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Mathematical models in the evaluation of health programmes
Geoff rey P Garnett, Simon Cousens, Timothy B Hallett, Richard Steketee, Neff  Walker

Modelling is valuable in the planning and evaluation of interventions, especially when a controlled trial is ethically or 
logistically impossible. Models are often used to calculate the expected course of events in the absence of more formal 
assessments. They are also used to derive estimates of rare or future events from recorded intermediate points. When 
developing models, decisions are needed about the appropriate level of complexity to be represented and about model 
structure and assumptions. The degree of rigor in model development and assessment can vary greatly, and there is a 
danger that existing beliefs inappropriately infl uence judgments about model assumptions and results.

Introduction
Although policy decisions in public health would ideally 
be based on evaluations that measure eff ect directly, 
modelling does, and often should, play a major part in 
large-scale evaluations. The purpose of our Review is to 
assist readers to assess critically and interpret appro-
priately the results of such modelling exercises. We fi rst 
present practical and theoretical reasons why models 
are and should be used in large-scale evaluations. We 
then summarise the types of diff erent modelling 
approaches and discuss how models and their outputs 
should be judged.

The role of models in programme evaluations
Public health programmes need to be evaluated on 
whether anticipated benefi ts are indeed happening and 
whether they are cost eff ective.1,2 For many programmes, 
a randomised controlled trial is not an option for ethical 
or practical reasons (eg, programme implementation is 
done by large groups, such as national health systems, 
which cannot be randomised). Alternatively, the evalu-
ation question might not be whether an intervention is 
eff ective, but whether it is being successfully imple-
mented. In these cases we have to observe trends in 
health outcomes with the programme in place and model 
what would have happened without it. Even when a 
community-randomised trial is feasible, other activities 
might interfere with the eff ect of the intervention, 
especially if the number of communities that can be 
randomised is small. In such circumstances modelling 
is likely to play an important part in the evaluation for 
one of several reasons (fi gure 1). First, we might wish to 
estimate the causal eff ect of the programme on the 
health outcome of interest in circumstances in which 
other changes, which might aff ect that outcome, are also 
taking place (fi gure 1). Second, we might wish to estimate 
changes in a fi nal health outcome, which is diffi  cult or 
costly to measure. In these circum stances, we might 
prefer to measure changes in a more easily measurable 
intermediate outcome and model the consequences of 
these changes on the fi nal endpoint of interest (fi gure 1). 
Third, we might wish to explore the relation between 
intervention and outcome to better understand fi ndings 
from fi eld studies. The scope of the models depends 
upon whether all the factors that lead to a health outcome 
are described and their respective roles accounted for, or 

whether the model is used as a quantitative framework 
with which to translate intermediate outcomes into a 
health eff ect.

In the fi rst case (attribution of eff ect), simply 
measuring changes in the health outcome of interest 
over time will not provide an estimate of the causal 
eff ect of the programme, because changes could have 
happened even in the absence of the programme. What 
is needed is an estimate of what would have happened 
in the absence of the programme (the counterfactual). 
This estimate can then be compared with what 
happened in the presence of the programme (the actual) 
to estimate the eff ect of the programme. Modelling can 
often be the only way to obtain an estimate of the 
counterfactual of interest.

An example is establishing the counterfactual for the 
trend in HIV prevalence in the context of a mature HIV 
epidemic. The eff ects of saturation and AIDS deaths mean 
that simply continuing the past trend is unlikely to show 
what would be seen in the absence of any intervention. For 
programmes that seek to change HIV risk behaviours, the 
recorded prevalence data can be compared with the 
prevalence that would be expected in the presence of 
saturation and population turnover but in the absence 
behavioural change. Such an approach was used in the 
recent Avahan and Global Fund evaluations,3,4 making the 
assumption that individual behaviour change can be 
attributed to the programme.3,4 In both of these exercises 
the uncertainty in the model parameter values and the 
data were used to create a counterfactual distribution, 
rather than a single value (fi gure 2).

There are many situations in which measuring the 
health outcome of interest is diffi  cult or costly. Two 
common reasons for this are the outcome of interest is a 
rare event, or the outcome of interest will not happen for a 
long time. In both of these situations, evaluations can 
measure intermediate outcomes that are more frequent, 
or happen sooner, and then use a model to extrapolate to 
the outcome of interest.

A rare event, in this context, refers not only to conditions 
that only happen in a small number of individuals each 
year—eg, infection with the Ebola virus7 or variant 
Creutzfeldt-Jakob disease.8 Rather, many important public 
health outcomes are rare events when it comes to their 
measurement. For example, the primary indicators for the 
major health-related millennium development goals—the 
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under-5's mortality rate and the maternal mortality ratio—
cannot be measured with much certainty in the most recent 
year in high-mortality countries because vital events are not 
routinely and accurately registered. Even in large sample 
Demographic and Health Surveys (DHS) mortality in 
children younger than 5 years is generally estimated for the 
5 years before the survey.9 Maternal mortality, because it is a 
less common event (often measured per 100 000 live-births), 
is even harder to measure reliably with such surveys.10

Evaluation of a measles vaccination programme, whose 
goal is to reduce childhood deaths from measles, provides 
an example of how we can use a model to extrapolate from 
a more common intermediate event to a rarer, but more 
important, outcome. For the programme to have any 
eff ect, several conditions must be met. First, we need to 
make sure that measles vaccine is available for distribution 
within the country. Next, the vaccine needs to be distributed 
to health facilities. Then, young children need to be 
vaccinated at the right age (late enough to minimise 
interference from maternal antibodies, but early enough 
to protect them before they are exposed to the wild virus). 
This sequence of events is a causal chain that explains how 
measles vaccine reduces measles deaths (fi gure 3). Directly 
measuring changes in the number of measles deaths in 
children younger than 5 years is diffi  cult, if not impossible, 
in settings where measles remains a problem. Instead of 
trying to measure measles deaths, we might measure the 
number of measles cases in children and estimate the 
eff ect of the measles vaccination programme on deaths 
due to measles with a model.11,12

We could further reduce data collection needs by 
extending the model further back up the causal chain 
(fi gure 3). For example, we could simply measure measles 
vaccine doses available in a country, or the proportion of 

children vaccinated, and use this information to estimate 
the reduction in cases of measles and deaths. A recent 
example of this approach estimated the eff ect of measles 
vaccine on child mortality,13 as a starting point they used 
the number of vaccine doses given in a country. However, 
when intermediate outcomes are used as proxies, the 
further removed the intermediate outcome is from the 
outcome of interest the greater the uncertainty in the 
estimated eff ect on the modelled outcome of interest.14 
For example, a model with measles vaccine availability at 
country level as the intermediate outcome to estimate 
measles deaths averted, would produce more uncertain 
estimates than a model that uses the proportion of 
children vaccinated.

The evaluation of human papillomavirus (HPV) 
vaccination programmes is an illustration of a situation 
in which there is a long delay between the intervention 
and the outcome of interest. The health endpoint of 
primary interest is cervical cancer, which is rare and can 
take many years to develop.15 To assess HPV vaccination 
programmes, rather than measuring the eff ect of 
vaccination on cervical cancer, we measure vaccine 
coverage and use models to predict the eff ect on infection 
with HPV, the precancerous lesions that will be detected 
in screening programmes, and the subsequent incidence 
of cervical cancer. Again the intermediate outcomes, 
HPV infections and lesions detected, could be measured 
to get closer to the event of primary interest (cancer rates 
and deaths).

Modelling is often used to aid interpretation of 
randomised controlled trials, especially trials of complex 
interventions.16,17 The endpoint of a trial is reached through 
a causal pathway that can be infl uenced by many contextual 
variables. To understand the recorded eff ect size and be 
able to generalise fi ndings to other contexts, models can 
be used to link trial outcomes to diff erent intermediate 
and process measures.18 These measures can then be 
compared with values from other settings to explore the 
potential eff ect of the intervention. For example, the 
eff ectiveness of circumcision to prevent the transmission 
of HIV at the population level will probably depend upon 
the levels of sexual risk behaviour in the population. On 
the basis of measured effi  cacy of adult-male circumcision 
in reducing the acquisition of the infection by circumcised 
men, models have been used to predict the population 
level eff ect of circumcision in a range of diff erent types of 
HIV epidemic.19,20

In evaluations of complex programmes with many 
interventions, models can be used to explore the 
expected contribution of diff erent elements to the overall 
outcome of interest. In trials, there is a trade-off  between 
the isolation of an individual treatment being evaluated21 
and maximising the expected eff ect size by combining 
intervention activities and treatments.22,23 This trade-off  
often generates circumstances in which models can be 
used to estimate the role of the diff erent components24 
and to identify a minimum package of treatments.

Programme of interest

Health outcome of interest

Other factors affecting 
endpoint of interest

A

B

Intermediate
outcomes

Health outcome 
of interest

Programme 
of interest

Scope of model

Scope of model

Figure 1: Framework for programme evaluations involving modelling
Attribution of eff ect (A) and extrapolation to outcome of primary interest (B).
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Figure 2: Counterfactual projection for generalised HIV epidemics
Projection of 2007 HIV prevalence based on data through 2002 under the assumption of no subsequent behaviour change (simulated data). The data from ten 
antenatal clinics (circle and lines: each circle shows one point estimate from one clinic and the lines connect estimates from the same clinic) and a large household 
survey in 2005 (blue square; A). The previous limit on prevalence in 1984 is shown as a vertical bar. Model projections assuming no behaviour change (B): each thin 
path shows one item in the posterior distribution and the thick path shows the best supported projection. Distribution of the expected change in prevalence between 
2002 and 2007 with the counterfactual model (ie, without behaviour change; C). The vertical line shows the naive null assumption of zero change). Distribution of 
the expected prevalence in 2007 with Model M0 (ie, without behaviour change; D). The vertical line shows the prevalence estimate in the baseline survey in 2002. If 
future observations show HIV prevalence in 2007 outside of these ranges, then there would be evidence for behaviour change aff ecting the course of the epidemic. 
Model based on Hallett and colleagues.5,6

Vaccine doses
available in country

Vaccine doses
distributed

Children vaccinated Measles incidence Measles mortality

Figure 3: Causal pathway for measles vaccine eff ect on measles deaths

Models can also be used to assess how an intervention 
should be rolled out. In the case of the randomised trials of 
HPV vaccine, because of the effi  cacy of the vaccine, quite 
simple models show that vaccination is cost eff ective.25 
However, models are also needed to assess how a 
vaccination programme should be designed (ie, who 

should be vaccinated), because the possible options are too 
many to test in trials.26,27

In practice, evaluations can deal with both the attribution 
of eff ects in the presence of confounding factors and a lack 
of data on the health outcome of primary interest. In many 
instances, a planned assessment that involves the use of 
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modelling is the only practical option. In such 
circumstances we should ask whether the modelling 
approach used was appropriate and whether the uncertainty 
inherent in the modelling process is reasonably shown in 
the results.

Mathematical modelling methods
Mathematics provides a precise quantitative language to 
describe the relation between variables and changes in 
states, and in medicine we can represent mathematically 
the clinical course of disease, the distribution of disease 
across populations and over time, and the mechanisms 
that generate disease.28,29 The development of a model of 
infection, disease, or death requires us to precisely set out 
our assumptions about the parameters and processes 

infl uencing health, and enables us to calculate the expected 
eff ect of programmes. Here we discuss diff erent ap-
proaches to modelling and identify a short list of key model 
characteristics (table).

We draw a distinction between purely statistical models, 
which describe associations between variables, and 
mathematical models, which set out a theoretical 
framework that represents the causal pathways and 
mechanisms linking exposures, interventions, and 
infection or disease. Broadly, statistical models are those 
used to derive parameter estimates from empirical data, 
and mathematical models are those used to make 
predictions on the basis of those parameter estimates.

The development of a mathematical model involves the 
defi nition of equations or sets of rules that describe the 

Description Use Strengths Weaknesses Examples

Basic model approach: mathematical or statistical

Mathematical  
models

Provides mechanistic 
representation for how disease 
burden is established

Predicts the incidence and 
prevalence of disease; 
understanding implications of 
causal pathways

Makes explicit assumptions; 
allows predictions beyond 
range of data; generates 
testable predictions

Relies upon a good understanding 
of pathways or assumptions; can 
be disassociated from data

Avahan assessment,30,31 the Lives 
Saved Tool,32,33 analysis of HIV 
prevalence trend data5

Statistical 
models

Summarises association between 
variables, expressing the relation 
with parsimonious functional 
forms

Used to quantify the association 
between variables without 
assuming a pathway

Flexible approach that can be 
used quickly and routinely; 
only a few clear and testable 
assumptions made about 
form of data; properties well 
defi ned and understood

Provides only a description of the 
data not an exploration of how 
the system works (ie, shows 
associations, not explicit causal 
pathways)

Quantifying relation between waist 
circumference and risk of death34

Feedback in the system: linear or non-linear

Linear Represents the incidence rate of 
disease in diff erent populations as 
constant or a linear function of 
environmental factors, including 
disease prevalence

Modelling progress to chronic 
diseases; often used in health 
economic analysis

Simple to construct and 
analyse model

Ignores indirect eff ects; in 
particular, for infectious diseases 
where averting one infection can 
terminate a chain that would 
otherwise lead to many more 
infections; thus linear models can 
underestimate or overestimate 
the eff ect of interventions

Calculating cost-eff ectiveness of 
chlamydia screening,35 
investigating eff ect of alternative 
patient management for 
antiretroviral therapy,36 the Lives 
Saved Tool32,33

Non-linear Transmission of infectious disease 
is expressed as function of current 
disease prevalence, number of 
susceptible individuals, and the 
risk of infection

Explores the indirect (ie, 
downstream consequences) 
eff ects of changes in the 
system; exploring dynamics of 
the system and its sensitivity to 
parameter values; making 
counterfactual projections for 
the course of epidemics without 
intervention

More complete description 
of the system; some dynamic 
eff ects can be important

Dynamic behaviours can depend 
on parameter values and 
assumptions in the model

GOALS model,37 Avahan 
assessment,30,31 Spectrum’s AIM 
model,38 models exploring the 
eff ect of hypothetical interventions 
(examples include Test and Treat 
intervention for HIV,39 eff ect of 
artemisinin combination therapy 
and long-acting treatments on 
malaria transmission40)

The role of chance: deterministic or stochastic

Deterministic Behaviour of model system is 
approximated for (infi nitely) large 
population; every realisation is 
the same for a given set of 
parameter values

Represents the average 
behaviour of the system 
applying rates of change

Often easier to solve and 
analyse than stochastic 
models; in some systems 
gives the same results as the 
average of several analogous 
stochastic simulations

When chance plays an important 
role in system’s behaviour, 
deterministic model will generate 
unrealistic predictions

Avahan assessmemt,30,31 the Lives 
Saved Tool,32,33 analysis of HIV 
prevalence trend data5

Stochastic Stochastic simulations represent 
events (such as incident infection 
and death) happening to 
individuals with a certain chance; 
the model, run multiple times 
with the same parameters, will 
give diff erent results

Studying systems where there 
are small populations (eg, in 
clinical trials, or the occurrence 
of infections in a hospitals) or 
where, because at times with 
small numbers of infections, 
stochastic variation makes an 
important contribution to the 
system’s overall behaviour

More accurate in some 
circumstances; allows the 
variation in predictions due 
to chance to be quantifi ed

Analysis can be diffi  cult and 
computationally intensive

Simulation of clinical trials in HIV 
epidemiology,41,42 transmission 
dynamics of meticillin-resistant 
Staphylococcus aureus in hospitals43

(Continues on next page)
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Description Use Strengths Weaknesses Examples

(Continued from previous page)

Method of representing individuals: populations or individuals

Population 
based

Track changes happening to 
groups within the population 
without specifying which 
individuals are involved; 
heterogeneity between 
individuals represented by 
dividing population into 
subgroups

Examining population-level 
processes and trends

Represents the experience of 
typical individuals; 
computationally effi  cient or 
analytically tractable

Misses individual level infl uences 
that might be important in 
certain circumstances

GOALS model,37 Avahan 
assessment,30,31 analysis of HIV 
prevalence trend data5

Individual based Model explicitly tracks sets of 
individuals over time and all 
events are tied to individuals, such 
that the life-course of each 
individual is known

Representing the life experience 
of individuals, exploring the 
interaction of individuals

Allows the history of every 
individual to be tracked, 
allows the importance of 
individual level interactions 
and network structures to be 
explicitly represented

Models are very diffi  cult to 
construct and analyse fully, a 
substantial amount of 
information is needed to establish 
parameters for the model, 
behaviour of system may not be 
fully understood, complexity of 
model can give false impression 
of credibility

Onchosim for exploring 
transmission and control of 
onchocerciasis,44 STDSim model 
that tracks individuals infection 
with multiple sexually transmitted 
infections and simulates complex 
pattern of sexual partnership 
formation between individuals,24,45 
models of sex partner networks 
that simulate individuals have 
more than one sexual partner at 
the same time46

Changes modelled with respect to diff erent variables: age and time

Age Models events experienced by 
individuals as they age; 
sometimes a single birth cohort 
sometimes multiple birth cohorts

Used to represent the typical 
experience of a cohort across 
time

Straightforward description 
of life experience with 
alternative interventions

Assumes that environment is 
stable

Cervical cancer screening,47 
calculating cost-eff ectiveness of 
chlamydia screening35

Calendar time Models the changing pattern of 
events over time. Allows for 
dynamic interactions between 
individuals over time

Used to model the spread of 
epidemics over time

Explores transient behaviour 
with introduction and 
uptake of interventions and 
the development of their 
eff ects over time

Often missing data on early 
periods; other dimensions, such 
as geographical and social space 
could be represented

GOALS model,37 Avahan 
assessment,30,31 analysis of HIV 
prevalence trend data5

Table: Types of models

spread of infection or the development of disease, where 
there is analogy between the mathematical representation 
and the biological system. The model’s predictions are 
obtained, either analytically, with the relation between 
inputs and outcomes known for all input parameter 
values,28 or numerically, with the results generated in steps 
for only certain sets of parameters. With numerical 
analysis, a range of diff erent sets of parameters are chosen 
to build an understanding of how the system works.48

Mathematical models can describe the link between 
exposure or intervention and disease with linear or non-
linear functions. For instance, precancerous lesions can 
progress to cervical cancer, but can also be detected 
through cytological screening and excised.49 It is 
reasonable to assume that the incidence of cervical cancer 
changes in proportion to the coverage and frequency of 
screening, and reducing the number of lesions by half 
would lead to a halving of the incidence of cervical cancer. 
This assumption makes prediction of the eff ect of a 
change simple; in fact, the linear model is so simple that 
it is often forgotten that it is indeed a model. Cohort 
models used in health economic analysis often make 
such linear assumptions, which assume that the fate of 
diff erent individuals is independent.47,49

Such simple functions are not widely applicable to  the 
spread of infectious diseases, which are driven by 

fundamentally non-linear processes. This arises because 
the rate of spread of infection is determined by the rate of 
contact between susceptible and infected individuals, and 
the abundance of infected individuals is itself a function of 
the rate of the transmission of the pathogen. Therefore, it 
does not follow that halving the risk of contracting an 
infectious disease in a population will reduce the incidence 
of that disease by half. Disease incidence could change by 
less than half (if the epidemic has the potential to spread 
extensively), more than half (if the epidemic is more 
fragile), or be eliminated (if the epidemic is close to its 
threshold for persistence).50 This complexity necessitates 
more involved descriptions of the relation between risk 
and incidence for infectious diseases.

Models can either be stochastic or deterministic. 
Stochastic models include chance explicitly in their 
results, with the diff erent possible events selected with 
random number generators based on the probability 
that they will happen. The role of chance is important 
when examining systems with small numbers of 
individuals or events, such as the spread of meticillin-
resistant Staphylococcus aureus in hospital wards43 or 
smaller geographical regions,29 but less so when 
common events in are modelled in large populations 
where deterministic models, which predict the average 
outcome, can be used. A deterministic model will 
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produce the same results each time it is run with a 
given set of parameters, whereas a stochastic model 
will produce diff erent quantitative results each time 
due to the play of chance in the course of the simulation. 
In some cases, a stochastic model and the analogous 
deterministic model can produce qualitatively diff erent 
results, for instance when chance events trigger 
repeated rises and falls in the spread of the disease.51,52 

The distinction between stochastic and deterministic 
models is not synonymous with the level of detail in the 
model, and in many cases the same model structure 
can be implemented with either a numerical integration 
algorithm (for deterministic results), or Monte Carlo 
simulation techniques (for stochastic results).

Another important distinction is between individual-
based (microsimulation) models and population models. 
In the former, each individual in the population is explicitly 
represented and tracked. By contrast, in a population 
model, individuals are only represented as members of a 
group, with groups explicitly represented and tracked. In 
an individual-based model of a small population, the 
characteristics of each individual can be diff erent and this 
approach has been used to model household or institutional 
outbreaks of infection.53 Often, however, many individuals 
are ascribed the same characteristics, but with events 
tracked for specifi c individuals. This approach allows large 
populations to be modelled as individuals more 
effi  ciently.27,54,55 Not all stochastic models are individual-
based; however, all individual-based models will be 
stochastic. Individual-based models are powerful for two 
reasons. First, they allow an individual’s experiences to be 
tracked, and second, they allow a great deal of individual 
level detail to be included in the analysis. However, they 
can be computationally intensive to use and diffi  cult to 
interpret. Therefore population models, including 
important heterogeneities by stratifying the population 
according to diff erent criteria, are still often used.

In infectious disease, heterogeneity in the risk of 
acquiring and transmitting infection can allow an infection 
to invade a population when the same average risk in a 
homogeneous population would not allow this. However, 
this same heterogeneity that makes invasion more likely 
will also restrict the spread of infection. A classic example 
of such heterogeneity is provided by HIV, where a small 
fraction of a population with many contacts, such as sex 
workers and their clients, can acquire HIV infection while 
spread throughout the remaining population is limited.56,57 
With such heterogeneity, there is the additional parameter 
of the form of contact between the groups, which could be 
completely random or not (eg, people in similar social and 
demographic groups might be more likely to be contacts of 
one another, often referred to as assortative mixing).58 For 
instance, if the population of sex workers mixed randomly 
with everyone else, the spread of HIV could be greater 
than if they exclusively had sex with a small group of 
regular clients.50 A homogeneous model (distinct from a 
model with a randomly mixing population divided into 
diff erent risk groups) assumes that everyone has the same 
risk of infection or disease, and this is often a starting point 
for models since it is analytically the most easily solved.

The assumptions that a model makes about how the 
status of individuals within a population changes over the 
course of infection or disease can be described in fl ow 
diagrams. Figure 4 shows an example of a simplifi ed fl ow 
diagram for hepatitis B in a homogeneous population.59 
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Figure 4: Flow diagram describing the epidemiology of hepatitis B virus, which can be translated into a 
mathematical model
Susceptibles (S) acquire infection, which is acute (A), this then resolves and they either recover (R) or retain a chronic 
infection (C). Boxes represent these mutually exclusive states called state variables. The arrows represent fl ows into 
and out of the states. The parameter values control the rates of fl ow between the state variables. The ordinary 
diff erential equation model represented by this fl ow diagram is shown alongside in words and symbols—colours and 
numbers show the relation between the model terms and the arrows in the fl ow diagram. In the case of susceptibles, 
dS/dt means the rate of change in susceptible numbers with respect to time. This is given by the addition of births and 
the subtraction of deaths and infections, where λ is the per-susceptible incidence. This per-susceptible incidence will 
be a function of the infectious population made up of those with acute and chronic infection: for example, 

where β and β’ are transmission coeffi  cients, representing contact rates and transmission likelihoods combined, for 
acute and chronic infections respectively. Acute infection resolves at a rate � and a proportion � develop immunity 
and (1–�) develop chronic infection. Infection is the non-linear term in this model as the susceptible are multiplied by 
those infectious. This model could be solved analytically at its steady state when there is no change. Here the solution 
for the proportion of the population N susceptible is given by

Alternatively it can be solved numerically, stepping through time (as shown in the fi gure for susceptibles). 
This simple model does not take into account age, which infl uences the probability of developing chronic infection 
and the probability of death. This could be included by modelling state variables with respect to age and time with 
partial diff erential equations. Which would be represented by equations with age specifi c parameter values such as: 

Here births are at the boundary S(0,t)=births. An alternative would be to divide the state variable into specifi c age 
groups with diff erent diff erential equations and have individuals progress between age groups, as in realistic age 
structured (RAS) models. In the model for hepatitis B we might include the development of liver disease as a 
function of time since infection with partial diff erential equations with a risk r(a,τ’) of a chronically infected person 
of a particular age at a particular time developing disease, these could then be summed in the integration: 

to give the number developing disease at a given time. This would be called an integro-diff erential equation.

λ=(βA+β´C)/N

(μ+α)

β+β´σ(1– ψ)/μ

S =
N

δS(a,t)

δt

δS(a,t) +
δa

= λ(a)S(a,t)–μ(a)S(a)

r(a,τ´)C(a,τ´)dτ
a-τ

§ a
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The boxes describe individuals in mutually exclusive health 
states and the arrows describe movements into or out of 
these states. This can then be used to derive the model 
equations. The rate at which the number of individuals in 
each box changes (the left hand side of the model equations) 
is determined by the arrows, which are the terms in the 
right-hand side of our equations. The crucial detail of the 
model is the content of these terms. In our example the 
infection term moving individuals from susceptible to 
infected has an important infl uence and includes a non-
linear term representing the interaction between infectious 
and susceptible individuals.

Our hepatitis B model (fi gure 4) is constructed to look at 
changes with respect to time, but it could have been 
constructed to look at changes over age instead (in this 
case it would be necessary to assume a chance of infection 
that is fi xed in time), or over both. Ordinary diff erential 
equations are used to specify the model when only tracking 
changes in the states over time. If it is important to track 
changes over other factors too, such as age (modelling 
progress to cancer),60 geographical space (modelling the 
range of vectors),61 or time since an event (from an infection 
to cancer);62 partial diff erential equations can be used. 
Alternatively, discrete categories representing age groups 
or geographical space might be represented. Diff erential 
equations represent time and age as continuous variables 
but many models, especially in demography, represent 
changes in discrete steps with diff erence equations.63

In deciding which models are appropriate to answer a 
particular evaluation question it should be remembered 
that all models are a simplifi cation of reality. Sometimes 
diffi  cult decisions must be taken about how a system 
should be represented.

Assessing models
Panel 1 provides a summary checklist of items that should 
accompany the most rigorous model analyses. None of 
these indicators of model quality guarantees that the model 
produces accurate outputs, but the presence of this 
information will help readers assess the appropriateness 
of the model.

It is essential to have a clear understanding of the model’s 
structure to judge model results and outputs. We believe 
that in addition to the full technical description of the 
model, there should also be a clearly presented and easily 
accessible lay summary, which includes fl ow diagrams of 
the way the disease is represented, a table showing how 
the model parameters were assigned, and the sources of 
information for the parameter values.

The specifi cation of model parameters is not simply a 
listing of what parameters are included (that should be 
evident from the fl ow diagrams or the equations), but 
precise defi nitions of the parameters, as well as their values 
and ranges. It is informative to identify where the 
parameter values came from, and whether or not they are 
based on observation, are extracted from previous 
modelling studies, varied depending on other parameters 

in the model, or estimated in the model analysis through 
fi tting to data.

Model validation implies that a model has been tested 
repeatedly across the full range of scenarios or settings to 
which it is supposed to apply, and has been shown to 
reproduce closely the independently recorded relation 
between input, intermediate, and outcome variables. Few, 
if any, models will have undergone suffi  cient testing 
across a range of settings and situations to be deemed 
fully validated. At a minimum, however, presentation of a 
model should be accompanied by an assessment of its 
goodness of fi t to observed data and, ideally, how well the 
model predicts what was actually recorded (out-of-sample 
prediction). The distinction between how well a model 
fi ts recorded data and how well a model is able to predict 
what will be seen is an important one. Goodness of fi t 
refers to an assessment of how well the model can 
replicate empirical observations when the parameters in 
the model are adjusted to achieve the closest match. A 
range of methods for fi tting and assessing goodness of fi t 

Panel 1: Items that should accompany the most rigorous 
model analyses

Diagrams that show model structure
To show how disease natural history is represented, process 
and determinants of disease acquisition, and how putative 
intervention could aff ect the system.

Complete list of model parameters
To include clear and precise descriptions of the meaning of each 
parameter, together with the values or ranges for each, with 
justifi cation or the primary source cited, and important caveats 
about the use of these values noted. Where a parameter value 
comes from another modelling analysis, this caveat should be 
noted. Parameter values that are fi t in this model (not 
independently measured) should be clearly marked.

Assessment of model predictions with data
Illustration of agreement between model (as used in the 
analyses) and data or observational information. Clear 
statement about how model was fi tted to the data, including 
goodness-of-fi t measure, the numerical algorithm used, 
which parameter varied, constraints imposed on parameter 
values, and starting conditions.

Presentation of results
Key modelling results to be presented with a scientifi cally based 
estimate of uncertainty. Presentation of uncertainty analyses 
should be accompanied with statement about the sources of 
uncertainties quantifi ed and not quantifi ed, and these sources 
can include parameter, data, and model structure.

Discussion of model structure
To include the scientifi c rationale for this choice of model 
structure and identify points where this choice could 
infl uence conclusions drawn. Also to describe the strength of 
the scientifi c basis underlying the key model assumptions.
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Figure 5: Uncertainty in model parameterisation of epidemic context perpetuates to uncertainty in intervention eff ectiveness
Several diff erent parameter sets can be fi tted to the same data for urban Zimbabwe (A). The eff ect of the same circumcision intervention in women, uncircumcised 
men, circumcised men, and overall varies according to the set of parameter used (B).19

are available, and the method used for this assessment 
should be clearly reported. When the data available to 
estimate the parameters are sparse and resulting 
estimates have wide ranges of acceptable values a model 
can fi t the data equally well with several diff erent sets of 
parameters. This problem can be benign if the model 
behaves the same way with diff erent parameter sets. 
However, in some situations, it is possible to get very 
diff erent predictions with diff erent, equally well fi tting, 
sets of parameter values (fi gure 5). This uncertainty is 
often hidden, but should be explicitly addressed when 
presenting model fi ts. One approach to quantifying this 
uncertainty is to identify several diff erent sets of well 
fi tting parameter combinations and to run the same 
analysis for each of these combinations. The model 
results can then be presented as the distribution of 
outputs from these analyses.

Out-of-sample prediction involves estimating model 
parameters with one set of data, with these parameter 
values within the model to make predictions and then 
comparing these predictions with observed data not used 
in the parameter estimation process. If, in a large number 
of instances and over a wide range of scenarios, the model 
predictions match the observation, this can be a powerful 
validation of the model (panel 2).

The presentation of sensitivity analyses and estimates of 
the uncertainty around modelled outputs is also important. 
The results of sensitivity analyses, in which parameter 
values are varied to establish how model outputs change, 
can provide important insights into the behaviour of the 
model. Sensitivity analyses enable readers to identify 
which parameter values are most infl uential in the model 
and which parameters should be most closely scrutinised. 
Sensitivity analyses, which can explore the eff ect of extreme 
parameter values, should be distinguished from uncertainty 
analyses, which seek to derive a range of credible results 

on the basis of an exploration of the range of reasonable 
parameter values. In sensitivity and uncertainty analyses, 
changes in a single parameter value, a limited number of 
parameter values or all parameter values could be explored. 
Parameters can be varied systematically, or chosen at 
random. Latin Hypercube Sampling for example, increases 
the effi  ciency with which multiple parameter values are 
sampled.48,68 The appropriate methods for uncertainty 
analysis will vary according to the ambition of the exercise 
and constraints imposed by model complexity and 
computing power. The important point is that the choice 
of method should be presented and justifi ed.

Uncertainty analyses that explore the range of input 
parameters go only part of the way to the assessment of 
total uncertainty in the analysis, because uncertainty will 
also derive from the necessary decisions that were taken in 
the construction in the model itself. Two important 
elements in the assessment of the appropriateness of a 
model’s structure are qualitative and somewhat subjective. 
The fi rst is construct validity: does the model’s structure 
and its explanation accord with the biological system? 
Have the important causal processes been included? For 
example, in a model of hepatitis B does the pattern of 
progression, from acute infection through to chronic 
infection to disease, make sense? Is the contact process 
modelled in a way appropriate to the known spread of this 
virus? The second qualitative test of a model is whether a 
convincing explanation of the results can be provided. For 
example, if a model predicts that low coverage of 
vaccination against rubella could increase the incidence of 
congenital rubella syndrome, this might reasonably be 
explained by a delay in the average age at which girls are 
infected such that they are more likely to be infected when 
pregnant. If the model structure makes sense but the 
model results do not match recorded patterns of infection 
and disease, then either our understanding of the infection 
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or disease is inadequate, or inappropriate parameter values 
have been used. Modelling can thus be used to review our 
understanding of an infection or disease. However, it is all 
too easy for the modeller to believe erroneous model 
results rather than challenge the validity of their model.69

In judging construct validity, it is important to 
understand the scientifi c rationale for the modelling 
decisions taken at each stage in the analysis. There is 
always a trade-off  in the level of detail and complexity in 
models. Models described as simple can be easier to 
interpret and explain or better scientifi cally grounded 
than more complex models, but the reverse can also be 
true. Models are designed to be a substantial simplifi cation 
of the real world, but we do not want oversimplifi cation 
that generates spurious results. In deciding on the level 
of detail needed it is important to consider the diff erence 
the detail makes to the results. Ideally we would use 
models with diff erent levels of detail and compare their 
results to identify necessary detail, but this can be a 
laborious process and could be best accomplished by 
several independent modelling groups coordinating their 

work. Inclusion of detail that has no relevance should be 
avoided: for example, in most circumstances there would 
be little purpose in including the sex of the child in a 
model of chickenpox transmission,70 but in a model of 
rubella, where the outcome of interest is congenital 
rubella syndrome, sex is an important detail.71

Even if a model and its application have all or most of 
these quality indicators, it does not guarantee that the 
modelled outputs are correct. The UNAIDS/WHO model 
of the worldwide HIV epidemic before 2004 (panel 3) had 
all the hallmarks of a high-quality model, but it produced 
results that were subsequently shown to be overestimates. 
Here, limited information about the biases in the estimates 
of HIV prevalence in pregnant women attending antenatal 
clinics in the surveillance system relative to the general 
population caused an overestimation of the scale of the 
epidemic. Thus, following most rigorous model analysis 
standards, although necessary, is not suffi  cient to 
guarantee that the model results are accurate and using 
parameter estimates and modelling approaches that 
establish conservative estimates might be particularly 
appropriate to improve credibility in many situations.

Panel 2: The Life-Saved Tool

The Life-Saved Tool (LiST),32,64 is a model to estimate the 
eff ect of an increase in the coverage of a set of interventions 
on child mortality, and was used in the Global Fund 
assessments of the scale up of interventions to combat HIV, 
tuberculosis, and malaria.4 Most countries covered by the 
assessment do not have reliable data on malaria mortality 
trends but they do have measures of coverage of malaria 
interventions such as ownership of long-lasting insecticide 
treated nets. LiST was used to estimate the number of 
malaria deaths averted by scaling up malaria interventions, 
including insecticide treated nets, indoor residual spraying, 
and treatment. This is an example of a model used to 
extrapolate to an outcome of primary interest. Some work 
that assessed how well LiST predicts changes in mortality has 
been done.32,33 In general these comparisons found that the 
changes in mortality predicted by LiST fell within the 
confi dence bounds of the measured changes in mortality.9,65–67

Was it appropriate to use LiST in the Global Fund assessment? 
Although the assessment used studies from three countries 
in south Asia and three countries in sub-Saharan Africa, this is 
a very small sample of settings and LiST cannot be deemed to 
have been fully validated. How well would the model perform 
for countries in Latin America where the levels and causes of 
mortality are rather diff erent from the settings used in the 
analyses? How well would the model perform for countries 
where AIDS is an important cause of child death? (In none of 
the settings examined was AIDS an important cause of child 
death.) These are questions which cannot, at present, be 
answered. Thus, although it might have been reasonable to 
use LiST in the Global Fund assessment, the model-derived 
predictions of deaths averted should be interpreted 
with caution.

Panel 3: The UNAIDS/WHO estimates of HIV and AIDS

UNAIDS and WHO developed models to estimate adult 
prevalence of HIV and AIDS, along with AIDS deaths, based on 
HIV testing of pregnant women attending for antenatal care 
in countries in sub-Saharan Africa. UNAIDS organised an 
external reference group to guide the development of the 
model, published descriptions of their methods and did 
extensive work to investigate the appropriate parameter 
values to use in the model. This was an on-going process, 
where new data were compiled and assumptions were 
reviewed and updated on an on-going basis. Uncertainty 
bounds were presented and sensitivity analyses done. In 
general, these estimates and the modelling on which they 
were based adhered to all fi ve of the indicators of model 
quality. However, when nationally representative data on 
adult HIV prevalence in countries with generalised epidemics 
became available from household surveys it became clear that 
the model overestimated HIV prevalence.

So what was wrong with the UN-led modelling on HIV 
prevalence and AIDS mortality? The major problems resulted 
from little data on which to base assumptions, especially with 
regard to the relation between prevalence in pregnant women 
in the surveillance system and all women, and the prevalence 
ratio between women and men. The limited data that were 
available had been compiled and the values for the parameters 
in the models were based on these data but these values were 
not representative of the values found in later national surveys.

UNAIDS and its partners have continued to use the same 
general approach to their modelling work, but now with 
more data available to refi ne the parameter values used in 
the modelling.
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Discussion
With recent increases in resources committed to improve 
global health, there is growing demand for accountability 
and effi  ciency in programme implementation and the need 
for good evaluation. In many situations, available data and 
appropriate modelling techniques can clarify, within a 
causal framework, the relation between programme inputs 
and eff ect. Modelling exercises that are well done can 
provide credible evidence of the value of programmes and 
guide the roll out and improvement of interventions. 
Unfortunately, mathematical modelling can be a confusing 
or daunting term and is often called and treated as a black 
box. We have examined the types of mathematical models 
that include the most common applications, although it is 
not exhaustive. We have attempted to provide guidance on 
the standards that readers should expect from a modelling 
paper, to promote more balanced and carefully considered 
view of modelling work in the hope that this enables 
modelling work to be more useable, more widely accepted 
and appropriately infl uential in this fi eld.

It is important to remember that in initial programme 
planning a model might be most useful when good data 
is not available, and yet public health policy decisions 
must be made—as at the beginning of an outbreak of a 
new respiratory pathogen. The model is valuable here for 
the very reason that good data is not available, and stands 
alone as our only method in such a setting because there 
is nothing else. By the time good data is available it might 
be too late to implement certain policies. In such a setting 
a good modeller will emphasise the limitations, but we 
cannot avoid decision making in uncertain situations.

As modelling moves from an academic exercise in 
mathematicians to the public health fi eld it is essential 
that modellers work to explain models clearly, are rigorous 
in quality assurance, and provide full documentation. 
Modellers need to be held to a high standard in terms of 
communication and technical skills, providing transparent 
analyses that can be replicated by others. To benefi t public 
health, non-modellers need to formulate their questions 
systematically, engage with modelling and hold modellers 
to account. Concomitantly, due consideration needs to be 
given to the range of choices and technical diffi  culties that 
can be involved in modelling programmes and the time 
and resources needed for good quality modelling as part 
of evaluation, rather than modelling being an inconvenient 
and rushed add-on.
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