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OBJECTIVE—The metabolic syndrome (MetS) is defined as
concomitant disorders of lipid and glucose metabolism, central
obesity, and high blood pressure, with an increased risk of type 2

diabetes and cardiovascular disease. This study tests whether
common genetic variants with pleiotropic effects account for
some of the correlated architecture among five metabolic
phenotypes that define MetS.

RESEARCH DESIGN AND METHODS—Seven studies of the
STAMPEED consortium, comprising 22,161 participants of European
ancestry, underwent genome-wide association analyses of meta-
bolic traits using a panel of ;2.5 million imputed single nucleo-
tide polymorphisms (SNPs). Phenotypes were defined by the
National Cholesterol Education Program (NCEP) criteria for
MetS in pairwise combinations. Individuals exceeding the NCEP
thresholds for both traits of a pair were considered affected.

RESULTS—Twenty-nine common variants were associated
with MetS or a pair of traits. Variants in the genes LPL, CETP,
APOA5 (and its cluster), GCKR (and its cluster), LIPC, TRIB1,
LOC100128354/MTNR1B, ABCB11, and LOC100129150 were
further tested for their association with individual qualitative
and quantitative traits. None of the 16 top SNPs (one per gene)
associated simultaneously with more than two individual traits.
Of them 11 variants showed nominal associations with MetS per
se. The effects of 16 top SNPs on the quantitative traits were
relatively small, together explaining from ;9% of the variance
in triglycerides, 5.8% of high-density lipoprotein cholesterol,
3.6% of fasting glucose, and 1.4% of systolic blood pressure.

CONCLUSIONS—Qualitative and quantitative pleiotropic tests
on pairs of traits indicate that a small portion of the covariation in
these traits can be explained by the reported common genetic
variants. Diabetes 60:1329–1339, 2011

M
etabolic syndrome (MetS) is defined as a com-
bination of any three metabolic abnormalities,
including central obesity, dyslipidemia, insulin
resistance and/or glucose intolerance, and ele-

vated blood pressure. These abnormalities tend to cluster
in an individual and within families. Using the National
Cholesterol Education Program (NCEP) MetS definition,
the prevalence among adults in the U.S. was reported to be
23.8% in Caucasians, 21.6% in African Americans, and
31.9% in Mexican Americans (1,2) and 30.2% in adult Finns
40–65 years of age (3). MetS is associated with a higher
risk of type 2 diabetes and cardiovascular disease and
death (4–6). Because MetS risk factors have been reported
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to be heritable, we hypothesized that genes with pleiotro-
pic effects may be responsible for some of the clustering of
metabolic abnormalities observed in MetS.

MetS has been previously investigated using multivariate
analysis (7–9) and pairwise combinations of its components
(10,11). In an investigation of lipid traits, Kullo et al. (12)
concluded that pleiotropy (when a gene influences multiple
traits) contributes to the covariation among three lipid
traits, high-density lipoprotein cholesterol (HDLC), triglyc-
erides (TG), and low-density lipoprotein particle size,
supporting the hypothesis of genetic pleiotropy as a source
of correlation among metabolic traits (13). Although several
recent genome-wide association studies (GWAS) have been
carried out on MetS components individually (obesity/dys-
lipidemia/blood pressure [BP] or type 2 diabetes) in several
populations (14–21), it is unknown whether the identified
variants influence combinations of MetS components.

The current study leverages GWAS results from seven
studies participating in the single nucleotide polymorphisms
(SNP) Typing for Association with Multiple Phenotypes
from Existing Epidemiologic Data (STAMPEED) Consor-
tium. Using the NCEP thresholds for a series of five traits
including waist circumference (WC), fasting glucose (GLUC),
HDLC, TG, and BP, we created an affected status for all
pairwise combinations of traits in which individuals ex-
ceeding the threshold for both traits were considered af-
fected and all others were considered unaffected. By
performing association tests with these 10 binary traits, as
well as MetS per se, we sought to identify common genetic
variants that affect the correlated architecture of these
metabolic traits.

RESEARCH DESIGN AND METHODS

The STAMPEED Consortium, established in 2007, was sponsored by the Na-
tional Heart, Lung, and Blood Institute (NHLBI) and includes 13 independent
studies. In this report, we analyze a total of 22,161 participants of European
ancestry, originating from seven studies, in alphabetic order: the Atheroscle-
rotic Disease, Vascular function, and Genetic Epidemiology (ADVANCE) study
(cases and controls separately), the Atherosclerosis Risk in Communities Study
(ARIC) study, the Cardiovascular Health Study (CHS), the NHLBI Family Heart
Study (FHS), the Genetic Epidemiology Network of Arteriopathy (GENOA),
the Genetic Study of Aspirin Responsiveness (GeneSTAR), and the Northern
Finland Birth Cohort 1966 (NFBC). Additional information regarding the
characteristics of the original studies (regardless of any subsetting for GWAS
genotyping) is available in the Supplementary Data.

The NCEP defines thresholds for five metabolic traits: WC$102 cm for men
or WC $88 cm for women, HDLC ,40 mg/dL for men or HDLC ,50 mg/dL for
women, TG $150 mg/dL, GLUC $100 mg/dL, and BP threshold as one of the
three, systolic BP (SBP) or diastolic BP (DBP) $130/85 mmHg or antihyper-
tensive medication use. We defined 10 bivariate traits, HDLC-WC, HDLC-TG,
HDLC-GLUC, BP-HDLC, WC-TG, TG-GLUC, TG-BP, WC-GLUC, BP-GLUC, and
WC-BP, in which an individual was considered affected only if s/he exceeded
these thresholds for both traits in a pair, otherwise unaffected. For compari-
son, we also analyzed a MetS per se trait where affected subjects exceed the
specified threshold for three or more traits, of the five traits according to
NCEP criteria.

In each study, ;2.5 million SNPs were imputed based on the HapMap (of
European origin) CEU panel. Each study provided GWA results for 11 traits to
the Data Coordinating Center (Division of Statistical Genomics, Washington
University in Saint Louis, MO) for the meta-analysis. SNPs with R2-hat ,0.3
(for studies that imputed using MACH), proper info ,0.4 (IMPUTE), or vari-
ance ratio ,0.3 (BIMBAM), as well as those with study-specific minor allele
frequency ,5% were filtered out from meta-analysis. As a result, these per-
centages of imputed markers were used in the meta-analyses: ADVANCE
case, 81.4%; ADVANCE control, 81.2%; ARIC, 85.2%; CHS, 69.6%; FHS, 85.5%;
GeneSTAR, 79.4%; GENOA, 84.1%; and NFBC, 86.1%; representing ;2 million
SNPs for the combined analyses. Based on the Q-Q plots for GWAS results, all
studies demonstrated a reasonable compliance to the null expectation. A
homogeneity test for each SNP across studies is reported in Supplementary
Tables 1–6; the tests were not significant, indicating the data could be com-
bined for the meta-analysis.

Statistical methods. The 11 traits were tested for association with each SNP
assuming additive SNP effects: yij 5bo 1bkXijk 1 ∑s

c51 bcXijc 1 «ij , where the
trait yij is a function of bo, the intercept bk represents the k-th b coefficient
from the regression analysis on imputed dosage, evaluated for each SNP (k =
1, 2, ., m), bc is the coefficient for covariate effects (c = 1, 2, ., s); and «ij
represents the residual for subject j (j = 1, 2, ., nID) in pedigree i (i =1, .,
nPID). Individual studies used various software packages to carry out the
GWAS (specified in Supplementary Data). Model covariates included sex, age,
age2, and up to 10 genotypic principal components describing population
substructure in the model.

In preparation for meta-analyses, marker panels were aligned with dbSNP,
build 36.3 for allele orientation. A meta-analysis of the GWAS results was
conducted using a random coefficients model as proposed by DerSimonian and
Laird (Supplementary Ref. 18) implemented through the MIXED procedure of
SAS. This analysis returns combined estimates of the SNP b coefficients and
standard errors, as well as the overall significance level accounting for
the variance among estimates across studies. The homogeneity test is con-
ducted to assess whether the b coefficients are combinable across studies (i = 1
to k). This test statistic is Q ¼ ∑iwiðbi 2 �bwÞ2, where bi are b coefficients
across studies, and the b̂w ¼ ∑iwibi=∑iwi, where wi is inverse of the i-th
sampling variance. The Q statistic has an approximate x2 with k-1 degrees of
freedom.

We adopted a genome-wide significance criterion of P # 9.7*1028, corre-
sponding to a negative log10 P value of 7.01. This threshold corresponds to the
Bonferroni corrected level, by calculating the effective number of independent
comparisons after accounting for linkage disequilibrium (LD) among SNPs
(Supplementary Ref. 19). Post hoc analyses included investigation of the LD
structure in gene regions of interest using HaploView v. 4.2, with HapMap data
(v3 release 2/ v2 release 22) on subjects of European descent (CEU).

The top SNPs (that is, those meeting genome-wide significance, choosing
one SNP per gene with the smallest P value) identified by the meta-analyses
were tested in each study population for their association with each of the five
dichotomized traits: WC, HDLC, TG, GLUC, and BP. In addition, we carried
out a specific test of pleiotropy using the full range of variation in the relevant
quantitative traits. For subjects using lipid-lowering and/or antihypertensive
medications, we imputed untreated traits values based on the estimated av-
erage effect of medications from clinical trials, as follows: TG/(1 2 15.2/100);
HDLC/(1 + 6.1/100); and SBP + 14.8 mmHg (Supplementary Ref. 17). An ap-
propriate transformation of the quantitative traits to obtain a good approxi-
mation to normality was applied, as needed (e.g., all studies used ln TG). The
pleiotropy test on quantitative traits is a test of the simultaneous effect of the
SNP on both quantitative traits, while allowing for a residual correlation:
y12ij 5 b1ðSNPjk � y1ijÞ1 b2ðSNPjk � y2ijÞ1 «12ij , where y12ij represents a
combined vector of traits 1 and 2 for each observation of subject j in family
i (if families are present in the data); y1ij and y2ij each represent indicators
of 1 s and 0 s if y12ij belong to trait 1 or 2, respectively. The b1 and b2
estimates represent the additive contributions of k-th SNP on traits 1 and 2,
respectively. We tested the null hypothesis H0: b1 ¼ 0 and b2 ¼ 0 versus its
alternative H1: b1�0 and b2�0 with degrees of freedom equal to the number
of subjects minus 2. In the family-based studies, subjects were nested
within their corresponding pedigree and were considered statistically as
repeated units. The tests were implemented with the MIXED procedure of
SAS, v. 9.2. All the P values from each study were meta-analyzed.

For all studies, informed consent was obtained from all subjects and ap-
proval was granted by participating institutional review boards.

RESULTS

The sample characteristics for the subjects with both valid
phenotype and genotype information in each respective
study are shown in Table 1. The study populations showed
large variation in the prevalence of MetS from 9% in the
NFBC sample to 55% in GENOA, in part, reflecting differ-
ent ascertainment strategies and age ranges represented in
each study; the average age ranged from 31 years in the
NFBC 1966 study to 73 years in the CHS study (Table 1).
Of the five MetS components, TG and HDLC had the
strongest average correlation of any combination of traits
(Supplementary Fig. 1).

SNPs in or near 15 genes were significantly associated
with at least one of the 11 traits studied (Fig. 1 and Table 2
and details in Supplementary Tables 1–6). MetS per se was
associated with several variants in genes including BUD13
(BUD13 homolog [S. cerevisiae], rs10790162, P = 5.4E-09),

VARIANTS INFLUENCING CORRELATED MetS ARCHITECTURE

1330 DIABETES, VOL. 60, APRIL 2011 diabetes.diabetesjournals.org



ZNF259 (zinc finger protein 259, rs2075290, P = 2.1E-09),
and APOA5 (apolipoprotein A-V, rs2266788, P = 1.9E-09),
all of which map within the APOA-cluster on chromosome
11 (11q23.3-q23, Supplementary Fig. 2). In addition, var-
iants in LPL (lipoprotein lipase, 8p22, rs295, P = 1.7E-09)
and CETP (cholesteryl ester transfer protein, plasma,
16q21, rs173539, P = 9.1E-09) were found associated with
MetS. Specifically, variants in LPL were associated with
BP-HDLC (rs1441756, P = 2.7E-08), TG-BP (rs15285, P =
1.3E-10), TG-GLUC (rs2197089, P = 1.6E-09), HDLC-TG
(rs13702, P = 1.0E-16), and HDLC-WC (rs301, P = 3.2E-11).
CETP variants were also significantly associated with
BP-HDLC (rs3764261, P = 3.3E-13), HDLC-GLUC
(rs9939224, P = 6.9E-12), HDLC-TG (rs173539, P = 4.5E-16),
and HDLC-WC (rs173539, P = 1.0E-16), and variants in the
gene APOA-cluster (APOA5, BUD13, and ZNF259) were
significantly associated with TG-BP, TG-GLUC, HDLC-TG,
and WC-TG (Table 2).

The GCKR-cluster of genes on chromosome 2p23–2p23.3
(Supplementary Fig. 3), including GCKR (glucokinase
[hexokinase 4] regulator, 2p23), ZNF512 (zinc finger pro-
tein 512, 2p23), CCDC121 (coiled-coil domain containing

121, 2p23.3), and C2orf16 (chromosome 2 open reading
frame 16, 2p23.3), were, respectively, significantly asso-
ciated with WC-TG (rs780093, P = 1.9E-12; rs13022873,
P = 5.0E-09; rs3749147, P = 1.4E-09; and rs1919128, P =
2.0E-09) and also with TG-BP (rs780093, P = 3.0E-10) for
GCKR gene. For a specific genotype in the GCKR variant
studied, the genetic additive effects were inversely asso-
ciated between TG and GLUC.

Additional variants were significantly associated with
several binary traits, even if not with MetS. A total of 27
unique variants in 16 genes associated to some bivariate
combinations of the five metabolic traits. Variants within
LIPC (lipase hepatic, 15q21-q23) associated with HDLC-
GLUC, (rs2043085, P = 1.3E-08) and with WC-HDLC
(rs10468017, P = 5.5E-08); ABCB11 (ATP-binding cas-
sette, subfamily B [MDR/TAP], member 11, 2q24) associ-
ated with HDLC-GLUC (rs569805, P = 8.5E-08); TRIB1
(tribbles homolog 1 [Drosophila], 8q24.13) variants were
associated, respectively, with HDLC-TG (rs2954026, P =
7.9E-09) and TG-BP (rs2954033, P = 8.5E-09); and TFAP2B
(transcription factor AP-2 b [activating enhancer bind-
ing protein 2 b], 6p12) was associated at a borderline

TABLE 1
Characteristics of the participants included in genome-wide association analyses (with both nonmissing genotype and phenotype
data)

Sample characteristic

ADVANCE
control

(up to 311)

ADVANCE
cases

(up to 275)
ARIC

(up to 8,127)
CHS

(up to 3,262)
FHS

(up to 2,432)
GeneSTAR
(up to 1,789)

GENOA
(up to 1,208)

NFBC
(up to 4,757)

% Females 59 59 53 61 55 52 55 52
% Diabetic* 2.5 27 8 12 5 9 10 1
% Smoking† 32.8 63.3 25 11 29 23 14 30
Age (years)
Men 40 6 3 42 6 4 55 6 6 73 6 6 50 6 13 47 6 13 56 6 11 31 6 1
Women 48 6 5 52 6 4 54 6 6 72 6 5 51 6 13 47 6 13 55 6 11 31 6 1

BMI (kg/m2)
Men 27 6 5 31 6 6 27 6 4 26 6 4 28 6 4 29 6 5 30 6 5 25 6 4
Women 26 6 6 31 6 8 27 6 6 26 6 5 27 6 6 29 6 7 31 6 7 24 6 5

Waist circumference (cm)
Men 93 6 12 102 6 14 100 6 10 98 6 10 100 6 12 101 6 14 104 6 12 89 6 10
Women 79 6 13 94 6 19 93 6 15 90 6 14 94 6 16 94 6 17 96 6 17 79 6 12

HDL cholesterol (mg/dL)
Men 44 6 11 40 6 10 43 6 12 48 6 13 43 6 11 45 6 13 45 6 13 55 6 13
Women 62 6 14 51 6 16 57 6 17 60 6 16 56 6 15 57 6 15 57 6 17 66 6 15

Triglycerides (mg/dL)
Men 151 6 224 184 6 165 147 6 100 138 6 78 163 6 113 160 6 97 194 6 107 119 6 75
Women 97 6 69 162 6 145 128 6 81 141 6 74 138 6 87 133 6 79 188 6 102 94 6 52

Fasting glucose (mg/dL)
Men 86 6 11 104 6 43 107 6 27 111 6 31 102 6 29 99 6 27 103 6 32 93 6 11
Women 88 6 11 95 6 18 102 6 28 105 6 27 95 6 22 92 6 21 96 6 27 88 6 11

SBP (mmHg)
Men 117 6 11 114 6 12 120 6 16 135 6 21 119 6 15 126 6 16 134 6 17 130 6 13
Women 109 6 13 118 6 20 117 6 18 135 6 21 114 6 18 121 6 17 132 6 17 120 6 12

DBP (mmHg)
Men 78 6 10 73 6 10 74 6 10 72 6 11 72 6 9 80 6 11 81 6 10 80 6 11
Women 70 6 9 70 6 10 70 6 10 69 6 11 67 6 10 76 6 10 77 6 9 75 6 11

% Antihyperlipidemic
meds. use 4 81 3 4 10 15 17 0

% Antihypertensive
meds. use 7 84 20 35 3 22 65 0.6

% Antiglycemic
meds. use‡ 1.3 24 3.2 5 0.2 4.3 6.9 0.6

MetS prevalence (%) 13.7 55.2 37.3 41.7 29.7 34.3 55.4 9.1

Values are means 6 SD for each quantitative variable and where available split by male/female grouping. Meds., medication. *Definition of
type 2 diabetes: fasting blood glucose .126 mg/dL or antiglycemic medication use. †Smoking: current smoking. ‡Antiglycemic meds. use: oral
hypoglycemic agents or insulin.
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significance level with WC-GLUC (rs2206277, P = 1.3E-
07). Two SNPs located between LOC100128354 (similar
to small nuclear ribonucleoprotein polypeptide G, 11q21)
and MTNR1B (melatonin receptor 1B) were significantly
associated with BP-GLUC (rs1387153, P = 8.1E-09), with
HDLC-GLUC (rs1387153, P = 2.4E-09), and with TG-GLUC
(rs10830956, P = 4.8E-11) (Supplementary Fig. 4). In ad-
dition, rs439401 of LOC100129500 (protein coding hy-
pothetical LOC100129500, 19q13.2) was associated with
HDLC-TG (P = 1.0E-08), and LOC100129150 (protein coding
LP5624) variants with HDLC-TG (rs9987289, P = 1.1E-08)
and HDLC-WC (rs9987289, P = 3.7E-08) (Fig. 1, Table 2,
and details in Supplementary Tables 1–6).

Twenty-nine unique SNPs in association with binary
traits and MetS per se were further tested with each of the
individual dichotomized traits WC, HDLC, TG, GLUC, and
BP (Fig. 2). None of the SNPs demonstrated a significant
(P , 0.05) association with three or more traits and none
of them with BP, even though some of the SNPs were in
fact identified based on their association with MetS. Thus
individual dichotomized trait associations do not neces-
sarily reflect what one can discover with the combination

of traits. Several variants were associated with two individual
dichotomized traits: rs2266788 of APOA5, rs2075290 of
ZNF259, rs11820589 of BUD13, and rs13702 of LPL as-
sociated with TG and HDLC and rs780093 of GCKR with
TG and GLUC. We chose a single SNP with the strongest
significance per gene to follow-up with a formal test of
pleiotropy using the respective quantitative traits. Figure 3
shows a depiction of the pleiotropic relationships among
traits based on the meta-analysis results for the pleiotropy
test.

Finally, 11 of the top SNPs in 16 genes exhibited asso-
ciation P values with MetS meeting nominal significance
levels (meta P , 0.05) (Table 3). Somewhat surprisingly,
none of these was associated with fasting insulin levels
(results not shown). On average across studies, the top 16
SNPs together accounted for the following proportions of
the total variance for each trait: TG, 9%; HDLC, 5.8%;
GLUC, 3.6%; WC, 2.3%; and SBP, 1.4%. To gain some insight
as to the possible metabolic relationships among these
genes, we used the KEGG database (http://www.kegg.jp/)
to determine the pathways in which these genes partici-
pate. LPL and APOA5 are classified as part of hsa03320

FIG. 1. Genome-wide meta-analyses results. Arrow annotated loci represent genes that show significant associations with MetS and/or individual
binary bivariate traits. Each subgraph exemplifies results from a binary bivariate meta-analysis results or MetS meta-analysis. A dashed line in
each subgraph represents a significance threshold of negative log10 P value of 7.01 corresponding to a P value of 9.7*10

28
(see Supplementary Data).

A gene name in parentheses annotates a variant close to that particular gene. (A high-quality color representation of this figure is available in the
online issue.)
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(PPAR signaling) pathway, and LPL and LIPC are part of
hsa00561 (Glycerolipid metabolism). In addition, LPL was
classified in hsa05010 (Alzheimer’s disease) and LIPC is
a member of hsa01100 (Metabolic pathways); MTNR1B
is a member of hsa04080 (Neuroactive ligand receptor
interaction), and ABCB11 is classified as a member of
hsa02010 (ABC transporters) pathway. The rest of reported
genes are not classified in pathways at present.

DISCUSSION

We used GWAS of pairs of metabolic traits to discover
genetic determinants contributing to the correlated archi-
tecture of several metabolic traits that define MetS. Angers

and Biswas (22), who studied mathematical and statistical
aspects of bivariate trait combination versus univariate
ordinal categorical data, have shown that univariate anal-
ysis fails to detect features of the data found by the bi-
variate analysis. Therefore, this valid approach has the
potential to uncover novel determinants not detectable
with usual single phenotype-based analyses. Conversely, it
is possible that by bivariate subsampling this study iden-
tified top SNPs that may further reduce the association
power for any other subsample of three- or four- or five-
trait combinations.

A meta-analysis approach was used to augment the
power to detect such determinants. DerSimonian and
Laird’s method (Supplementary Ref. 18) has the considerable

TABLE 2
A summary of STAMPEED b-meta-analyses of the most significant results

Gene Variant Trait Ch Position Meta-b Meta-SE
Meta
P

Homog.
P value Coded Genotype

GCKR rs780093 TG-BP 2 27596107 0.18 0.03 3.0E-10 0.70 A A/G
GCKR rs780093 WC-TG 2 27596107 0.19 0.03 1.9E-12 0.64 A A/G
C2orf16 rs1919128 WC-TG 2 27655263 20.18 0.03 2.0E-09 0.82 A A/G
ZNF512 rs13022873 WC-TG 2 27669014 20.17 0.03 5.0E-09 0.47 A A/C
CCDC121 rs3749147 WC-TG 2 27705422 20.18 0.03 1.4E-09 0.79 C C/T
ABCB11 rs569805 HDLC-GLUC 2 169491126 0.16 0.03 8.5E-08 0.46 A A/T
TFAP2B rs2206277 WC-GLUC 6 50906485 0.17 0.03 1.3E-07 0.75 A A/G
(LOC100129150) rs9987289 HDLC-TG 8 9220768 0.25 0.04 1.1E-08 0.54 A A/G
(LOC100129150) rs9987289 HDLC-WC 8 9220768 0.24 0.04 3.7E-08 0.58 A A/G
LPL rs295 MetS 8 19860518 0.17 0.03 1.7E-09 0.47 A A/C
LPL rs301 HDLC-WC 8 19861214 20.22 0.03 3.2E-11 0.58 C C/T
LPL rs13702 HDLC-TG 8 19868772 0.29 0.03 1.0E-16 0.67 A A/G
LPL rs15285 TG-BP 8 19868947 20.27 0.04 1.3E-10 0.65 A A/G
(LPL) rs2197089 TG-GLUC 8 19870653 0.18 0.03 1.6E-09 1.00 C C/T
(LPL) rs1441756 BP-HDLC 8 19912666 20.18 0.03 2.7E-08 0.43 G G/T
(TRIB1) rs2954026 HDLC-TG 8 126553708 20.16 0.03 7.9E-09 0.46 G G/T
(TRIB1) rs2954033 TG-BP 8 126562928 0.17 0.03 8.5E-09 0.55 A A/G
(LOC100128354) rs1387153 BP-GLUC 11 92313476 20.19 0.03 8.1E-09 0.48 C C/T
(LOC100128354) rs1387153 HDLC-GLUC 11 92313476 20.21 0.03 2.4E-09 0.49 C C/T
(LOC100128354) rs10830956 TG-GLUC 11 92320661 20.20 0.03 4.8E-11 0.67 C C/T
BUD13 rs11825181 TG-BP 11 116131468 0.32 0.05 3.0E-09 0.98 A A/G
BUD13 rs11820589 TG-GLUC 11 116139072 0.32 0.06 5.5E-09 0.83 A A/G
BUD13 rs10790162 HDLC-TG 11 116144314 0.38 0.05 2.8E-15 0.44 A A/G
BUD13 rs10790162 MetS 11 116144314 0.25 0.04 5.4E-09 0.44 A A/G
BUD13 rs10790162 WC-TG 11 116144314 0.39 0.05 6.6E-16 0.79 A A/G
ZNF259 rs11823543 TG-BP 11 116154345 0.35 0.06 2.5E-09 1.00 A A/G
ZNF259 rs12286037 TG-GLUC 11 116157417 20.32 0.06 1.1E-08 0.86 C C/T
ZNF259 rs2075290 HDLC-TG 11 116158506 0.39 0.05 1.5E-14 0.39 C C/T
ZNF259 rs2075290 MetS 11 116158506 0.26 0.04 2.1E-09 0.64 C C/T
ZNF259 rs2075290 WC-TG 11 116158506 0.41 0.05 1.1E-16 0.94 C C/T
APOA5 rs2266788 HDLC-TG 11 116165896 0.39 0.05 4.6E-13 0.36 C C/T
APOA5 rs2266788 MetS 11 116165896 0.26 0.04 1.9E-09 0.66 C C/T
APOA5 rs2266788 TG-BP 11 116165896 0.37 0.07 3.5E-08 0.18 C C/T
APOA5 rs2266788 WC-TG 11 116165896 0.41 0.05 2.2E-16 0.92 A A/G
(LIPC) rs10468017 HDLC-WC 15 56465804 0.16 0.03 5.5E-08 0.47 C C/T
(LIPC) rs2043085 HDLC-GLUC 15 56468246 20.17 0.03 1.3E-08 0.83 A A/G
(CETP) rs173539 HDLC-TG 16 55545545 0.26 0.03 4.5E-16 0.61 C C/T
(CETP) rs173539 HDLC-WC 16 55545545 0.29 0.03 1.0E-16 0.65 C C/T
(CETP) rs173539 MetS 16 55545545 0.16 0.03 9.1E-09 0.41 C C/T
(CETP) rs3764261 BP-HDLC 16 55550825 0.29 0.04 3.3E-13 0.43 G G/T
CETP rs9939224 HDLC-GLUC 16 55560233 20.31 0.05 6.9E-12 0.46 G G/T
LOC100129500 rs439401 HDLC-TG 19 50106291 0.24 0.04 1.0E-08 0.44 C C/T

Ch, chromosome number; position, position in base pairs; gene-hugo name, gene name is shown in parentheses when a SNP is near a location
of the gene; meta-b, meta-b coefficient; meta-SE, meta-analysis b coefficients SE; homog. P value, a P value from a test of homogeneity of b
coefficients, which has a high bound to one when all b coefficients included in the b-meta-analysis are very similar and is significant (less than
0.05) when coefficients among studies differ drastically; coded, the allele that was considered as coded allele for combining data of different
studies accounting for b coefficient direction.
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advantage of dynamically accounting for study differences
by including the variance of the SNP-wise b parameter
estimates in the calculation of the meta-analysis P value.
This is particularly valuable in the context of the present
analysis, with the variety of ascertainment strategies and
ages across individual studies.

We identified 29 unique variants in or near 15 genes
associated with binary pairwise traits or with MetS per
se at the genome-wide significance level (P , 9.7 3 1028),
and an additional one at borderline significance. In-
terestingly, all but two of these results included a lipid
abnormality, suggesting that genetic effects on lipid levels
are more pronounced than for other traits. However, this
observation is also consistent with the proposal of McGarry
(23) that dyslipidemia is a fundamental component in the
development of MetS. Moreover, the predominant pleio-
tropic pattern was for HDLC and TG, consistent with their
well-known inverse correlation (Supplementary Fig. 1). The
most influential variants in the correlation among traits
were in or near LPL, CETP, APOA5, ZNF259, BUD13,
TRIB1, LOC100129500, and LOC100128154 (Table 2).
Genes with variants influencing MetS per se included LPL,

CETP, and the APOA-cluster (APOA5, ZNF259, and
BUD13), which are known to play an important role in lipid
metabolism (24–37).

Variants in LPL were significantly associated with MetS
and also with binary traits HDLC-BP, TG-BP, TG-GLUC,
TG-HDLC, and WC-HDLC. LPL encodes lipoprotein lipase,
which hydrolyzes TG in circulating very low-density lipo-
protein cholesterol and chylomicrons, providing free
fatty acids and monoacylglycerol for utilization by the
surrounding target tissues, particularly in skeletal and
cardiac muscle and adipose tissue. Previously LPL var-
iants have been associated with individual components
of the MetS (14,24,25), as well as with insulin resistance
(26) and CHD (27). Our results indicate that LPL has
pleiotropic effects on TG and HDLC validated by pleiotropy
tests on the quantitative traits (Fig. 3). In Supplementary
Fig. 5 we have simulated TG distributions for each study,
based on the number of subjects, mean, and standard
deviations of TG reported from each study. The LPL vari-
ant rs13702 (39 UTR) had the lowest P value in the asso-
ciation tests within LPL gene, and the prevalent genotype
(‘AA’) was associated with increased levels of TG and

FIG. 2. Top significant SNPs from meta-analyses of MetS and bivariate traits associations, tested now for their association with dichotomized risk
traits (WC, HDLC, TG, GLUC, and BP) as defined in the MetS NCEP definition. The results shown in the graph are the sample weighted mean of
negative log10 P values (blue bars) per trait association, for all studies combined. On the top of blue bars (mean) added are the corresponding
standard errors (red bars) of these negative log10 P values. The minimal threshold of negative log10 (0.05) P value is shown with a vertical red
dashed line. A gene name in parentheses means the corresponding SNP is located in a region near the gene. (A high-quality color representation of
this figure is available in the online issue.)
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lower levels of HDLC. We provide detailed directions of
association tests for each study in Supplementary Tables
1–6.

CETP is an independent gene that enables the transfer
of cholesteryl esters in HDLC toward TG-rich lipoproteins,
thereby contributing to lower HDLC. Variants of CETP
were significantly associated with MetS, TG-HDLC, HDLC-
GLUC, HDLC-BP, and WC-HDLC. Variants in CETP have
been associated with HDLC levels (28,29). In our study
rs9939224 ‘TT’ rare genotype was associated with higher
TG and lower HDLC levels. Although CETP genotypes
have been reported extensively in association with CVD,
its exact role in disease pathogenesis is unclear (30).

APOA5 is a member of the cluster of genes APOA1–C3–
A4–A5, located on 11q23. APOA5 encodes for apolipo-
protein A5, a protein found in chylomicrons, VLDL, and
HDL particles (31). APOA5 has functional role in the en-
docytosis of TG-rich particles through its binding to the
LDL receptor (32). Variants of the APOA5 gene associate
with elevated TG levels and may increase CHD risk (33).
APOA5 variants also have been reported to be associated
with MetS (34,35). The ‘CC’ genotype of rs2266788 (39
UTR) was observed to have pleiotropic effects on (in-
creasing) TG and (lowering) HDLC levels. By contrast, the
functions of nearby genes ZNF259 and BUD13 are cur-
rently unknown, although they may reflect common hap-
lotype associations (Supplementary Fig. 2).

TG-BP and WC-TG were both associated with an intronic
SNP, rs780093 in GCKR. The ‘AA’ genotype for rs780093
was associated with higher TG levels and, in most of the
studies, with lower levels of GLUC. GCKR also has been
previously implicated as a susceptibility gene for type 2
diabetes (36). Functional studies suggest that rs1260326,
a nonsynonymous SNP, has an effect on plasma glucose
and triglyceride levels through increased glucokinase

activity in liver (37). However, this coding SNP is in a dif-
ferent LD block than is rs780093 identified in our study
(Supplementary Fig. 3). Furthermore, rs1260326 and the
intronic rs780094 within GCKR have been reproducibly
associated with multiple quantitative metabolic traits, but in
the study of Sparsø et al. (38) with reduced risk for type 2
diabetes. It also is associated with TG (38–40), LDL cho-
lesterol (41), C-reactive protein (42), and WC (43). These
reports together with our evidence support the broad
pleiotropic effects of GCKR.

LIPC variants demonstrated pleiotropic effects, specifi-
cally rs10468017 on WC-HDLC and rs2043085 on HDLC-
GLUC. LIPC, which is expressed in liver, has the capacity
to catalyze hydrolysis of phospholipids; mono, di-, and
triglycerides; and acyl-CoA thioesters and is considered an
important enzyme in HDLC metabolism (28,44–46). Our
results confirm those of Kathiresan et al. (15), who showed
that the minor ‘T’ allele at rs10468017 was associated with
lower LIPC expression and increased HDLC levels. The
‘AA’ genotype of rs2043085 also was associated with higher
HDLC levels. Variants near TRIB1 (8q24.13) (rs2954026
and rs2954033) associated with TG-BP and TG-HDLC. The
rs2954026 and rs2954033 SNPs locate 34 and 43 Kb
downstream of TRIB1, respectively, a gene that has been
associated with hyperlipoproteinemia (47). TRIB1 and
TRIB2 genes also have been found to be upregulated in
regions of human atherosclerotic plaque.

Other interesting variants are rs10830956 and
rs13887153, which map 10 and 3 Kb downstream of
LOC100128354, respectively, and about 22 and 29 Kb up-
stream of MTNR1B. These were associated with TG-GLUC
and BP-GLUC, HDLC-GLUC. These variants also showed
highly significant associations with fasting glucose levels
(Fig. 2). The less common ‘TT’ genotype of rs10830956
showed higher levels of TG and GLUC. These variants are in

FIG. 3. A summary of meta-analysis on pleiotropy effects for selected SNPs on pair combinations of quantitative traits. Each study performed
a pleiotropy test for selected SNPs with corresponding quantitative trait combinations. The identified meta-significant results show that variants
associated more with two lipid measures and fasting glucose. (A high-quality color representation of this figure is available in the online issue.)
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LD with the MTNR1B gene, although they reside in an LD
block physically closer to the LOC1001128354 gene
(Supplementary Fig. 4). A recent large study with more than
36,000 participants of European descent showed that
rs13887153 associated with glucose. They reported that
each copy of the rs13887153 ‘G’ allele was associated with
increased levels of glucose, reduced b-cell function mea-
sured by HOMA-B, and an increased risk for type 2 diabetes
(48). Similar findings for fasting glucose were described by
others (49). Our findings support the hypothesis that var-
iants rs10830956 and rs13887153may serve as proxies for
variants in nearby genes LOC100128354/MTNR1B (mela-
tonin receptor) involved in insulin/glucose metabolism.

Several variants were associated with only a single bi-
variate trait. The rs569805 in the ABCB11 significantly
associated with HDLC-GLUC. This intronic SNP is located
within 20 Kb and is in LD (r2 = 0.67) with intronic SNP
rs560887 in G6PC2, the most significant variant in asso-
ciation with fasting GLUC (P = 4E-75) in a meta-analysis
conducted by the MAGIC consortium (36). By contrast,
rs560887 was not associated with HDLC levels in the
ENGAGE consortium (21). Another significant associa-
tion for TG-HDLC was identified on chromosome 19,
with rs439401, in an intron of the hypothetical protein
LOC100129500. This SNP demonstrated association (P =
2E-9) with TG levels and nominal association (P = 3E-3)
with HDLC levels in a recent meta-analysis of GWA studies
in 16 European cohorts (21). This SNP is in APOC1 (with
relative position of 23.7 Kb) located within the larger
APOE/C1/C4/C2 gene cluster, known to have pleiotropic
effects on lipid metabolism (50). A number of our lipid
findings are also reported by Teslovich et al. (20) in
a GWAS meta-analysis for plasma lipid traits with more
than 123,000 subjects. In that study, 26 out of the 95 loci
associated with more than one lipid trait at genome-wide
significance.

We set out to test the hypothesis that common variants
explain the correlated architecture among MetS traits, at
least in part. These common top SNPs (16 variants se-
lected one per gene) together explained a total average

variance ranging from 1.4% for SBP to 9.0% for TG. The
weak effects on SBP are consistent with a large GWAS on
BP with more than 84,000 participants, able to explain less
than 2% of BP variation (17). Explicit tests of pleiotropy of
our study’s top SNPs on the relevant quantitative traits
validated 11 pleiotropic relationships summarized in Fig. 3.
Because they explained a small fraction of the correlation
among metabolic syndrome traits, other factors must also
be at play: variants with rare alleles; nonadditive effects,
such as dominance and epistasis; furthermore, cascade
effects of a phenotype, e.g., obesity directly influencing
glycemic, lipid and blood pressure traits; as well as com-
mon environmental factors in defining the correlated ar-
chitecture of these traits. For tests of pleiotropy carried
out on the quantitative phenotypes, we imputed lipid- and
SBP trait values for treated subjects based on summaries
of a large number of clinical trials. However, we acknowl-
edge that this approach is not ideal and may have limited
our ability to detect true pleiotropic effects.

We explored also the relationships among the genes
identified in this study. A hypothesized network of inter-
actions among identified genes was constructed using
GeneGO software (Fig. 4). Five of the selected genes in-
teract with many genes, represented in Fig. 4 as hidden
links. Even this consideration suggests the possibility that
many other genes may act in the context of their respec-
tive pathways, rather than independently. For example,
LPL interacts with INS, APOE, APOB, APOA1, APOA4,
APOC3, APOC4, LRP1, and NETO1; and CETP has at least
35 interactions, based on Sigma-Aldrich and Ingenuity
database (http://www.sigma-aldrich.com/yfg). It is possible
that cross-talk among these pathways via intermediate
activator/suppressor molecules contributes to the cluster-
ing of disorders in MetS. Thus one possible fruitful di-
rection of study is to examine MetS and its correlated
structure in a systems biology context. In summary, none
of these variants associated simultaneously with most or
all the traits, supporting the concept that MetS is not
a consequence of any single pathway or factor but rather
a consequence of interactions among different pathways.

TABLE 3
Meta-analysis among studies of 16 top SNPs (one per gene) for their association with MetS

Number Hugo SNP Chrom.
Position
(bps)

Meta-b
coefficient

Meta-b
SE x2 value P value

Homogeneity
P value

Number of
samples

1 GCKR rs780093 2 27596107 0.042 0.030 1.94 1.6E-01 0.222 8
2 C2orf16 rs1919128 2 27655263 20.055 0.035 2.51 1.1E-01 0.186 8
3 ZNF512 rs13022873 2 27669014 20.054 0.036 2.24 1.3E-01 0.154 8
4 CCDC121 rs3749147 2 27705422 20.050 0.039 1.62 2.0E-01 0.110 8
5 ABCB11 rs569805 2 169491126 0.059 0.024 5.91 1.5E-02 0.411 8
6 TFAP2B rs2206277 6 50906485 0.134 0.046 8.57 3.4E-03 0.073 6
7 LOC100129150 rs9987289 8 9220768 0.186 0.038 23.83 1.1E-06 0.703 8
8 LPL rs13702 8 19868772 0.152 0.029 27.45 1.6E-07 0.343 8
9 TRIB1 rs2954026 8 126562928 20.084 0.035 5.74 1.7E-02 0.132 8
10 LIPC rs2043085 15 56468246 20.059 0.023 6.40 1.1E-02 0.734 8
11 LOC100128354 rs10830956 11 92320661 20.070 0.031 5.03 2.5E-02 0.254 8
12 BUD13 rs10790162 11 116144314 0.243 0.060 16.65 4.5E-05 0.172 8
13 ZNF259 rs2075290 11 116158506 0.259 0.059 19.52 1.0E-05 0.196 7
14 APOA5 rs2266788 11 116165896 0.265 0.044 36.07 1.9E-09 0.663 6
15 CETP rs9939224 16 55560233 20.168 0.036 21.84 3.0E-06 0.810 8
16 LOC100129500 rs439401 19 50106291 0.053 0.056 0.89 3.5E-01 0.071 6

Number of samples represents study results that were included in the meta-analysis for these SNPs. A few of them were not included in the
analysis if they had MAF less than 5%, or Hardy-Weinberg Equilibrium P value less than 1026, or if the quality of imputation was less than the
required thresholds (see RESEARCH DESIGN AND METHODS and Supplementary Data).
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