O 1
lagh 0. 0. {1
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$type
[1] "strata"

$df
RS

$knots
[1] 2 4

$int
[1] TRUE

$maxlag
[1] &

In this example, after the maximum lag is fixed at 5 through the first argument maxlag,
the lag vector 0:maxlag, corresponding to £ = [0,..., 5]7, is automatically created and the
chosen function applied to it. In this case, a dummy parameterization with strata defined by
the cut-off points 2 and 4 (right-open intervals) included in knots. The available functions,
and the arguments to specify them, are essentially the same illustrated above for mkbasis ().
The only difference is that the basis matrix is never centered and by default includes an
intercept (int = TRUE, see ?mklagbasis). In addition, the knots (if not specified) are placed
by default at equally-spaced values in the log scale, allowing more flexibility in the first lag
period. The specific argument type = "integer" produces strata variables for each integer
values, defining C as an identity matrix, and may be used to specify unconstrained DLMs.

3. Specifying a DLNM

The last step in the specification of a DLNM involves the simultaneous definition of the
relationship in the two dimensions of predictor and lags, as described in Sections 2.2 and 2.3.
In spite of the different terminology of non linearity and delayed effects, the two procedures
are conceptually similar: to define a basis which expresses the relationship in the related

space. This similarity is highlighted by the analogy of the two functions mkbasis ()

and
mklagbasis().

DLNMs are then specified by the definition of a cross-basis, a bi-dimensional functional space
describing at the same time the dependency along the range of the predictor and in its
lag dimension. Algebraically, this reduces to concurrently apply the two transformations

explained in (2) and (3). First, choosing a basis for x to derive Z, then creating the additional
lag dimension for each one of the derived basis variables of X, producing a n x v, x (L + 1)

array R. With C defined in (4), a DLNM can be represented by:

Vo Ve

s(@im) =YY rlcinp=win (5)

j=1k=1

with w;. as the #"" row of the cross-basis matrix W. Additional details

are given in Gasparrini
et al. (2010, Section 4.2).
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Choosing a cross-basis amounts to selecting two sets of basis functions as described above,
which will be combined to generate cross-basis functions. This is carried out by the function
crossbasis (), which calls the functions mkbasis () and mklagbasis() to generate the
basis matrices Z and C, respectively, than combining them through a tensor product to
produce W following (5). This function can be applied to specify the two cross-bases for
ozone and temperature in the example described in Section 2.1. The related code is:

two

R> basis.o3 <- crossbasis(chicagoNMMAPS$03, vartype = "hthr",

+ varknots = 40.3, lagtype = "strata", lagknots = c(2, 6), maxlag = 10)
R> basis.temp <- crossbasis(chicagoNMMAPS$temp, vartype = "bs",

+ vardegree = 3, vardf = 6, cenvalue = 25, lagdf = 5, maxlag = 30)

The result is an object of class ‘crossbasis’, corresponding to the cross-basis matrix W in
(5) and the related arguments as attributes. The first argument x of crossbasis() is the
predictor series, in this case chicagoNMMAPS$03 and chicagoNMMAPS$temp available in the
dataset included in the package (see ?chicagoNMMAPS). In the current implementation, the
values in x are expected to represent an equally-spaced and ordered series, with the interval
defining the lag unit. The series must be complete, although missing values are allowed (see
Section 7). The argument maxlag defines the maximum lag.

The other arguments are similar to those enumerated in Sections 2.2 - 2.3. The function
crossbasis() passes the arguments with prefix var- to mkbasis(), in order to specify Z,
and the arguments with prefix lag- to mklagbasis(), producing C. In this example, the
cross-basis for ozone comprises a threshold function for the space of the predictor, with a
linear relationship beyond 40.3 pgr/m?, and a dummy parameterization assuming constant
distributed lag effects along the strata of lags 0-1, 2-5 and 6-10. In contrast, the options
for temperature are a cubic spline with 6 df (knots at equally-spaced percentiles by default)
centered at 25°C, and a natural cubic spline (lagtype = "ng" by default) with 5 df (knots

at equally-spaced values in the log scale of lags by default), up to a maximum of 30 lags.

As explained in Section 2.2, the basis variables for the space of the predictor are centered by
default for continuous functions. The default centering point is the predictor mean, if not set
with cenvalue (for example at 25°C for the cross-basis of temperature above). This value
represents the reference for predicted effects from a DLNM (see Section 4). The choice of
the reference value does not affect the fit of the model, and different values may be chosen
depending on interpretational issues. The reference in non-continuous functions is automat-
ically set to the first interval in strata and integer, or to the flat region in lthr, hthr,
dthr. As suggested in Section 2.2, it is strongly recommended to avoid the inclusion of an
intercept in the basis for the predictor space (varint must be FALSE, as default), otherwise
a rank-deficient cross-basis matrix will be specified, causing some of the cross-variables to be
excluded in the regression model. A complete overview of the available options is given in the
help page (typing ?crossbasis).

These choices may be checked by the function Summary .crossbasis (). For example:

R> summary(basis.temp)
CROSSBASIS FUNCTIONS

observations: 5114
range: -26.66667 , 33.33333
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total df: 30
maxlag: 30

BASIS FOR VAR:

type: bs with degree 3

df: 6 , knots at: 1.666667 10.55556 19.44444
boundary knots at -26.66667 33.33333
centered on 25

BASIS FOR LAG:

type: ns

df: 5 , knots at: 1.105502 3.322105 9.983144
boundary knots at 0 30

with intercept

The cross-basis matrices can be included in the model formula of a common regression function
in order to estimate the corresponding parameters 7 in (5). In the example, the final model
includes also a natural cubic spline with 7 df/year to model the seasonal and long time trend
components and a factor for day of the week, specified by the function ns() in the package
splines, which needs to be loaded in the session. The code is:

R> library(splines)
R> model <- glm(death ~ basis.temp + basis.o3 + ns(time, 7 * 14) + dow,
+ family = quasipoisson(), chicagoNMMAPS)

4. Predicting from a DLNM

As shown in Section 3, the specification of a DLNM involves a complex parameterization
of the exposure series, but the estimation of the parameters 7 is carried out with common
regression commands. However, the meaning of such parameters, which define the
along two dimensions, is not straightforward. Interpretation can be aided by the prediction
of lag-specific effects on a grid of suitable exposure values and the I + 1 lags. In addition,
the overall effects, predicted from exposure sustained over lags L to 0, can be computed by
summing the lag-specific contributions. The algebraic details to derive such estimates have
been described elsewhere (see Gasparrini et al. 2010, Section 4.3).

relationship

Predicted effects are computed in dlnm by the function crosspred(). The

s following code
computes the prediction for ozone and temperature in the example:

R> pred.o3 <- crosspred(basis.o3, model, at = c(0:65, 40.3, 50.3))
R> pred.temp <- crosspred(basis.temp, model, by = 2)

The first two arguments passed to crosspred() are the object of class ‘crossbasis’ and the
model object used for estimation. The vector of exposure values for which the effects must be
predicted may be directly specified by the argument at, as in the first example above. Here I
chose the integers from 0 to 65 pgr/m?® in ozone, plus the value of the chosen thresh-old 'Llid
10 units above (40.3 and 50.3 ugr/m?®, respectively). The values are automatically orde:red
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and made unique. Alternatively, the vector may be selected through the arguments by,
from, to, as in the second example above. In this case I simply chose rounded values within
the temperature range with an increment of 2°C. The function crosspred() extracts from
model the parameters (coefficients and (co)variance matrix) corresponding to the cross-basis
variables through method functions coef () and vcov(). For model classes for which such
methods are not available, the parameters must be manually extracted and included in the
arguments coef and vcov. The function then calls crossbasis () to build a prediction cross-
basis and to generate the predicted effects and standard errors given the parameters in model.
The result is a list object of class ‘crosspred’ which stores the predicted effects. It includes
a matrix of lag-specific effects and a vector of overall effects, with corresponding matrix and
vector of standard errors. If model includes a log or logit link, exponentiated effects and
confidence intervals are returned as well. The confidence level of the intervals is defined by
the argument ci.level, with default 0.95. The argument cumul (default to FALSE) adds the
matrices of cumulative effects and standard errors along lags.

The results stored in the ‘crosspred’ object can be directly accessed to obtain specific figures
or customized graphs other than those produced by dlnm plotting functions, illustrated in

Section 5. For example, the overall effect for the 10-unit increase in ozone,

expressed as RR
and 95% confidence intervals, can be derived by:

R> pred.o3%$allRRfit["50.3"]

50.3
1.05387

R> cbind(pred.o3%allRRlow, pred.o3%allRRhigh) ["50.3",]

[1] 1.003354 1.106930

See the help page (typing ?crosspred) for additional information.

5. Representing a DLNM

The bi-dimensional exposure-response relationship estimated by a DLNM may be difficult to
summarize. A general description is provided by the graphical representation of the asso-
ciation. The method functions plot (), lines() and points() for class ‘crosspred’ offer
flexible plotting tools to aid the interpretation of results. The method plot () calls high-level
functions plot.default (), persp() and filled.contour() to produce scatter plots, 3-D
and contour plots of overall and lag-specific effects, These methods allow the user to specify
the whole range or arguments of the plotting functions above, providing complete flexibility
in the choice of colours, axes, labels and other graphical parameters. Methods lines() and
points() may be used as low-level plotting functions to add lines or points to an existing
plot.

For example, the association between ozone and mortality

an increase of 10 ugr/m® above the threshold at each lag.
(left), is obtained by:

can be summarized by the RR for
This plot, illustrated in Figure 1
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Figure 1: Lag-specific (left) and overall (right) effects on all-cause mortality for a 10-unit
increase in ozone above the threshold (40.3 pgr/m?®). Chicago 1987-2000.

R> plot(pred.o3, "slices", type = "p", pch = 19, cex = 1.5, var = 50.3,
+ ci = "bars", ylab = "RR", main = "Lag-specific effects")

The first argument x of the method function plot () indicates the object of class ‘crosspred’
where the results are stored. The second argument ptype = "slices" specifies the type of
plot, in this case a slice of the matrix of predicted effect along the space of the lag at the
predictor value var=50.3, corresponding to the 10-unit increase above the threshold set at
40.3 pgr/m?®. The argument ci indicates the plot type for confidence intervals. Exponentiated
effects are automatically returned for models with log or logit links, or forced by the argument
exp. Cumulative effects may be plotted with cumul=TRUE, if this option has been previously
set when generating the prediction with crosspred(). Additional parameters are passed to
the high-level plotting function (plot.default() in this example) to define points, title and
the axis labels. See the help of the original high-level functions for additional details and a
complete list of the arguments.

Following the conceptual definition described in Section 1.1, the left plot in Figure 1 can be
read using two different perspectives: it represents the increase in risk in each t + ¢ future
day following a single exposure at 50.3 ugr/m? in ozone at day t (forward interpretation), or

otherwise the contributions of each t — ¢ past day with ozone at 50.3 pgr/m3 to the increase
in risk at day t (backward interpretation).

Alternatively, it is possible to plot the overall effect, computed by summing the lag-specific
contributions via the argument ptype = "overall":
R> plot(pred.o3, "overall", ci = "lines", ylim = c(0.95, 1.25), lud = 2,
f col = 4, xlab = "Ozone", ylab = "RR", main = "QOverall effect")

The plot is shown in Figure 1 (right). Note the different representation of confidence intervals
obtained by the argument ci, and non-default colour and line type.
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Figure 2: Three-dimensional graphs of the exposure-response relationship between tempera-
ture and all-cause mortality, with reference at 25°C. Chicago 1987-2000.

A more detailed approach is instead required to represent the smooth relationship between
temperature and mortality, where splines functions have been used to define the dependency
in both dimensions. A general description of this complex dependency may be given using
3-D and contour graphs (the default ptype = "34d" or Ptype = "contour"), which illustrates

the effect surface given by the whole grid of predicted effects. The graphs, shown in Figure 2,
are obtained by:

R> plot(pred.temp, xlab = "Temperature", theta = 240, phi = 40,

+ ltheta = -185, zlab = "RR", main = "3D graph")

R> plot(pred.temp, "contour", plot.title = title(xlab = "Temperature",
+  ylab = "Lag", main = "Contour graph"), key.title = title("RR"))

The reference point (here 25°C) is the value at which the crossbasis functions have been
centered in crossbasis(). Arguments theta, phi, 1theta and plot.title, key.title are
used to modify the perspective and lighting in the 3-D plot and the labels in the contour

plot, respectively. Other additional parameters may be specified as well (see ?persp and
?filled.contour).

Tri-dimensional or contour plots offer a comprehensive summary of the relationship, but are
limited in their ability to inform on effects at specific values of predictor or lags. In addition,
they are also limited for inferential purposes, as the uncertainty of the estimated effects is not
reported. A more comprehensive picture is given by Figure 3, obtained by:

R> plot(pred.temp, "slices", var = -20, ci = "n", ylim = c(0.95, 1.22),
+ 1wd = 1.5)

R> for(i in 1:2) lines(pred.temp, "slices", var = c(0, 32)[i], col = i + 2,
+ lwd = 1.5)
R> legend("topright", paste("Temperature =", c(-20, 0, 32)), col = 2:4

’
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Figure 3: Lag-specific effects at different temperatures (left panel, and right column in right
panel) and temperature-specific effects at different lags (left column in right panel) on all-

cause mortality, with reference at 25°C. The right panel also shows 99% confidence intervals.
Chicago 1987-2000.

+ lwd = 1.5)

R> plot(pred.temp, "slices", var = c(-20, 0, 32), lag = c(0, 5, 20),
+ ci.level = 0.99, xlab = "Temperature",

+ ci.arg = list(density = 20, col = grey(0.7)))

Figure 3 (left) shows predicted lag-specific effects for temperature values selected by the
argument var in plot() and lines(). Alternatively, Figure 3 (right) illustrates a multiple
plot of predicted effects along temperature for specific lags (left), and the same lag-specific
effect plotted in Figure 3 (right), together with 99% confidence intervals. The arguments var
and lag define the values in the two dimensions, while ci .level specifies the confidence level
of the intervals. The argument c1.arg includes a list of arguments to be passed to low-
plotting functions, which draw confidence intervals. In this case, the default ci
calls the function polygon(), and the arguments in ci.ar
with increased grey contrast. However, plotting features s
included in this automatic multi-plot representation.

level
= "area"
g are used to select a shading area
uch as labels and titles may not be

These graphs suggest different patterns for the effects of hot and ¢
very strong and immediate effect of heat and a more del
in the very first lags. This analytical level is not obvious

old temperatures, with a
ayed association with cold, negative
ly reached with simpler models.

6. Modeling strategies

The DLNM framework offers the opportunity to speci
choice of the basis functions for each of the two dimen:
illustrated in the previous sections represents one of

fy a wide selection of models through the
sions of predictor and lags. The example
the potential modeling alternatives. In



14 dInm: Distributed Lag Linear and Non-Linear Models in R

order to discuss the flexibility of the methodology, and the related problems with model
selection, a comparison with different models to estimate the association with temperature is
shown below. Specifically, polynomial and strata functions are selected for the space of the
predictor, while keeping the same natural cubic spline to model the distributed lag curve up
to 30 days of lag. The code to specify the cross-basis, run the models and predict the effect
is:

R> basis.temp2 <- crossbasis(chicagoNMMAPS$temp, vartype = "poly",
+ vardegree = 6, cenvalue = 25, lagdf = 5, maxlag = 30)

R> model2 <- update(model, .~. - basis.temp + basis.temp2)

R> pred.temp2 <- crosspred(basis.temp2, model2, by = 2)

R> basis.temp3 <- crossbasis(chicagoNMMAPS$temp, vartype = "dthr",
+ varknots = 25, lagdf = 5, maxlag = 30)

R> model3 <- update(model, .~. - basis.temp + basis.temp3)

R> pred.temp3 <- crosspred(basis.temp3, model3, by = 2)

The first alternative proposes, for the predictor dimension. a polynomial function with the
same degrees of freedom as the original cubic spline in Section 5. The second model is based
on a simpler double threshold function with a single threshold placed at 25°C, previously
identified as the point of minimum mortality. This choice also facilitates {he comparison of
the models, as this is the centering point for the other two continuous functions. The

overall
effect estimated by the three models is displayed in Figure

4 (left), produced by the code:

R> plot(pred.temp, "overall", ylim = c(0.5, 2.5), ci = it Swd = 1.5,
+ main = "Overall effect")

R> lines(pred.temp2, "overall", col = 3, 1ty = 2, lwd = 2)

R> lines(pred.temp3, "overall", col = 4, ity = 4, lud = 2)

R> legend("top", c("natural spline", "polynomial", "double threshold"),
+ col = 2:4, 1ty = c(1:2, 4), lwd = 1.5, inset = 0.1, cex = 0.8)

As expected, the alternative models produce different results. In particular, the polynomial
model estimates a “wiggly” relationship for cold temperatures, if compared to the original
cubic spline with equally-spaced knots. Instead, the two functions provide very close estimates
for the effect of hot temperatures. Conversely, while the linearity assumption of the double
threshold model seems adequate to model the dependency for cold, there
that this approach tends to underestimate the effoct of heat.

estimated distributed lag curves is illustrated in Figure 4 (right

is some evidence
A second comparison of the
), following:

R> plot(pred.temp, "slices", var = 32, ylim = c(0.95, 1.22), ci = "y»
+ lwd = 1.5, main = "Lag-specific effect")

R> lines(pred.temp2, "slices", var = 32, col = 3, 1ty
R> lines(pred.temp3, "slices", var = 32, col = 4, 1ty = 4, 1lwd = 2)

R> legend("top", c("natural spline", "polynomial", "double threshold"),
+ col = 2:4, Ity = c(1:2, 4). inset = 0.1, cex = 0.8)

’

=2, lwd = 2)

Although exactly the same function for the space of lag was selected in
a different choice for the predictor dimension provides different estimat
lag curve, representing the effect at 32°C compared to the common re

all the three models,
es of the distributed
ference point of 25°C.
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Figure 4: Overall effect (left) and lag-specific effect at 32°C (right) of temperature on all-cause
mortality for 3 alternative models, with reference at 25°C. Chicago 1987-2000.

In particular, the spline and polynomial models produce very similar effects (as expected,
given the almost identical fit in the other dimension for the hot tail), while the curve for
the double threshold models shows quite a different shape. Specifically, the suggestion of an

harvesting effect (the negative estimate at longer lags) may represent an artifact due to the
lack of flexibility of this model.

Such richness in the specification of different alternatives is tempered by the lack of general
criteria to select, among the available choices, the best model to summarize the association.
In the example above, I showed a clear preference for the spline model. This choice is based
both on knowledge of the properties of the function, such as flexibility and stability, and
on reasonable arguments given the results plotted in Figure 4. However, this conclusion is
questionable, and not grounded on solid and general statistical selection criteria. Moreover,
the conclusion is based on several a-priori choices, just like the threshold location or the
number of knots or polynomial degree.

Generally, within DLNMs, two different levels of selection may be described. The first one
pertains to the specification, in both dimensions, of different functions. As illustrated above,
this choice should be based both on the plausibility of the assumed exposure-response shape,
and on a compromise between complexity, generalizability and ease of interpretation. The
second level focuses on different choices within a specific function, such as the number and
location of knots for the definition of a spline basis. The latter is more difficult to address,
although not inherent to DLNM development. Several researchers have investigated this
issue within time series analysis, proposing methods based on information criteria (Akaike,
Bayesian and other variants), partial autocorrelation or (generalized) cross-
et al. 2006; Baccini et al. 2007). The user may apply the same methods
should bear in mind that the bi-dimensional nature of these
complexities, such as the definition of the maximum lag.

performance of different criteria is not conclusive, and this

validation (Peng
within DLNMs, but he
models brings along additional
Moreover, the evidence on the
represents an issue of current
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debate (Dominici et al. 2008). Further research is needed to provide some guidance on model
selection within DLNMs.

Alternative approaches may be suggested. Muggeo (2008) proposed a model with a con-
strained segmented parameterization for the space of the predictor, and a doubly penalized
spline-based distributed lag parameterization. This methods includes an automatic selec-
tion for the threshold(s) and for the smoothness of the distributed lag curve, and it is fully
implemented in the R package modTempEff (Muggeo 2010). The comparison of such an ap-
proach with flexible DLNMs which relax the assumptions on the

shape in the dimension of
the predictor may provide some additional insights on the relationship.

7. Data requirements

The DLNMs framework introduced in this paper is developed for time series data. The general
expression of the basic model in (1) allows this methodology to be applied to any family
distribution and link function within (generalized) linear models (GLM), with extensions
to generalized additive models (GAM) or models based on generalized estimating equations
(GEE). However, the current implementation of DLNMs requires single

series of equally-
spaced, complete and ordered data.

Each value in the series of transformed variables is computed also using previous obse
included in the selected lag period. Therefore, the first maxlag observations in the
variables are set to NA. Missing values in x are allowed, but, for the same reason. the same and
the next maxlag transformed values will be set to NA. Although correct, this could generate
computational problems for DLNMs with long lag periods in the presence of scattered missing
observations. Some imputation methods may be considered in this case.

rvations
transformed

One of the main advantages of the dlnm package is that the user can perform DLNMs with
standard regression functions, simply including the cross-basis matrix in the model formula.
Its use is straightforward with the functions 1m(), glm() or gam() (package mgev, see Wood
2006). However, the user can apply different regression functions, compatibly with the
series structure of the data. These functions should have methods for coef QO
alternatively the user must extract the parameters and include
and vcov of crosspred() (see Section 4).

time
and veov (), or
them in the arguments coef

8. Future developments

The conceptual framework depicted in Section 1.1 is general, and may
study designs and data structures other than time series. This ide
nature of the time series approach, where each observation is n
ral sequence specified by the index ¢. This represents the unique temporal scale of the study
design, and the lag dimension, which lies on the same scale, is automatically defined as ¢ — .
The temporal structure of different study designs may be more complex, implying multiple
time scales. However, the lag dimension can be still expressed through ezposure histories for
each observation, defining an additional temporal scale. This step involves a slightly differ-
ent definition of the matrix Q in (3), where each qi- represents the exposure histor3; for the
observation ¢ from the exposure vector x, which does not e€xpress anymore a series of obser-
vations ordered in time. Interestingly, the conceptual and algebraical process outlined above,

be applied to other
a is hidden by the ordered
aturally included in a tempo-
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concerning the definition, prediction and representation of DLNMs, still applies. Preliminary
tests on the application of the functions included in the package dlnm in case-control. cohort
and longitudinal data are promising. Further development may lead to a general framework
to describe delayed effects, which spans different study designs.

The current implementation of dlnm only comprises completely parametric methods to specify
the model in (1). A potential alternative is offered by generalized additive models (GAM)
based on penalized splines (Wood 2006). Specification and estimation methods for tensor
product bases for bivariate smoothing, closely related to the DLNM definition, have been
already developed in this framework, and well implemented in the R package mgev. This
methodology show clear advantages. primarily the higher flexibility and automatic smoothness
selection. Interestingly, the algebraic development of cross-basis described in (5) is still valid,
and the actual problem reduces to define suitable penalization methods for the parameters of
the cross-basis functions. An extension of DLNMs with penalized splines is currently under
development.

9. Final comments

The class of DLNMs represents a unified framework to describe
non-linear and delayed effects. The main advantage of this model family is to unify many of
the previous methods to deal with delayed effects in a unique framework. also providing more
flexible alternatives regarding the shape of the relationships. The specification of a DLNM
involves only the choice of two bases to generate the cross-basis functions in (
for example, linear thresholds, strata, polynomials, and spline

phenomena showing both

5), including,
transformations.

This flexibility is retained in the implementation of the methodology in the dlnm package,
which provides functions to specify the model, predict the effects and plot the results. Several
different models with an increasing level of complexity can be performed using a simple
and general procedure. The example included in this paper illustrates the application of
these functions to describe the association between two environmental stressors and mortality,
although the framework is easily generalized to other applications. The package includes a
thorough documentation of the functions. An overview of its capabilitie
update of the last advancements, is provided in the vignette
implementation.

s, together with an
dlnm0Overview accompanying the

The separation of cross-basis specification and parameters estimation offers several advan-
tages. First, as illustrated in the example, more than one variable showing delayed effects can
be transformed through cross-basis functions and included in the model. Second, standard
regression commands can be used for estimation, with the default set of diagnostic tools and
related functions. More importantly, this implementation provides an open platform where
additional models specified with different regression commands can be imple

mented. aiding
the development of the methodology in other contexts or study designs.
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1 Preamble

The R package dinm offers some facilities to run distributed lag non-linear models (DLNM’s), a mod-
elling framework to describe simultaneously non-lincar and delayed effects between predictors and an
outcome in time-series data. This document complements the description provided in Gasparrini (2011)
(freely available at http://www.jstatsoft.org/v43/i08/), which represents the main reference to
the package.

The aim of this contribution is to provide an extended overview of the capabilities of the package,
together with additional examples of application with real data. Some information on installation
procedures and on the data included in the package are given in Section 2. The theory underlying the
DLNM methodology is briefly illustrated in Section 3, while the functions included in the package are
described in Section 4. Some examples of applications are provided in Section 5: users mainly interested
in the application can skip the previous Sections and and start with these examples. Finally, Section 6
offers some conclusions.

The DLNM’s methodology has been previously described in Gasparrini et al. (2010), together with a
detailed algebraical development. This framework was originally conceived and proposed to investigate
the health effect of temperature by Armstrong (2006)

Type citation("dlnm") in R to cite the dinm package after installation (see Section 2). A list of
changes included in the current and previous versions can be found typing file.show(system.file(
"ChangelLog", package = "dlnm")).

Please send comments or suggestions and report bugs to antonio. gasparrini@lshtm.ac.uk.

2 Installation and data

2.1 Installing the package dinm

The dinm package is installed in the standard way for CRAN packages from version 2.9.0 onwards,
for example typing install.packages("dlam") or directly through the menu in R. clicking on Pack-
ages and then on Install package(s).... The package can be alternatively installed using the zip file
containing the binaries, via Packages and then Install package s ) from local zip files....

The functionalities of dinm depend on other packages whose commands are called to specify the dlnm
functions. This hierarchy is ruled by the field Imports of the file description included in the package.
The functions are imported from the packages splines (functions ns () and bs())

and tsModel (function
Lag()). The former must be independently installed if a .zip file is used.

2.2 Data

Until the version 0.4.1, the package dinm did not contain any data, and used the datasets stored in the
package NMMAPSlite.

In this version the package contains its own dataset chicagoNMMAPS, with daily mortality (all causes,
CVD, respiratory), weather (temperature, dew point temperature, relative humidity .
data (PM10 and ozone) for Chicago in the period 1987-2000. The data were assembled from pub-
licly available data sources as part of the National Morbidity, Mortality, and Air Pollution Study
(NMMAPS) sponsored by the Health Effects Institute (Samet et al., 2000a,b). They are download-
able from the Internet-based Health and Air Pollution Surveillance System (iHAPSSj website (http:

//www . ihapss. jhsph.edu) or through the packages NMMAPSdata or NMMAPSlite. See ?chicagoN-
MMAPS for additional information on the variables included.

) and pollution



3 Distributed lag non-linear models (DLNM’s)

The aim of this Section is to provide a methodological summary of the DLNM framework. A de-
tailed description of this methodology and the algebraical development have been published elsewhere
(Armstrong, 2006; Gasparrini, 2011; Gasparrini et al., 2010).

3.1 The issue

The main purpose of a statistical regression model is to define the relationship between a predictor and
an outcome, and then to estimate the related effect. A further complexity arises when the dependency
shows some delayed effects: in this case, a specific occurrence of the predictor (let us call it an exposure
event) affects the outcome for a certain period in the future. This step requires the definition of more
complex models to characterize the association, specifying the temporal structure of the dependency.
The main feature of DLNM’s is their bi-dimensional structure: the model describes simultaneously t}lne
potentially non-linear relationship in the space of the predictor and along the new temporal dimension.

3.2 The concept of basis

Several different methods have been adopted to specify non-linear effects in a sepTiedin viodels A
simple solution is to generate strata variables, applying specific cut-off points along the range of the
predictor in order to define specific intervals, and then specifying new variables through a dummy
parameterization.

Other types of manipulations of the original variable are applied when there are specific assumptions
on the shape of the relationship, for example when the effect is likely to exist and be linear only above
or below a specific threshold (hockey-stick model). An extension of this model assumes two distinct

linear effects below a first threshold and above a second threshold, with a null effect in between then.

An alternative to the strata or threshold approaches is to include in the model some terms allowing a
true non-linear relationship, describing a smooth curve between the predictor and the outcome. The
traditional methods include a quadratic term or higher degree polynomials. Recently, spline functions
have been favoured, especially through a natural cubic parameterization.

A generalization may be provided assuming that all the approaches above imply the choice of a basis,
defined as a space of functions used to define the relationship (Wood, 2006). The choice of the
basis defines the related basis functions, completely known transformations of the original predictor
generating a new set of transformed variables, defined basis variables. Independently from the basis
chosen, the final result will be a matrix of transformed variables which can be included in the design
matrix of a model in order to estimate the related parameters. The choice of different bases leads to
the specification of different matrices, but the mechanism is common.

3.3 Delayed effect: DLM’s

In the specific context of time series analysis, given the ordered series of {he predictor values, a delayed
(or lagged) effect is present when the outcome in a specific time is influenced by the level of .l he
predictor in previous times, up to a maximum lag. Therefore, the presence of delayed effects requires
to take into account the time dimension of the relationship, specifying the additional virtual dimension
of the lags.

A very simple model to deal with delayed effects considers the movin

: del : _ & average of the predictor up to
a certain lag, specifying a transformed predictor which is the average

of the values in that specific lag



period. Although simple, this model is limited if the purpose is to assess the temporal structure of the
effects.

These limitations have been addressed using a more elegant approach based on distributed lag models
(DLM’s). The main advantage of this method is the possibility to depict a detailed description of the
time-course of the relationship. Originally developed in econometrics (Almon, 1965), this method has
recently been used to quantify the health effect in studies on environmental factors (Braga et al., 2001:
Schwartz, 2001; Welty and Zeger, 2005; Zanobetti et al., 2000).

In the basic formulation, a DLM is fitted by the inclusion of a parameter for each lagged predictor
occurrence. An estimate of the overall effect is given by the sum of the single lag effects upon the
whole lag period considered (Hajat et al., 2005; Schwartz, 2000).

This unconstrained version of DLM does not require any assumption on the shape of the effect along
lags, and consequently on the relationship between parameters. In order to define a more parsimonious
model, it is possible to specify some assumptions on the shape of the distributed effect, applying some
constraint. The simplest solution is to group the lags in different strata (Pattenden et al., 2003; Welty
and Zeger, 2005), while a more complex option is to force the curve along lags to follow a specific
smooth function, for example polynomials (Baccini et al., 2008; Schwartz et al., 2004; Zanobetti and
Schwartz, 2008) or splines (Zanobetti et al., 2000).

Following the general approach used in Section 3.2, it may be shown that all the different DLM’s above
can be described by the same equation, where different models are specified through different. basis
functions to be applied to the vector of lags, building a new basis matrix (see Gasparrini et al., 2010,
Eq. 4). Again, the choice of different bases generates different matrices, but the mechanism is general.

3.4 The extension to DLNM’s

A general approach to specify non-linear but un-lagged effects has been introduced in Section 3.2,
while the methods to define distributed lag functions for simple linear effects have been presented in
Section 3.3. An obvious extensions is to combine these approaches to define distributed lag non-lincar
models (DLNM’s), a family of models which can deal at the same time with non-linear and delayed
effects.

The different issues of non-linearity and delayed effects share a common feature: in both cases the
solution is to choose a basis to describe the shape of the relationship in the relative dimension. This
step leads to the concept of cross-basis: following the idea of basis in 3.2, a cross-basis can be imagined
as a bi-dimensional space of functions describing on the same time the shape of the relationship and
the distributed lag effects. The algebraic notation to define the cross-basis and then the DLNM can
be quite complex, involving tensor products of 3-dimensional arrays, and has been presented elsewhere
(Gasparrini et al., 2010, Section 4.2). Nonetheless, the basic concept is straightforward: choosing a
cross-basis amounts to choosing two independent set of basis functions, which will be combined to
generate the specific cross-basis functions. The DLM’s described in 3.3 can be considered as special
cases of DLNM’s with a simple linear function in the dimension of the predictor.

The result of a DLNM can be interpreted building a grid of predictions for each lag and for suitable
values of the predictor, using three dimensional plots to provide an overall picture of the effects varying
along the two dimensions. In addition, it is possible to compute the effects for single predictor levels or
lags, simply cutting a “slice” of the grid along specific values of predictor or lags, respectively.
an estimate of the overall effect can be computed by summing all the contributior
The effects are usually reported versus a reference value of the predictor, centering
for this space to their corresponding transformed values (Cao et al., 2006)

Finally,
15 at different lags.
the basis functions
The choice of the two set of basis functions for each space is perfectly independent, and should be

based on a-priori assumptions or on a compromise between complexity and generalizability. Linear
v i b



threshold, strata, polynomial or splines functions can be used to define the relationship along the space
of predictor, while unconstrained, strata, polynomial or splines functions can be applied to speci fy the
shape along lags.

4 The functions in the package dinm

This section describes the main functions included in the package dinm. Here we provide a description
of all the stages involved in the definition, estimation and interpretation of DLNMs, summarizing the
conceptual and analytical steps. In addition, we illustrate the structure of the functions and discuss
specific issues about their usage. Examples of applications to real time series data are described in
Section 5. Additional information is provided in Gasparrini (2011).

4.1 Internal functions: mkbasis() and mklagbasis()

These functions build the basis matrices for the dimension of the predictor and lags, respectively. In
concrete terms, they apply a transformation to the vector of predictor and to the vector of lags, and
store the transformed variables and information about the chosen basis in list objects. These functions
are called by crossbasis() (see Section 4.2) and are not expected to be directly run by the user
in order to specify DLNMs. Their first arguments are x and maxlag, respectively, representing the
original predictor and the maximum lag. The latter is used by mklagbasis() to generate the

lag
vector 0:maxlag.

Different types of basis may be chosen through the argument type: the possible options are natural cu-
bic or simple B-splines (type="ns" or "bs"), strata through dummy variables ("strata"), polynomials
("poly"), threshold-type functions such as low, high or double threshold or piecewise parameterization
("lthr"—"hthr"-"dthr"), strata variables for each integer values ("integer", used in unconstrained
DLMs) and simply linear ("1in").

The argument "df" defines the dimension of the basis (the number of its columns, basically the
number of transformed variables), which, in completely parametric models, corresponds to the number
of degrees of freedom spent to define the relationship in the regression model including the basis. This
value may depend on the argument knots (which overcomes df ), specifying the position of the internal
knots for "ns" and "bs" (with boundary knots specified in bound), the cut-off points for "strata"
(defining right-open intervals) and the thresholds/cut-off points for " 1thr", "hthr" and "dthr". The
argument degree select the degree of polynomial for "bs" and "poly".

The arguments cen and cenvalue state if the basis must be centered and the centering value to be
used. The presence of an intercept in the basis matrix is determined by the argument int. Actually, the
concept of intercept is different between bases: types "ns" and "bs" apply a complex parmnetoriy:ation
where the intercept is implicitly built within the basis variables (see the related help pages typing ?ns
and 7bs); in type "strata" the intercept corresponds to the dummy variable for the baseline stratum
(the first one by default), which is excluded if int=F; the Hieroint s b etal stor of 1's Iy the
other types. See Section 4.2 for additional information.

The value returned by mkbasis() and mklagbasis() is a list object, whose first component basis

is the matrix created by the application of the chosen basis functions to x or 0:maxlag, respectively.

Additional values corresponding to the arguments above are returned in the other components of the
list object.



4.2 The function crossbasis()

This is the main function in the package dinm. It calls the internal functions mkbasis () and mklagba-
sis () and combines the two basis matrices through a tensor product in order to create the cross-basis,
which specifies the dependency simultaneously in the two dimensions. See Gasparrini et al. (2010,
Section 4.1 - 4.2) for details. Its first argument is x, assumed to represent an equally-spaced, complete
and ordered series of observations, in order for the function to be coherently applied.

The function uses arguments df-knots-bound-degree-int-cen-cenvalue-maxlag, with specific (op-
tional) prefix var- or lag- to pass them to mkbasis() or mklagbasis(), respectively (see Section 4.1,
and type ?crossbasis for a complete list of the arguments). The additional argument group defines
groups of observations to be considered as individual unrelated series, and may be useful for example
in seasonal analyses (see Section 5.3). In this case, each series must be consecutive, complete and
ordered.

The function returns an object of class “crossbasis”, together with attributes defining the choices for the
two basis functions. The arguments are set to some default values, and can be antomatically changed
for nonsensical combinations, or set to null if not required. Meaningless combinations of arguments (for
example knots defined outside the predictor range) could lead to collinear variables, with identifiability
problems in the model. The function applies some coherence checks and fix some specific problem (for
example discarding strata intervals where no observation lies), but other problem may arise. The user
is advised to test the result with the function summary.crossbasis(), which provides a summary of
the choices made for the two bases and the final cross-basis.

The values in x are expected to be equally-spaced (with the interval defining the lag unit) and ordered
in time. The series must be complete. Each value in the series of transformed variables is computed
also using previous observations included in the lag period considered: therefore, the first maxlag
observations in the transformed variables are set to NA. Missing values in x are allowed, but, for the
same reason, the same and the next maxlag transformed values will be set to NA. Although correct, this
could generate computational problems for DLNMs with long lag periods in the presence of scat tered
missing observations.

The basis variables for the space of the predictor are centered by default for continuous functions
(types "ns", "bs", "poly" and "lin"). The default centering point is the predictor mean, if not
set with cenvalue. This value will represent the reference for predicted effects from a DLNM (see
Section 4.3). The choice of the reference value does not affect the fit of the iodel, and should be based
on interpretational issues. The reference in non-continuous functions is automatically set to the first
interval in strata and integer, or to the flat region in 1thr-hthr-dthr.

An intercept is included by default only in the basis defining the lag dimension. It is strongly recom-

mended to avoid the inclusion of an intercept in the basis for x, otherwise a rank-deficient cross-basis
matrix will be specified, causing some of the cross-variables to be excluded in the regression model.

4.3 The function crosspred()

The cross-basis matrix produced by crossbasis() need to be included in a regression model formula
in order to run a DLNM. The interpretation of the estimated related parameters, specifying a bi-
dimensional relationship, is virtually impossible in complex DLNMs. The association is su.rmuarizod
through the function crosspred (), which predicts the effects for a set of values of the original predictor
and return the results for each combination of predictor values and lags. The function creates the ﬂmn(;
cross-basis functions for the chosen predictor values, based on the attributes of the original (:l‘()ss:l)as'is'
matrix, and generates estimated effects and standard errors by extracting the related parmn(‘te"r.q
estimated in the model (see Gasparrini et al. (2010, Section 4.3) for details) e



The first two arguments of the function are basis (the matrix object of class “crossbasis ") and model
(the regression model object which includes basis). The function extracts the information about the
cross-basis from the attributes of the former, and links each cross-basis variables with the estimated
parameters in the latter through their names. Multiple cross-basis matrices associated with different
predictors may be included in model: in this case, the user must specify different names for the
cross-basis objects.

One of the main advantages of the dlnm package is that the user can perform DLNMs with stan-
dard regression functions, simply including the cross-basis matrix in the model formula. The current
implementation only works with time series data, basically involving an equally-spaced and ordered
predictor series, and its use is straightforward with the functions Im(), glm() or gam() (package mgcv).
However, the user can apply different regression functions. compatibly with the time series structure
of the data. Alternative use beyond time series analysis, such as in case-control or cohort designs, is
in development. The function crosspred() exploits coef() and vcov() methods to extract the co-
efficients and related (co)variance matrix from model, respectively: for classes of regression functions
without these methods, the user needs to manually extract the parameters and include them in the

arguments coef and vcov. In this case, their dimensions and order must match the variables included
in basis.

The predictor values used for prediction are selected with the argument at, or alternatively with from-
to-by. If specified by at, the values are automatically ordered and made unique. If at and by are not
provided, approximately 50 equally-spaced rounded valies are returned using pretty().

The function returns an object of class "crosspred”, simply a list of components including the vector of
prediction values, matrices of lag-specific effects and standard errors for combinations of each prediction
value and lag, plus vectors of overall effects (summed up along lags) and standard errors. Matrices of
cumulative effects and standard errors are included for cumul=T (default to FALSE), which represent
the sum of the lag-specific effects at each lag. Exponentiated effects are added if the link of the
regression model is equal to log or logit, together with confidence intervals computed using a normal
approximation and a confidence level selected by ci.level. The model link is automatically selected
from model for classes "lm", "glm", "gam" (package mgcv) and "clogit" and "coxph" (package
survival), but needs to be provided for different classes or if arguments coef-vcov are used to input
the parameters.

4.4 Plotting functions

Interpretation of the bi-dimensional predicted effects are aided by graphical representation. High
and low-level plotting functions are provided through the methods plot(), lines() and points().
The method plot() calls high-level functions plot.default(), persp() and filled.contour() to
produce scatter plots, 3-D and contour plots of overall and lag-specific effects. These methods have
replaced the old function crossplot() since version 1.3.0, providing the user to specify the whole
range or arguments of the plotting functions above, allowing complete flexibility in the choices of
colours, axes, labels and other graphical parameters. See the help of the original high-level functions

for additional details and a complete list of the arguments. Methods lines() and points() may be
used as low-level plotting functions to add lines or points to an existing plot.

The first argument of the functions is x, a list object of class “erossy

' red”. The argument ptype specifies
the type of plot, choosing among "3d", "contour", "overall" and "slices", the latter selecting effects

along lags at specific predictor values and effects along the predictor at specific lags. These are chosen
through the additional arguments var-lag, respectively. Cumulative effects along lags are reported
if cumul=TRUE: in this case, the same option must have been set to obtain the prediction saved in
x (see Section 4.3). Confidence intervals are optionally plotted for "overall" and "slices". The
type is chosen by the argument ci among "area", "bars" and "lines". Low-level plotting functions



polygon(), segments() and lines() are called, respectively, whose arguments are passed by a list
specified with the argument ci.arg. See the help of these low-level functions for additional details
and a complete list of the arguments.

All the effects are reported versus a reference value. For continuous functions, this is specified by
the centering point defined in the crossbasis object (see Section 4.2). Exponentiated effects are
automatically returned if the component model.link of x is equal to log or logit, or forced with the
argument exp=TRUE.

5 Some examples

This Section provides some examples of the use of the functions included in the dinm package, described
in Section 4. In spite of the specific application on the health effects of air pollution and temperature
these examples are easily generalized to different topics. The results included in this Section zn'(:
not meant to represent scientific findings, but are reported with the only purpose to illustrate the
capabilities of the dinm package.

First, some simple examples of the internal functions are showed in Section 5.1. Then, 3 different
examples of the application of DLNM’s are illustrated in the Sections 5.2 - 5.4, using the NMMAPS
dataset for the city of Chicago in the period 1987-2000 included in the package, which has been
described in Section 2.2. These different cases cover most of the functionalities of the package, providing
a detailed overview of its capabilities and a basis to perform analyses on this dataset or on ‘()thvr da,t.:
sources.

The package is assumed to be present in the R library (see Section 2.1) and loaded in the session,
typing:

> library(dlnm)

5.1 Examples for internal functions

As a .ﬁrsl, step, we provide an example of the use of the function mkbasis(). We build different basis
matrices applying the selected basis functions to the vector of integers going form 1 to 5. In the first

example we leave many of the arguments at their default values, apart from the selection of the degrees
of freedom df:

> basis.var <- mkbasis(1:5, knots=3)
> basis.var

$basis

b1 b2
[1,] -0.56626284 0.21084190
[2,] -0.20921622 -0.00635585
(3,1 0.00000000 0.00000000
[4,] -0.03716777 0.37894518
[5,] -0.22216593 0.98144395
$type
[1] "nS"
$df



[1] 2

$knots
£13-3

$bound
[11 1 5

$int
[1] FALSE

$cen
[1] TRUE

$cenvalue
{11 '3

The result 1s.hs't object with thg basis ‘matrix and other components returning the chosen arguments
Here the basis is a natural cubic B-splines (default type="ns") with 1 knot and df=2 (df is equal t()
1engt§1(kx_1;tsi+1+1fzt for type="r'15“). Apart from the fact that the basis variables are centered at
cenvalue= (the mean of the predictor values, the default for this argument), the same results could
be obtained by the command ns(1:5, knots=3). : A

Alternative choices may be Speciﬁed througl { Wi O 7
: D s g gh the followin code (results not show 2 USer Ct P
’ & A :): g ( 1ot shown, the user can tly

> mkbasis(1:5, type="bs", df=4, degree=2)
> mkbasis(1:5, type="lin", cenvalue=4)

In the ﬁ.rsl,“case the result })s a q!mdratic spline where the number and location of knots are chose
autm:?;itl(a Yy ﬂltld ﬁlx(‘.(’ir f}‘O 2 (df is }ength (knots)+degree+int for this type) and at equally spaced
quan iles, respectively. The second line returns a simple linear function, where the only transformation
is the centering at the value of 4. SR i

’fThe tf‘UIlCtIOIl mkli;gl;a:is}() calls mkbasis () to create a basis matrix for the space of the lag. The basis
unctions are applied to the vector 0:max1la sly cre: : i 5 e
application: g expressly created by the function. This is an example of

> mklagbasis(maxlag=5, type="poly", degree=3)

$basis

bl b2 b3 b4
fagd 1000 0= 10
T T TR, (R |
lag2 1 2 4
lagd3 1 3 9 27
lagé 1 4 16 64
lagh 1 5 25 125
$type

[1] "poly"



$df
(1] 4

$degree
[1]1 3

$int
[1] TRUE

$maxlag
[1] 5

The statement specifies a 3" degree polynomial. Differently from the bases for the space of the
predictor build above, this matrix contains an intercept (int=TRUE by default), in this case a vector of
1’s (see Section 4.2), and is never centered. df is equal to degree+1 when an intercept is included. In
this case, for a polynomial basis, the argument knots is not included.

Other examples (results not shown):

> mklagbasis(maxlag=5, type="integer")
> mkbasis(1:5, type="dthr", knots=c(2,3))

In the first line, the function applies a specific transformation in the space of lags in order to define
unconstrained distributed lag effects (see Section 3.3), simply returning an identity matrix. The second
choice returns a double threshold basis which can be applied to describe linear effects below 2 and
above 3, with a null effect in between them.

A basis matrix of type="strata" with and without intercept is created by (results not shown):
> mklagbasis(maxlag=10, type="strata", knots=c(4,7))
> mklagbasis(maxlag=10, type="strata", knots=c(4,7), int=F)

In this case, the intercept is represented by the dummy variable for the first stratum (see Section 4.2).
The values in knots specify the cut-off point for the strata, and represent the lower boundaries for the
right-open intervals.

The effect of centering is illustrated below (results not shown):

> mkbasis(0:10, type="poly", degree=3)
> mkbasis(0:10, type="poly", degree=3, cen=F)

Each basis function is centered on the relative transformation of cenvalue, which is placed at the
mean of the predictor values by default, or defined by the user.

5.2 Example 1: a simple DLM

In this first example, we specify a simple DLM, assessing the effect of PM;( on overall mortality, while
adjusting for the effect of temperature. In order to do so, we first build two cross-basis mat ri(-oq' ;"( the
two predictors, and then include them in a model formula of a regression function. T‘ho (:ff((t dof ;I\i]

is assumed linear in the dimension of the predictor, so, from this point of view, we can ‘d(‘ﬁﬁ(‘ tl .
a simple DLM even if it estimates also the distributed lag function for tenlperat’,ure; which’is 111(1]11121:‘1;
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as a non-linear term. As highlighted above, the data are assumed to be composed by equally-spaced
complete and ordered series. ' ' '

First, we run crossbasis() to build the two cross-basis matrices, saving them in two objects. The
names of the two objects must be different in order to predict the effects separately for each of them
(see Section 4.3). This is the code: i '

> basis.pm <- crossbasis(chicagoNMMAPS$pm10, vartype="lin", lagtype="poly",
lagdegree=4, cen=F, maxlag=15)

> basis.temp <- crossbasis(chicagoNMMAPS$temp, vardf=5, lagtype="strata",
lagknots=1, cenvalue=21, maxlag=3)

In this case, we assume that the effect of PMyg is linear (vartype="1in"), while we model the rela-
tionship with temperature through a natural cubic spline with 5 degrees of freedom (vartype= "n‘s"‘
chosen by default). In this space, the internal knots (if not provided) are placed by default at (‘(lllall\;
spaced quantiles, while the boundary knots are located at the range of the observed values, so we need
to specify only vardf. We did not center PM;q, in order to compute the predicted effects versus a
reference value of 0 pgr/m® (the same results could be obtained setting cen=TRUE and cenvalue=0)
The reference value for temperature is set to 21°C. ‘
The basis for the space of the lags is chosen through the same arguments but with prefix lag-. We
specify the lagged effect of PMyg up to 15 days of lag with a 4'" degree polynomial function (setting
lagdegree=4). The delayed effect of temperature are defined by two lag strata (0 and 1-3), assuming
the effects as constant within each stratum. The argument varknots=1 defines the lower boundary of
the second interval. '

An overview of the specifications for the cross-basis (and the related bases in the two dimensions) is
provided by the function summary.crossbasis, which calls the attributes of the crossbasis object:

> summary (basis.pm)

CROSSBASIS FUNCTIONS
observations: 5114

range: -3.049835 , 356.1768
total df: 5

maxlag: 15

BASIS FOR VAR:
type: lin
df: 1

BASIS FOR LAG:

type: poly with degree 4
df: 5

with intercept

Now the two crossbasis objects can be included in a model formula in order to fit the DLM. TI
packages splines is loaded, as it is needed in the examples. In this case we model the eﬂ"e’ct a‘w e ,t:
an overdispersed Poisson distribution, including a smooth function of time with 7 df /vear/ (in bhlénn.,b
correct for seasonality and long time trend) and day of the week as factor: ye n order to

> library(splines)
> model <- gln?(deatb " basis.pm + basis.temp + ns(time, 7x14) + dow
family=quasipoisson(), chicagoNMMAPS) ;

11



Figure 1
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The effects of specific levels of PMjo on overall mortality, predicted by the model above, can be
computed by the function crosspred() and saved in an object with the same class:

> pred.pm <- crosspred(basis.pm, model, at=0:20, cumul=T)

The functions include the basis.pm and model objects used to estimate the parameters as the first
two arguments, while at=0:20 states that the prediction must be computed for each integer value from
0 to 20 pgr/m>. The argument cumul (default to FALSE) indicates that also cumulative effects along
lags must be included. Now that the predicted effects have been stored in pred.pm, they can be plot
by the methods functions described in Section 4.4. For example:

> plot(pred.pm, "slices", var=10, col=3, ylab="RR", ci.arg=list(density=15,1wd=2),
main="Effect of a 10-unit increase in PM10 along lags")
> plot(pred.pm, "slices", var=10, cumul=TRUE, ylab="Cumulative RR",
main="Cumulative effect of a 10-unit increase in PM10 along lags")

The function includes the pred.pm object with the stored results, and the argument "slices" defines
that we want to graph the relationship at specific values of the two dimensions (predictor and lag).
With var=10 we specify this relationship along lags for a specific value of PM;, i.e. 10 pgr/m®.
This effect is compared to the reference value of 0 pugr/m?, giving the lag-specific effects for a 10-
unit increase. We also chose a different colour for the first plot. The argument cumul indicates if
cumulative effect, previously saved in pred.pm, must be plotted. The results are shown in Figures 1a-
1b. Confidence intervals are set to the default value "area" for the argument ci. In the left panel,

additional arguments are passed to the low-level plotting function polygon() through ci.arg, to draw
instead shading lines as confidence intervals. :

The interpretation is twofold: the curve represents the increase in risk in each future day following an
increase of 10 ugr/m? in PMyj in a specific day (forward interpretation), or otherwise the contributions

12



of each past day with the same PM;q increase to the risk in a specific day (backward interpretation).
The plots in Figures la-1b suggest that the initial increase in risk of PM is reversed at longer lags.
The overall effect for a 10-unit increase in PMyq over 15 days of lag (i.e. summing all the effects

up to the maximum lag), together with its 95% confidence intervals can be extracted by the objects
allRRfit, allRRhigh and allRRlow included in pred.pm, typing:

> pred.pm$allRRfit["10"]

10
0.9997563

> cbind(pred.pm$allRRlow, pred.pm$allRRhigh)["10",]

[1] 0.9916871 1.0078911

5.3 Example 2: seasonal analysis

The purpose of the second example is to illustrate an analysis where the data are restricted to a specific
season. The main feature of these analysis is that the data are assumed to be composed by multiple
equally-spaced and ordered series of the same season for each year, and do not represent a single
continuous series. In this case, we assess the effect of ozone and temperature on overall mortality up
to 5 and 10 days of lag, respectively, using the same steps already seen in Section 5.2.

First, we create the new data restricting to the summer period (June-September) the dataframe
chicagoNMMAPS:

> chicagoNMMAPSseas <- subset (chicagoNMMAPS, month %inY% 6:9)

Again, we first create the cross-basis matrices:

> basis.o3 <- crossbasis(chicagoNMMAPSseas$o3, group=chicagoNMMAPSseas$year,
vartype="hthr", varknots=40.3, lagtype="integer", maxlag=5)
> basis.temp <- crossbasis(chicagoNMMAPSseas$temp, group=chicagoNMMAPSseas$year,

vartype="dthr", varknots=c(15,25), lagtype="strata", lagknots=c(2,6),
maxlag=10)

The argument group indicates the variable which defines multiple series: the function then breaks the
series at the end of each group and replaces the first maxlag rows of the cross-basis matrix in the
following series with NA. Each series must be consecutive. complete and ordered. Here we make the
assumption that the effect of O3 is null up to 40.3 pgr/m® and then linear, applying an high threshold
parameterization. For temperature, we use a double threshold with the assumption that the effect is
linear below 10°C and above 25°C, and null in between. Regarding the lag dimension, we specify an
unconstrained function for O3, applying one parameter for each lag (lagtype="integer") up toab
days. For temperature, we define 3 strata intervals at lag 0-1, 2-5, 6-10. A summary of the choices
made for the cross-bases can be shown by the function sunmary.crossbasis().

The regression model includes a natural spline for day of the year (with 4 df) in order to describe
seasonal effect within each year. Apart from that, the estimates and predictions
same way as in Section 5.2. The code is:

the
are carried out in the
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Figure 2
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> model <- glm(death ~ basis.o3 + basis.temp + ns(doy, 4) + dow,
family=quasipoisson(), chicagoNMMAPSseas)
> pred.o3 <- crosspred(basis.o3, model, at=c(0:65,40.3,50.3))

The values for which the prediction must be computed are specified in at: here we define the integers
from 0 to 65 pgr/m® (approximately the range of ozone distribution), plus the threshold and the value
50.3 pgr/ m? corresponding to a 10-unit increase above the threshold, which is automatically set as the
reference point for type="hthr" (see Section 4.2). The vector is automatically ordered. We can plot
the lag-specific effects, similarly to Section 5.2, and also the overall effect of a 10-unit increase in O3
with 95% confidence intervals. The related code is (results in Figures 2a-2b):

> Plot(pred.OS, "slices", var=50.3, ci="bars", type="p", pch=19, ci.level=0.80,
main="Effects of 10-unit increase above the threshold (80%CI)")
% plot(Pred,os,"overall",xlab="Dzone", ci="lines", ylim=c(0.9,1.3), lwd=2,
ci.arg=list(col=1,1ty=3), main="Overall effect over 5 days of lag")

In the first statement, the argument ci="bars" dictates that, differently from the default "area"
seen in Figures la-1b, the confidence intervals are represented by bars. In addition, the argument
ci.level=0.80 states that 80% confidence intervals must be plotted. Finally, we chose points, instead
of the default line, with specific symbol, by the arguments type and pch. In the second statement,
the argument type="overall" indicates that the overall effects (summed upon lags) must be plotted,
with confidence intervals as lines, ylim defining the range of the y-axis, 1wd the thickness of the line.
Similarly to the previous example, the display of confidence intervals are refined through the list of
arguments specified by ci.arg, passed in this case to the low-level function lines().

Similarly to the previous example, we can extract from pred.o3 the estimated overall effect for a
10-unit increase in ozone above the threshold (50.3 — 40.3 pugr/m?), together with its 95% confidence
intervals:

14



> pred.o3%$allRRfit["50.3"]

50.3
1.069768

> cbind(pred.o3$allRRlow, pred.o3$allRRhigh) ["50.3",]

[1] 1.026563 1.114791

The same plots and computation can be applied to the cold and heat effects of temperatures. For
example, we can describe the increase in risk for 1°C beyond the low or high thresholds. The user can
perform this analysis repeating the steps above.

5.4 Example 3: a complex DLNM

In the previous examples, the effects of air pollution (PM,y and Og, respectively) were assumed com-
pletely linear or linear above a threshold. This assumption facilitates both the interpretation and
the representation of the association: the dimension of the predictor is never considered, and the lag-
specific or overall effects for a 10-unit increase are easily plotted. In contrast, when considering the
non-linear effects of temperature, we need to adopt a bi-dimensional perspective in order to represent,
effects which vary non-linearly along the space of the predictor and lags.

In this last example we specify a more complex DLNM, where the effects are estimated using smooth
non-linear functions for both dimensions. Despite the higher complexity of the relationship, we will
see how the steps required to specify and fit the model and predict the results are exactly the same as
for the simpler models see before in Sections 5.2-5.3, only requiring different plotting choices. The user
can apply the same steps to investigate the effects of temperature in previous examples, and extend
the plots for PMjp and Oj. In this case we run a DLNM to investigate the effects of temperature and
PM; on overall mortality up to lag 30 and 1, respectively.

These are the cross-basis matrices:

> basis.pm <- crossbasis(chicagoNWAPS$pmlO,vartype="lin", lagtype="strata",
cen=F, maxlag=1)

> basis.temp <- crossbasis(chicagoNMMAPS$temp, vartype="bs", vardf=5, vardegree=2,
lagdf=5, cenvalue=21, maxlag=30)

The chosen basis functions for the space of the predictor are a linear function for the effect of PM;o
and a quadratic B-spline (vartype="bs") with 5 degrees of freedom for temperature (with varknots
placed by default at equally spaced quantiles in the space of the predictor). The basis for temperature
is centered at 21°C, which will represent the reference point for the predicted effects. Regarding the
space of lags, we assume a simple lag 0-1 parameterization for PM,, (i.e. a single strata up to lag
1, keeping the default values of lagdf=1), while we define another cubic spline, this time with the
natural constraint (lagtype="ns" by default) for the lag dimension of temperature. For this space,
lagknots are located by default at equally spaced values in the log scale of lags, while the boundary
knots are set to 0 and maxlag. The estimation, prediction and plotting of the effects of tmnpora‘t,ur‘c
are performed by:

> model <- glm(death ~ basis.pm + basis.temp + ns(time, 7*14) + dow,

family=quasipoisson(), chicagoNMMAPS)
> pred.temp <- crosspred(basis.temp, model, by=1)
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Figure 3
(a) (b)
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> plot(pred.temp, xlab="Temperature",zlab="RR", theta=200, phi=40, 1lphi=30,
main="3D graph of temperature effect")

> plot(pred.temp, "contour", xlab="Temperature", key.title=title("RR"),
plot.title=title("Contour plot",xlab="Temperature" ,ylab="Lag"))

Note that prediction values are chosen only with the argument by=1 in crosspred(), defining all the
integer values within the predictor range. The first plotting expression produces a 3-D plot illustrated
in Figure 3a, with non-default choices for perspective and lightning obtained through the arguments
theta-phi-1phi. The second plotting expression specifies the contour plot in Figure 3b with titles and
axis labels chosen by arguments plot.title and key.title. The user can find additional information
and a complete list of arguments in the help pages of the original high-level plotting functions (typing
7persp and ?filled.contour). The plot of the overall effects can be obtained by (result not shown):

> plot(pred.temp, "overall", xlab="Temperature", ylim=c(0.8,1.7),
main="0Overall effect of temperature over 30 days of lag")

Plots in Figures 3a - 3b offer a comprehensive summary of the bi-dimensional relationship, but are
limited in their ability to inform on effects at specific values of predictor or lags. In addition, they are
also limited for inferential purposes, as the uncertainty of the estimated effects is not reported in 3-D

and contour plots. A more detailed analysis is provided by plotting "slices” of the effect surface for
specific predictor and lag values. The code is:

> plot(pred.temp, "slices", var=-20, ci="n", col=1, ylim=c(0.95,1.15), 1lwd=1.5,
main="Lag-specific effects at different temperature, ref. 21C")

> for(i in 1:3) lines(pred.temp, "slices", var=c(0,27,33) [i], col=i+1, lwd=1.5)

> legend("topright",paste("Temperature =® c(-20,0,27,33)), col=1:4, lwd=1.5)
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Figure 4
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> plot(pred.temp, "slices", var=c(-20,33), lag=c(0,5), col=4,
ci.arg=list(density=40,col=grey(0.7)))

The results are reported in Figures 4a - 4b. Figure 4a illustrates lag-specific effects for mild and extreme
cold and hot temperatures of -20°C, 0°C, 27°C, and 33°C (with reference at 21°C). Figures 4b depicts
both effects along the predictor range at lag 0 and 5 (left column), and effects along lags at temperatures
-20°C and 33°C (right column). The arguments var and lag define the "slices” to be cut in the effect
surface in Figure 3a - 3b. The argument ci="n" in the first expression states that confidence intervals
must not be plotted. In the multi-panel Figure 4b, the list argument ci.arg is used to plot confidence
intervals as shading lines with increased grey contrast, more visible here.

The preliminary interpretation suggests that cold temperatures are associated with longer mortality
risk than heat, but not immediate, showing a "protective” effect at lag 0. This analytical proficiency
would be hardly achieved with simpler models, probably losing important details of the association.

6 Conclusions

This document illustrates the functionalities of the dinm package, providing a detailed overview of the
process to specify and run a DLNM and then to predict and plot its results. The main advantage
of this family of models is to unify many of the previous methods to deal with delayed effects in a
unique framework, also providing more flexible alternatives regarding the shape of the relationships.
Section 3 provides a brief summary of the theory underpinning DLNM’s: a more detailed overview has
been published elsewhere (Armstrong, 2006; Gasparrini, 2011; Gasparrini et al., 2010), together with
a complete specification of the algebra (Gasparrini et al., 2010).

The flexibility is kept when this framework is implemented in the dinm package: several different
models with an increasing level of complexity can be performed using a simple and general procedure,
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as showed in the examples in Section 5. As already explained, this method is not limited to the
examples on the effect of air pollution and temperature on mortality, but can be applied to investigate
the relationship between any predictor and outcomes in time-series data.

The choice of keeping separated the two steps of cross-basis specification and parameters estimation
offers several advantages. First, as illustrated in the example, more than one variable showing delayed
effects can be transformed through cross-basis functions and included in the model. Second, Sl,il»l]d"dl'd
regression commands can be used for estimation, with the default set of diagnostic tools and related
functions. More importantly, this implementation provides an open platform where additional models
specified with different regression commands can be included as well, aiding the development of these
methodology in other contexts or study designs.

The DLNM’s framework introduced here is developed for time series design. The general expression
of the model in allows this methodology to be applied for any family distribution and link function
within generalized linear models (GLM), with extensions to GAM or models based on generalized
estimating equations (GEE). Anyway, the current implementation of of DLNM’s requires single series
of equally-spaced and ordered data. Preliminary tests on the application of the functions included in
the package dinm in case-control, cohort and longitudinal data are promising. Further development
may lead to a general framework to describe delayed effects, which spans different study designs.
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Multivariate meta-analysis: a method to summarize non-linear
associations

Antonio Gasparrini*! and Ben Armstrong

Department of Social and Environmental Health Research
London School of Hygiene and Tropical Medicine, UK

Abstract

Multivariate meta-analysis represents a promising statistical tool in several research areas. Here we provide a
brief overview of the application of this methodology to combining complex multi-parameterized relationships,
such as non-linear or delayed associations, in multi-site studies. The discussion focuses on the advantages over
simpler univariate methods, estimation and computational issues and directions for further research.

In this issue of Statistics in Medicine, Jackson and collaborators offer a comprehensive overview of the recent
methodological advancements on multivariate meta-analysis, also highlighting limitations and research directions.
Among the potential areas of application illustrated in their examples, we find particularly valuable the use of this
methodology to combine multi-parameterized effects in multi-site observational studies. such as time series stud-
ies to assess the short term effects of environmental stressors. These studies usually adopt a two-stage approach,
where a common first-stage model is applied to different cities or regions to derive site-specific estimates, and a
second-stage meta-analysis is performed to combine these effects [1]. The presence of complex regression models
with a high number of nuisance parameters to account for confounding factors makes the two-stage analysis at-
tractive, circumventing the specification of a very highly parameterized hierarchical structure in a single multilevel
development.

The usual approach proposed so far is based on first-stage models which simplify or summarize the city-specific
effect in a single parameter, allowing the application of standard univariate meta-analytic techniques in the second
stage. However, in the presence of complex associations, this choice could provide biased results with wrong
assumptions about the simplified exposure-response shape (e.g. linear), or offer only a partial description of the
phenomenon if the relationship is reduced to simple summaries. Multivariate meta-analysis has been proposed to
combine non-linear dependencies [2, 3] and distributed lag structures [4], but there is no overview of methodological
options. As a motivating example we illustrate the association between mean daily temperature and all-cause
mortality in 108 USA cities [5], estimated through a quadratic B-spline with 5 degrees of freedom (with 3 equally-
spaced knots) on lag 0-3. The associations in 4 cities are depicted in Figure 1.

The two-stage approach described above may be applied to model these relationships across cities, assuming
that the k estimated parameters 6; of the B-spline, defining the association in each of the i = 1,...,m cities, follow
a multivariate normal distribution with

6; ~ N(X:8,8; + X) (1)

where S; and ¥ are the within and between-city (co)variance matrices, respectively. The term X; represents
a k x kp block-diagonal matrix, with each 1 x p block containing city-specific meta- variables X; (usually with
intercept). The kp-dimensional vector B contains the coefficients specifying the change (effect modification) in each
of the k true parameters @ for a unit increase in each of the p meta-variables x;. When no modifier is included,
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Figure 1: Temperature-mortality relationship (relative risk) in 4 USA cities, with reference at 20°C

X3 = 6, the vector of true overall (population) parameters, and the model in (1) reduces to Eq. 3 in the paper
by Jackson and colleagues.

The need for the more complex meta-regression model in (1), more elaborated than the framework described
by the authors for their examples, is motivated by the different focus of the analysis: the main interest here is
not to obtain a pooled estimate of the association, but to characterize the heterogeneity of the effects through
city-specific meta-variables, while accounting for a random residual component in . In the specific example
illustrated in Figure 1, our aim is to model a temperature-mortality relationship reflecting patterns such as shapes
relatively similar within pairs of northern (New York and Chicago) and southern cities (Dallas and Houston), but
different between them. This pattern may be explained by meta-variables x;, ..y Xp, representing geographical,
climatological, demographical or socio-economic determinants. Such analytical proficiency is not obviously achieved
with simpler univariate methods. :

There are issues of estimation and computation specific to this area of application. Usnally, the study design
allows complete control of the first-stage model, thus making the within-study covariances in S; available. However,
dimensionality needs to be taken into account: as the association is described by a growing number of parameters
0, estimation of the k(k +1)/2 (co)variance parameters in ¥ could be problematic. Potential solutions may involve
the simplification of ¥, imposing for example an autoregressive, diagonal or compound-symmetry structure. The
problem is worsened by the inclusion of a high number p of meta-variables, involving the estimation of kp coefficients.
A simpler alternative is offered by meta-smoothing [6], a method based on a series of univariate meta-analysis of the
effects estimated on a grid of exposure values, in order to recover the combined underlying relationship. While this
method offers flexibility, an overall estimate of residual heterogeneity and significance tests are not easily provided.
Finally, the model in (1) implies that exactly the same function is applied in every city, in order for the parameters
0, to be meaningfully combined. In the example in Figure 1, the knots of the spline must be placed at the same
values and this might represent a problem given the different temperature ranges between cities.

In conclusion, multivariate meta-analysis represents a promising methodology to combine multi-parameterized
associations across studies. Compared to other examples described by Jackson and colleagues, the problem here is
inherently multivariate, as each parameter is not interpretable on its own, and simplifications or approximations to
re-express it in univariate terms are often limited or biased. However, the current framework could be infeasible
for complex associations such as distributed lag non-linear relationships, involving a high number of parameters
(7). Further research is needed to address this problem of dimensionality, also providing some guidance on the
limitations and comparative performances of different estimation methods in relation to number of studies m,
parameters k, modifiers p and complexity of the structure of ¥. This framework applies to other multi-parameter
functions summarizing non-linear associations, such as strata or polynomials, and may be extended to other multi-
unit studies such as multi-centre randomized controlled trials or multi-country cohort studies.
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Multivariate meta-analysis for non-linear and other multi-parameter
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Abstract

In this paper we formalize the application of multivariate meta-analysis and meta-regression to synthe-
size estimates of multi-parameter associations obtained in different studies. This modelling approach extends
the standard two-stage analysis used to conbine results across different sub-groups or populations. The most
straightforward application is for non-linear relationships, described for example by regression coefficients of
splines or other functions, but the methodology easily generalizes to settings where complex associations are
described by multiple correlated parameters. The modelling framework is implemented in the package mvmeta
within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating
the non-linear exposure-response relationship of temperature and the distributed lag curve of ozone for all-cause
mortality, using a real multi-city dataset including 98 cities in the USA. Multivariate meta-analysis represents a
useful analytical tool for studying complex associations through a two-stage procedure.

1 Introduction

Meta-analysis is a standard, well-grounded statistical procedure for combining the evidence from independent studies
that address the same research hypothesis [1]. This methodology was developed originally for pooling the results
from published observational or experimental studies, for which individual data were not available. Recently, meta-
analysis has been described more broadly as a research synthesis method, with the aim of estimating an average
association and to explore the degree and sources of heterogeneity over multiple sub-groups or populations [2]. The
analytical approach adopted in this context may be described as a two-stage hierarchical model: in the first stage,
group-specific estimates of the association of interest are calculated, controlling for individual-level covariates; in the
second stage, meta-analytical procedures are applied to combine these estimates, optionally exploring the association
with group-level predictors. The two-stage approach has been proven to be a flexible and efficient method (3], and
has been adopted in different contexts: to pool estimates from multiple randomized controlled trials [4]; to combine
results from survival models on time-to-event data in multi-centre cohorts [5]; and to synthesize associations from
Poisson time series models in multi-city analyses [6]. Without loss of generality, we will retain the meta-analytic
terminology and refer to the sub-group analysis as the first-stage model, and to the first-stage units as studies:
The majority of applications of two-stage analyses has been characterized by fairly complex first-stage models,
compared to relatively simple second-stage meta-analytic procedures. Although finely controlled for individual-level
confounders, the association is usually summarized in a single parameter in the first step. This restriction reduces
the amount of information in the data carried forward to the second stage, possibly producing inadequate or biased

results in the presence of complex dependencies. A more flexible and general approach should potentially retain

greater complexity, and so provide a method to synthesize multi-parameter associations, for example non-linear
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relationships defined by splines or other functions. However, such extension requires a more elaborate meta-analytic
model, capable of handling the multivariate nature of the summary estimates. Multivariate meta-analysis, a method
originally developed to pool multiple correlated outcomes in randomized controlled trials (7, 8, 9], can be used to
extend the standard two-stage analytical approach.

The aim of this article is to formalize the application of multivariate meta-analytic techniques to synthesize
multi-parameter associations in two-stage hierarchical analyses, describing the statistical framework, methodological
issues, limitations and research directions. This contribution originates from a commentary, to be published in this
Journal [10], to the seminal paper by Jackson and collaborators on multivariate meta-analysis [11]. The article also
offers the opportunity to describe the implementation in the package mvmeta within the R software [12], designed
to perform multivariate meta-analysis and meta-regression in this and other contexts. The document is structured
as follows. In Section 2, we describe the modelling framework of multivariate meta-analysis, with a specific focus on
the setting of multi-parameter associations. An application is provided in Section 3, illustrating a two-stage analysis
for the estimation of the non-linear exposure-response relationship of temperature and the distributed lag curve of
ozone for all-cause mortality, using a real multi-city dataset including 98 cities in the USA. Specific methodological
issues are discussed in Section 4. Finally, a general discussion is provided in Section 5. The Supplementary Web
Appendix contains additional information on the software and the complete R code to replicate the results of the
analysis illustrated in Section 3.

2 Modelling framework

The theoretical arguments that underpin the definition of the modelling framework of multivariate meta-analysis
closely follow the simple univariate model, recently re-evaluated in detail [13]. The multivariate extension has been
previously presented [8, 9, 14, 15], and a thorough overview has been also provided [11]. However, in contrast to the
multiple outcomes scenario in which the method has been originally developed, in the context of multi-parameter
associations the parameters may not be individually interpretable, and the association is instead characterized
through their joint distribution. This specific feature constitutes the object of our re-assessment. In this Section, as
an illustrative example, we will often refer to the application for estimating non-linear exposure-response relationship
through spline functions in regression models, although the framework generalizes easily to other multi-parameter
dependencies. A random-effects multivariate meta-regression model will be presented throughout, with fixed-effects
models or simple meta-analysis as special cases.

2.1 The model

The framework we use is nested within that of the multivariate normal linear mixed model, and so follows well-
developed lines [16]. Here the modelling development will be presented in the specific context of multi-parameter
associations. We assume that a first-stage model has been fitted to the data from each of the i = 1,...,m studies,
obtaining a k-dimensional set of regression coefficients 6;, and accompanying k x k estimated (co)variance matrix
S,. Following our example, & may represent the parameters of the spline function, applied in the first-stage to
model a non-linear dependency. The regression coefficients estimated in the first stage are used as outcomes for
the second stage. In meta-regression models, these outcomes are modelled in terms of a set of p meta-predictors
x; = [2:1,',121‘,--~-Epv]T associated with the i*" study, where usually 7, = 1 specifies the intercept. Regression
coefficients from the first stage are termed from here on as outcome parameters, in order to distinguish them from
the coefficients of the meta-analytic model.

Following Jackson and colleagues [11], we can write the marginal model for é,-, askuming & multhmsiste normal
distribution of dimension %, as:

b~ Ni(Xi8, 3) . M

Here X; = S; + ¥, where ¥ is the unknown between-study covariance matrix. The k x

i : 1 kp block-diagonal matrix
X, of rank kp, is derived by the Kronecker product between an identity 3

matrix of dimension k and the vector %i,
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following;:

T1; Ty ... Lpi ... 0 0 v 0
_ . . . . - . . : . .
Xi=Ipex; =q : : : P : : S (2)
0 e Sow M0, e e, e cans Tpi

The kp-dimensional vector 3 defines how the p meta-predictors are associated with each of the k outcome
parameters, for example defining intercepts and linear terms. The problem can also be re-expressed in the form of a
conventional linear mixed model, defining random effects u; ~ Ni(0, ¥) which represent study-specific deviations
The model in (1) is then written as: i '

8 | Nk,(x,,-ﬁ+u,- , s,). (3)

The matrix ¥ is completely defined by a set of parameters £, dependent on the chosen structure and parameteri-
zation. If no a-priori structure is assumed, k(k+1)/2 terms are needed. Optionally, under the assumption that each
outcome parameter is explained only in terms of a subset of the p variables, the related columns of X and entries
of B can be excluded, defining different linear predictors. When no study-level variable is included, X = I ;, and
3 = 0, the vector of average parameters, and the model in (1) reduces to conventional multivariate 1'neta-al(1a)lv<iq
Fixed-effects meta-analytic models presuppose that no heterogeneity exists in the outcome parameters distribuii;n;.
and that the random variability is explained only by sampling error, assuming £, = S,;. As for flne univariate;
case, estimation procedures treat S as known. The unknown parameters are therefore 8 and, for random—eﬂ(*cvtsv
meta-analytic models, &. : :

2.2 Estimation

Different estimation methods have been proposed for random-effects multivariate meta-analysis: likelihood-based
methods [9, 15], estimating equations [17], variants of iterative generalized least squares [8, 18]., Bayesian appr()a(:hoc-
[14) and multivariate extensions of the method of moments (19]. Here we will concentrate on maximum likoli]‘mO(‘i
(ML) and restricted maximum likelihood (REML), following an extensive literature within the framework of line‘lf
mixed models [16, 20, 21]. These methods are implemented in the R package mvmeta and applied to perform t’l‘m
analysis in Section 3.

The marginal log-likelihood function (3, &) for model (3) may be written as [16]:

(B.€) = —inlogm — 33 log |%;| - %Z [(é,-, - x1I3)T21-1 (6 - x,-g)] , (4)
i=1 i=1

with n as the total number of observations (usually equal to ki where there are no missing values). Assuming
that €, and therefore ¥ and X, are known, the maximum likelihood (ML) estimates for 3 and its (co)variance

matrix V(8) conditional on §, are obtained by maximizing (4). In this case, closed-form equations are given by
generalized least squares estimators: :

m = m
BE) = (inzrlx,) N xIsc;,
S s (5)
Vg) =Y XI='X,

i=1

Whe.n v i's not known, the join_t likelihood function in (4) needs to be maximized with respect to both A and
¢, and iterative methods are required. However, the ML estimator of the (co)variance parameters € is usually

biased downward, as it does not account for the loss of degrees of freedom from the estimation of A3. An alternative

estimator can be obtained from the maximization of the log-likelihood function based on a set of n — q linearly
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independent error contrasts, with ¢ as the number of fixed-effects coefficients in B. This restricted log-likelihood
(REML) function £ (), not dependent on 3, may be conveniently expressed as [16, 20):

m

(r(€)=-1(n—q)logm— 1> log|Ti| - log

i=1

m m
inzi‘le\ 5% [(éf -x8) = (6 - x,a)] 0
i=1 i=1

where A3 is defined in (5).

The ML estimates of B in fixed-effects meta-analysis are simply obtained by (5), given that, as discussed
in Section 2.1, X, equals S;, and is therefore completely known. The ML and REML estimates in random-effects
models can be instead obtained through Newton-type iterative algorithms. For computational purpose, the objective
functions in (4) and (6) are both expressed with respect to & only, and maximization of ¢ (£) and (g (¢) can be
achieved by plugging-in at each iteration the conditional estimate of B(€) in (5) using the current estimate of £, until

convergence. Additional information on the estimation algorithms used here are provided in the Supplementary
Web Appendix.

2.3 Hypothesis testing and model comparison

We can separate inferences about the parameters in model (3) into those about fixed effects B, which will typically
be of prime interest, and between-study (co)variance matrix ¥ . Inferential procedures, again, follow the theory of
linear mixed models [16, Chap. 6].

Regarding fixed effects, under the marginal model in (3) and conditionally on &, ﬂ follows a multivariate normal
distribution with mean and (co)variance matrix given in (5). As already mentioned, these coefficients represent
the average outcome parameters in multivariate-meta-analysis, or their intercepts and linear dependencies on meta-
predictors in meta-regression models. The correspondent entries of 8 and V(83) may be used for obtaining signifi-
cance tests or confidence intervals. However, in the context of multi-parameter associations, inferential procedures
about single coefficients are of limited use: in the example proposed above, tests and confidence intervals referring
to single parameters of a spline function offer little information on the association of interest. A more pertinent ap-
proach is to evaluate the relationship in a multivariate context, for example by testing if the non-linear spline curve
changes depending on study-level meta-variables. This may be achieved by a multivariable Wald test for the null
hypothesis L3 = 0, with L as a contrast matrix selecting only the k coefficients which define the linear relationship
of a specific meta-predictor with the outcome parameters. An alternative is to compare nested models differing by
the same set of coefficients as before, through conventional likelihood ratio (LR) test. Note, however, that this test
is appropriate only for ML models, as the general likelihood theory does not hold when comparing REML models
with different fixed-effects structures [20]. The extension to testing more complex outcomes-predictors dependencies
is straightforward. A common issue of the inferential procedures discussed above is that no account is taken of the
uncertainty in the estimate of ¥ when calculating the precision of the fixed effects estimates. A suitable adjustment
for this bias has been provided, also with an application to bivariate meta analysis [22, 23], although not as yet
been implemented in mvmeta.

For random effects, the focus is on comparing models involving different choices about the structure of the
between-study (co)variance matrix. In this setting, an interesting hypothesis to test is ¥ = 0, namely that no
heterogeneity between studies exists, beyond that explained by sampling variability. Similarly, a likelihood ratio
test between nested models may be performed, which is appropriate in REML models as well given the identical
fixed-effects structures. Note, however, that for alternative hypotheses which constrain (co)variance matrices to be
positivc-deﬁnite (see the Supplementary Web Appendix), the null value lies on a boundary of the parameter space.
Under these conditions, the conventional null asymptotic y2(n — ¢q) distribution does not hold, and some adjustment
has been proposed -[24]. A score test for the same ngll hypothesis and distribution has also been developed as the
multivariate extension of the Cochran @ test for (residual) heterogeneity [7, 17]. The test is based on the statistic:

Q= i [(éi = xné)T S;? (é,» 2 Xfﬁ)} ; (7)

1=1
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where (3 are estimated by the correspondent fixed-effects model. An extension of this heterogeneity test for a
subset of B has also been proposed [17]. What seems less well known is that this test suffers exactly the same
boundary value problems as the corresponding likelihood ratio test under the constrained, one sided-alternative,
being based on the identical null asymptotic distribution [25].

In addition, in this meta-analytical setting, the quantification of the heterogeneity among studies, or the residual
amount beyond that explained by specific covariates, is also of interest. Indices of heterogeneity analogous to the
univariate case may easily been derived from the @ statistic in (7), such as the H? = max{1, Q/(n — q)} and
12 = (H?—1)/H? [26]. These measures are interpreted as the relative excess in heterogeneity above those explained
by sampling error, and the proportion of total variation attributable to heterogeneity, respectively. Although recently
criticized for being dependent on precision of the estimates from the first-stage model [27], these statistics provide
simple summaries on the extent of heterogeneity.

More broadly, non-nested models may be compared using fit statistics, in particular Akaike information criterion
AIC = —2¢(3,¥) + 2q and Bayesian information criterion BIC = —2¢(3, ¥) + ¢ log(n), where ¢(3, ¥) is the

maximum log-likelihood. These statistics may also be used with REML models, with the additional requirement
that fixed-effects structure be held constant.

2.4 Prediction

In the context of multi-parameter associations, the general tests and fit criteria described above, although important
are usually insufficient for interpretation. Coefficients in 3 refer to single outcome parameters which are rarel);
interpretable on their own, and the tests only offer a statistical belief on whether the multivariate distribution of
outcome parameters depends on study-level covariates. However, these procedures fail to inform on how the latter
modifies the former.

In the current setting, prediction represents an important tool to extend the inference from multivariate meta-
regression models, offering a method to link specific values of study-level meta-variables with outcome parameters

expectations. Given a set of meta-predictor values xo, the model predicted mean 6y and (co)variance matrix V(éo)
are obtained by:

éO e xOﬁA )
V(o) = XoV (B)X] , (8)

with Xo computed from xo following (2). The equations in (8) may be used to recover the predicted multi-
parameterized association over a set of values observed in the individual data used in the first stage, together with
confidence intervals. In the illustrative example, different exposure-response curves may be predicéed for specific
meta-predictor values xo, or simply the average curve for models with no predictors. The same equations may
be used to predict the association in a new study characterized by a specific set of study-level variables, simply
increasing the uncertainty in the estimates by adding ¥ to V(o) in (8). ’

In addition, the assumptions outlined in Section 2.1 regarding the random-effects multivariate distribution ma
be exploited to extend the inference regarding study-specific outcome parameters 6; estimated in the first-sta )é
model, computing the (asymptotic) best linear unbiased prediction (BLUP) (16, Section 7.4]. The predicted ébg»
and associated (co)variance matrix V(éb(i)) are: b

éb(i) = X,-ﬁ == ‘i’i::l (é, - x,ﬁ) .
~ ~ ~ A A ~ 9
V(b)) = XiV(B)X] + & — I3, ®)

for 3; = S;+¥. The BLUP equations in (9) merely represent the sum of two components: the predicted averaged
outcome parameters in (8) and study-specific deviations, predicted as random effects w; in (3). Associat,iins
predicted with BLUP represent a trade-off between city-specific and average estimates, with weights inversel
proportional to the two components W and S of the total variability %, respectively. The ,BLUP estimates borrov)\'r
strength from the assumption of an underlying distribution of outcome parameters, with city-specific predictions
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being shrunk toward the average: this shrinkage effect is stronger when the first-stage model provides imprecise
estimates. It is noteworthy, in this multivariate setting, that the BLUP estimates of missing parameters from the
first stage exploit the information about the other study-specific parameters and the between-study (co)variance
matrix ¥, and may be therefore different from predicted values from (8).

3 An application

As an illustration, we propose a two-stage analysis using time series data from multiple cities. The aim of the
analysis is to investigate the risk of all-cause mortality with two environmental stressors, temperature and ozone,
during summertime. The non-linear exposure-response relationship of temperature and the delayed effect of ozone
are described in the first stage with functions specified through multiple parameters, which are then combined using
the multivariate meta-analytic techniques illustrated in Section 2. Our intention is to illustrate the application of the
methodology with real data, more than to provide substantive evidence on the associations under study. Therefore,
several analytical steps, such as model selection and checking, are intentionally omitted. Moreover, we will also
skip details on the interpretation of results in favour of methodological matters.

3.1 Data

The multi-city time series data used in the analysis were collected as part of the National Morbidity, Mortality and
Air Pollution Study (NMMAPS) (http://www.ihapss.jhsph.edu). This publicly available database contains, among
other information, daily series of mortality counts and weather and pollution measurements for the period 1987-2000
in 108 cities in USA. The analysis here is restricted to summer months (May-September) in the 98 cities reporting
ozone measurements. In addition, the database includes city-level measures of several variables on geographical,
climatological, demographic, and socio-economic characteristics. Given the illustrative purpose of this example, we
limit our assessment to meta-regression models for only 3 city-level meta-predictors: latitude, population size and
population percentage living in poverty.

3.2 Model specification

In the first stage, we adopt a standard analytical approach for time series environmental data (28, 29]. In each city,
we fit a common generalized linear model for the quasi-Poisson family, and obtain estimates of the associations of
temperature and ozone with all-cause mortality. The model also includes: a natural cubic spline of day of the year
with 3 equally-spaced knots to model the within-summer seasonal variation; a natural cubic spline of year with 2
equally-spaced knots to allow long-term trends; indicator variables for day of the week.

The exposure-response relationship for temperature is modelled through a quadratic spline. The index is chosen
as the lag 0-3 moving average of mean daily temperature. Given the adaptation of populations to their own climate
[30], we define the association on a relative scale, reporting the exposure-response in terms of percentiles. In
order to derive estimated parameters comparable across studies, we place the two knots of the quadratic spline
at the 25 and 75t percentiles of the city-specific distribution. The spline basis function is centered at the 50"
percentile: the estimates are then reported as relative risk (RR) at each percentile versus the reference centering
point. Interpretation of results must conform to the relative scale chosen here.

The effect of ozone is assumed linear with delay, and described through a distributed lag model [31]. Briefly,
the linear effect of a specific exposure event is assumed to be distributed over a specific time period, measured in
terms of lags: in this specific context, a given increase in ozone in a given day is expected to cause an increase in
mortality on the same and the following days, up to a maximum lag period. The overall effect is represented by
the sum of lag-specific contributions. These contributions are modelled through a function expressed in the new |
dimension, estimating a distributed lag curve. In this analysis we use a natural cubic s
with 3 knots at equally-spaced values on the logarithmic scale of lag,
curve, where more variability is expected. The results are reported a
in ozone.

ag
pline including an intercept,
to allow more flexibility in the first part of the
s the RR at each lag for a 10 ugr/m? increase
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Table 1: Mecan, range and specific percentiles for city-level variables in in 98 USA cities, summers 1987-2000.
| Mean Min 25% 75% Max

Average daily mortality counts 18.7 20 7.3 188 178.1
Average temperature (°C) 22.7 16.7 20.0 256 319
Average ozone level (ygr/m?) 31.3 132 277 345 51.6
Latitude (degree North) | 37.2 21.3 338 41.1 47.7
Population size (x 100,000) 10.7 15 41 100 952
Percentage living in poverty (%) 135 6.5 105 157 279

In the second stage, multivariate meta-analyses and meta-regressions are applied independently to model the
exposure-response of temperature and the distributed lag curve of ozone, given the estimates obtained by the
common first-stage model. The models for temperature are based on the 4 outcome parameters of the quadratic
spline, while models for ozone on the 5 outcome parameters of the distributed lag function. Multivariate meta-
analyses are defined by intercepts-only models, while multivariate meta-regression models, specified for each of
the 3 city-level meta-predictors in turn, include an intercept and linear term for each outcome parameters. An
unconstrained form for the between-study (co)variance matrix ¥ is always chosen. The models are estimated
through maximum likelihood.

3.3 Software

The analysis is performed in R (version 2.13). The package mvmeta (version 0.2.3) is used to run multivariate
meta-analysis and meta-regression. The package dinm (version 1.4.1) [32] is used to specify the basis matrices for
the quadratic spline for temperature and the distributed lag spline for ozone, and to predict and plot the effects.
The data are accessed through functions in the package NMMAPSIite. The code of the analysis to replicate all the
results of Section 3.4 is available in the Supplementary Web Appendix.

3.4 Results

A descriptive analysis of the city-level variables included in the analysis is provided in Table 1. The cities are quite
heterogeneous, particularly in respect of population size and related daily mortality count. The distribution of
population size is also highly skewed, while latitude and poverty proportion are more symmetrically distributed.

The results on the exposure-response relationship between all-cause mortality and temperature are illustrated
in Figure 1. The top left panel shows the estimated average curve computed from multivariate meta-analysis of the
4 coefficients of the quadratic spline, which represent the outcome parameters in (1) and (3). These coefficients are
used to identify the exposure-response curve over a set of percentiles. In order to aid interpretation, the z axis is
scaled in such a way that percentiles match those of the average temperature distribution of all the cities included
in the analysis. As expected, the curve is very flat for low percentiles, representing mild summer temperatures, and
rises for high relative temperatures. Fit statistics, the test of heterogeneity in (7) and I? are reported on top of the
plot. Results indicate a high degree of heterogeneity between city-specific estimates. The Cochran @ test is highly
significant and the I? indicates that 61.0% of the variation in the first-stage estimates is due to heterogeneity of
the true city-specific associations.

The other 3 panels in Figure 1 summarize the results from multivariate meta-regression models, each including
one city-level meta-predictor. These models comprise 4 additional fixed-effects coefficients, representing the lincar
change in outcome parameters accordingly to meta-predictor levels. The plots show the predicted curve for specific
percentiles of the meta-predictor distribution, computed through (8). The analysis suggests that the effect of a high
relative summer temperature is stronger in population living at higher latitudes, in more populated conurbations
and in cities characterized by an higher percentage of people living in poverty, with an markedly increased steep
in the hot tail. For example, the average percentage increase in risk for the 99" percentile versus the median
temperature for cities at the 75" and 25" percentiles of latitude distribution, are 8.9% (95%CI: 6.9 to 11.0%)
and 5.3% (95%CIL: 3.4 to 7.2%), respectively. This evidence is confirmed by tests and fit statistics. In particular,
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both the LR and Wald tests suggest that each meta-predictor is significantly associated with the multivariate
outcome. These results are confirmed by the lower AIC of models including the meta-predictors, while the BIC,
highly penalized by the number of observations in the analysis, indicates instead a slight preference for the more
parsimonious model. Although significant, the city-level meta-predictors seem to explain a limited amount of the
heterogeneity, as showed by the small decrease of the @ and I? statistics, also reported on top of each panel.

AIC: -1592 BIC: -1536.4

AIC: -16054 BIC: ~1533.9 LR test: p<0.001 Wald test: p<0.001
Heterogeneity test: Q=994.1 (df=388), p<0.001 |-square=61%

Residual heterogeneity test: Q=849 (df=384), p<0.001 |-square=54.8%
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Figure 1: Pooled and predicted exposure-response relationships in relative risk (RR) between relative temperature
(percentiles) and all-cause mortality in 98 USA cities, summers 1987-2000. The z axis is scaled so that percentiles
represent the average temperature distribution of all the cities. The figure illustrates the population-average curve
from meta-analysis (top left) and the predicted curves from meta-regression for the 25" (dash line) and 75" (dash-
dot line) percentiles of latitude (top right), population size (bottom left) and population percentage in poverty
(bottom right). Fit statistics, test for heterogeneity and I-square are reported on top of each panel. For meta-

regression models, the likelihood ratio (LR) and Wald tests versus the model with no meta-predictor are also
included.

Figure 2 illustrates the distributed lag curves estimated from models for ozone. The average relationship depicted
in the top left panel sugge§ts that a 10 ugr/m?® increase in ozone is associated to a steep increase in risk in the
same and following day, with a subsequent protective effect at longer lags, consistent with an harvesting effect
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net overall effect is a percent increases of 0.2% (95%CI: 0.0 to 0.5%) (result not reported). Differently than in the
temperature example, only latitude significantly modifies the association, with a higher initial effects followed by a
stronger decrease in northern cities. However, the overall net effect predicted for the 25" and 75" percentiles of
latitude distribution is almost identical, with estimated percent increases of 0.2% (95%CI: -0.1 to 0.5%) and 0.2%
(95%CI: -0.2 to 0.6%), respectively (result not reported). Tests and information criteria for the other models clearly
indicate no evidence that the effect of ozone varies by population size or percentage of poor people. The degree of
heterogeneity is lower than for temperature. In particular, latitude seems to explain a large part of the variability
between the true city-specific associations. However, the statistic for the related Q test lies near the boundaries of

the parameter space, and under this condition the test suffers the problems described in Section 2.3. The results
should be therefore interpreted with caution.

AIC: -6204.6 BIC: -6120.7

AIC: -6228.8 BIC: -6124 LR test: p<0.001  Wald test: p<0.001
Heterogeneity test: Q=632.3 (df=485), p<0.001 |-square=23.3%

Residual heterogeneity test: Q=532.2 (df=480), p=0.05 |-square=9.8%
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Figure 2: Pooled and predicted distributed lag curves in relative risk of all-cause mortality (RR) for a 10 pgr/m?
increase in ozone in 98 USA cities, summers 1987-2000. The figure illustrates the population-average curve from
meta-analysis (top left) and the predicted curves from meta-regression for the 25th (dash line) and 75" (dash-dot
line) percentiles of latitude (top right), population size (bottom left) and population percentage in povert,
right). Fit statistics, test for heterogeneity and I-square are re
models, the likelihood ratio (LR)

y (bottom
ported on top of each panel. For meta-regression
and Wald tests versus the model with no meta-predictor are also included.
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Figure 3: City-specific (left) and best linear unbiased predicted (right) estimates of the distributed lag curve in
relative risk of all-cause mortality (RR) for a 10 pgr/m? increase in ozone in 98 USA cities, summers 1987-2000.
The bold black line represents the population-average curve, while the grey lines the estimates for each city.

As discussed in Section 2.4, the assumptions about between-city variability, namely the distribution of the
random effects in (3), may be used to extend the inference regarding city-specific estimates. The left panel of
Figure 3 illustrates the distributed lag curve of ozone as estimated separately by each city-specific first-stage model,
and the same population-average curve as depicted in Figure 2, top left plot. Variability around the average is
due to both heterogeneity between cities and uncertainty in the first-stage model. The BLUP estimates,
from (9), account for the latter and shrink city-specific curves toward the average,
Figure 3.

Given the high difference in population size showed in Table 1, the shrinkage effect is expected to vary con-
siderably among cities. Figure 4 shows the predicted city-specific and BLUP exposure-response relationships for
temperature in two cities, together with the population-average as depicted in Figure 1, top left plot. As expected,
the BLUP estimate is closer to the original estimate from the city-specific first-stage model in Chicago, a large city
characterized by a high number of daily deaths, while the BLUP curve for the small city of Kingston is heavily
shrunk toward the population average. Interestingly, the shrinkage is higher in the left tail, corresponding to relative
mild summer temperatures, if compared to the effect of heat: this is probably due to the degree of precision of the
related part of the curve in the original city-specific estimate.

The choice of maximum likelihood estimators allows the comparison of models with different fixed-effect struc-
tures through likelihood ratio test and information criteria, as described in Sections 2.2 - 2.3. Given the relative
high number of cities included in the analysis, we do not anticipate important differences with REML models, which
indeed provide almost identical estimates (results not shown). However, this may not apply in analyses of smaller
datasets. The extension to multivariable multivariate meta-regression is straightforward: tests and statistics are
defined exactly in the same way, and predicted effects showed in Figures 1 - 2, controlled for the effect of other
meta-variables, may be similarly computed. An example is included in the code provided in the Supplementary
Web Appendix, together with other results described in this section.

computed
as shown in the right panel of

4 Further considerations

As mentioned earlier, the methodology of multivariate meta-analysis has been largely developed in the context of
randomized controlled trials to pool estimates on multiple outcomes. Moreover, as showed in Section 2, the statistical

framework may be placed within linear mixed models, although with particular characteristics. Nevertheless, specific
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Figure 4: Population-average (continuous bold line), city-specific (dash-dot line) and best linear unbiased predicted
(dash line) exposure-response relationship in relative risk (RR) between relative temperature (percentiles) and
all-cause mortality in 2 USA cities, summers 1987-2000. The figure illustrates a large (Chicago, left) and small
(Kingston, right) city included in the analysis.

issues arise when this methodology is applied to multi-parameter associations in two-stage analyses. Here we provide
some comments on these aspects, highlighting advantages and limitations and directions for future research.

Advantages of multi-parameter synthesis. As anticipated in Section 1, the application of multivariate meta-
analysis extends the standard two-stage design, where the data on the associations of interest are usually summarized
in the estimate of a single parameter. For complex associations this choice may be too limited to characterize the
phenomenon under study. Referring to the examples illustrated in Section 3, a standard analysis can be based
on the pooling of single estimated effects at specific percentiles for temperature [30], or just on the overall net
effect of ozone [34]. The estimate of the whole exposure-response relationship or distributed lag curve offers a more
comprehensive picture, revealing additional important features. This approach may be more broadly described in
the context of multi-parameter evidence synthesis, [35, 36.

Dealing with complexity. The two-stage approach discussed above provides tools to analyze complex associations.
In the first step, the estimate is controlled for potential confounders, while reducing the relationship to a limited
number of parameters of a chosen function, corresponding to the outcomes for the second stage meta-analytic model.
The amount of complexity retained in the first stage represents a trade-off between synthesis and detail. Ideally,
this balance should be fine-tuned only to the purpose of the analysis. However, in practice. concrete problems such
as mathematical and statistical properties of the function or the maximum number of parameters needs to be taken
into account, as discussed below.

Dimensionality. The number of parameters k which is possible to combine in multivariate-meta-analysis is of
course limited. The models presented in Section 3 are defined by kp fixed-effects coefficients and k(k+1)/2 variance
parameters: in the ozone example, the statistical problem requires the estimation of 25 total parameters using
490 correlated observations available in 98 cities. For instance, in a previous assessment based on distributed lag
non-linear models, 25 parameters were used to model the non-linear and delayed effect of temperature in a single-
city analysis [31]. A simple multivariate meta-regression would then require the estimate of 375 among coefficients
and variance parameters, in order to combine such a complex multivariate dependency across multiple cities. A
possible solution to reduce the number of parameters is to structure the between-study (co)variance matrix W,
for example imposing a compound-symmetry, diagonal or autoregressive forms. Robust estimation to account for

wrong correlation structures has been proposed for meta-regression of correlated outcomes [37), although further
research is needed for this approach.
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The two-stage design. In the setting of randomized controlled trials, the two-stage approach is often compared
with the so-called individual patient data analysis, usually performed through a single multilevel model. Although
the latter has been advocated as more efficient and less prone to bias if compared to the meta-analysis of published
studies [38, 39], the two-stage alternative has been proved as competitive when applied to individual data [40, 41].
In addition, a single multilevel development is not always feasible or advisable, especially in the presence of many
individual-level covariates, which would require the definition of intricate study-specific dependencies. For examples.
in the models illustrated in Section 3, excluding the untenable assumption of a common seasonal variation in all
the cities, 4 x 97 = 388 additional fixed-effects coefficients would be required to model city-specific seasonal trends.
In the two-stage framework, parameters related to the association of interest are treated as nuisance terms in the
first-stage model, offering computational efficiency and flexibility regarding model specification and assumptions.

Analysis of published studies. Although the modelling framework proposed here is focused on two-stage analysis
on complete study-specific datasets, most of the original development of meta-analysis is based on the combination
of estimates from published results. This also applies to the multivariate extension, as described later in Section 5.
The meta-analysis of published studies poses additional problems. First, the outcome parameters defining the
association in each study may not be comparable, for instance if estimated from different functions. Referring to
the application in which non-linear dependencies are modelled, exposure categories may be defined with different
cut-offs or spline functions with different knots. Solutions have been previously proposed to retrieve estimates
of comparable outcome parameters from available study-specific information, as discussed in Section 5. Another
issue is that correlation between estimated outcome parameters are rarely reported. Methods to deal with missing
correlations have been developed [42, 43], although mainly limited to the bivariate case. This issue needs to be
explored further, especially if dimensionality increases.

Ezxposure ranges. In the examples we provide in Section 3, the functions applied in the first stage for estimating
the associations are defined exactly in the same range: a predetermined lag period for ozone, and the scale of
percentile for temperature. In the latter case, this choice is motivated by existing evidence on modelling the effect
of temperature, but in some instances, an absolute scale is preferred, and the analytical approach needs to cope
with exposures defined in different ranges across studies. In such an analysis, some parameters of the function
may be inestimable or meaningless. If not estimated, the parameters can be considered missing and the analysis
performed under specific assumptions on the missing value mechanism. In any case, careful consideration needs to
be given to the interpretation of the city-specific outcome parameters and their meta-analysis under this scenario.

Interpretational issues. The point discussed above is closely linked to the more general problem of interpretation
of estimates of complex associations. Although the results illustrated in Section 3.4 are described on the original
scale of the first-stage model, estimation is carried out in the multivariate dimension of the spline parameters. In
practice, we read the association in the usual exposure-response frame, but we model it through coefficients of a
function. We presuppose that these coefficients, in this multi-study assessment, still preserve their interpretation,
and that the way we model the relationship between meta-predictors and their multivariate distribution reflects the
association of interest. If, for example, different combinations of parameters define exactly the same association,
this link vanishes, and interpretation of the results would be less straightforward. This issue requires further
consideration.

Model selection. The choices of the models in the application we show in Section 3 are motivated only for
illustrative purposes, and many alternative specifications may be suggested, possibly producing different results
and conclusions. Model selection criteria have been proposed for multi-site studies adopting a two-stage approach

(44], but the results are not conclusive and this issue needs further research, in particular in the multivariate setting
proposed here.

5 Discussion

In this contribution we have provided a methodological overview of the application of multivariate meta-analysis
and meta-regression analysis for the investigation of complex associations which are described by multiple param-
eters. This final section offers a review of previous research in this area, focusing first on the most straightforward
application for non-linear relationships, in two-stage analyses of complete data and then in meta-analyses of pub-
lished results. We then describe previous applications for modelling other multi-parameter associations. Finally,
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we consider the advantages of two-stage procedures based on multivariate meta-analysis, also considering future
research directions.

Two-stage analyses for non-linear exposure-response relationships based on complete data have previously been
presented, although mostly focused on applied aspects. A recent paper has discussed the statistical methods for
two-stage analysis of multi-site cohorts, also illustrating the use of multivariate meta-analysis for pooling dose-
response associations that have been estimated using multiple categories [5]. Other examples include applications
in multi-city time series studies to assess potential non-linear effects of air pollution [45, 46], using approaches
similar to the example for temperature in Section 3. Methods based on Bayesian hierarchical models have also
been presented [47]. An alternative approach already proposed is the so-called meta-smoothing [48]. This method
is based on a series of univariate meta-analyses performed on estimated effects, for a grid of exposure values, in
order to re-construct the pooled non-linear relationship. Although very flexible, as it provides complete freedom
on the choice of the first-stage model in each study, it ignores the dependence among the analyses, which must be
introduced subsequently for making valid inferences.

Methods for obtaining pooled dose-response dependencies from published epidemiological studies have been
investigated in previous research. Pioneering works [49, 50] describes an analysis based on log-RR estimates for
different exposure categories compared with a common reference, in which the whole within-study (co)variance
matrix is reconstructed using ad-hoc approximations. The estimates of linear and (optionally) quadratic terms were
then combined using fixed meta-analytic methods, and then the random counterpart based on method of moments.
This approach has also been applied with splines or fractional polynomials to model non-linearity [51, 52, 53]. More
recently, a general methodological treatment of the meta-analysis of published estimates for non-linear associations
has been provided [54, 55, 56].

However, the framework illustrated here is not limited to model multi-parameterized non-linear exposure-
response dependencies: investigators have also applied the methodology to synthesize survival curves (18, 57],
longitudinal profiles [58], ROC curves [59] and heat wave effects [60]. Other studies have adopted multivariate
meta-analysis to explore the distributed lag cffects of air pollution [61] and temperature [62]. In particular, two
studies have assessed the lagged effects of ozone [63, 64], with results comparable to those produced in the second
example in Section 3. Finally, the same methods have also been applied to pool main and interactions terms across
studies [50, 65].

The main limitation of the traditional approach based on univariate meta-analysis rests in the mismatch between
the process of data synthesis applied in the first stage, and the details of the description offered by the second-
stage meta-analytic model. This choice is limited by the requirement to summarize the association into a single
outcome parameter. Multivariate meta-analysis relaxes this limitation, allowing a flexible specification of the two-
stage development. In the application illustrated in Section 3, we propose a common first-stage model to study
the relationship of all-cause mortality with two environmental stressors, then performing independent mult.ivariat‘e
meta-analyses and meta-regressions for combining the study-specific estimates. The two sets of outcome parameters
define different features of the association of each stressor with mortality, namely an exposure-response curve and
a distributed lag pattern.

In its traditional setting for pooling multiple health endpoints in randomized controlled trials, multivariate meta-
analysis offers parameter estimates with better statistical properties, in particular potentially increased precision
from accommodating the estimated between-study covariance structure [11]. Nonetheless, the analysis could be
carried out with multiple univariate meta-analysis, although often less efficiently. In the app]ic;{tion we have
described, instead, estimates of complex associations, such as those illustrated in Figures 1 - 4, cannot be provided
by simple univariate models, without important limitations or additional assumptions. In this context, multivariate
meta-analysis offers clear advantages.

As discussed in Section 2, this modelling framework can be seen as an example of a multivariate linear mixed
model. The extensive body of research defining this statistical framework may therefore be exploited for this
context, for example in the definition of tests discussed in Section 2.3. There are, of course. specific issues which
deserve further research, for example statistics for heterogeneity, handling missing correlations or critical comparison

of estimation methods. Other important issues specific to multivariate meta-analysis have been illustrated and

discussed by Jackson and colleagues [11]. In the specific context of multi-parameter associations, a main limitation

is related to dim‘ensionapty, as the number of outcome parameters which can be accommodated is currently limited.
This and other issues will be hopefully addressed in future research on the development of this methodology.
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Figure 4: Population-average (continuous bold line), city-specific (dash-dot line) and best linear unbiased predicted
(dash line) exposure-response relationship in relative risk (RR) between relative temperature (percentiles) and
all-cause mortality in 2 USA cities, summers 1987-2000. The figure illustrates a large (Chicago, left) and small
(Kingston, right) city included in the analysis.

issues arise when this methodology is applied to multi-parameter associations in two-stage analyses. Here we provide
some comments on these aspects, highlighting advantages and limitations and directions for future research.

Advantages of multi-parameter synthesis. As anticipated in Section 1, the application of multivariate meta-
analysis extends the standard two-stage design, where the data on the associations of interest are usually summarized
in the estimate of a single parameter. For complex associations this choice may be too limited to characterize the
phenomenon under study. Referring to the examples illustrated in Section 3, a standard analysis can be based
on the pooling of single estimated effects at specific percentiles for temperature [30], or just on the overall net
effect of ozone [34]. The estimate of the whole exposure-response relationship or distributed lag curve offers a more
comprehensive picture, revealing additional important features. This approach may be more broadly described in
the context of multi-parameter evidence synthesis, [35, 36].

Dealing with complezity. The two-stage approach discussed above provides tools to analyze complex associations.
In the first step, the estimate is controlled for potential confounders, while reducing the relationship to a limited
number of parameters of a chosen function, corresponding to the outcomes for the second stage meta-analytic model.
The amount of complexity retained in the first stage represents a trade-off between synthesis and detail. Ideally,
this balance should be fine-tuned only to the purpose of the analysis. However, in practice, concrete problems such
as mathematical and statistical properties of the function or the maximum number of parameters needs to be taken
into account, as discussed below.

Dimensionality. The number of parameters k which is possible to combine in multivariate-meta-analysis is of
course limited. The models presented in Section 3 are defined by kp fixed-effects coefficients and k(k+1)/2 variance
parameters: in the ozone example, the statistical problem requires the estimation of 25 total parameters using
490 correlated observations available in 98 cities. For instance, in a previous assessment based on distributed lag
non-linear models, 25 parameters were used to model the non-linear and delayed effect of temperature in a single-
city analysis [31]. A simple multivariate meta-regression would then require the estimate of 375 among coefficients
and variance parameters, in order to combine such a complex multivariate dependency across multiple cities. A
possible solution to reduce the number of parameters is to structure the between-study (co)variance matrix W,
for example imposing a compound-symmetry, diagonal or autoregressive forms. Robust estimation to account for

wrong correlation structures has been proposed for meta-regression of correlated outcomes [37], although further
research is needed for this approach.
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The two-stage design. In the setting of randomized controlled trials, the two-stage approach is often compared
with the so-called individual patient data analysis, usually performed through a single multilevel model. Although
the latter has been advocated as more efficient and less prone to bias if compared to the meta-analysis of published
studies [38, 39], the two-stage alternative has been proved as competitive when applied to individual data [40, 41].
In addition, a single multilevel development is not always feasible or advisable, especially in the presence of many
individual-level covariates, which would require the definition of intricate study-specific dependencies. For examples,
in the models illustrated in Section 3, excluding the untenable assumption of a common seasonal variation in all
the cities, 4 X 97 = 388 additional fixed-effects coefficients would be required to model city-specific seasonal trends.
In the two-stage framework, parameters related to the association of interest are treated as nuisance terms in the
first-stage model, offering computational efficiency and flexibility regarding model specification and assumptions.

Analysis of published studies. Although the modelling framework proposed here is focused on two-stage analysis
on complete study-specific datasets, most of the original development of meta-analysis is based on the combination
of estimates from published results. This also applies to the multivariate extension, as described later in Section 5.
The meta-analysis of published studies poses additional problems. First, the outcome parameters defining the
association in each study may not be comparable, for instance if estimated from different functions. Referring to
the application in which non-linear dependencies are modelled, exposure categories may be defined with different
cut-offs or spline functions with different knots. Solutions have been previously proposed to retrieve estimates
of comparable outcome parameters from available study-specific information, as discussed in Section 5. Another
issue is that correlation between estimated outcome parameters are rarely reported. Methods to deal with missing
correlations have been developed [42, 43], although mainly limited to the bivariate case. This issue needs to be
explored further, especially if dimensionality increases.

Ezposure ranges. In the examples we provide in Section 3, the functions applied in the first stage for estimating
the associations are defined exactly in the same range: a predetermined lag period for ozone, and the scale of
percentile for temperature. In the latter case, this choice is motivated by existing evidence on modelling the effect
of temperature, but in some instances, an absolute scale is preferred, and the analytical approach needs to cope
with exposures defined in different ranges across studies. In such an analysis, some parameters of the function
may be inestimable or meaningless. If not estimated, the parameters can be considered missing and the analysis
performed under specific assumptions on the missing value mechanism. In any case, careful consideration needs to
be given to the interpretation of the city-specific outcome parameters and their meta-analysis under this scenario.

Interpretational issues. The point discussed above is closely linked to the more general problem of interpretation
of estimates of complex associations. Although the results illustrated in Section 3.4 are described on the original
scale of the first-stage model, estimation is carried out in the multivariate dimension of the spline parameters. In
practice, we read the association in the usual exposure-response frame, but we model it through coefficients of a
function. We presuppose that these coefficients, in this multi-study assessment, still preserve their interpretation,
and that the way we model the relationship between meta-predictors and their multivariate distribution reflects the
association of interest. If, for example, different combinations of parameters define exactly the same association,
this link vanishes, and interpretation of the results would be less straightforward. This issue requires further
consideration.

Model selection. The choices of the models in the application we show in Section 3 are motivated only for
illustrative purposes, and many alternative specifications may be suggested, possibly producing different results
and conclusions. Model selection criteria have been proposed for multi-site studies adopting a two-stage approach

[44], but the results are not conclusive and this issue needs further research, in particular in the multivariate setting
proposed here.

5 Discussion

In this contribution we have provided a methodological overview of the application of multivariate meta-analysis
and meta-regression analysis for the investigation of complex associations which are described by multiple param-
eters. This final section offers a review of previous research in this area, focusing first on the most straightforward
application for non-linear relationships, in two-stage analyses of complete data and then in meta-

. ; o analyses of pub-
lished results. We then describe previous applications for modelling other multi-parameter asso

ciations. Finally,
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we consider the advantages of two-stage procedures based on multivariate meta-analysis, also considering future
research directions.

Two-stage analyses for non-linear exposure-response relationships based on complete data have previously been
presented, although mostly focused on applied aspects. A recent paper has discussed the statistical methods for
two-stage analysis of multi-site cohorts, also illustrating the use of multivariate meta-analysis for pooling dose-
response associations that have been estimated using multiple categories [5]. Other examples include applications
in multi-city time series studies to assess potential non-linear effects of air pollution [45, 46], using approaches
similar to the example for temperature in Section 3. Methods based on Bayesian hierarchical models have also
been presented [47]. An alternative approach already proposed is the so-called meta-smoothing [48]. This method
is based on a series of univariate meta-analyses performed on estimated effects, for a grid of exposure values, in
order to re-construct the pooled non-linear relationship. Although very flexible, as it provides complete freedom
on the choice of the first-stage model in each study, it ignores the dependence among the analyses, which must be
introduced subsequently for making valid inferences.

Methods for obtaining pooled dose-response dependencies from published epidemiological studies have been
investigated in previous research. Pioneering works [49, 50] describes an analysis based on log-RR estimates for
different exposure categories compared with a common reference, in which the whole within-study (co)variance
matrix is reconstructed using ad-hoc approximations. The estimates of linear and (optionally) quadratic terms were
then combined using fixed meta-analytic methods, and then the random counterpart based on method of moments.
This approach has also been applied with splines or fractional polynomials to model non-linearity [51, 52, 53]. More
recently, a general methodological treatment of the meta-analysis of published estimates for non-linear associations
has been provided [54, 55, 56].

However, the framework illustrated here is not limited to model multi-parameterized non-linear exposure-
response dependencies: investigators have also applied the methodology to synthesize survival curves (18, 57]
longitudinal profiles [58], ROC curves [59] and heat wave effects [60]. Other studies have adopted multivz;riate;
meta-analysis to explore the distributed lag effects of air pollution [61] and temperature [62]. In particular, two
studies have assessed the lagged effects of ozone [63, 64], with results comparable to those produced in the se,cond
example in Section 3. Finally, the same methods have also been applied to pool main and interactions terms across
studies [50, 65].

The main limitation of the traditional approach based on univariate meta-analysis rests in the mismatch between
the process of data synthesis applied in the first stage, and the details of the description offered by the second-
stage meta-analytic model. This choice is limited by the requirement to summarize the association into a single
outcome parameter. Multivariate meta-analysis relaxes this limitation, allowing a flexible specification of the two-
stage development. In the application illustrated in Section 3, we propose a common first-stage model to study
the relationship of all-cause mortality with two environmental stressors, then performing independent multivariate
meta-analyses and meta-regressions for combining the study-specific estimates. The two sets of outcome parameters
define different features of the association of each stressor with mortality, namely an exposure-response curve and
a distributed lag pattern.

In its traditional setting for pooling multiple health endpoints in randomized controlled trials, multivariate meta-
analysis offers parameter estimates with better statistical properties, in particular potentially increased precision
from accommodating the estimated between-study covariance structure [11]. Nonetheless, the analysis could be
carried out with multiple univariate meta-analysis, although often less efficiently. In the application we have
described, instead, estimates of complex associations, such as those illustrated in Figures 1 - 4, cannot be provided
by simple univariate models, without important limitations or additional assumptions. In this context, multivariate
meta-analysis offers clear advantages. ’

As discussed in Section 2, this modelling framework can be seen as an example of a multivariate linear mixed
model. The extensive body of research defining this statistical framework may therefore be exploited for this
context, for example in the definition of tests discussed in Section 2.3. There are, of course, specific issues which
deserve further research, for example statistics for heterogeneity, handling missing correlations or critical comparison
of estimation methods. Other important issues specific to multivariate meta-analysis have been illustrated and
discussed by Jackson and colleagues [11]. In the specific context of multi-parameter associations, a main limitation
is related to dimensionality, as the number of outcome parameters which can be accommodated i; currently limited
This and other issues will be hopefully addressed in future research on the development of this methodology. i
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This web appendix contains some information on the estimation procedures adopted in the R package mvmeta
(version 0.2.3), used to perform the analysis illustrated in the manuscript, and details on the related R code also pro-
vided as supplementary material. The package is under constant development, and some changes are likely to occur
in future releases. Moreover, the usage of existing functions may also change, although portability of the existing
code in future versions will be preserved whenever possible. For further information, type help(’mvmeta-package’)
in R.

A Details about estimation procedures

In this section we provide some additional details on the estimation algorithms used in the current version of the
package mvmeta, already discussed in Section 2.2 of the manuscript. As already mentioned, the unknown parameters
to be estimated are 8 and, for random-effects meta-analytic models, €, a set of components which uniquely define
the between-study (co)variance matrix W.

The current implementation of mvmeta only supports an unstructured form for ¥, although options for additional
structures will be added in the future versions. Actually, here ¥ is expressed in term of its Cholesky decomposition,
with ¥ = RTR, in order to assure positive-definiteness, and & corresponds to the k(k + 1)/2 upper-triangular
terms of R. For computational convenience, the problem is re-arranged taking a second Cholesky decomposition of
the marginal (co)variance matrix £; = U] U;. The generalized least square problem in Eq. 5 of the manuscript,
applied to obtain the conditional estimate of the fixed-effects coefficients 3, is then re-arranged as a simple least
square fit procedure, carried out by minimizing the modified objective A = 3~ IU;Té,v - U,-_T).(,ﬂl. An appropriate
QR decomposition of t}lc transformed objects U T6 and U; TX is performed to guarantee stability. The related
(co)variance matrix V/(8) is also derived. See [1, pag. 13 and 49] for details.

The procedure above is used for fitting fixed-effects meta-analytic models. The random-effects counterparts are
also specified in terms of the (co)variance components £, and estimation is performed using iterative algorithms. As
mentioned in the mfanuscript.. ML models are fitted through a profiled (concentrated) likelihood approach, specifying
the objective function £(€) in Eq. 4 of the manuscript in terms of € only, while the conditional estimate B(E) is
computed as above, and plugged in at each iteration [2, Chapter 2|. Estimation of models fitted through REML
follows t'hc same lines, using the ol?jcctivc function £z(£) in Eq. 6 of the manuscript. By excluding the parameters
for the fixed part of the mode.], this x.nethod reduces the dimensionality of the optimization problem, in particular
for meta-regression models, with obvious computational advantages.

*Correspondance: Antonio Gasparrini, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London WC1H
9SH, UK p ity i
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In the current implementation of mvmeta, the maximization of the objective functions is obtained through a
quasi-Newton iterative algorithm, a variation of the Newton-Raphson method [3], exploiting the built-in R function
optim(). Briefly, in the quasi-approach. the computation of the updated guess only requires the vector of first
partial derivative of £(§) or £r(&) with respect to €, while using an approximation of the inverse of the Hessian, the
matrix of second partial derivative, obtained from previous iterations. The equations for the vectors of first partial
derivatives are provided in [4]. Convergence of Newton methods is heavily dependent on optimal starting values
€9; these are provided performing few runs of an iterative generalized least square algorithm [5, 6].

Missing values in the estimated outcome parameters or (co)variance matrix for study i are naturally handled
in the optimization algorithms by excluding the corresponding entries of éi and rows of X, although no missing
parameter or element of the (co)variance matrices occur in the analysis proposed in this paper.

B The R code

The R scripts provided as supplementary material reproduce all the results illustrated in the manuscript, figures
included. Although the code could have been written in a more concise and faster version, we have privileged clarity
here. The R packages mvmeta, dinm and NMMAPSlite, available on the R CRAN. need to be installed.

The first script is used to generate the data, producing a list of databases for the 98 NMMATPS cities included
in the analysis and a database with the city-level meta-predictors used in multivariate meta-regression models.
Additional meta-variables have been included, so the reader may extend the investigation. Note that the script
takes several minutes to complete, as the data are downloaded by an external repository.

The second script performs the first-stage time-series Poisson model. It first produces the basis matrix for
temperature and ozone using the function crossbasis() in the package dinm. Although this package is expressly
meant to be used for distributed lag (non-linear) models, it is applied also to produce the basis for the temperature
spline, which is automatically centered and conveniently lagged. In addition, as described below, othe
the package dinm help extracting the parameters from the fitted model, and facilitates the prediction
of the estimated exposure-response relationships. After the Poisson models are fitted, the estimate
temperature and ozone are extracted and stored, together with associated (co)variance matrices.

The third scripts runs the second-stage models, namely multivariate met a-analyses and meta-regressions, and
computes the predicted effects. This step is carried out through the functions in mvmeta and dinm. After the models
have been fitted through function mvmeta (), basis matrices are created to obtain the predictions for a set of values
in the range of the original scale for temperature and ozone, built by crossbasis() using the same specifications
as in the original bases used for estimation. Prediction is computed through the function crosspred(). Given
the relative scale for temperature, the prediction is computed for values corresponding to percentiles of an average
distribution. The script then provides the code to derive vectors of city-specific and BLUP estimated associations,
the latter through the function blup (), and to store the results in matrices. Finally, prediction from meta-analytic
models are produced. First, for models with no predictor, then for meta-regression models. For the latter, outcomes
parameters and associated (co)variance matrices for specific percentiles of the meta-variables are predicted through
the function predict (), then the association is predicted on the original scale of temperature and ozone through
crosspred().

The fourth script define some functions to perform likelihood ratio and Wald tests, and to carry out the multi-
variate Cochran heterogeneity test and the I? statistic. The functions are used to print the results in the figures.
The function qtest() is used here. Proper functions to perform the other tests and statistics will be added in
future releases of the mvmeta package. In particular, specific anova() methods will be provided for hypothe
and model comparison.

The fifth script produces the main results included in the manuscript, namely Table 1 and the Figures, con-
veniently saved as pdf files. The code exploits the plot() and lines() method functions for objects crosspred
where the predictions have been saved, which facilitates the graphical representation.

The sixth script provides additional results presented in the manuscript, in particular the comparison with
REML models and results from multivariable multivariate meta-regression.

r functions in
and plotting
d parameters for
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The purpose of this study was to determine whether short-term changes in ambient temperature were
associated with daily mortality among persons who lived in Montreal, Canada, and who died in the
urban area between 1984 and 2007. We made use of newly developed distributed lag non-linear
Poisson models, constrained to a 30 day lag period, and we adjusted for temporal trends and nitrogen
dioxide and ozone. We found a strong non-linear association with high daily maximum temperatures
showing an apparent threshold at about 27 “C; this association persisted until about lag 5 days. For
example, we found across all lag periods that daily non-accidental mortality increased by 28.4% (95%
confidence interval: 13.8-44.9%) when temperatures increased from 22.5 to 31.8 C (75-99th
percentiles). This association was essentially invariant to different smoothers for time. Cold tempera-
tures were not found to be associated with daily mortality over 30 days, although there was some
evidence of a modest increased risk from 2 to 5 days. The adverse association with colder temperatures
was sensitive to the smoother for time. For cardio-respiratory mortality we found increased risks for

higher temperatures of a similar magnitude to that of non-accidental mortality but no effects at cold

temperatures.

1. Introduction

Extreme weather conditions have been shown to increase
daily mortality (Basu and Samet, 2002b; Gasparrini and
Armstrong, 2010; Gosling et al, 2009). For example, the heat
wave in Europe during the summer of 2003 may have caused an
additional 22,000 deaths in France, Italy, Great Britain, and Spain
(Conti et al., 2005; Kosatsky, 2005; le Tertre et al., 2006). These
figures may be underestimates as not all heat-related deaths are
recognized as such (Donoghue et al., 1997). The response to
increasing temperature does not occur just at the upper range:
there is a steep gradient in daily mortality and daily hospitaliza-
tions, usually above a location-specific “threshold” (Basu and

s ¥

Abbreviations: df, degrees of freedom; dinm, distributed lag non-linear models:
ICD, International Classification of Diseases; NO,, nitrogen dioxide: O3, ozone:
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Samet, 2002a; Gosling et al.,, 2009; Gouveia et al., 2003: Kovats
et al,, 2005, 1998; Martens, 1998; McMichael et al., 2006). The
effects of increased temperatures are primarily found within a
few days of the hot day, although longer lag effects are sometimes
found, and the increased risks attenuate with increasing lag time
(Braga et al., 2002; Conti et al., 2005; Curriero et al., 2002: Davis
et al., 2003a, 2003b; Dessai, 2002: Gosling et al., 2009; Hajat et al.,
2006; Hajat et al., 2005).

In addition, there are data suggesting that colder than normal
temperatures can increase risk (Anderson and Bell, 2009: Curriero
et al., 2002). These effects may be delayed for as many as two
weeks into the future (Pattenden et al., 2003),

The heat events in Europe and elsewhere suggested that the
elderly may be at higher risk, and this may have been due to a lack
of support structures to ensure sufficient hydration and other
measures to alleviate effects from extreme heat. As well, certain
other sub-groups may be at higher risk; for example, a recent study
from our group suggested that persons with congestive heart failure
may be susceptible to increasing temperatures (Kolb et al., 2007).
Other investigations of the effects of weather in this subpopulation
have shown that the risk of hospitalization for congestive heart
failure among elderly persons living in Denver, Colorado, during the
summer increased monotonically with increasing maximum tem-
perature (13% increase for a 5.3 °C increase) (Koken et al., 2003).
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An analysis of the acute effects of weather needs to account for
the fact that the response pattern for temperature is non-linear,
the effects can be delayed in time, and different response func-
tions may apply at different lag periods. In most of the previous
studies the methods did not allow estimates of the complexities
of these joint effects. Recently, Armstrong and colleagues
(Armstrong, 2006; Gasparrini et al, 2010) have developed a
formal theory and software for distributed lag non-linear models
that is a generalization of the usual (linear) distributed lag linear
model (Almon, 1965; Moshammer et al., 2006; Schwartz, 2000;
Wyzga, 1978; Zanobetti et al., 2000). Using these new methods,
our primary objective was to assess in Montreal, Canada, a city
with a large range in daily temperatures, the duration and
response function of the effect of higher temperature and to
determine whether there were effects from colder temperatures.

2. Material and methods
2.1. The study population

The study population comprised residents of Montreal who died in the city
between 1984 and 2007 of any non-accidental cause. Montreal has about two
million inhabitants (in 2001) and they live in an area of about 500 km?. The city is
in a temperate zone and experiences both very cold and quite hot temperatures,
A feature of the city and the province is that there is little air conditioning in
homes (25.6% in the Province of Quebec in 2008 (Statistics Canada, 2010)) but that
the buildings are well-heated during cold periods (usually mid-October until mid-
April, with December to February being the coldest periods of the year).

Deceased subjects were identified from the computerized provincial database
of death certificates and they were provided to us without personal identifiers.
Approval to have access to the mortality data was granlgd .l)y.lhe proymcnal
agency responsible for allowing access (Commission de I'acces a I'information du
Québec) and ethical approval was granted by the Institutional Review Board of the
Faculty of Medicine, McGill University.

2.2. Weather and air pollution data

Previous papers described in detail the environmental data (Goldberg et al.,
2003, 2009). Daily weather data, comprising hourly measurements of temperature
and other parameters, were provided by Environment Canada from their monitor-
ing station located at the Pierre-Elliott-Trudeau International Airport (latitude:
452805"N; longitude: 73°44'29"W) situated approximately 30 km west of
downtown Montreal. We computed daily averages of temperature, humidex,
humidity, and maximum temperature.

The air pollution data comprised bi-hourly or hourly measurements in
Montreal of a number of criteria gaseous pollutants (sulfur dioxide, carbon
monoxide, nitrogen dioxide (NO;), and ozone (03)) at 12 fixed-site monitoring
stations. We chose to include two of these as covariates in the substantive
analysis: NO; was measured at eight stations and O3 was measured at nine
stations, both pollutants were measured using chemiluminescence (Thermo
electron 14 V). Mean daily concentrations of NO, and O3 were derived by taking
a simple daily average for each monitor and then averaging these across monitors
to obtain a final daily mean value. Respirable and fine particles were measured
using high-volume samplers approximately every six days during 1984-2004
period and in 1996 these were replaced by tapered element oscillating micro-
balances. Because of the large number of missing days in the early part of the
study period and the difficulty of combining high-volume samples with the
measurements from the tapered element oscillating microbalances, we excluded
fine particles from all analyses.

2.3. Statistical methods

We selected maximum temperature as the exposure metric and we assessed
the association with non-accidental mortality using a time series approach
(Goldberg et al., 2004) that has been generalized to handle the distributed lag
non-linear models (Armstrong, 2006; Gasparrini et al., 2010). Specifically, we
used quasi-likelihood Poisson regression in a generalized linear model to model
the natural logarithm of daily counts of cause-specific deaths as functions of
predictor variables. We accounted for the over-dispersed Poisson data by assum-
ing that the total variance was proportional to the number of counts, with the
over-dispersion constant estimated through quasi-likelihood. To remove seasonal
and sub-seasonal cycles in the mortality time series, we included a natural cubic
spline function on day of study and we included a factor for day-of-the-week.
Following the analyses of the National Morbidity, Mortality, and Air Pollution

M.S. Goldberg et al. / Environmental Research 111 (2011) 853-860

Study (NMMAPS) (Dominici et al., 2004; Samet et al., 2000), we specified a
“primary” model using a smoother for time of 7 degrees of freedom (df) per
annum and we investigated the sensitivity of the results using temporal smooth-
ers having 5, 9, and 13 df.

2.3.1. Other potential confounding variables

We accounted for the effects of air pollution by including mean daily
concentrations of nitrogen dioxide and ozone. Our previous work showed that
the effects of these two air pollutants were linear and that their effects persisted
over the concurrent day (lag 0 days) and the two previous days (lags 1 and 2 days)
(Brook et al., 2007; Goldberg et al., 2001d) We could not account for influenza

epidemics, as monitoring and recording of these epidemics is not carried out
routinely.

2.3.2. Distributed lag non-linear models of the effects of temperature on mortality

We made use of the distributed lag non-linear models developed by two of us
(B.A. and AG.; referred to as dlnm) (Armstrong, 2006; Gasparrini et al., 2010) to
describe simultaneously non-linear and delayed dependencies in the association
between mortality and temperature. Briefly, these models are a generalization of
the traditional distributed lag models (Almon, 1965; Moshammer et al., 2006;
Schwartz, 2000; Wyzga, 1978; Zanobetti et al., 2000) to allow the model to contain
a flexible representation of the time-course of the exposure-response relationship,
which also provides an estimate of the overall effect in the presence of delayed
contributions or “harvesting”. The dinm allow for the simultaneous estimation of
different non-linear functions of the associations with temperature at each lag
period and also allows for the estimation of non-linear effects across lags. The
methodology is based on the definition of a “cross-basis" function, a bi-dimen-
sional space of functions specifying the possible non-linear association between
temperature and mortality across lag periods. The cross-basis functions are
combined from the basis functions for the two dimensions (temperature and
lag), chosen among a set of possible bases. We used the dinm package in the R
project for statistical computing (version 2.10.1: http://www.r-project.org/) that
was written by one of us (A.G.).

The amount of smoothing chosen for the temperature and lag spaces is
independent, as they are modeled by two different functions. Having equally
spaced knots over the temperature space does indeed imply similar degree of
flexibility across the range, and one could use alternative positioning of the knots,
a priori or data-based, although there are issues associated with selecting the
knots. Our approach to investigating curvature assumptions has been through
sensitivity analyses. The knots in the lag space were, however, placed unequally
across the lag space, following the default in the dinm package (equally on a
logarithmic scale), to reflect greater expected smoothness as lags increase
(e.g., smoother over lags 29-30 days versus lags 0-1 days).

Among the possible non-linear functions, including linear thresholds,
polynomials, and spline transformations, we selected cubic b-splines to model
the temperature effect, as they are flexible at the endpoints where some degree of
non-linearity is expected. Using a dinm model that was constrained to assess
effects for a lag period of 30 days, we placed knots evenly across the range of
maximum temperature and selected a priori, following the work of Gasparrini
etal. (2010), the “primary” model having a natural cubic spline with 5 degrees of
freedom (df) in the lag space (knots placed at logarithmically equal intervals) and
a cubic b-spline with 6 df (three equally spaced knots) in the temperature space.

As sensitivity analyses, we also investigated b-splines having three knots
chosen from the quantiles of the temperature distribution (6 df total) and we
investigated threshold models. Analyses were also conducted in the smaller group
of individuals who were under age 65 years at time of death. In addition, we
conducted analyses that were not adjusted for air pollution to determine the
extent of confounding on temperature.

3. Results

Table 1 shows that during the study period, 1984-2007 (com-
prising 8766 days), the average maximum daily temperature was
11.5 °C (average mean daily temperature was 6.8 “C), varying from
—23.9 t0 36.2 °C (interquartile range of 20.6 “C). Air pollution was
relatively low in Montreal as compared to most North American
cities, with mean daily concentrations of NO, and O; of 38 and
33 pg/m’, respectively. Table 2 shows that the different metrics for
temperature were highly correlated (Pearson correlation coefficients
of 0.99) and that, as expected, NO, and O3 were negatively and
positively correlated with temperature, respectively. In what
follows, we will only show results for maximum temperature.

Table 3 shows the distributions of mortality from non-accidental
causes and from cardiovascular diseases (International Classificat-
ion of Diseases (ICD), revision-9 390-459; ICD-10 100-199) and
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Table 1
Distribution of selected weather and air pollution variables, Montreal, 1984-2007.

Units Number of Mean Standard Minimum Percentiles Interquartile
days of deviation range
measurements

25th 50th 75th 100th
Maximum temperature C 8703 11.55 12.36 -239 1.9 124 22.5 36.2 206
Mean temperature C 8700 6.78 11.86 -273 -2.1 1.7 17:1 29.3 19:2
Minimum temperature G 8720 1.99 11.61 -31.8 —6.1 29 117 24.6 17.8
Maximum humidex® C 8766 11.14 15.55 -294 -11 11.0 246 46.1 25.7
Mean relative humidity % 8766 69.57 1241 28 61 70 78 100 17
Change in pressure in kPa 8756 0.00 0.92 —-4.22 -0.54 0.00 0.54 5.03 1.08
24 h ending at 08:00

NO, uglm3 8764 37.99 14.95 734 27.36 35.88 4591 165.67 18.55
03 pg/m? 8764 3277 18.00 1.86 19.55 30.28 42.96 163.93 2341

* Humidex is calculated as mean temperature (°C)+0.5555 (6.11E—10) where F=exp(5417.753 x (1/273.16))—(1/Dew Point Temperature (

http://www.weatheroffice.gc.ca/mainmenu/faq_e.html; accessed June 2011).

Table 2

Pearson correlation coefficients between selected weather and air pollution variables, Montreal, 1984-2007.

K)) (see for the definition

Daily maximum Daily mean Daily minimum Daily humidex NO, (pg/m?*) 05 (pg/m?*)
temperature ("C) temperature ("C) temperature ('C) (C)
Daily maximum temperature 1 0.99 0.95 0.99 -021 0.41
Daily mean temperature 1 0.99 0.99 -0.25 0.39
Daily minimum temperature 1 0.96 -0.26 0.35
Daily humidex 1 -0.23 0.40
NO, 1 ~0.20
Table 3
Distribution of mortality from non-accidental causes, cardiovascular diseases, and respiratory diseases, by age and sex, Montreal, 1984-2007.
Number of days of Mean Standard Minimum Percentiles Interquartile
measurements deviation range
25th 50th 75th 100th
Non-accidental mortality
All 8766 38.08 7.60 10 33 38 43 a5 10
< 65 years of age 8766 7.80 3.01 0 6 8 10 23 4
> 65 years 8766 30.29 6.92 6 26 30 35 79 9
Men 8766 18.59 475 4 15 18 22 43 7
Women 8766 19.50 517 2 16 19 23 52 0
Respiratorymortality
All 8766 3.38 212 0 2 3 5 15 3
< 65 years of age 8766 0.34 0.59 0 0 0 1 4 1
> 65 years 8766 3.04 2.00 0 2 3 4 15 2
Men 8766 1.74 1.40 0 1 2 3 9 2
Women 8766 1.64 141 0 1 1 2 1 1
Cardiovascular mortality
All 8766 14.34 458 1 1 14 17 48 6
<65 years of age 8766 2.1 1.57 0 1 2 3 11 2
> 65 years 8766 12.23 4.08 1 9 12 19 40 6
Men 8766 6.83 2.89 0 5 v 9 22 4
Women 8766 751 3.06 0 5 2 9 33 4
Cardio-respiratory mortality
All 8766 17.73 5.34 2 14 17 21 52 7
<65 years of age 8766 2.45 1.70 0 1 2 3 13 2
> 65 years 8766 1827 4.82 2 12 15 18 50 6
Men 8766 8.57 334 0 6 8 11 24 5
Women 8766 9.15 3.47 1 7 9 1 34 4

respiratory diseases (ICD-9 460-519; ICD-10 J00-J99). The mean
number of daily non-accidental deaths was 38.1 and the variance
was 57.8. The daily mean number of deaths from respiratory
diseases was 3.4 and from cardiovascular diseases it was 14.3, (Time
series plots for the endpoints and for temperature are shown in
Supplementary Annex Figs. 1 and 2.)

The model that accounted only for seasonal and secular trends (a
time smoother of 7 df per annum and a term for day-of-the-week)

had an over-dispersion parameter of 1.1 and a serial autocorrela-
tion coefficient that was close to zero by lag 5 days. (See
Supplementary Annex Table 1 for these parameters across all of
the time smoothers used: 5, 7, 9, and 13 df)

Fig. 1 shows a three-dimensional plot of non-accidental mortality
and temperature that was modeled as a cubic b-spline having three
equally spaced knots (total of 6 df), constrained to a lag period of
30 days. This model included natural cubic splines for the temporal
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Fig. 1. The relative risk of daily non-accidental mortality and maximum tempera-
ture by lag period, from a distributed lag non-linear model, adjusted for nitrogen
dioxide and ozone, Montreal, 1984-2007. The model comprised a smoother for
time of 7 df per annum, three equally spaced knots for the effect of temperature
(6 df total) and 5 df for the lag space. The z-axis represents the relative increase in
daily counts of mortality with respect to the mean value (11.55 'C) and the other
axes represent maximum temperature and lag period.
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Fig. 2. Cumulative effects between daily non-accidental mortality and maximum
temperature, from a distributed lag non-linear model, adjusted for nitrogen
dioxide and ozone, Montreal, 1984-2007. The model comprised a smoother for
time of 7 df per annum, three equally spaced knots for the effect of temperature
(6 df total) and 5 df for the lag space. The y-axis represents the relative increase in
daily counts of mortality with respect to the mean value (11.55 °C). The maximum
likelihood estimate is shown as a smooth line and the pointwise 95% confidence
intervals are shown in the shaded area.

smoother (7 df) and for the lag space (5 df), a term for day-of-the-
week, as well as terms for the two air pollutants. The figure shows
the strong effect at high temperatures that persisted up to lag 5 days
and a cold effect starting at about —15°C between lags 2 and
5 days. This graph must be interpreted cautiously as it is not
possible to provide estimates of variability, but it does show the
general pattern of risk by lag and by temperature, The following
results help explain this overall pattern.

Based on the same model, Fig. 2 shows the fitted cumulative
distributed non-linear lag function. This function is interpreted as

the total effect on mortality on the concurrent day from the
effects of temperature accumulated over the concurrent day and
out to lag 30 days, inclusive, in the hypothetical case in which
temperature is constant over that period. The relative increase in
the number of daily deaths (referred to as “relative risk”) for
temperature is compared to the average maximum temperature
of 11.55°C. At high maximum temperatures, there is a strong
monotonic increase in the number of deaths starting at about
27 ‘C. (Similar effects were observed for other temporal smooth-
ers and other smooth functions for temperature; Supplementary
Annex Fig. 4.) We also found a small non-significant cold effect at
about —18°C. Most of the other models for which we used
different temporal smoothers showed no or protective overall
effects at colder temperatures. The protective effects for colder
temperatures were more pronounced as the number of df on the
smoother for time increased (Supplementary Annex Fig. 4).

To illustrate the delayed effects of maximum temperature on
mortality, we show the response function at lag 4 days (Fig. 3).
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Fig. 3. Effects on daily non-accidental mortality evaluated at lag 4 days and
maximum temperature, from a distributed lag non-linear model, adjusted for
nitrogen dioxide and ozone, Montreal, 1984-2007. The model comprised a
smoother for time of 7df per annum and three equally spaced knots for the
effect of temperature (6 df total) and 5 df for the lag space. The y-axis represents
the excess mortality with respect to the mean value (11.55 °C), The maximum
likelihood estimate is shown as a smooth line and the pointwise 95% confidence
intervals are shown in the shaded area.
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Fig. 4. Effects on daily non-accidental mortality evaluated at warm maximum
te‘mperatures (30°C), from a distributed lag non-linear model, adjusted for
nitrogen dioxide and ozone, Montreal, 1984-2007, The model comprised a
smoother for time of 7 df per annum and three equally spaced knots for the
effect of _temperature (6 df total) and 5 df for the lag space. The y-axis represents
the relative increase in daily counts of mortality with respect to the mean value
(11'.55 ’.C). The maximum likelihood estimate is shown as a smooth line and the
pointwise 95% confidence intervals are shown in the shaded area.
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A pronounced effect at high temperatures was found (and in all
models) as well as a cold effect starting about —10 C. The effect
at cold temperatures vanished when 13 df per year was used as
the temporal smoother (Supplementary Annex Fig. 5).

Fig. 4 shows the increased risk of high maximum daily
temperatures (30 °C) relative to the average maximum tempera-
ture (11.55 “C). Effects were found for lags 0 and 1 days indepen-
dent of the model (Supplementary Annex Table 4 and Fig. 6), with
protective effects seen from lags 2-23 days, and a suggestion of
an increase starting at lag 25 days.

Fig. 5 shows the results comparing a temperature of —15 "C to
the average maximum. The maximum cold effect occurred at lag
3 days, with the models having smoothers for time of 5 and 7 df
per year showing significant effects (Supplementary Annex
Fig. 7 and Table 3). The figure also shows a slight apparent
protective effect from lags 11-27 days, and those models with
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Fig. 5. Effects on daily non-accidental mortality evaluated at cold temperatures
(=15 °C), from a distributed lag non-linear model, adjusted for nitrogen dioxide
and ozone, Montreal, 1984-2007. The model comprised using a smoother for time
of 7 df per annum and three equally spaced knots for the effect of temperature
(6 df total) and 5 df for the lag space. The y-axis represents the relative increase in
daily counts of mortality with respect to the mean value (11.55 'C). The maximum
likelihood estimate is shown as a smooth line and the pointwise 95% confidence
intervals are shown in the shaded area.
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9 and 13 df showed much stronger protective effects (in the
Supplementary Annex).

Table 4 summarizes the results of these figures by tabulating
the percentage change in daily non-accidental mortality for the
cumulative distributive lag model as well as for lagged effects
from 0 days to 14 days. The first column compares the 1st
percentile to the tenth percentile (risks at —16.3 °C relative to
—5.3 C) and it shows essentially the cold effects, with small
increases in risk found at lags 2-5 days. (The positive sign on the
percentage change is interpreted as an increase in risk as
temperatures decrease.) The cumulative effect for cold tempera-
tures was large but had considerable statistical variability; sig-
nificant effects were found, however, from around lag 2 days until
lag 5 days.

The second and third columns show the effects of heat on daily
mortality, comparing the 99th percentile (31.8 'C) to the 75th
(22.5°C) and to the 90th (26.9 "C) percentiles, respectively. For
hot temperatures, we found strong positive increases in daily
mortality for the cumulative model (28.4% and 34.3% increases,
respectively) and the effects declined in magnitude but persisted
until lag 6 days. (These results are slightly different than shown in
the figures as we are now comparing different temperature
ranges, but they are derived from the same statistical model.)
3.1. Sensitivity analyses for non-accidental mortality
We found that the effects of heat were fairly insensitive to the
smoother for time used but that there was some variation in the
cold effects (Supplementary Annex Tables 3-7). In particular, use
of smoothers for time having more than 7 df removed the
deleterious cold effect and showed protective effects at higher
lags. Although it is difficult to assess which models are preferable,
it is possible that the smoothers for time using 9 and 13 df are
over-fitting the data as the serial autocorrelation coefficients
within seven day lags are mostly negative (Supplementary
Annex Table 1).

We also made use of other smoothers for temperature (cubic
b-splines with three knots based on quantiles of the distribution
of temperature with 5 or 6 df) and threshold models, but we did
not find any important differences in the response functions

Percentage change in daily non-accidental mortality, and associated 95% confidence intervals (Cl), for changes in maximum temperature between selected cut-points in

the distribution, adjusted for nitrogen dioxide and ozone®, Montreal, 1984-2007.

Lagged effect (days) 1st percentile relative to the 10th percentile® 99th percentile relative to the 75th percentile¢ 99th percentile relative to the 90th percentile®

% Change 95% Cl % Change 95% ClI % Change 95% Cl
Cumulative 7.80 —3.87-20.90 28.40 13.76-44.93 3434 19.18-51.43
0 days -061 —~2.96-1.81 11.93 8.95-15.00 8.48 6.08-10.93
1 113 -0.02-2.30 6.88 5.67-8.10 6.14 510-7.19
2 1.79 0.40-3.20 3.90 2.48-5.35 4.34 3.11-5.57
3 1.60 0.56-2.65 254 1.48-3.60 3.05 2.13-3.97
4 1.24 0.50-1.99 1.76 1.06-2.48 211 1.45-2.78
5 0.96 0.22-1.70 1.18 0.51-1.85 1.44 0.78-2.09
6 0.74 -0.03-1.53 0.75 0.04-1.46 0.97 0.28-1.66
7 0.59 ~0.18-1.36 0.44 -0.27-1.16 0.67 -0,02-1.36
8 047 -0.23-1.18 0.23 -0.43-0.90 0.49 -0.14-1.13
9 0.39 -0.23-1.01 0.09 -0.50-0.68 0.40 ~0.17-0.97
10 0.32 -0.22-0.87 -0.01 -0.54-0.52 0.35 -0.16-0.87
1 0.27 —0.25-0.78 ~0.09 -0.59-0.41 0.31 ~0.18-0.81
12 0.21 -0.29-0.72 -0.16 —-0.66-0.33 0.28 -0.21-0.77
13 0.16 -0.35-0.68 -022 —-0.72-0.28 0.25 -0.26-0.75
14 0.12 —0.41-0.65 -0.26 -0.77-0.25 0.21 -0.30-0.73

# Model included a cubic b-spline using three equally spaced knots (total of 6 df) for maximum tem

cubic spline with 7 df per year for the time filter, day of the week, and NO; and 05,
b 10th percentile=—5.3 °C, 1st percentile= —16.3 °C.
¢ 75th percentile=22.5 °C, 99th percentile=31.8 °C.
4 90th percentile=26.9 "C, 99th percentile=31.8 C.

perature, a natural cubic spline with 5 df for the lag space, a natural
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(selected results shown in Supplementary Annex Tables 3-7,
sensitivity model 4, and under additional sensitivity analyses).
Results of analyses amongst persons who died under the age of 65
years of age had large variability and were not informative and
we did not find major differences between men and women (data
not shown). The findings did not change when we did not adjust
for the two air pollution variables, NO, and O3 (Supplementary
Annex Table 8). We also found similar response functions for
different metrics of temperature (see additional sensitivity
analyses).

3.2. Analyses of cardio-respiratory mortality
Because of uncertainties regarding the actual underlying cause

of death, we combined deaths from cardiovascular and respiratory
diseases. Fig. 6 shows the cumulative effects for cardio-respiratory

§

a4

RR

Y Y T Al
220 -10 0 10 20 30
Datly Maamun Temperature

Fig. 6. Cumulative effects between daily mortality from cardio-respiratory diseases
and maximum temperature, from a distributed lag non-linear model, adjusted for
nitrogen dioxide and ozone, Montreal, 1984-2007. The model comprised a
smoother for time of 7 df per annum, three equally spaced knots for the effect of
temperature (6 df total) and 5 df for the lag space. The y-axis represents the relative
increase in daily counts of mortality with respect to the mean value (11.55 ‘C). The
maximum likelihood estimate is shown as a smooth line and the pointwise 95%
confidence intervals are shown in the shaded area.
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mortality for a model using the same parameters as used in the
analyses of non-accidental mortality. We did not find any effects at
colder temperatures but we observed effects from hot weather that
persisted to lag 5 days (Table 5).

4. Discussion

As in most other studies, we have found that higher tempera-
tures conferred excess risks of daily deaths from non-accidental
causes and from cardio-respiratory disease, with the models
being fairly robust to various specifications. The approximate
“threshold” of maximum temperature for cumulative effects for
non-accidental deaths over a 30 day period was about 27 “C (the
91st percentile of the temperature distribution). We did not find
any cumulative effects at the colder end of the spectrum,
although increased risks were apparent between lags 2 and 5
days. These effects were not, however, robust to the type of
smoother for time used, with smoothers of more than 7 df per
annum causing these effects to disappear. The analyses of cardio-
respiratory mortality showed similar effects to that of non-
accidental mortality, but there were no apparent effects at colder
temperatures.

In the analyses of the cold effects, the occurrence of lagged
effects with no cumulative effect is consistent with a “harvesting”
effect, whereby the dates of death are moved up just a few days
among a subpopulation at higher risk.

Association of elevated mortality with cold temperatures has
been reported widely (e.g., Curriero et al., 2002; Keatinge et al.,
1997; Analitis et al., 2008; Anderson and Bell, 2009; Barnett et al.,
2005; Curriero et al., 2002; Keatinge et al., 1997). Studies from
Europe (Pattenden et al, 2003; Analitis et al., 2008) have often
found effects delayed by two weeks or more. In North America there
seems to be less evidence of such a long delay, though Anderson and
Bell (2009) did find effects up to two weeks. The absence of a strong
association of cold temperatures with elevated mortality in Mon-
treal is thus unusual. However, in Montreal, in contrast to many
cities in milder climates, all homes are well-heated, so that this
adaptation to continuously uncomfortable climatic conditions may
explain the lack of a pronounced cold effect. The very small effects of

Comparison of the estimated percentage change in daily mortality by cause of death, and associated 95% confidence intervals (C1), for changes in maximum temperature
between the 75th and 99th percentiles and between the 10th and 1st percentiles, adjusted for nitrogen dioxide and ozone,* Montreal, 1984-2007.

Lagged effect (days)® 99th percentile relative to the 75th percentile

1st percentile relative to the 10th percentile

Non-accidental®

Cardio-respiratory”

Non-accidental® Cardio-respiratory”

% Change 95% C1 % Change 95% C1 % Change 95% Cl % Change 95% Cl
Cumulative 28.40 13.76-44.93 24,01 3.40-48.74 7.80 ~3.87-20.90 6.39 -9,55-25.14
0 11.93 8.95-15.00 10.22 5.91-14.70 -0.61 —2.96-1.81 —~0.08 ~3.38-3.34
1 6.88 5.67-8.10 9.22 7.42-11.05 1.13 -0.02-2.30 0.86 -0.75-2.51
2 3.90 2.48-5.35 7.32 5.17-9.50 1.79 0.40-3.20 1.24 -0.70-3.22
3 254 1.48-3.60 4.96 3.38-6.56 1.60 0.56-2.65 1.16 -0.29-2.63
4 1.76 1.06-2.48 2.96 1.91-4.02 1.24 0.50-1.99 0.95 —0.09-2.01
5 1.18 0.51-1.85 155 0.55-2.55 0.96 0.22-1.70 0.75 -0.29-1.79
6 0.75 0.04-1.46 0.61 -0.45-1.67 0.74 -0.03-1.53 0.55 -0.54-1.65
7 0.44 -0.27-1.16 0.04 -1.01-1.10 0.59 -0.18-1.36 0.36 —0.72-1.46
8 0.23 —0.43-0.90 -0.26 ~1.24-0.73 0.47 -0.23-1.18 0.19 ~0.80-1.20
9 0.09 -0.50-0.68 -0.38 -1.25-0.51 0.39 —-0.23-1.01 0.04 -0.83-0.92
10 -0.01 —-0.54-0.52 -041 -1.19-0.39 0.32 -0.22-0.87 -0.09 -0.86-0.69
1 -0.09 -0.59-0.41 -0.42 -1.17-0.33 0.27 -0.25-0.78 -0.19 -0.91-0.53
12 -0.16 -0.66-0.33 -0.44 -1.18-0.30 0.21 -0.29-0.72 -0.27 -0.99-0.44
13 -0.22 —0.72-0.28 —0.46 -1.21-0.30 0.16 -0.35-0.68 ~033 -1.06-0.40
14 -0.26 -0.77-0.25 -0.48 -1.25-0.30 0.12 -0.41-0.65 -0.37 -1.12-0.38

@ 1st percentile=~16.3 °C, 10th percentile= —5.3 °C, 75th percentile=22.5 ‘C, and 99th percentile=31.8 °C,
b Main model using a cubic spline (BS) three equally spaced knots with a total of 6 df fo
spline (NS) with 7 df per year for the time filter and is also adjusted for day of the week,

NO, and Os.

I maximum temperature, a cubic spline (NS) with 5 df for the lag space, cubic
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cold on mortality has also been observed in some other very cold
climates, for example in Finland (Keatinge et al., 1997), but the only
publication we are aware of reporting no association is in Yakutsk,
Siberia (Donaldson et al., 1998). In an analysis of the MONICA
project, Barnett et al. (2005) found that rates of morbidity and
mortality from coronary problems, mostly myocardial infarctions,
were higher amongst persons living in warmer climates as com-
pared to those living in colder climates.

The “adaptation” to cold is mirrored by a lack of adaptation to
heat. As we noted in Section 1, air conditioning of homes is rather
limited in Quebec, and thus many individuals will be exposed to
higher temperatures and thus the strong effect at high tempera-
tures is indeed plausible physiologically and is certainly consis-
tent with the literature.

We note that the selection of the smoothing functions is
critical regarding the shape of the curve near the tails. Natural
cubic splines are constrained to define a linear relationship
beyond the boundaries and this often affects the shape near the
ends. Although it is frequently reported that natural cubic splines
have an “optimal behavior” in the tails, meaning that they are less
prone to the effect of outliers and more able to capture the true
curve, there is actually very little written on this. One of us
(Gasparrini) has conducted some simulations (unpublished) and
the natural cubic splines performed worse (by an Aikaike Infor-
mation Criterion) than unconstrained cubic b-splines of the same
df. In particular, it is true that the linearity constraint on the
natural cubic splines could produce some underestimate of the
width of the confidence intervals near the tails. This is why we
have preferred simple cubic b-splines for modeling the relation-
ship in the space of the predictor within dlnms.

There are some limitations that need to be considered in
interpreting these results. We discussed the issue of misclassifica-
tion of causes of death previously (Goldberg et al., 2001b), where
we indicated that respiratory and cardiovascular diseases are often
confused because the conditions can occur concurrently and both
can contribute to death, so that there may be some uncertainty
about which cause should be selected as the primary underlying
cause. As well, we suggested that there may be errors in selecting
one underlying cause in a complex chain of health events (e.g.,
cancer leading to pneumonia and then to respiratory failure).

In our analysis of air pollution in Montreal (Goldberg et al.,
2000, 20014, 2001c, 2003), we have found much higher risks in
some sub-populations, such as those with diabetes and cardio-
vascular disease and those with congestive heart failure. Indeed,
in a case-crossover analysis of the sub-group of persons who died
between 1984 and 1993 from non-accidental causes but who had
congestive heart failure one year before death, the adjusted odds
ratios comparing temperatures between 30 and 35 “C were 1.08,
1.22, and 1.13 for the concurrent day and lags 1 and 2 days,
respectively (Kolb et al., 2007). We also found in these analyses a
delayed cold effect in the colder seasons of the year.

In the present analyses, we made use of distributed lag
regression models to identify possible associations. Although
these analyses are complex, and have many tunable parameters,
our extensive sensitivity analyses indicate that the findings are
robust. Although the cold effect did disappear with the use of
temporal smoother that explain more of the short-term variation
(i.e., 9 df or more per annum), it is possible that these smoothers
are obscuring important signals from the data and, thus, may lead
to biased findings.

The effects of air pollution were included in our analyses as
possible confounding variables. We could not account for daily
variations of concentrations of fine particles during the study
period because these were measured every six days, so there was
a considerable amount of missing data. We adjusted for NO; and
05 because NO; is somewhat higher in the colder months, as are

particles, and ozone is high in the warmer months. The Pearson
correlation coefficients between the high-volume sampling of
PM, s and NO, was 0.61 and for O3 it was —0.01; the correlation
between PM,s measured by the tapered element oscillating
microbalances and NO, was 0.54, for ozone it was 0.13, and for
high-volume samples for PM, 5 it was 0.89. It is also possible that
the effect of pollution is on a causal pathway between weather,
indexed by temperature, and mortality (weather causes fluctua-
tions in concentrations), in which case controlling for these
variables may not be warranted. However, we found that adjust-
ments for them did not greatly change the unadjusted estimates
of effect, although we cannot exclude the possibility of sensitivity
to control for fine particles. Our findings that air pollution did not
confound the association are consistent with that of other studies,
notably of the 107 American cities included in the analysis of
Anderson and Bell (2009).

We could not control explicitly for the effects of infectious
disease epidemics (e.g., influenza, which occurs mostly in the fall
and winter) because there are no databases that could be used for
this purpose. However, the smooth function of time should have
eliminated most such residual secular effects, and there is no
reason to expect an association of influenza with cold tempera-
tures (after accounting for season).

We have shown that there are indeed heat islands in the city
and that slightly stronger response functions for mortality were
found in areas where temperatures were generally higher
(Smargiassi et al., 2009). The analysis presented herein ignored
these local effects and, given that the datasets used in the two
papers overlapped, we may be underestimating effects in heat
islands.

In summary, we have found that in Montreal hot weather was
clearly associated with increases in short-term risk of mortality,
but cold weather was associated with at most a small association
with increased risk and at an intermediate lag with subsequent
compensating decreased risk.
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ORIGINAL ARTICLE

The Impact of Heat Waves on Mortality

Antonio Gasparrini and Ben Armstrong

Background: Heat waves have been linked with an increase in
mortality, but the associated risk has been only partly characterized.
Methods: We examined this association by decomposing the risk
for temperature into a “main effect” due to independent effects of
daily high temperatures, and an “added” effect due to sustained
duration of heat during waves, using data from 108 communities in
the United States during 1987-2000. We adopted different defini-
tions of heat-wave days on the basis of combinations of temperature
thresholds and days of duration. The main effect was estimated
through distributed lag nonlinear functions of temperature, which
account for nonlinear delayed effects and short-time harvesting. We
defined the main effect as the relative risk between the median
city-specific temperature during heat-wave days and the 75th per-
centile of the year-round distribution. The added effect was defined
first using a simple indicator, and then a function of consecutive
heat-wave days. City-specific main and added effects were pooled
through univariate and multivariate meta-analytic techniques.
Results: The added wave effect was small (0.2%-2.8% excess
relative risk, depending on wave definition) compared with the main
effect (4.9%—-8.0%), and was apparent only after 4 consecutive
heat-wave days.

Conclusions: Most of the excess risk with heat waves in the United
States can be simply summarized as the independent effects of
individual days’ temperatures. A smaller added effect arises in heat
waves lasting more than 4 days.

(Epidemiology 2011:22: 68-73)

cat is a well-known public health hazard." The relation-
H ship between high temperatures and a number of health
outcomes, in particular mortality, has been documented in
many epidemiologic studies.> Extended periods of extreme
heat, usually defined as heat waves, have been linked with a
substantial increase in mortality,® and specific events have
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been reported as public health disasters—such as in Chicago
during July 19957 and in France during August 2003.%° The
characterization of the relationship of heat and heat waves
with health assumes a particular importance, given the pre-
dicted increase in their frequency and intensity based on
climate change scenarios.'®!!

Past approaches to investigate the health effects of heat are
of 2 types—episode analysis and continuous-temperature time-
series analyses.'? In episode analysis, a heat wave is considered
as a distinct event (episode), and excess risk associated with it is
estimated by comparison with non-heat-wave periods.'*'* A
time-series analysis usually considers temperature as a continu-
ous risk factor, using linear threshold parameterization,'®'” or
smooth functions'®!? to specify its exposure-response relation-
ship, sometimes allowing for lagged effects.

A few studies have recently brought these 2 approaches
together, investigating the increase in risk during heat waves
in a time-series regression model that also includes daily
temperature as a numeric explanatory variable, possibly al-
lowing for lagged effects. This method has been used to
quantify harvesting during single events, as in August 2003 in
Europe®*” and July 1995 in Chicago,>' and also extended in
studies with multiple heat-wave periods.>** The rationale
under this methodology assumes that the effect of heat may
be described as the sum of 2 contributions: an increased risk
because of the independent effects of daily temperature lev-
els, and an additional risk due to duration of heat sustained
for several consecutive days. The former is predicted by the
usual exposure-response function for the temperature-health
relationship, characterizing both heat-wave and non-heat-
wave days, whereas the latter is commonly estimated by an
indicator, usually defined as 2 or more consecutive days
above a specified temperature. In this study, we refer to these
contributions as main and added effect of heat, respectively.

This approach entails a more developed definition of
heat-wave effects, identified as that not merely due to a series
of days with extremely hot temperature, but because of
periods when sustained heat produces an excess mortality
beyond that predicted by independent contributions of daily
temperature occurrences. In consequence, this method allows
a more accurate prediction of the effect of heat on health by
distinguishing between impacts from isolated days of heat
and from sustained days of heat in waves. A substantial added
effect implies the presence of additional pathophysiologic
mechanisms that arise when the exposure to hot temperatures
is protracted for several days, not occurring in single sporadic
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days of extreme heat. In contrast, a weak (if any) added effect
would suggest that the increased risk during waves may be
explained by the sole main effect, estimated by simpler
models based on temperature-mortality exposure-response
functions. Such evidence has a clear implication to plan
public health interventions or to estimate the future burden of
heat-related deaths under predicted climate change scenarios.
Studies on multiple heat-wave periods have indeed
shown a substantial added effect.>** However, the extent of
the wave effect appears to be sensitive to model features, in
particular, the specific function used to model the main
exposure-response relationship.”? In this paper, we seek to
characterize more clearly the relationship between heat and
mortality, analyzing the excess risks in heat-wave periods, by
comparing the contributions of main and added effects, as
defined previously, under different wave definitions. In addi-
tion, we propose a new, more flexible model to describe the
added effect in terms of duration, allowing the risk to vary
smoothly by the number of consecutive heat-wave days.

METHODS

Data

The analysis includes the data for 108 urban communities
in the United States during the period 1987-2000. The series for
mortality, weather, and pollution data were assembled from
publicly available data sources as part of the National Morbidity,
Mortality, and Air Pollution Study.**** Daily overall mortality
consists of death counts among residents, excluding injuries and
external causes (International Classification of Discases, 9th
revision (ICD-9) codes 800 and above, ICD-10 codes S and
above). Maximum and minimum temperatures are computed as
the highest and lowest hourly measurements registered within
each day, with mean temperature as the average between them.
General information about how the data were collected and
assembled has been previously reported, together with a detailed
summary of descriptive statistics for each community (http:/
www.ihapss.jhsph.edu). For the current analyses, we restrict the
period to summer months (June-September), to avoid the com-

plexities of having to model cold as well as heat effects.?***

Statistical Analysis

The analytic strategy follows a scheme already pro-
posed for multicity studies, with a common model applied to
each community and then the use of meta-analytic procedures
to derive the pooled estimates.”® At this time, the effect of
heat is decomposed into the main and added effects intro-
duced previously, by including 2 terms for mean temperature
in the city-specific model. An algebraic representation is
given by:

log[E(Y)] = a+ 2g (x,) +mt) +w(t)

=il
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where Y; is the mortality count, assumed to follow an overd-
ispersed Poisson distribution for each day i. The covariates x;,
with effects expressed by the functions g,, include an indica-
tor for day of the week and spline functions for dew point
temperature, day of the year, and time. These last 2 terms
describe a regular seasonal trend, forced to be identical each
year, and a smooth long-time trend, using 5 and 3 degrees of
freedom (df), respectively, following a parsimonious ap-
proach previously applied for analyses restricted to summer
months, ™=~

The main effect of heat on day i is described by the
function m of the series of lagged temperatures 7, ,, with [ =
0,..., L,, and L, as maximum lag. To allow flexibility, m is
specified as a 2-dimensional spline function, defining a dis-
tributed lag nonlinear model that allows the main effect to
vary smoothly along both dimensions of temperature and
lags.'®?” The relationship in the temperature space is mod-
eled by a cubic spline with 6 degrees of freedom (df).
Changes in the shape along lags are modeled by a natural
cubic spline with 5 df, up to a maximum lag L,, = 10. This
flexible model accounts simultancously for nonlinear and
lagged effects and short-time harvesting. Despite this flexi-
bility, the relationship specified by the term m still assumes
that effects of temperature at each lag are independent. We
summarize the main effect from each city-specific model
from the term m(7), predicting the relative risk between the
median temperature among heat-wave days versus the 75th
percentile of annual temperature distribution. This reference
was chosen as a temperature at which little, if any, adverse
effect of temperature on mortality is expected.'’

The pooled main effect across cities is computed
through a random effect meta-analysis based on restricted
maximum likelihood.*®

The additional risk of sustained heat is left to the added
effect described by the function w. The choices for this
function are introduced in the proceeding discussion.

Heat-wave Indicator
In a first analysis, we specify w(t;) with:

Lw
w(t)=[Tr@. =

=0
where / is an indicator which assumes value 1 if 7, , is greater
than or equal to a threshold level 7. In practice, in this first
analysis w(7) is the usual indicator defining heat-wave days as
those with temperature greater than or equal to an intensity
criterion 7 for at least L,, +1 days of duration. Following the
definitions already proposed in literature.> we set 7 equal to
the 97th, 98th, or 99th percentiles of the year-round city-
specific distribution, and L, equal to 1 or 3 (2 or 4 days of
duration). The city-specific added effect is estimated as the
exponential of the coefficient for the indicator variable.
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The same meta-analytic techniques used for the main effect
were applied to estimate the pooled added effect across cities.

Numeric Measure of Heat-wave Duration

The second approach to characterize the added effect
retains the temperature dichotomy (at the 97th percentile), but
replaces the duration dichotomy by allowing risk to depend
on how many consecutive days there have been greater than
or equal to the threshold. In this case, w(t) = f{d), where:

!
di= 2t =n][[1t,; =]
1=1 j=0

Here, d; is defined as the consecutive day the temper-
ature has by date 7 reached the threshold 7. The product term
in the equation above ensures that all the preceding days
show a temperature greater than or equal to 7. Note that, d is
0 for non-heat-wave days and for the first day greater than or
equal to the threshold 7, then 1 for the second day, and so on,
up to the day the temperature comes back below the limit,
with a maximum of L, days. Here we set T equal to the 97th
city-specific percentile and a maximum duration L, of 10
days. The function f"describing the added effects in terms of
consecutive heat-wave days d is specified in the following 2
ways: through a step function (strata: 1, 2-3, 4-5, 6-7,
8—10), or through quadratic splines with 5 df (without natural
constraints, 3 knots at 2, 5, 8 days).

The estimates and variance-covariance matrix for the 5
parameters of the function f{d) are then included in a multi-
variate meta-analysis,”” to obtain the pooled added effect
along consecutive heat-wave days. The maximum heat-wave
length is different in each city, and those with maximum
duration less than 10 days might contribute only to a subset
of parameters. This is handled by the meta-analytic procedure
allocating very large variances to the missing parameters, so
that they will receive very small weight and not contribute to
the average estimate.””*” The limit of 10 consecutive days
was set to retain enough cities in the analysis actually con-
tributing to the estimates.

Sensitivity Analysis

Given the complex statistical approaches adopted in the
aforementioned analyses, involving several assumptions and
a priori choices, a sensitivity analysis was carried out on the
parameters for the city-specific model for functions g and m.
Specifically, we modified the degree of smoothing for sea-
sonality and the complexity of the distributed lag functions,
varying the df and type for the splines for day of the year,
temperature, and lag dimensions in the models with the
mildest (97th percentile, 2 days of duration) and strictest
(99th percentile, 4 days of duration) wave definitions.

We also carried out some analyses to elucidate whether
the main and added terms are too correlated for their effects
to be disentangled. First, we computed the simple correlations
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between mean temperature and both indicators and continu-
ous measure of consecutive heat-wave days. Then, we more
generally assessed the multicollinearity between the full set
of main effect terms and the added wave term. Specifically,
we computed the R* of a model regressing each heat-wave
term on the cross-basis variables: a high R* indicates that the
heat-wave term is almost perfectly predicted by the variables
for the main effect, potentially inducing problems of multi-
collinearity in our regression model.

Further information on modeling choices and residual,
correlation and additional sensitivity analyses are provided in the
eAppendix (http:/links.lww.com/EDE/A437), Sections S1-S3.

Software

The main analyses and graphical representation are
performed in the statistical environment R version 2.11.1.3!
Distributed lag nonlinear models are specified through the
package dlnm (version 1.2.3), whereas univariate meta-anal-
yses are carried out through the package metafor (version
1.1-0). Multivariate meta-analytical estimates are obtained
by Stata 11,** using the command mvmeta.

The main results included in the paper are entirely repro-
ducible.”® The data are freely available using the R package
NMMAPSIite (version 0.3-2). The R code to run the main
analysis and the Stata code for multivariate meta-analysis are

available in the eAppendix (http:/links.lww.com/EDE/A437),
Section S4.

RESULTS

Mean summer temperature shows a high variability in
the 108 communities, ranging from 12.8°C in Anchorage to
33.0°C in Phoenix, with an average of 23.5°C. The number of
heat-wave days during the 14-year period, defined by the
indicator variable used in the first analysis, varies depending
on wave definitions. The average number of heat-wave days
in each community is 90.0 (range: 38-129) when using the
97th percentile and 2 days’ duration, and 7.2 (range: 0-21)
using the 99th percentiles and 4 days’ duration.

Table 1 shows the estimated increase in risk due to
main and added effects in those days matching the 6 defini-
tions. The average main effect is similar between definitions
based on 2 or 4 days of duration, and increases proportionally
to the intensity criterion (97th, 98th, and 99th percentiles),
being computed on the median temperature among heat-wave
days, which increases accordingly. In contrast, the duration
criterion plays an important role for the added effect: the
models using 2 days’ minimum duration show very small
increases in risk; if the minimum duration period is extended
to 4 days, the average added effect increases proportionally to
the selected percentile. Only the strictest definition of days
showing a temperature greater than or equal to the 99th
percentile for at least 4 past days provides an increase of
2.8% (95% confidence interval [CI] = 0.4%-5.3%) in mor-
tality. The contribution of the main effect substantially ex-
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TABLE 1.
Under Different Heat-wave Definitions

Pooled Main and Added Effects With Tests for Heterogeneity (P) Across Cities

Main Effect

Added Wave Effect

No. No. % Increase Test for % Increase Test for
Days Percentile Cities (95% CI) Heterogeneity 95% CI) Heterogeneity
=2 =97th 108 49 (3.3106.5) P = 0.001 03(—-0.5101.1) P =0.536
=98th 108 6.3 (4.7 10 8.0) P = 0.001 04 (-051014) P = 0.892
=99th 108 8.0(5.71010.4) P = 0.001 02(-13101.7) P = 0.005
=4 =97th 108 54(39106.9) P = 0.001 0.7(=0.5101.9) P = (.186
=08th 108 63 (4.5108.1) P = 0.001 1.3(-031029) > = 0.008
=99th 1057 7.7(5.410 10) P = 0.001 2.8(0.4105.3) P = 0.033

*Three communities do not show any days matching this heat-wave definition and do not contribute to the estimates
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FIGURE. Average wave effect of consecutive heat-wave days
(greater than or equal to 97th percentile), as estimated by

quadratic spline (continuous line) with 95% Cl (gray area), and
by a step function (dashed line).

ceeds the added effect during heat-wave days in all the 6
definitions.

Communities show some variability in the length of
wave periods, when specified as 2 consecutive days with
temperature greater than or equal to the 97th city-specific
perccntile, with an average maximum length of 9.5 days
(range: 420 days). Heat waves of at least 10 and 7 days long,
were experienced respectively, by 45.4% and 81.5% of com-
munities. Heat-wave periods are usually short, with 76.3% of
days within the first 3 days of heat wave. The average added
effect, specified by increase in risk for consecutive heat-wave
days and modeled alternatively by both quadratic spline and
a step functions, is depicted in the Figure. The analysis shows
no effect during the beginning of a wave period, then an
increase when the heat is sustained for longer than 4 unin-
terrupted days. The plot also displays a decrease after a peak
at around 7 consecutive days, although wide confidence
intervals.

© 2010 Lippincott Williams & Wilkins

The results of sensitivity analysis are illustrated in
Table 2. The estimated added effect (0.3% and 2.8% in the
original models, respectively) was robust to most of the
changes. The most notable exceptions are the results reported
in the last 3 rows of Table 2, which showed considerably
higher wave effects (up to 3.7% and 7.0%). These models
were characterized by either relatively inflexible splines for
temperature, inflexible lag structure, or both. The 2 df spline
with “natural” constraints is forced to be linear beyond the
boundaries, further limiting its flexibility to model nonlincar
cffects for extremely hot days. Because extremely hot days
arc also likely to be labeled as heat-wave days, this would
produce an inflated added effect. The same happens when
applying a very simple model with 1 df to describe lagged
effect, corresponding approximately to a simple moving av-
erage of the temperatures in the lag period of 10 days.

The correlation between mean temperature and heat-
wave terms is not high: the average correlation coefficient r
across cities is 0.40 (range: 0.29-0.51) for the indicator
variable based on 97th percentile and 2 days of duration and
0.32 (range: 0.24—-0.43) for continuous measure of consecu-
tive heat-wave days. The R” of the regression of wave terms
on the cross-basis variables for the main effect, an index of
multicollinearity, shows an average of 0.63 (range: 0.43-
0.76) for the same indicator and of 0.56 (range: 0.38-0.72)
for the continuous variable. These results demonstrate that,
although the main and added effects are correlated, the model
and data still have power to separate these 2 effects.

DISCUSSION
Our approach seeks to characterize the excess risk
during heat-wave periods, quantifying how much of this
additional burden is simply explained by the increase in
temperature and how much is attributable to the heat con-
tinuing over several consecutive days. Furthermore, this ad-
ditional risk during waves is described in terms of duration,

proposing a new definition based on consecutive heat-wave
days.
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TABLE 2.

Sensitivity Analysis on the Degrees of Freedom (df) and Spline Type for

Seasonality and Temperature-Lag Functions on the Pooled Added Effect Across Cities,

Under 2 Different Heat Wave Definitions

df for Specific Functions

=2 Days; =97th Percentile

=4 Days; =99th Percentile

Seasonality Temperature Lag % Increase (95% CI) % Increase (95% CI)
4 6 5 0.3 (=0.5t0 1.1) 2.8(04105.3)
2 6 5 0.3(=041t01.1) 28(04105.2)
6 6 5 03(=04101.1) 2.8(04105.3)
4 4 5 =0.1 (=0.910 0.7) 30(03105.8)
4 7 5 0.1 (—=0.7 to 0.9) 2.5(0.1t0 5.0)
4 6 3 0.8 (0.0 to 1.6) 3.0(0.2105.8)
4 6 6 0:31(—0:5t0/1.1) 28(0.4105.2)
4 2" 5 1.0 (0.3 to 1.8) 48 (1410 8.3)
4 6 1 3.6(2.8104.4) 6.7 (3.510 10.1)
4 2* 1 3.7(2.8104.5) 7.0 (3.3 t0 10.8)

“A natural cubic splinc is used here instead than a simple B-spline.

This analysis addresses important epidemiologic and
public health questions: the implementation of adequate pre-
ventive measures such as heat-wave plans (in the short-to-
medium term) and the prediction of the burden of future
events under the suggested climate change scenarios (in the
long term) require a detailed characterization of the associa-
tion between heat, heat waves, and mortality. The results
suggest that most of the excess risk during waves is attribut-
able to (and predictable by) the increase in daily temperatures
whether isolated or occurring with other hot days, the effect
of which is larger than any added effect. The latter is
negligible for short heat-wave periods, although it does bring
some additional risks after 4 days of uninterrupted heat.

Our analytic design offers several advantages. First, the
choice of flexible distributed lag nonlinear functions gives
greater assurance than simpler models that the main effect is
adequately accounted for, reducing the risk of confounding of
the added effect by a residual main effect of heat. In addition,
the analysis takes into account the adaptation of each popu-
Jation to its own climate,'? by allowing community-specific
exposure-response functions for the main effect, and wave
definitions based on community-specific percentiles. Finally,
by modeling the heat-wave effect as a continuous function of
duration, we avoid arbitrary duration criteria and allow direct
estimation of the duration at which such effect become
apparent.

Our findings from the first analysis using an indicator
for heat-wave days, as described in Table 1, are rather
different from some others previously reported in the litera-
ture. An analysis of London, Milan, and Budapest by Hajat et
al,?? with a wave definition based on the 99th percentile for
at least 2 days and a natural cubic spline with 3 df to specify
the unlagged main exposure-response relationship, showed a
percentage increase in mortality from 4.3% to 8.3%. Ander-
son and Bell,” analyzing the whole year data on the same
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dataset considered here and a natural cubic spline with 3 df
for lag 0—1, found an average increase of 6.5% for a defini-
tion based on 99th percentile and 4 days of duration. These
results are comparable in magnitude to our estimates for
similar models reported in the last 3 rows of Table 2, and can
be probably explained by the limited flexibility of the func-
tions used to account for the main effect, a pattern also
reported by Hajat et al.>®> The results on the effect of wave
duration are consistent with some findings already reported in
the literature **3*

We estimated the proposed association between heat,
heat waves, and mortality by averaging the effects across
different cities and different wave periods, and this average
relationship might not accurately represent every specific
heat-wave event. The approach we propose showed quite
good performance when applied to predict mortality during
the extreme heat wave in Chicago in 1995 (eAppendix
[http://links.lww.com/EDE/A437], Section $3), but might be
biased in describing some waves in some cities if these heat
waves are unusual with respect to variables not included in
the analytic model and acting as modifiers of the temperature-
health association. For instance, a potential synergistic effect
between air pollution and heat has been suggested, although
specific analyses have reported conflicting results. %37 The
evidence is also unclear for an effect modification by socio-
economic characteristics,'®**~** whereas more robust for the
prevalence of air conditioning.>*'*? These issues may be
addressed in further research.

In this paper, we provide a novel analysis of the impact
of heat waves on mortality. Our results suggest that the
excess risk during heat-wave periods is largely explained by
the immediate and lagged effect of daily temperatures, with
Just a small added impact because of sustained heat limited to
waves lasting more than 4 days.
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Modelling choices

S1 Modelling choices

The city-specific model was defined in the manuscript as:

P
log[E(Y;)] = a+ Z 9i(xij) + m(t:) + w(t;) (S1.1)
Jj=1
The following sections provide some further justifications about the choices on the functions to describe
the effects of covariates g;(«;), the main m(t) and the added w(t) effects of temperature .

S1.1 Covariates

As explained in the text, the covariates x; included in the model in (S1.1) are day of the week,
dew point temperature, long time trend and seasonality. Their inclusion and specification is decided
independently from statistical significance and actual confounding effect in the city-specific estimates,
following the rationale of the NMMAPS analysis (Dominici et al., 2005, 2003).

Day of the week is specified as 6 indicator variables, while dew point temperature is characterized
through a natural cubic spline with 3 df, 2 knots at equally-spaced percentiles. The effect of seasonality
is modelled through a natural cubic spline with 4 df (3 equally-spaced knots), in order to describe the
variation within the summer period considered here (June-September). This effect is supposed to
remain constant across different years, following the assumptions of other analyses published earlier
(Analitis et al., 2008; Baccini et al., 2008; Michelozzi et al., 2009). These studies used an indicator
variable for month in order to model the seasonal effect. We use a similar number of df (1 per month),
but describing the effect through a smooth function. Long time trend is included as a natural cubic
spine with 3 df (2 equally-spaced knots), to capture the residual temporal variability.

S1.2 Main effect of temperature

The main effect of temperature m(t) is specified by a cross-basis, a specific set of functions which
can describe simultaneously the relationship both in the space of the predictor (temperature) and in
the lags (Armstrong, 2006; Gasparrini et al., 2010). This choice allows a strong control of potentially
non-linear and lagged effect, also accounting for short-time harvesting (if present), and is motivated
by the need to accurately control for the effect of daily temperature occurrences. Given the strong
correlation between the parameters used to describe the main and added effect. a weak control for the
former might produce biased estimates for the latter, due to residual confounding effect.

The cross-basis functions can be described as tensor-products between the basis functions used to
define the relationship in each dimension. Specifically, we use here a cubic spline with 6 df (without
natural constraints, 3 knots at equally spaced values) to specify the dependency along the dimension
of temperature, and a natural cubic spline with 5 df (3 knots at equally spaced values in the log scale,
plus intercept) for the distributed lag effects, with 30 df overall. The maximum |

period of time long enough to include delayed effects and short time harvest ing.
We found that the fit of the model improves when re

ag is fixed at 10, a

laxing the linearity constraints of the spline at



S51.3  Added effect during HWs Modelling choices

the boundaries of temperature distribution, using the same amount of df. This may be attributed to
a strong non-linear effect of heat at very high temperatures, which is better described by the spline
without natural constraints. The days showing high temperatures are likely to be defined as HW days:
an underestimation of the main effect in this range can therefore result in a overestimation of the
added effect.

We keep a natural cubic spline for the dimension of the lag in order to specify more knots with the
same df (for the natural cubic splines df = k + 1, while for a simple cubic spline df = k + 3, with k
number of knots). The knots are placed at equally-spaced values in the log scale (0.8, 1.9, 4.4 lags),

assuring enough flexibility in the first lags, where more variability is expected (Muggeo, 2008; Peng
and Dominici, 2009).

S1.3 Added effect during HWs

The different HW definitions used in the first analysis with the simple indicator variables follow from
choices already proposed in the literature (Anderson and Bell, 2009; Hajat et al., 2006). Regarding the
second analysis on the effect of consecutive HW days, we fixed the threshold to the 97" city-specific
percentile in order to obtain a suitable amount of HW days, and we pooled the results using a meta-
analytical technique based on the multivariate extension of the method of moment estimator of Der
Simonian and Laird (Jackson et al., 2010; White, 2009).

Given that many cities show only short HW periods, the maximum length is set to 10 days, coherently
with the time frame used to specify the cross-basis functions for the main effect. HW days beyond that
point will keep the value of 10. As explained in the manuscript, cities with maximum duration less
than 10 days may contribute only to a subset of parameters of the two functions, strata and quadratic
B-spline.



Sensitivity analysis

S2 Sensitivity analysis

The robustness of the results to the various choices adopted in our modelling approach was tested
through a sensitivity analysis. The main results obtained by varying the parameter of the functions
gj, s and w in model (S1.1) are reported in the paper. Here we provide additional sensitivity analyses
on the choices regarding the function f of consecutive HW days, evaluating graphically the differences
for Figure 1 in the main text.

In particular:

e 13 days: extending the maximum HW consecutive days to 13.

e only 10 days: restricting the analysis to the subsample of cities showing HW periods of at least
10 days (49 cities).

e 98™: using the 98" percentile as a cut-off to define consecutive HW days.

e REML: using restricted maximum likelihood as estimation procedure for multivariate meta-
analysis.

The results are summarized in Figure S1.

The shape of the curve obtained by the original model in the main text does not seem to be strongly
influenced by the changes listed above. Increasing the maximum number of consecutive HW days to
13 only slightly postpones the peak in risk. This result suggests that the risk is not confined to the
first 10 IW days, but that additional effects can be associated to longer IW periods. Furthermore,
this might be compensated by some harvesting effect at longer lags, as previously pointed out (Hertel
et al., 2009; Kaiser et al., 2007; Le Tertre et al., 2006). The subsample of cities with maximum HW
length of at least 10 days shows approximately the same relationship, indicating that the results are
robust to city selection up to this point. Anyway, only a limited number of cities actually shows very
long HW’s, and this selection precludes the generalizability of the results beyond this HW length.
Applying a more stringent definition for consecutive HW days based on the 98" percentile reveals a
similar effect, but starting earlier within the IIW periods. The results are robust to the estimation
method selected for the multivariate meta-analysis, as expected given the large sample of cities.

The R and Stata code of the main analysis is included in Section S4. The reader is free to perform
further sensitivity checks changing the code directly.
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Residual and correlation analysis

S3 Residual and correlation analysis

In this Section we provide an analysis restricted to the city of Chicago, where two important HWs
occurred in August 1988 and, particularly infamous, in July 1995. The results showed here are com-
puted from the model where the added effect is specified with a continuous measure of consecutive
HW days, defined using the 97" percentile and 2 days of minimum duration.

The correlation between mean temperature and HW terms is not very high, as in the rest of the
NMMAPS cities. The coefficient r is 0.39 using the simple HW indicator and 0.33 for consecutive HW
days. Figure S2 illustrates the temperature distribution in HW and non-HW days. The plot shows a
substantial overlap between the two distributions, due to the fact that HW days are defined not just in

terms of temperature but also of duration, thus explaining the low correlation with the HW indicator.

Figure S2: Temperature distribution in HW and non-HW days
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The analysis of standardized residuals suggests a good fit in general of the model, as illustrated in
Figure S3. However, it is possible to detect 2 outliers, corresponding to 2 days in July 1995 (
predicted) and August 1988 (over predicted).

More specifically, as depicted in Figure S4, the model predicts the mortality quite well: in periods

identified as HW days, the average observed-predicted number of deaths are 122.4-122.6 (12ht-18ht of
August 1988) and 261.3-242.2 (13"-16M of July 1995).

under



R and Stata code

Figure S3: Distribution, Q-Q plot and series of standardized residuals
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Figure S4: Observed and predicted mortality during August 1988 and July 1995
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S4 R and Stata code

R and Stata code to reproduce the main results of the analysis are included below. The first part
of the R code (Section S4.1) performs the first-stage (city-level) model and store the results in a file
readable from Stata, saved in the current directory. The Stata code (Section S4.2) then runs the
multivariate meta-analysis and store the results in other Stata files. Finally, the second part of the R
code (Section S4.3) imports the estimates back to R and produces the results for the first and second
analysis reported in the paper.

Additional information on the specific analytical steps are provided as comments within the code. The
reader should pay attention to run the code in the order explained above.



S4.1 R code (first part) R and Stata code

S4.1 R code (first part)

require(dlnm) ;require(Epi) ;require(tsModel)

require (NMMAPSlite) ;require(metafor) ;require(foreign)

# FUNCTION TO CREATE AN HEAT WAVE INDICATOR FOR A TEMPERATURE SERIES
# BASED ON THE THRESHOLD AND THE DURATION, BY GROUPS
fun.hw.thr <- function(x,thr,dur,group=NULL) {
as.numeric (apply (Lag(x>=thr,0: (dur-1), group=group) ,
1,sum,na.rm=T)>(dur-1))

# INITIALIZE THE DATASET
initDB()

cities <- listCities()

# CREATE THE MATRICES TO STORE THE RESULTS

# DESCRIPTIVE STATS

descr.tmean <- matrix(NA,length(cities),7, dimnames=list(cities,
names (summary (c(1:10,NA)))))

hw.N <- matrix(NA,length(cities),6, dimnames=list(cities,
paste("hw",rep(c(2,4),each=3),rep(c(97,98,99),2),sep=".")))

hw.cons <- matrix(NA,length(cities),4, dimnames=list(cities,
c(UNY, "Max!, 1>3W NSTUY) )

# REGRESSION MODELS

main.eff <- added.eff <- matrix(NA,length(cities),12,
dimnames=1list(cities,paste("hw",rep(c(2,4),each=6),rep(c(97,98,99),
each=2),c("est","sd"),sep=".")))

strata.eff <- matrix(NA,length(cities),5,dimnames=1list(cities,1:5))

strata.vcov <- vector("list",length(cities)) ; names(strata.vcov) <- cities

quad.eff <- strata.eff

quad.vcov <- strata.vcov

# MEAN SUMMER TEMPERATURE

meantemp <- 0

AR R R

# START THE LOOP FOR CITIES
time <- proc.time()



S4.1 R code (first part) R and Stata code

for(i in seq(length(cities))) {

# LOAD AND PREPARE DATASET

datatot <- readCity(cities[i], collapseAge = T)

datatot$tmean <- (datatot$tmpd-32)*5/9

datatot$time <- 1:nrow(datatot)

datatot$year <- as.numeric(substr(datatot$date,1,4))
datatot$month <- as.numeric(substr(datatot$date,6,7))

datatot$doy <- sequence(tapply(datatot$year,datatot$year,length))
datatot$dp0l <- filter(datatot$dptp,c(1,1)/2,side=1)

percentiles <- quantile(datatot$tmean,c(75,97:99)/100,na.rm=T)
data <- datatot[datatot$month’in%6:9,]

# SAVE DESCRIPTIVE STATISTICS FOR TEMPERATURE
descr.tmean[i,1:6] <- summary(data$tmean) [1:6]
descr.tmean[i,7] <- sum(is.na(data$tmean))

meantemp[i] <- mean(data$tmean,na.rm=T)

# CREATE THE CROSSBASIS FOR THE MAIN TEMPERATURE-MORTALITY RELATIONSHIP
# CENTERED ON 75TH PERCENTILE, REFERENCE VALUE FOR PREDICTED EFFECTS
range <- round(range(data$tmean,na.rm=T),0)

ktemp <- range[1] + (range[2]-range[1])/4%1:3

basis <- crossbasis(data$tmean,group=data$year,vartype="bs",vardegree=3,

varknots=ktemp,lagdf=5,maxlag=10,cenvalue=percentiles[1])

IR R R R
# FIRST ANALYSIS: INDICATOR FOR DIFFERENT HW DEFINITIONS
AR R

# HW DEFINITIONS
hw.def <- cbind(rep(percentiles[2:4],2),rep(c(2,4),c(3,3)))

# RUN THE MODEL FOR EACH DEFINITION
for(k in 1:nrow(hw.def)) {

# CREATE HEATWAVE INDICATOR FOR THE SPECIFIC HW DEFINITION

hw <- fun.hw.thr(data$tmean,hw.def[k,l],hw.def[k,2],data$year)
hw.N[i,k] <- sum(hw)

# RUN THE MODEL



S4.1 R code (first part)

R and Stata code

model.first <- glm(death ~ hw + basis + dow + ns(year,3) +
ns(doy,df=4) + ns(dp0O1,df=3), family=quasipoisson(), data)
# SAVE MAIN EFFECT
if (sum(hw)>0) {
tmedian <- median(data$tmean[hw==1],na.rm=T)
pred <- crosspred(basis,model.first,
at=c((range[1]+1): (range[2]-1),tmedian))
main.eff[i,c(k*2-1,k*2)] <- cbind(pred$allfit,
pred$allse) [as.character(tmedian),]
} else main.eff[i,c(k*2-1,k*2)] <- c(NA,NA)
# SAVE ADDED EFFECT
added.eff [i,c(k*2-1,k*2)] <- ci.lin(model.first) ["hw",1:2]

HHHHHBH AR HARARAHA R H R R
# SECOND ANALYSIS: STRATA AND QUAD SPLINE OF CONSECUTIVE HW DAYS
R

# CREATE HEATWAVE INDICATOR AND CONSECUTIVE TERM (97TH PERCENTILE)
hw <- fun.hw.thr(data$tmean,percentiles[2],2,data$year)
# CREATE HW CONSECUTIVE DAYS (UP TO 10 DAYS)
hw.lin <- hw
for(j din 2:10) {

hw.lin[apply(Lag(hw,0: (j-1),group=data$year),

1,sum,na.rm=T)==j] <- j

}
# SAVE STATS ON CONSECUTIVE HW DAYS

hw.cons[i,] <- c(sum(hw),max(hw.lin),sum(hw.1lin>3),sum(hw.1in>7))

# CREATE THE STRATA OF CONSECUTIVE HW DAYS

strata <- mkbasis(c(1:10,hw.lin),type="strata",
knots=c(1,2,4,6,8))$basis[-(1:10),]

# RUN THE MODEL

model.strata <- glm(death ~ basis + strata + dow +
ns(dp01,df=3) + ns(year,3) + ns(doy,df=4),
family=quasipoisson(), data)

# SAVE THE RELATED COEF AND VCOV (INCLUDING MISSING)

indexl <- grep("strata",names(coef (model.strata)))

index2 <- (1:length(coef (model.strata))) [is.na(coef (model.strata))]
index <- index1[!index1%in%index2]

10



S1.1 R code (first part)

R and Stata code

strata.eff[i, !index1in%index2] <- ci.lin(model.strata) [index,1]
strata.vcov[[i]] <- matrix(NA,length(index1),length(index1))
strata.vcov[[i]] [!index1%in%index2, !index1%in%index2] <-

vcov(model .strata) [index, index]

# CREATE THE SPLINE OF CONSECUTIVE HW DAYS
quad <- bs(hw.lin,knots=c(2,5,8),Bound=c(0,10),degree=2)
# RUN THE MODEL
model.quad <- glm(death ~ basis + quad + dow + ns(dp01,df=3) +
ns(year,3) + ns(doy,df=4),family=quasipoisson(), data)
# SAVE THE RELATED COEF AND VCOV (INCLUDING MISSING)
index1 <- grep("quad",names (coef (model.quad)))
index2 <- (1:length(coef (model.quad)))[is.na(coef (model.quad))]
index <- index1[!index1%in’index2]
quad.eff[i,!index1%in%index2] <- ci.lin(model.quad) [index,1]
quad.vcov[[i]l] <- matrix(NA,length(index1),length(index1))
quad.vcov[[i]] [!index1%in%index2, !index1%in%index2] <-
vcov (model.quad) [index, index]
}

proc.time()-time
# TAKES APPROXIMATELY 5-6 MIN IN A 2GHz LAPTOP

it HF AR
# TO STATA
HHHHHHHHHHRHRY

index <- cbind(rep(1:5,5),rep(1:5,each=5))

names <- c(paste("b",1:5,sep="_"),
paste("V",rep(1:5,5),rep(1:5,each=5),sep="_"))

templ <- temp2 <- matrix(0,length(cities),length(names))

for(i in 1:length(cities)) {
tempi[i,] <- c(strata.eff[i,],strata.vcov[[i]] [index])
temp2[i,] <- c(quad.eff[i,],quad.vcov[[i]] [index])

colnames (templ) <- colnames(temp2) <- names

library(foreign)
write.dta(as.data.frame(templ),"strata.dta")
write.dta(as.data.frame(temp2),"quad.dta")

11
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R and Stata code

S4.2 Stata code

¥ed M.t

set more off

* QUAD MM

use quad, clear
mvmeta b V, mm bscov
matrix b = e(b)
matrix V = e(V)
clear

svmat b

svmat V

save quad_mm, replace

* STRATA MM

use strata, clear
mvmeta b V, mm bscov
matrix b = e(b)
matrix V = e(V)
clear

svmat b

svmat V

save strata_mm, replace

S4.3 R code (second part)

H#HHHHH R AR

# FROM STATA (STATA CODE SHOULD HAVE BEEN RUN)
HHH R RS

quad.pool.est <- as.matrix(read.dta("quad_mm.dta")[1,1:5])
quad.pool.vcov <- as.matrix(read.dta("quad_mm.dta")[1:5,6:10])
strata.pool.est <- as.matrix(read.dta("strata_mm.dta")[1,1:5])

strata.pool.vcov <- as.matrix(read.dta("strata_mm.dta")[1:5,6:10])
#H#HAHSH B HARBRRBR GRS RG R G B R LR B

# RESULTS: DESCRIPTIVE STATISTICS
HHAHHH R 3

12
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R and Stata code

# SUMMARY FOR TMEAN

summary (descr.tmean[,c("Mean","NA’s")])

# TOTAL NUMBER OF HW DAYS UNDER DIFFERENT HW DEFINITIONS

summary (hw.N)

# CONSECUTIVE HW DAYS (WITH 97TH PERCENTILE)

# % OF CITIES WITH MAX LENGTH >7 AND >9
sum(hw.cons [, "Max"]1>6) /nrow(hw.cons)*100
sum(hw.cons [, "Max"]>9) /nrow(hw. cons) *100

# % OF CONSECUTIVE HW DAYS ABOVE 3 AND 7

colSums (hw.cons[,c(">3",">7")])/sum(hw.cons[,"N"])*100

I
# RESULTS: FIRST ANALYSIS
H R

label <- paste("hw",rep(c(2,4),each=3),rep(c(97,98,99),2),sep=".")
tablel <- matrix(NA,6,7,dimnames=1list(label,
c("N comm","Est.main","95%CI.main","P-het.added","Est.added",
"95%CI.added", "P-het.added")))

for (i in:1:6) ¢

# SET TO MISSING IF NO ESTIMATE FOR ADDED EFFECT
added.eff[added.eff[,2*i]==0,c(2*i-1,2*%i)] <- NA
main.eff[is.na(added.eff[,2%i]),c(2%i-1,2%i)] <- NA

# RUN THE META-ANALYSIS
pool.main <- rma.uni(yi=main.eff[,2*i-1],sei=main.eff[,2*i])

pool.added <- rma.uni(yi=added.eff[,2*i-1],sei=added.eff[,2*i])
# FILL TABLE1

tablel[i,] <- c(sum(!is.na(added.eff[,2xi-11)),
round (exp(pool.main$b)*100-100,1),
paste(round (exp(pool.main$b-1.96*pool.main$se)*100-100,1),"to",

round (exp(pool .main$b+1.96%pool .main$se)*100-100,1)),
round(pool.main$QEp,3),

round (exp(pool.added$b) *100-100,1),
paste(round (exp(pool.added$b-1.96*pool .added$se)*100-100,1) , "to",

13



S4.3 R code (second part)

R and Stata code

round (exp(pool.added$b+1.96%pool.added$se)*100-100,1)),
round (pool.added$QEp,3))

# TABLE 1 IN THE MANUSCRIPT
tablel

HHHHHEE R R
# RESULTS: SECOND ANALYSIS
HEH# R R

# CREATE THE BASIS VARIABLES FOR PREDICTION

x <- 0:100/10

x.quad <- bs(x,knots=c(2,5,8),degree=2,Bound=c(0,10))

x.strata <- mkbasis(0:20/2,type="strata",knots=c(1,2,4,6,8))$basis

# PLOT
quad.plot <- cbind(x.quad’*%t(quad.pool.est),
sqrt(diag(x.quad’%*%quad.pool.vcovi*%t (x.quad))))

plot (x,exp(quad.plot([,1]),type="n",ylim=c(0.95,1.10),yaxt="n",
ylab="Percent change %",
xlab="Number of consecutive HW days",frame.plot=F)
axis(2,labels=-1:2%5,at=0.95+0:3%0.05)
polygon(c(x,rev(x)),c(exp(quad.plot[,1]+1.96%quad.plot[,2]),

rev(exp(quad.plot[,1]-1.96*quad.plot[,2]))),border=NA,col=grey(0.9))
abline (h=1)

lines(x,exp(quad.plot[,1]))
strata.plot <- cbind(x.stratal*)t(strata.pool.est),

sqrt (diag(x.strata)*’strata.pool.vcov/*/t (x.strata))))
lines(0:20/2,exp(strata.plot[,1]),type="S",1lty=2)

14
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Chapter 12

Final comments

In this final chapter I provide some conclusive comments about my research on statistical methods
for investigating the association between temperature and human health. In the first Section 12.1,
[ anticipate the potential future development of the two statistical frameworks of distributed lag
non-linear models and multivariate meta-analysis, within and beyond the field of temperature-health

studies. A final discussion is then provided in Section 12.2.

12.1 Future developments

During my PhD project and in drafting the publications included in Part II, I have attempted to pro-
vide a comprehensive methodological description, and software implementation, of the two statistical
frameworks. However, the research on the two techniques is far from being concluded, and several
potential extensions, already been planned, will be hopefully carried out soon.

These future developments are firstly stimulated by the need to improve further the analytical ap-
proaches to study the health effects of temperature. However, in the related research papers in Chap-
ters 5-6 and 9, I deliberately provided a very general and wide-ranging definition of distributed lag

non-linear models and multivariate meta-analysis for multi-parameter associations, respectively. De-
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spite the specific example applications, the two methodologies are illustrated as general statistical

tools, and are potentially applicable in different study designs and research fields.

Extension of distributed lag non-linear models

Within future research on DLNMs, relevant problems which need to be addressed are model selection
and the related issue of optimal degree of smoothing. As thoroughly discussed in the related publi-
cations, several alternative modelling choices are available in order to describe non-linear and delayed
effects. These choices refer to the use of different functions in the two dimensions of predictor and lags
and, for continuous functions such as splines, to the degree of smoothing. Given that DLNMs may
be simply considered as standard regression models involving a complex lag parameterization, tradi-
tional selection criteria, like the Akaike and Bayesian-type information criteria suggested in Gasparrini
et al. (2010), are already available. The three-dimensional structure of the models, however, implies
additional complexities which require further research.

As already discussed (Gasparrini, 2011; Gasparrini et al., 2010), the DLNM framework has been devel-
oped so far using a completely parametric approach. In models using spline functions, the flexibility
and smoothness of the effect surface is only determined by the number and position of knots. A
straightforward extension would involve the use of penalized regression with low-rank smoothers, ex-
ploiting the ongoing research on semi-parametric approaches (Ruppert et al., 2003; Wood, 2006) and
tensor product smoothing (Eilers et al., 2006).

Beside these purely statistical advancements, the main development of DLNMs is focused on extend-
ing the method beyond the specific applications in temperature-health studies or more generally in
environmental time series. Actually, the basic definition of these models is easily generalizable, both
conceptually and algebraically, and also applies to different data structures and study designs. 1
have already exploited the framework to model delayed effects and latency in case-control, cohort and
longitudinal data. The extension of the framework sounds feasible and promising.

I also plan to implement all the extensions of the methodology illustrated above in the dinm package.
Some efforts is being made to promote the use of the software among applied researches in different

fields, and to propose it as a general tool for investigating associations with delayed effects.
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Research on multivariate meta-analysis

Multivariate meta-analytic techniques have been the object of an intense research in the last few years
(Jackson et al., 2011). The main interest still lies in the original application for multiple outcomes in
randomized controlled trials, although its use for describing multi-parameter associations is closely re-
lated. Among current research topics, the further development of tests and statistics for heterogencity,
and the critical comparison of the relative performance of different estimation methods are of partic-
ular importance. It is worth mentioning that multivariate meta-analysis and meta-regression may be
specified as linear mixed models, and that the wide research on this framework may be exploited in
this particular setting.

Regarding the application in multi-parameter associations within a two-stage design, methodological
problems and research directions have already been discussed in the research paper included in Chap-
ter 9. Among other issues, a topic which deserves further research is the problem of dimensionality.
As the number of outcomes increases, the specification of the model becomes computationally prob-
lematic, in particular regarding the complexity of the between-study (co)variance matrix. A possible
solution is to specity simpler structures for the matrix, defined on a limited number of (co)variance
components, together with robust estimation of the standard errors for the fixed effects in the model.
However, this approach requires further research.

I plan to extend the R package mvmeta accordingly. Although in the research paper in Chapter 9 this
software has been applied for describing multi-parameter associations in a two-stage analysis, my aim
is to provide a general tool for multivariate meta-analysis and meta-regression, applicable for different
research purposes. The availability of the software, together with implementations in alternative

statistical programs (White, 2009, 2011) will hopefully boost the application of the methodology among

applied researchers.

12.2 Conclusions

In Chapter 1, Section 1.1, I discussed how the health effects of temperature has been a matter of
growing concern in the last decade, particularly in relation with extreme weather events and with pre-

dicted climate change scenarios. Several epidemiological studies have been performed in order to define
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the association between temperature and human health. The results provided by these investigation
are important to characterize the physiological mechanisms involved, to assess the exposure-response
relationship, to identify vulnerable sub-groups and, in gencral, to deepen our knowledge on the epi-
demiology of temperature. This evidence is paramount to set up public health interventions and
policies, in order to prevent or mitigate the effects of current and future exposures.

The appropriateness of this research process is dependent on the availability of suitable statistical
methods, capable of providing reliable results on the association under study. However, as described
in Section 1.4, the analysis of temperature-health dependencies shows peculiar and additional complex-
ities, and traditional statistical tools for environmental time series, largely developed for assessing the
effect of air pollution, may turn out to be inadequate in this new context. The development of the two
methodologies of distributed lag non-linear models and multivariate meta-analysis for multi-parameter
associations provides some tools to improve the analytical approaches in this fields. In addition, the
implementation in a freely available statistical software facilitates the application of these methods
among applied researchers.

Although recently proposed and published, these statistical methods and related software seems to
represent a valid and useful tool for the research community. Even if an accurate literature review
has not been performed, I can name at least six publications by other research teams which applied
the DLNM methodology and used the dinm package for investigating temperature-health associations
(Barnett et al., 2010; Guo et al., 2011; Lin et al., 2011; Yu et al., 2011a,b,c). In addition, not surpris-
ingly, the framework has also been used for assessing the effects of air pollution (Barnett et al., 2011;
Guo et al., 2010a,b,c; Zhou et al., 2011) and for methodological research (Strand et al., 2011). This
is reassuring about the importance of the research I carried out within my PhD project, and a strong

motivation to develop it further in the future.
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