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Using surrogate biomarkers to improve
measurement error models in
nutritional epidemiology
Ruth H. Keogh,a,b,c*† Ian R. Whitea and Sheila A. Rodwellb‡

Nutritional epidemiology relies largely on self-reported measures of dietary intake, errors in which give biased
estimated diet–disease associations. Self-reported measurements come from questionnaires and food records.
Unbiased biomarkers are scarce; however, surrogate biomarkers, which are correlated with intake but not
unbiased, can also be useful. It is important to quantify and correct for the effects of measurement error
on diet–disease associations. Challenges arise because there is no gold standard, and errors in self-reported
measurements are correlated with true intake and each other. We describe an extended model for error in
questionnaire, food record, and surrogate biomarker measurements. The focus is on estimating the degree of
bias in estimated diet–disease associations due to measurement error. In particular, we propose using sensitivity
analyses to assess the impact of changes in values of model parameters which are usually assumed fixed. The
methods are motivated by and applied to measures of fruit and vegetable intake from questionnaires, 7-day diet
diaries, and surrogate biomarker (plasma vitamin C) from over 25 000 participants in the Norfolk cohort of
the European Prospective Investigation into Cancer and Nutrition. Our results show that the estimated effects
of error in self-reported measurements are highly sensitive to model assumptions, resulting in anything from a
large attenuation to a small amplification in the diet–disease association. Commonly made assumptions could
result in a large overcorrection for the effects of measurement error. Increased understanding of relationships
between potential surrogate biomarkers and true dietary intake is essential for obtaining good estimates of the
effects of measurement error in self-reported measurements on observed diet–disease associations. Copyright ©
2013 John Wiley & Sons, Ltd.
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1. Introduction

The exposure of interest in nutritional epidemiology is typically the long-term average or ‘usual’ daily
intake of a given nutrient, food, or food group. However, there is no gold standard measurement, and
studies of the association between dietary intake and disease rely heavily on self-reported measures of
intake, which may be subject not only to random errors but also to errors that depend on the true expo-
sure level and on person-specific biases. Errors in measures of dietary intake result in biased estimates
of diet–disease associations. Random error causes associations to be underestimated and possible failure
to detect associations [1]. Systematic error, on the other hand, can result in underestimated or overesti-
mated associations [1]. It is important to try to quantify and correct for the effects of measurement error
on observed diet–disease associations.

Self-reported measurements of dietary intake are obtained using food frequency questionnaires
(FFQs) or using records of actual intake over a day or series of days [2]. Types of food record include
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24-h recalls, diet diaries, and weighed food records. FFQs are structured questionnaires designed to
measure habitual intake of the foods listed by asking individuals to choose their usual frequency of
intake from a number of categories offered. FFQs provide a relatively inexpensive method of measuring
dietary intake compared with food records, which are time-consuming to process, may require lengthy
interviews, and can be burdensome for participants. Hence, the FFQ has typically been used as the main
dietary instrument in large prospective studies, whereas food records may be obtained only for a sub-
set of the cohort. Examples include the European Prospective Investigation into Cancer and Nutrition
(EPIC) [3] and the National Institutes of Health–American Association of Retired Persons Diet and
Health Study [4]. FFQ measurements are subject to systematic error, due to the omission of some foods
from the questionnaire, the lack of detailed information on portion size, difficulty of accurate recall, and
individual tendencies towards biased reporting. Food records are generally considered to provide less
biased measures of intake because they measure actual food intake and do not rely on long-term recall,
although they are subject to day-to-day variability. More recently, diet diaries have been used to provide
the main measure of dietary intake in case–control studies in the UK Dietary Cohort Consortium [5].
Measurements from both FFQs and food records are subject to error at the data-processing stage, for
example, due to limitations of food databases.

1.1. Correcting for error in dietary measurements using regression calibration

Let Ti and Xi denote the true dietary exposure and the observed measurement, respectively, for individ-
ual i . We assume these to be continuous measurements. We suppose that the diet–disease association
is linear, for example, on the logistic scale, and let �1 denote the log odds ratio or log hazard ratio as
appropriate, which could be estimated directly if Ti could be measured exactly. The observed associa-
tion found by replacing Ti with Xi , denoted ��1 , is biased if Xi is subject to measurement errors. For a
linear diet–disease association on the appropriate scale (e.g. logistic), we can estimate �1 by replacing
Ti with E.Ti jXi / [1, 6]. Under a linear regression model, this is exact, and it has been found to hold
approximately under logistic models and proportional hazard models [6, 7]. We refer to this method as
regression calibration. In many cases, we find a good approximation to the expectation E.Ti jXi / by
fitting a linear regression model:

Ti D �0C �XTXi C ei : (1)

Sometimes, Xi and Ti are appropriately transformed prior to using this approach.
The estimate of �1 found by using E.Ti jXi / in place of Ti in the diet–disease model is equal

to ��1 =�XT (approximately in the case of logistic and proportional hazard regression). We refer
to the correction factor �XT as the regression dilution ratio (RDR) and estimate it by O�XT D
cov.Ti ; Xi /=var.Xi /.

When Ti cannot be observed even in a validation study, we can still estimate the RDR if additional
exposure measurements are available. This is carried out by replacing Ti in (1) with an error-prone but
unbiased ‘reference’ measurement, that is, a measurement that is subject only to random error, which
may be available in a validation sample within a cohort. This requires a model for the error in the main
and reference measurements and a number of assumptions.

Suppose that the error in the main measurement Xi can be modelled as

Xi D ˛C ˇTi C �i ; (2)

where the errors �i have mean 0, have constant variance, and are independent of Ti and of each other.
Parameter ˇ represents errors dependent on true intake. When ˛ D 0 and ˇ D 1, (2) is the classical
measurement error model, and Xi is an unbiased measure of Ti . Suppose that a second measurement
X 0i is available, which is subject only to classical measurement error, that is, X 0i D Ti C �

0
i . In the case

of classical measurement error in the main exposure, X 0i may be a repeat measurement of Xi obtained
using the same instrument. Alternatively, if Xi is subject to a nonclassical error, X 0i may be a different
type of measurement, for example, a less error-prone but more expensive measurement, which provides
an unbiased measure of Ti and is available in a validation study. Under the crucial assumption that the
errors in Xi and X 0i are independent, we can estimate the RDR �XT by a regression of X 0i on Xi [1, 8].

We now put this into the context of a nutritional epidemiological study. Most commonly, researchers
have compared FFQ measurements (Xi ) with measurements obtained from food records

�
X 0i
�

available
in a subset of the cohort to correct for the effects of error in the questionnaire measurements using the
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aforementioned method of regression calibration [9–17]. However, there is reason to believe that the
assumptions on which this depends are not met, specifically that food record measurements are sub-
ject to errors that depend on Ti , that is, nonclassical measurement errors, and that errors in FFQ and
food record measurements are correlated both with each other and across repeated measurements of the
same type.

1.2. Using biological measurements

Recovery biomarkers are absolute measures of nutrient intake over a short period (e.g. 24 h) and pro-
vide unbiased measures of long-term intake [18]. However, these exist only for energy [19], protein,
potassium, and sodium [20, 21]. One way of using recovery biomarker measurements is to use them as
a reference measurement

�
X 0i
�

in regression calibration, where the main measurement (Xi ) is either an
FFQ or a food record, under the reasonable assumption that errors in recovery biomarker measurements
are purely random and therefore independent of errors in self-reported measurements. Another way to
use recovery biomarkers is in a measurement error model defined for FFQ, food record, and recovery
biomarker [11, 22–27]. This enables estimation of RDRs if an FFQ or food record is used as the main
measurement and also investigation of the structure of measurement error in the self-reported measure-
ments, in particular if the self-reported measurements are subject to systematic error depending on Ti
(ˇ ¤ 1 in (2)) and if errors in the two types of measurement are correlated. Studies using recovery
biomarkers have provided evidence that both FFQ and food record measurements are subject to system-
atic error depending on Ti and the errors in the two types of measurement are correlated. Unfortunately,
the scarcity of recovery biomarkers makes such investigations impossible for most nutrients and for
all foods.

Some studies have available other biological measurements, referred to as concentration biomarkers,
which are correlated with, but not unbiased for, intake of certain nutrients, because they are influenced
by other factors such as absorption, metabolism, and individual characteristics [18]. In this paper, we use
the more general term ‘surrogate biomarker’ to refer to any biomarker that is correlated with the dietary
exposure of interest, be that a food or nutrient, and also affected by other factors. Surrogate biomarkers
may be obtained relatively cheaply, for example, in stored blood or urine samples. Examples include
plasma vitamin E [2], urine or serum phytoestrogens [28], and plasma vitamin C [29], which is used
in our later illustration. For the usual case in which there is no recovery biomarker, we can use surro-
gate biomarkers in measurement error models with FFQ and food record measurements, which allows
more flexibility of assumptions made about error in the self-reported measurements [13, 14, 25, 30–34].
However, previously proposed models involving surrogate biomarkers still require assumptions that, as
discussed later, may be unreasonable.

1.3. Plan of the paper

In this paper, we describe a measurement error model for self-reported measurements using surrogate
biomarkers. We propose the use of sensitivity analyses to investigate the effects of certain commonly
made assumptions about the types of errors in dietary measurements. In Section 2, we give an overview
of measurement error models for two and three dietary measurements and describe our extended model
for two types of self-reported measurement and a surrogate biomarker. This work was motivated by
data on self-reported measures of fruit and vegetable intake from questionnaires and 7-day diaries and
a surrogate biomarker (plasma vitamin C) in the EPIC-Norfolk study, a prospective UK study of diet
and cancer with over 25 000 participants. This study is unique in that diet diary and plasma vitamin
C measurements are available for a large number of participants at two time points. Previous studies
of measurement error involving food record measurement and biomarkers have been limited by small
numbers of subjects. Fruits and vegetables are of major interest in nutritional epidemiological research
[35, 36]. In Section 3, we illustrate the proposed model and sensitivity analyses using the EPIC-Norfolk
data. To our knowledge, this is the first time that surrogate biomarkers have been considered for use in
measurement error models for food intakes rather than nutrient intakes. This is important because the
possibility of a recovery biomarker for a food seems remote. The main focus is on estimation of RDRs for
use in correcting observed diet–disease associations for the effects of measurement error in the dietary
assessment. In particular, in this paper, we show the effects on RDR estimates of deviations from two
commonly made assumptions in measurement error models involving surrogate biomarkers. It is also of
interest to make comparisons of the degrees of error in FFQ and 7-day diary (7DD) measurements of
fruit and vegetable intake. We conclude with a discussion in Section 4.
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2. Measurement error models

2.1. Overview of models for FFQ, food record, and biomarker

Throughout the paper, the following notation will be used: Ti as the true long-term average intake for
individual i , Qij the FFQ measurement for individual i at time point j , Rij the food record measure-
ment for individual i at time point j , and Mij the biomarker measurement for individual i at time point
j . To simplify some of the notation, we let X refer to any of the error-prone measurements, fQ;R;M g.

First, consider a measurement error model for FFQ and food record only, in which the food record is
treated as the reference measure for the FFQ, that is, the food record is assumed to provide an unbiased
measure of true intake Ti :

Qij D ˛Q C ˇQTi C �Qij ;

Rij D Ti C �Rij :
(3)

A number of authors have considered models of a similar form to (3) [9,13,15,17,25]. The assumptions
required to identify the parameters of model (3) depend on how many repeated measures of each type are
available. If only one measurement of each type is available .Qi1; Ri1/, we require the assumption that
the errors �Qi1 and �Ri1 are uncorrelated (or have some known correlation) to estimate the RDR. In this
case, the RDR is �QT D cov.Ri1;Qi1/=var.Qi1/, and we can estimate it from a linear regression of Ri1
onQi1. Note, however, that not all of the individual parameters of the model can be estimated in this case,
that is, the model is not fully identified. The availability of a second FFQ measurement, so that we have
.Qi1;Qi2; Ri1/, allows us to estimate all of the model parameters only under the additional assumption
that the errors in repeated FFQ measurements .�Qi1�Qi2/ are uncorrelated. This is a highly undesirable
assumption. A slight modification is that we can allow a nonzero correlation between the errors in FFQ
and the food record measurements made at the same time point only .corr.�Qi1 ; �Ri1/ ¤ 0/. In this
case, we do not estimate the RDR �QT as described earlier. The addition of a second food record mea-
surement, so that the data are .Qi1; Ri1; Ri2; Ri2/, allows estimation of a nonzero correlation between
errors in repeated FFQs .corr.�Qi1 ; �Qi2/¤ 0/, provided we assume that errors in repeated food records
are uncorrelated .corr.�Ri1 ; �Ri2/ D 0/ and that errors in FFQ and food record have zero correlation
.corr.�Qij ; �Rik /D 0/. Again, as a slight modification, we can allow for a nonzero correlation between
errors in FFQ and food record measurements made at the same time point. Provided that two food record
measurements are available, we fully identify the model without a second FFQ measurement under the
same assumptions required for the situation with two measurements of each type. If only a single FFQ
is available alongside two food records, then of course, we cannot estimate a correlation between errors
in repeated FFQs. We can replace all assumptions of zero correlation described here by assumptions that
the given correlation takes a known nonzero value. Kipnis et al. [15] discussed the use of sensitivity
analyses to assess the effects of error correlations on RDRs.

Authors have extended model (3) using recovery biomarker measurements [22–27, 37], and we can
write it in the following form:

Qij D ˛Q C ˇQTi C �Qij ;

Rij D ˛R C ˇRTi C �Rij ;

Mij D Ti C �Mij :

(4)

Under this model, we assume the errors in the biomarker (�Mij ) to be independent of those in the self-
reported measurements (�Qij ; �Rij ), which is reasonable because of the nature of a recovery biomarker.
With this assumption, the RDRs for using an FFQ or food record as the main measurement in a diet–
disease model are �QT D cov.Mij ;Qij /=var.Qij / and �RT D cov.Mij ; Rij /=var.Rij /, which can be
estimated by regressions Mij on Qij and Mij on Rij , respectively. We can estimate these RDRs using
only one measurement of each type. To estimate all of the parameters of model (4) requires a repeated
biomarker measurement and the assumption that errors in repeated biomarker measurements are uncor-
related (corr.�Mi1 ; �Mi2/ D 0), which again is assumed reasonable because of the nature of a recovery
biomarker. The preceding assumptions allow estimation of correlation between the errors in FFQ and
food record (corr.�Qij ; �Rik /), as well as between repeated measures using the self-reported instruments
(corr.�Qij ; �Qik /, corr.�Rij ; �Rik /), if repeated measures are observed.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3838–3861
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The nature of surrogate biomarkers means that surrogate biomarker measurements cannot be assumed
to have errors independent of Ti ; hence, several investigators [13, 14, 25, 31–34, 37] have described
measurement error models for FFQ, food record, and a surrogate biomarker of a form similar to

Qij D ˛Q C ˇQTi C �Qij ;

Rij D Ti C �Rij ;

Mij D ˛M C ˇMTi C �Mij :

(5)

For identifiability of models of this form, we must have one type of measurement that is assumed to
have errors independent of Ti , or more generally, systematic errors of a known form. This has invariably
been chosen to be the food record measurement despite evidence to the contrary [22, 27]. Model (5) is
identified under the same assumptions about error correlations as described for model (4). Under model
(5), estimation of RDRs is more complex, and we will outline it further below.

In models of the forms described in (3), (4), and (5), some authors have parametrized the model
slightly differently by separating the error terms (�Xij ) into a random part and a person-specific part
[15, 23, 24, 26, 27, 33, 34, 37], at least in the self-reported measurements. For example, we could
alternatively write model (5) in the form

Qij D ˛Q C ˇQTi C qi C eQij ;

Rij D Ti C ri C eRij ;

Mij D ˛M C ˇMTi C eMij :

(6)

Spiegelman et al. [33] discussed this model in detail. The terms qi and ri represent person-specific error
in the FFQ and food record, respectively, and eQij and eRij are random errors. Notice that there is no
person-specific error term in the part of the model for the surrogate biomarker. When there are at least
two measurements of each type (j > 2), this model is identified under the assumptions that eMij is
independent of eQij and eRij for all j and of qi and ri . The person-specific errors in FFQ and food
record may be correlated (corr.qi ; ri / ¤ 0) but are independent of all other error terms. The random
error terms in FFQ and food record may be correlated for measurements made at the same time point
(corr.eQij ; eRij /¤ 0) but must be uncorrelated otherwise (corr.eQij ; eRik /D 0; .j ¤ k/).

We can also extend the preceding models to include adjustment for covariates, which is required
to estimate RDRs when the underlying exposure–disease model includes covariates (Section 2.4). We
further discuss the use of covariates in the following.

For a situation where two or more repeated measurements of each of Q, R, and M are available,
Rosner et al. [34] proposed extending the surrogate biomarker model in (5) by including time-specific
true intake, Tij , denoting average daily intake for individual i at time point j . Rosner et al. [34] separated
the errors in measurements into person-specific and random components and also included covariates
Zij . Their model is of the form

Tij D ˛Tj C �
0
TZij C �Tij ;

Qij D ˛Qj C ˇQTij C �
0
QZij C qi C eQij ;

Rij D Tij C ri C eRij ;

Mij D ˛Mj C ˇMTij C �
0
MZij Cmi C eMij ;

(7)

where qi , ri , andmi are person-specific error terms and eQij , eRij , and eMij are random error terms. This
differs from the previous model in (6) in its inclusion of a person-specific error term for the surrogate
biomarker. There are different assumptions regarding error correlations required when a person-specific
error term is included for the surrogate biomarker. Model (7) is identified under the assumptions out-
lined as follows. We assume random error terms eXij to be independent of Tij and Zij , of each
other, and of �Tij . We allow person-specific errors in the self-reported measurements to be correlated
(corr.qi ; ri /¤ 0) but assume them to be independent of mi . Note that the random effect term mi allows
for correlation in the errors between repeated surrogate biomarker measurements. We estimate the vari-
ance of mi at the cost of allowing correlation between random errors in FFQ and food record made at
the same time point, that is, it is assumed corr.eQij ; eRij /D 0. This is in contrast to the model in (6).

Kipnis et al. [23], Rosner et al. [34], and Spiegelman et al. [33] summarized measurement error
models that have been used for FFQs and food records using recovery or concentration biomarkers.
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2.2. The extended model

In this section, we describe a model that extends that of Rosner et al. [34]. We describe the notation for
a study with at least two measurements of each type for each individual. However, provided there are at
least two surrogate biomarker measurements, we can calculate all relevant model parameters when FFQ
and food record measurements are available at only one time point.

As in the previous discussion, we let Tij denote the average daily intake for individual i at time point
j , where the expected value of Tij is a long-term average daily intake, Ti . A longitudinal true exposure
is appropriate because individual dietary intake clearly fluctuates somewhat over time, and depending
on the length of follow-up during which dietary measurements were obtained, it may be desirable to
allow for this. For individual i at time point j , let ZTij denote a vector of covariates associated with
the true dietary intake, and let ZQij , ZRij , and ZMij denote vectors of covariates associated with errors
in the three types of dietary measurement. The four sets of covariates may differ, and they may be time
dependent. The longitudinal measurement error model with covariate adjustment is

Tij D ˛T C �
0
TZTij C hij C �Ti ;

Qij D ˛Qj C ˇQTij C �
0
QZQij C �Qij ;

Rij D ˛Rj C ˇRTij C �
0
RZRij C �Rij ;

Mij D ˛Mj C ˇMTij C �
0
MZMij C �Mij :

(8)

In the following, we discuss the model further, including assumptions required for identifiability.
Table AI in Appendix A shows how the model parameters are identified. In this paper, we choose not
to separate the errors in the dietary measurements into person-specific and random parts, in contrast to
some previously suggested models, including models (6) and (7). Appendix A outlines an alternative
version of model (8), which includes person-specific error terms.

In (8), the implicit model for long-term average daily intake is Ti D ˛T C � 0T NZTi C �Ti , where NZTi
denotes the long-term average covariate value for individual i . When the ZTij are time constant, the
terms hij are within-person error terms representing the deviation in true dietary intakes at time point j
from the long-term average daily intake, Ti . In general, the deviation in true intakes at time j from the
usual intake is hij C � 0T .ZTij � NZTi /. We assume that the hij have zero mean, are independent of Ti
and of each other (corr.hij ; hik/ D 0; j ¤ k), and are independent of all covariates and of errors �Xij .

We let �2
T jZ

denote the variance of �Ti and �2
hj

the variance of hij . We therefore allow the variability

in true dietary intakes to differ across time points, through �2
hj

. Different types of dietary measurements
that are made at the same time point have additional correlation via the hij term, compared with dietary
measurements made at different time points.

2.2.1. Scaling and intercept parameters. The scaling parameters ˇX reflect errors in dietary measure-
ments that are associated with the true intake. We assume these to remain the same over time, although
the model allows different intercept terms so that the mean measurements may vary over time. As in
the simpler models described earlier, under model (8), we cannot estimate one of the sets of parameters
.˛Qj ; ˇQ/, .˛Rj ; ˇR/, and .˛Mj ; ˇM /, and it has previously been assumed that ˛Rj D 0; ˇR D 1.
In this paper, we use sensitivity analyses to assess the effects of varying the scaling parameter ˇR on
estimates of other parameters. We discuss the selection of suitable values for consideration in sensitivity
analyses in Section 2.5. When ˇR takes a value other than 1, we do not attempt to also fix ˛Rj because
these parameters are highly dependent on the dietary exposure, with the consequence that ˛Qj , ˛Mj ,
and ˛T cannot be estimated. These parameters only affect the other intercept parameters.

2.2.2. Error terms. In model (8), the error terms �Xij combine both person-specific and random error
into one. Our use of combined errors is to some extent a personal preference. However, this formulation
for the errors also allows for a little more flexibility in how we define the correlations between errors
in longitudinal measurements (Appendix A). This is at the expense, of course, of being able to study
person-specific and random sources of error separately. We do not focus on this aspect in this paper.
We now outline the features of the error terms in model (8). We assume the errors �Xij to arise from a
normal distribution with mean 0 and variance �2Xj . We assume all errors to be uncorrelated with Tij and

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3838–3861
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with all covariates. We use the following notation for correlations between errors in repeated FFQ and
food record measurements given the covariates, where ZXi D fZXij g:

corr.�Qij ; �Qik / D corr.Qij ;QikjTi ; ZQi /D �QjQk ; j ¤ k;

corr.�Rij ; �Rik / D corr.Rij ; RikjTi ; ZRi /D �RjRk ; j ¤ k;

corr.�Qij ; �Rij / D corr.Qij ; Rij jTij ; ZQij ; ZRij /D �QRj ;

corr.�Qij ; �Rik / D corr.Qij ; RikjTi ; ZQi ; ZRi /D �QjRk ; j ¤ k:

(9)

The error correlation structure summarized in (9) allows the correlation between repeated self-reported
measurements made at different time points to change over the course of follow-up and correlations
between errors in FFQ and food record to differ according to whether they are made at the same time
point or at different time points. There are two prices for estimating the error correlations in (9). These
are that we cannot estimate correlations between errors in self-reported and biological measurements
or correlation between errors in repeated biomarker measurements. These error correlations therefore
need to be handled either by assuming that they are zero or by using sensitivity analyses. We make the
assumption that the correlation between errors in self-reported and biological measurements is 0:

corr.�Mij ; �Qik /D corr.�Mij ; �Rik /D 0;8j; k: (10)

Inclusion of important covariates in the measurement error model makes this a reasonable assumption.
For example, if we are concerned that men and women report dietary intake differently for the same true
level of intake and also that sex affects the correlation between true intake and the surrogate biomarker,
then conditioning on sex eliminates the concern.

We denote by �MM the correlation between repeated surrogate biomarker error terms:

corr.�Mij ; �Mik /D corr.Mij ;MikjTi ; ZMi /D �MM ;8j; k; j ¤ k: (11)

The inclusion of covariates ZMij in the extended model may reduce correlation between errors in the
repeated surrogate biomarker measurements; however, this will be highly dependent on the surrogate
biomarker in question. Many potential surrogate biomarkers are affected by intrinsic individual charac-
teristics, for example, genetics, not easily captured in the covariate adjustment, and it seems unlikely
that all sources of correlation between repeated surrogate biomarker measurements could be accounted
for solely by true intake and the chosen set of covariates [2, 29]. From the preceding discussion, we are
not happy to assume that �MM D 0, and we propose using sensitivity analyses to assess the effects of
the value of �MM . We discuss the choice of suitable values in Section 2.5.

2.2.3. Covariates. There are three main purposes for covariate adjustment in the measurement error
model: to allow individual characteristics to be associated with different degrees of error in self-reported
measurements; to make some of the model assumptions more realistic, as discussed in the previous sec-
tion; and to enable us to use regression calibration when the diet–disease model is adjusted for potential
confounders. Relating to the third point, we must include any confounders in the diet–disease model in
ZTij . We further discuss this in detail in Section 2.4. It may also be of some secondary interest to investi-
gate the effects of certain covariates on true intake, errors of reporting in the self-reported measurements,
and error in the surrogate biomarker.

In model (8), we are unable to estimate the parameters �R because of the requirement for identi-
fiability that one of the three measurement types has systematic bias of a known form. We could fix
the parameters �R in additional sensitivity analyses, but it is difficult to fix a potentially large number
of parameters about which we have little information. We can show that the value of �R only affects
parameters �T , �Q, and �M (Table AI). We assume here that reporting in food record measurements Rij
is not dependent on covariates, that is, �R D 0. Provided that the variables of concern are included in
ZMij , our inability to estimate �R does not affect the assumption in (10).

2.2.4. Comparison with earlier models. Finally, we summarize the main differences between our model
and that of Rosner et al. [34]. Our primary extension is the promotion of the use of sensitivity analyses
involving the scaling parameter ˇR and the biomarker error correlation �MM . We allow a random term
hij in the model for Tij , which allows for true individual intake to fluctuate over time. Inclusion of this
term naturally allows for dietary measurements made at the same time point to be more highly correlated
than those made at different time points. In our model, the error terms �Xij combine both person-specific

3844

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3838–3861



R. H. KEOGH, I. R. WHITE AND S. A. RODWELL

and random errors and are allowed to have different variances over time. We allow errors in FFQ and
food record measurements to have different, presumably higher, correlations when made at the same
time point than when made at different time points. By not allowing this, Rosner et al. [34] were able
to include a person-specific error term in the part of the model for the surrogate biomarker. In model
(8), we allow for different sets of covariates to feature in different parts of the model, where Rosner
et al. [34] assumed just one set of covariates. We should take care in the choice of covariates because the
omission of important covariates that are unknown or unmeasured could induce correlations among �Ti ,
hij , and �Xij .j D 1; : : : ; J / and betweenZTij and hij or �Ti . Note that the use of covariatesZTij in the
measurement error model (8) is not to provide a model for true intake but rather to allow the estimation
of covariate-adjusted RDRs and to improve model assumptions.

2.3. Fitting the measurement error model

One approach to fitting model (8) is by maximum likelihood assuming a multivariate normal distribution
for the dietary measurements conditional on the covariates. The measurements may need to be trans-
formed to meet the assumption of multivariate normality. This method can be computationally intensive
if there are many covariates. In the later example, we use the method proposed by Rosner et al. [34] in
which we first obtain the residuals, X�ij , from linear regressions of Xij on ZXij and ZTij and then use
X�ij in place of Xij in model (8) but with the covariate terms omitted. We then estimate parameters �T
by fitting a mixed-effects linear regression of Rij on ZTij and dividing the resulting estimates by ˇR.
We estimate parameters �Q by fitting a mixed-effects linear regression model with response variable
Qij � ˇQRij =ˇR and explanatory variables ZQij . We estimate parameters �M in a similar way. To
perform these regressions, ˇQ and ˇM are replaced by their estimated values.

An alternative approach to fitting models of the kind described in the preceding sections is to use an
estimating equations approach, which is based on method-of-moments principles, which is described by
Spiegelman et al. [33]. We comment further on the two approaches in Section 3.4.

Usually, only a subset of participants contributing to the diet–disease analysis will have all measure-
ments involved in the measurement error model. Some previous studies have fitted measurement error
models using only the data from the subset of individuals with each of the dietary measurements at
each time point under consideration, for example, from a validation study, which is usually a small pro-
portion of the total study population [22, 34]. Clearly, this is inefficient, and furthermore, it relies on
the questionable assumption that measurements are missing completely at random. In this paper, we
use a ‘full-cohort’ approach to fitting the measurement error models, including all individuals with an
incomplete set of measurements. This likelihood-based analysis is valid and efficient under the weaker
assumption that measurements are missing at random [38].

2.4. Correction for measurement error in diet–disease models

In this section, we outline how RDRs are estimated under the extended measurement error model. Model
(8) allows the dietary exposure to be defined as dietary intake at a particular time point j , Tij , or as the
long-term average intake, Ti . Diet–disease models typically also adjust for potential confounders, say
ZCij , which are assumed to be measured without error. Under the method of regression calibration for
a covariate-adjusted diet–disease model, we replace true intake in the diet–disease model by its expec-
tation, conditional on both the observed error-prone measurement and ZCij . The regression calibration
model used to find this expectation may take one of the forms

Tij D �0j C �XjTj jZXij C �
0
2jZCij C eij and (12)

Ti D �0C �XjT jZXij C �
0
2ZCij C ei ; (13)

whereXij denotes the main error-prone exposure measurement available for all individuals being used to
estimate the diet–disease association andZCij are the covariate measurements from the same time point.
Typically, in large-cohort studies,Xij is an initial FFQ measurement, or in case–control studies, it may be
a food record measurement. To reiterate, the RDRs �XjTj jZ and �XjT jZ indicate the effect of measure-
ment error in the observed dietary measurement on the estimated diet–disease association, for example,
a log odds ratio, when the interest is in time-specific intake or long-term true intake, respectively. The
Fibrinogen Studies Collaboration [39] has previously suggested the use of time-dependent measurement
error corrections. Model (8) accommodates calculation of the RDRs in the preceding models for FFQ or
food record measurements at each time point j , provided ZCij is a subset of ZTij . We can show that
our inability to estimate the parameters �R in model (8) does not affect the RDRs �XjTj jZ ; �XjT jZ .
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Table I. Estimates of parameter ˇR from measurement error models for the food frequency questionnaire,
food record, and recovery biomarker.

Nutrient Authors Study Food record ˇR

Protein Day et al. [22] EPIC-Norfolk 7DD 0.81

Kipnis et al. [24] EPIC pilot: France 24HR 0.674
EPIC pilot: Germany 24HR 0.375
EPIC pilot: Greece 24HR 0.646
EPIC pilot: Italy 24HR 0.586
EPIC pilot: Netherlands 24HR 0.596
EPIC pilot: Spain 24HR 0.342
EPIC-Norfolk 7DD 0.614

Kipnis et al. [23, 24] MRC pilot: Cambridge 4DWR 0.766

Kipnis et al. [26]� OPEN study 24HR 0.70 (men)
0.60 (women)

Schatzkin et al. [27]� OPEN study 24HR 0.70 (men)
0.60 (women)

Energy Kipnis et al. [26]� OPEN study 24HR 0.66 (men)
0.46 (women)

Schatzkin et al. [27]� OPEN study 24HR 0.63 (men)
0.42 (women)

Energy-adjusted protein Kipnis et al. [26]� OPEN study 24HR 0.62 (men)
0.39 (women)

Schatzkin et al. [27]� OPEN study 24HR 0.61 (men)
0.39 (women)

Potassium Day et al. [22] EPIC-Norfolk 7DD 0.69

Sodium Day et al. [22] EPIC-Norfolk 7DD 0.47

7DD, 7-day diary; 24HR, 24-h recall; 4DWR, 4-day weighed food record; EPIC, European Prospective Investigation
into Cancer and Nutrition.
�Kipnis et al. (2003) and Schatzkin et al. (2003) presented slightly different results from the same study.

Estimates of correlations between dietary measurements and true intake are also informative. Note
that we can write corr.Yi ; Ti jZ/ D corr.Yi ; Xij jZ/=corr.Xij ; Ti jZ/, where Yi denotes an outcome
of interest. The correlations corr.Xij ; Ti jZ/ therefore determine the power of a study to detect diet–
outcome associations using Xij . We denote unconditional correlations by CXjTj D corr.Xij ; Tij / and
CXjT D corr.Xij ; Ti / and conditional correlations by CXjTj jZ D corr.Xij ; Tij jZCij / and CXjT jZ D
corr.Xij ; Ti jZCij /.

Appendix B outlines the calculation of the RDRs and correlations for the situation in which
ZCij DZTij .

2.5. Sensitivity analyses: choosing values for ˇR and �MM

We have proposed the use of sensitivity analyses to assess the effects of different values of ˇR and �MM
on the estimated measurement error model, in particular on the RDRs. In this section, we use results
from other studies to inform us about plausible values for these parameters.

Measurement error models for an FFQ, a food record, and a recovery biomarker have been used in
a small number of studies to investigate the structure of error in self-reported measures of total energy
intake, where the recovery biomarker is obtained using doubly labelled water [19], and intakes of protein,
potassium, and sodium, for which urinary measurements provide recovery biomarkers [20, 21]. Energy-
adjusted protein (‘protein density’) has also been considered. The models used were similar to (4), thus
providing estimates of ˇR. Table I presents the summary of the estimates of ˇR; they range from 0.34
to 0.81 across studies, nutrients, and type of food record. We could use the results from these studies to
inform us about the range of values for ˇR that may be plausible in our sensitivity analyses.

We have come across only one study in which estimates of �MM have been obtained. Rosner et al.
[34] fitted their model (7) to measures of vitamin C intake from repeated FFQ and 7-day diaries, with
plasma vitamin C as the surrogate biomarker using data on 323 individuals from the EPIC-Norfolk study.
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They assumed the 7DD measurement to have no scaling bias (ˇR D 1). These authors chose to estimate
�MM and instead assumed that correlations between errors in FFQ and 7DD measurements are the same
whether or not the measurements were made at the same time point, that is, �QRj D �QjRk ;8j; k.
They considered raw-adjusted and calorie-adjusted vitamin C intake, with adjustment for sex, age, body
mass index (BMI), height, smoking status, and use of vitamin C supplements in all parts of the model.
Without covariate adjustment, the estimates of �MM in models for raw-adjusted and calorie-adjusted
vitamin C intake were 0.54 and 0.57, respectively, and in the covariate-adjusted models, the correspond-
ing estimates of �MM were 0.32 and 0.39. Given the evidence from recovery biomarker studies that
�QRj ¤ �QjRk ;8j; k, this approach does not seem appropriate in general and, aside from eliciting
expert advice for specific surrogate biomarkers, it remains unclear how values of �MM should be chosen
for a sensitivity analysis. Using a surrogate biomarker model similar to (5), Wong et al. [32] performed
sensitivity analyses using values �MM D 0; 0:2; 0:4 in simulation studies.

3. Illustration: plasma vitamin C as a surrogate biomarker for fruit and vegetable
intake in EPIC-Norfolk

In this section, we apply the methods outlined in Section 2 to data on intake of fruit and vegetables
in the EPIC-Norfolk study, using plasma vitamin C as the surrogate biomarker. EPIC-Norfolk is a
cohort of 25 639 individuals recruited during 1993–1997 from a population of individuals aged 45–75
years in Norfolk, UK [40]. During follow-up, study participants were invited to attend health checks at
which dietary intake was assessed using an FFQ and a 7DD and blood samples were provided. Data
are currently available from two health checks. Briefly, the first FFQ was mailed to study participants
and returned either before or at the date of the first health check, which took place shortly after recruit-
ment. At the first health check, the first day of the diary was completed as a 24-h recall with a trained
interviewer and the remainder completed during subsequent days. The second health check took place
3–4 years later, when the FFQ and 7DD were handed out and later returned by post. At each health check,
measures of average daily intake of fruit and vegetables (g/day) were derived from the FFQ and 7DD,
and plasma vitamin C (mmol/l) was measured within a few days of the blood sample being provided.
Bingham et al. have described the dietary assessment methods in detail [41].

3.1. Use of plasma vitamin C as a surrogate biomarker

Bates et al. [29] reported that ‘of all the vitamins, vitamin C exhibits possibly the strongest and most
significant correlation between intake and biochemical indices, so that its intake can be predicted with
moderate precision from the wide range of biological values that are encountered within the population
of a Western country’. Approximately 80–90% of vitamin C intake is absorbed when intake is below
100 mg/day, and absorption saturates at around 140 mg/day [42]. Plasma vitamin C has been suggested
as a suitable surrogate biomarker for fruit and vegetable intake, as fruits and, to a lesser extent, vegeta-
bles are major contributors to dietary vitamin C [43–45], which in turn is correlated with plasma vitamin
C [29]. However, plasma vitamin C is affected not only by vitamin C intake but also by absorption,
metabolism, and genetics [46] and by individual characteristics, including sex, age, smoking status, and
BMI [29, 43, 47, 48].

3.2. Covariates

In model (8), we allow true fruit and vegetable intake to depend on sex, age, BMI, smoking status, and
education level, which is used as an indicator of social class. These were chosen firstly because they are
thought to be associated both with true dietary intake and with measurement errors and secondly because
in studies of diet–disease associations, they would commonly feature in the set of potential confounders;
hence, a regression calibration that is conditional on these variables is of general interest. Intake of fruit
and vegetables can also differ across seasons of the year [49]. ZTij is therefore a vector of covariates for
sex, age, BMI, smoking status, education level, and season of measurement.

The vector ZQij contains covariates for sex, age, BMI, smoking status, and education level, which
have been associated with reporting of fruit and vegetable intake on FFQs [50–52]. Errors in 7DD
measurements could depend on similar covariates [53, 54], but the parameters �R cannot be estimated.

As noted earlier, plasma vitamin C has been observed to be affected by sex, age, smoking status, and
BMI. In our data, there was a significant upward shift in the plasma vitamin C measurements during
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Table II. Summary of FFQ and 7DD measurements of fruit and vegetable intake and plasma vitamin C
measurements in EPIC-Norfolk: number of individuals with each measurement (N ) and the mean and standard
deviation (SD) of the measurements.

Health check 1 Health check 2

Measurement N Mean (SD) N Mean (SD)

FFQ (g/day) 24 957 454.8 (258.7) 11 732 478.7 (249.6)
FFQ (log-scale g/day)� 24 948 5.98 (0.56) 11 729 6.04 (0.53)
7DD (g/day) 17 293 255.8 (164.3) 2949 296.3 (164.3)
7DD (log-scale g/day)� 17 059 5.34 (0.72) 2943 5.52 (0.63)
Plasma vitamin C (mmol/l) 22 113 53.0 (19.5) 13 373 62.5 (21.1)

FFQ, food frequency questionnaire; 7DD, 7-day diary; EPIC, European Prospective Investigation into Cancer and
Nutrition.
�A small number of FFQ and 7DD measurements of zero fruit and vegetable intake are treated as missing when
log-scale measurements are used.

the period over which the second health check took place (Table II), which may relate to changes in
the laboratory over time; the cause is not clear, and we do not elaborate on this here, but we include
an adjustment for month and year of measurement. In model (8), ZMij therefore denotes a vector of
covariates for sex, age, BMI, smoking status, and month and year of measurement.

The provision to allow different sets of covariates to be associated with true intake, self-reported
intake, and errors in the surrogate biomarker was motivated by wanting to allow true dietary intake to be
seasonal, whereas it did not seem plausible that season would affect dietary measurement errors. Sim-
ilarly, we wanted to allow true intake and FFQ reporting, but not errors in the surrogate biomarker, to
be associated with education level. Age, BMI, smoking status, and season were recorded at both health
checks.

3.3. Application of model (8)

The use of a longitudinal exposure Tij in model (8) was motivated by the long period (3–4 years) between
the repeated dietary measurements in the EPIC-Norfolk study. The use of error correlations between
dietary measurements, which may differ over time, was motivated by knowledge about the timing and
ordering of the self-reported measurements and the thought that self-reporting errors may change over a
long period.

We assume a multivariate normal distribution for the dietary measurements to fit model (8). Plasma
vitamin C measurements are approximately normally distributed on the untransformed scale, whereas
FFQ and 7DD measurements are approximately normally distributed on the log scale. For individual i
at health check j .j D 1; 2/, we let Qij and Rij denote log-transformed FFQ and 7DD measurements,
respectively, and Mij denote plasma vitamin C. Normality also holds approximately for the residuals
after adjustment of Qij , Rij , and Mij for covariates .ZTij ; ZQij /, ZTij , and .ZTij ; ZMij /, respec-
tively. Estimated RDRs for FFQ and 7DD measurements apply to log-scale fruit and vegetable intake. If
untransformed intake is of interest in the diet–disease model, then we can apply a ‘back-transformation’,
which is outlined in Appendix B.

A total of 25 604 individuals have at least one of six measurements (FFQ, 7DD, or plasma vitamin C at
the first or second health check), and all six measurements are available for 2000 individuals. Processing
of diet diaries is extremely expensive and time-consuming and is ongoing. The analyses are based on
25 275 individuals with at least one dietary measurement and complete covariate information at times of
dietary measurement. Table II summarizes the number of individuals with each of the six measurements,
and the means and standard deviations of the measurements. We treat very high (75th percentile plus
two times the interquartile range) plasma vitamin C measurements (105 at the first health check and 106
at the second health check) as missing because these could be due to the use of vitamin C supplements
[55], but quantitative data on supplement use were not available. The covariates, excluding month and
year of plasma vitamin C measurements and season of measurement, are summarized in Table III.

For each type of dietary measurement, means and variances differ significantly between health checks
1 and 2 (Table II). In model (8), we therefore allow for different intercepts ˛Qj ; ˛Mj ; j D 1; 2 and
different error variances �2Xj ; j D 1; 2.
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Table III. Summary of covariates at health checks 1 and 2.

Covariate Health check 1 Health check 2

Age in years, mean (SD) 58.7 (9.3) 62.3 (9.2)
Body mass index, mean (SD) 26.4 (3.9) 26.7 (3.9)
Sex, N (%)

Male 11 455 (45.3) —
Female 13 820 (54.7) —

Smoking status, N (%)
Never 11 608 (45.93) 8272 (48.48)
Former 10 700 (42.33) 7325 (42.93)
Current 2967 (11.74) 1467 (8.60)

Education level, N (%)
No qualifications 9285 (36.74) —
GCSE or equivalent 2596 (10.27) —
A level or equivalent 10 143 (40.13) —
Degree level or equivalent 3251 (12.86) —

GCSE, General Certificate of Secondary Education; SD, standard deviation.

We performed sensitivity analyses using different fixed values for ˇR and �MM . As recorded in
Table I, Day et al. [22] found values of ˇR of 0.47, 0.69, and 0.81 for sodium, potassium, and pro-
tein, respectively. Sodium intake is thought to be badly measured by the 7DD in EPIC-Norfolk because
the instructions provided with the diary were not clear regarding reporting of salt added at the table and
during cooking. Higher ˇR values for protein and potassium may therefore be more plausible. It was
not clear what may be suitable values for �MM . We chose ˇR D 1; 0:75; 0:5 and, following Wong et al.
[32], �MM D 0; 0:2; 0:4. Although plasma vitamin C is regarded as a promising candidate for use as a
surrogate biomarker, as discussed before, it is affected not only by the individual characteristics, which
can be accounted for in a set of covariates, but also by intrinsic individual differences.

3.4. Results

We show estimates of the derived conditional RDRs and correlations in Table IV, main model parameters
in Table V, and parameters associated with covariates in Table VI.

3.4.1. Regression dilution ratios and correlations. Note firstly that our large sample size has enabled
us to obtain parameter estimates with high precision. The parameters of the measurement model depend
strongly on the assumptions we make about ˇR and �MM . As a consequence, the degree of correction for
measurement error using RDRs is heavily dependent on the model assumptions (Table IV). Depending
on what is assumed about both ˇR and �MM , the RDRs range from 0.15 to 0.98 for FFQ measurements
and from 0.13 to 1.02 for 7DD measurements, using the version of the RDR suitable for when long-term
intake (Ti ) is the main exposure in the diet–disease model. RDRs for time-specific exposure (Tij ) tend
to be a little higher. We might expect this because we would expect FFQ and 7DD measurements to pro-
vide better measures of intake at the time of completion than the long-term average intake. Interestingly,
the differences between the two types of RDRs are similar for FFQs and 7DDs, suggesting that FFQ
reporting is also biased towards recent intake.

For the use of the FFQ as the main measurement, the RDRs are similar at the two health checks,
whereas for 7DD, the RDRs are consistently somewhat higher at health check 2. The reasons for this are
unclear. Given that the 7DD is generally considered to be a superior measurement to the FFQ and has
been found to be in recovery biomarker studies, it is surprising to find that RDRs for 7DD and FFQ are
very similar in this study. This suggests that the degree and type of measurement error in FFQ and 7DD
may differ considerably across different foods and nutrients.

Correlations of dietary measurements with Tij are independent of ˇR. As �MM increases, the cor-
relations for FFQ and 7DD increase, and those for plasma vitamin C decrease. Correlations between
FFQ measurements and Tij are similar at the two health checks, whereas those between 7DD measure-
ments and Tij are higher at the second health check. 7DD measurements are more highly correlated
with true intake compared with the FFQ measurements, indicating higher power to detect diet–disease
associations, even though the RDRs are similar.
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Table IV. Model (8): estimated RDRs and correlations between dietary measurements and true
intake (standard error) conditional on covariates ZT .

�MM

Parameter ˇR 0 0.2 0.4

RDRs: long-term average intake
�Q1T jZ 1 0.15 (0.01) 0.19 (0.01) 0.48 (0.01)

0.75 0.20 (0.01) 0.26 (0.01) 0.64 (0.02)
0.5 0.31 (0.01) 0.39 (0.02) 0.95 (0.08)

�Q2T jZ 1 0.15 (0.01) 0.20 (0.01) 0.49 (0.01)
0.75 0.20 (0.01) 0.27 (0.01) 0.66 (0.02)
0.5 0.32 (0.01) 0.40 (0.02) 0.98 (0.08)

�R1T jZ 1 0.13 (0.01) 0.17 (0.01) 0.43 (0.01)
0.75 0.18 (0.01) 0.23 (0.01) 0.57 (0.02)
0.5 0.27 (0.01) 0.35 (0.02) 0.85 (0.07)

�R2T jZ 1 0.16 (0.01) 0.21 (0.01) 0.51 (0.01)
0.75 0.21 (0.01) 0.28 (0.01) 0.68 (0.02)
0.5 0.32 (0.01) 0.41 (0.02) 1.02 (0.07)

RDRs: time-dependent intake
�Q1T1jZ 1 0.18 (0.01) 0.24 (0.01) 0.58 (0.02)

0.75 0.24 (0.01) 0.32 (0.01) 0.78 (0.03)
0.5 0.36 (0.01) 0.47 (0.02) 1.16 (0.09)

�Q2T2jZ 1 0.18 (0.01) 0.23 (0.02) 0.56 (0.05)
0.75 0.23 (0.02) 0.31 (0.03) 0.75 (0.08)
0.5 0.35 (0.04) 0.46 (0.05) 1.12 (0.16)

�R1T1jZ 1 0.16 (0.01) 0.21 (0.01) 0.52 (0.02)
0.75 0.22 (0.01) 0.28 (0.01) 0.70 (0.03)
0.5 0.32 (0.01) 0.43 (0.02) 1.04 (0.09)

�R2T2jZ 1 0.18 (0.01) 0.24 (0.01) 0.58 (0.02)
0.75 0.24 (0.01) 0.32 (0.02) 0.77 (0.03)
0.5 0.36 (0.02) 0.47 (0.03) 1.16 (0.10)

Correlations
CQ1T1jZ —� 0.34 (0.01) 0.39 (0.01) 0.62 (0.01)
CQ2T2jZ —� 0.34 (0.01) 0.39 (0.01) 0.61 (0.01)
CR1T1jZ —� 0.40 (0.01) 0.46 (0.01) 0.72 (0.01)
CR2T2jZ —� 0.43 (0.01) 0.49 (0.01) 0.76 (0.01)
CM1T1jZ —� 0.79 (0.01) 0.69 (0.01) 0.44 (0.01)
CM2T2jZ —� 0.71 (0.01) 0.62 (0.01) 0.40 (0.01)

RDR, regression dilution ratio.
�The parameter estimate does not depend on ˇR.

3.4.2. Main model parameters. The value of ˇR affects only the scaling parameters ǑQ and ǑM and
the variance of true intake, whereas �MM affects all parameter estimates except ǑQ (Table V). The ratio
Ǒ
Q=ˇR is estimated to be 0.66 regardless of the assumptions.
Estimated error variances for FFQ measurements made at health checks 1 and 2 are practically iden-

tical, whereas for 7DD measurements, the variance is higher at health check 1. This could be due to
changes in the way individuals reported their dietary intake on the 7DD at the two health checks or to
systematic changes in fruit and vegetables intake. Estimated error variances are greater for 7DD than for
FFQ, perhaps because of the short-term nature of 7DDs. The estimated variability of errors in plasma
vitamin C measurements is markedly higher at health check 2. Recall from Section 3.2 that observed
plasma vitamin C measurements were more variable at the second health check.

High correlations between errors in repeated FFQ ( O�Q1Q2) and 7DD ( O�R1R2) suggest strong individual
tendencies to make specific types of reporting error on both instruments. The result that O�Q1Q2 > O�R1R2
suggests that person-specific errors are more likely to persist across repeated FFQs than across repeated
food records. Estimated correlations between errors in the FFQ and 7DD ( O�QRj ; O�QjRk ) confirm a
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Table V. Model (8): maximum likelihood estimates (standard error) for main model parameters.

�MM

Parameter ˇR 0 0.2 0.4

Scaling bias
ˇQ 1 0.66 (0.02) Same as for �MM D 0

0.75 0.49 (0.01) Same as for �MM D 0
0.5 0.33 (0.01) Same as for �MM D 0

ˇM 1 49.96 (1.41) 38.16 (1.34) 15.55 (0.42)
0.75 37.47 (1.06) 28.63 (1.00) 11.66 (0.44)
0.5 24.98 (0.70) 19.08 (0.67) 7.78 (0.63)

True intake variance
�2
T jZ

1 0.07 (0.004) 0.09 (0.01) 0.21 (0.01)

0.75 0.12 (0.01) 0.15 (0.01) 0.37 (0.02)
0.5 0.26 (0.01) 0.34 (0.02) 0.84 (0.07)

�2
h1

1 0.014 (0.001) 0.019 (0.002) 0.005 (0.01)

0.75 0.026 (0.003) 0.033 (0.003) 0.082 (0.01)
0.5 0.057 (0.01) 0.075 (0.01) 0.18 (0.02)

�2
h2

1 0.009 (0.002) 0.012 (0.002) 0.003 (0.01)

0.75 0.017 (0.003) 0.022 (0.004) 0.053 (0.01)
0.5 0.037 (0.01) 0.049 (0.01) 0.12 (0.03)

Error variances
�2
Q1

—� 0.25 (0.003) 0.24 (0.003) 0.18 (0.004)

�2
Q2

—� 0.25 (0.003) 0.24 (0.004) 0.18 (0.004)

�2
R1

—� 0.41 (0.01) 0.39 (0.01) 0.23 (0.01)

�2
R2

—� 0.34 (0.01) 0.32 (0.01) 0.17 (0.01)

�2
M1

—� 117.06 (4.82) 164.01 (4.97) 253.98 (2.90)

�2
M2

—� 181.40 (5.41) 225.39 (5.34) 309.70 (4.15)

Error correlations
�Q1Q2 —� 0.65 (0.01) 0.64 (0.01) 0.57 (0.01)
�R1R2 —� 0.56 (0.01) 0.54 (0.02) 0.32 (0.02)
�QR1 —� 0.45 (0.01) 0.43 (0.01) 0.15 (0.01)
�QR2 —� 0.51 (0.01) 0.48 (0.01) 0.22 (0.02)
�Q1R2 —� 0.38 (0.02) 0.36 (0.02) 0.10 (0.02)
�Q2R1 —� 0.44 (0.01) 0.42 (0.01) 0.22 (0.01)
�The parameter estimate does not depend on ˇR.

tendency for individuals to make similar types of error on both instruments. Error correlations for FFQ
and 7DD at the same health check ( O�QRj ) are higher than for measurements made at different health
checks ( O�QjRk ).

3.4.3. Covariates. The association of covariates ZTij with true intake ( O�T ) is independent of �MM
(Table VI). Increasing age, being female, and a higher level of education are associated with higher
fruit and vegetable intake. Former smokers and, to a greater degree, current smokers have significantly
lower fruit and vegetable intake compared with never smokers. Intake differs significantly across sea-
sons, being highest in summer and lowest in winter. Estimates O�Q are independent of both ˇR and �MM ,
and greater reporting error in the FFQ is significantly associated with increasing age, higher BMI, and
being female.

Estimates O�M depend on �MM but not ˇR. Conditional on true fruit and vegetable intake, increasing
age, higher BMI, and being male are strongly associated with a lower plasma vitamin C level across all
values of �MM . When �MM D 0 and 0.2, former and current smokers have higher plasma vitamin C
given Tij compared with never smokers, but when �MM D 0:4, current smokers have a statistically sig-
nificantly lower plasma vitamin C level than former and never smokers given Tij . Other evidences that
smokers have lower plasma vitamin C for the same vitamin C intake compared with nonsmokers [48]
lead us to suggest that �MM D 0 and 0.2 may be too low. The situation is complicated, however, because

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3838–3861
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Table VII. Subset analyses using model (8): estimated regression dilution ratios
(standard error) for the food frequency questionnaire and 7-day diary when ˇR D
0:75 and �MM D 0:4.

Full cohort Supplement users Supplement nonusers

�Q1T1jZ 0.78 (0.027) 0.78 (0.077) 0.93 (0.098)
�Q2T2jZ 0.75 (0.077) 0.68 (0.168) 0.96 (0.149)
�R1T1jZ 0.70 (0.027) 0.73 (0.076) 0.83 (0.108)
�R2T2jZ 0.77 (0.033) 0.76 (0.085) 0.96 (0.102)

the underlying exposure is fruit and vegetable intake, not vitamin C intake, and also by our inability to
estimate parameters �R, the values of which affect O�M . A comparison with analyses without covariate
adjustment (results not shown) shows that adjustment for covariates ZQij has only a very minor effect
on the error variances �2Qj and correlations between errors in FFQ and 7DD. However, adjustment for

ZMij greatly reduced the error variances �2Mj , suggesting that the covariates account for a substantial
proportion of variability in plasma vitamin C conditional on true fruit and vegetable intake. The former
finding suggests that, had we been able to estimate �R, the results, including estimates O�M , would be
only slightly changed.

3.4.4. Which sensitivity values are most plausible? It is worth considering what might be a plausible set
of values for ˇR and �MM . The earlier results suggest that �MM D 0:4may be most plausible because it
gives the expected negative association between smoking and plasma vitamin C. Higher values of �MM
brought significant difficulties in the maximum likelihood estimation, suggesting a poor fit. There is little
in these results to favour one value of ˇR over another. In the recovery biomarker study of Day et al.
[22] (Table I), ˇR D 0:75 is the mean of the estimated ˇR values for potassium and protein intake and
may be considered a suitable choice to favour here.

3.5. Subset analysis

The use of vitamin C supplements could distort the association between fruit and vegetable intake and
plasma vitamin C [55]. Although detailed data were not available on supplement use, a binary indicator
of vitamin C supplement use has been created from responses to a health and lifestyle questionnaire in
which 11 382 (45%) were identified as vitamin C supplement users. Plasma vitamin C is significantly
higher among vitamin C supplement users: for example, at health check 1, mean plasma vitamin C was
49.0 mmol/l (SD 18.9) among nonusers and 57.8 mmol/l (SD 19.2) among users. We separately refitted
model (8) for users and nonusers of vitamin C supplements.

The conditional RDRs from the preceding subset analyses are shown in Table VII for the case where
ˇR D 0:75 and �MM D 0:4. RDRs are considerably lower for vitamin C supplement users than for
nonusers because the estimated variability in true intake and in error correlations is lower among supple-
ment users. Adjustment for vitamin C supplements using a binary indicator, as in [34], is not appropriate
because of the large range of doses of vitamin C that individuals may receive from supplements. Future
analyses may be able to adjust for vitamin C supplement dose in the measurement error model.

4. Discussion

4.1. Summary of findings

We have outlined a measurement error model for self-reported dietary intake from FFQs and food
records using a surrogate biomarker. We place particular emphasis on using sensitivity analyses to
assess the impact of two assumptions that are usually made in measurement error models using sur-
rogate biomarkers: that error in food record measurements is independent of true intake (ˇR D 1) and
that errors in repeated surrogate biomarker measurements are uncorrelated given true intake and covari-
ates (�MM D 0). The impact of assumptions about ˇR in models using surrogate biomarkers does not
appear to have been considered previously. Wong et al. [32] appeared to have been the only other authors
to have considered the effects on the RDR of different values for �MM , although they did not give a
practical application.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3838–3861
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Our extended model was motivated by and illustrated using data from the EPIC-Norfolk study on
fruit and vegetable intake, measured using FFQs and 7DD and using plasma vitamin C as the surrogate
biomarker. To our knowledge, this is the first use of a surrogate biomarker model for foods rather than
nutrients. The model was fitted using data from over 25 000 individuals across two time points.

We showed that the choice of values for ˇR and �MM can have severe consequences for the estimated
RDRs and hence for conclusions about the effects of measurement error on observed diet–disease asso-
ciations, for example, a log odds ratio. The RDRs for FFQ measurements at health check 1 ranged from
0.15 to 0.95: that is, the measurement error in FFQs could result in anything from a very large attenua-
tion in the log odds ratio to almost no attenuation. Our results indicate that we would make a potentially
large overcorrection for the effects of measurement error under the usual assumptions that ˇR D 1 and
�MM D 0, which resulted in the lowest RDRs. Our results also suggest that for fruit and vegetable
intake, the degree of measurement error in FFQs and 7DDs is similar, although the 7DD measurements
are a little more highly correlated with true intake.

4.2. Using surrogate biomarkers in practice

In light of our results, one might consider what can be gained by using surrogate biomarkers to estimate
measurement error models for self-reported dietary measurements. The use of surrogate biomarkers
allows us to relax the assumptions that errors in FFQs and food records are independent and that
errors in repeated measurements using the same instrument are independent, which in the past have
been made in validation studies involving only FFQ and diet diary. However, this comes at the price
of assuming that errors in surrogate biomarker measurements are independent of errors in self-reported
measurements conditional on covariates, and an inability to estimate the correlation between errors in
repeated surrogate biomarker measurement, �MM . In the illustration of the model, we showed that dif-
ferent assumptions about the values of these parameters can result in RDRs covering a wide range.
This is an important result; it suggests that we should be highly sceptical about results obtained under
the usual assumptions and cautious to draw firm conclusions about the degree of error in self-reported
measurements unless more information can be obtained about the relationship between the surrogate
biomarker in question and true intake. There may, however, be other examples in which the values of
the sensitivity parameters do not have such an extreme effect on RDR estimates. For some surrogate
biomarkers, we may be happy to assume that �MM is close to 0 given the use of a carefully chosen set of
covariates ZMij .

Experiments to better understand the association between dietary intake and biological measurements
will be invaluable in learning more about the values of ˇM and �MM . Tasevska et al. [56] defined
a new class of biomarkers called predictive biomarkers. These are biomarkers intermediate between
recovery and concentration biomarkers. A predictive biomarker has a relationship with true intake that
is more complex than that of a recovery biomarker but that is relatively stable and relates to true intake
in a dose–response manner [56, 57] such that the relationship can be estimated from a feeding study.
There currently appears to exist only one such biomarker, for total sugar intake, which has been used
by Tasevska et al. [57] to fit models similar to that in (8) (although without some of our extensions) but
where the parameters in the part of the model for the biomarker (M ) were assumed known, having been
estimated in a feeding study. In particular, this enables the estimation of intake-dependent error in the
food record measurement, ˇR. Our model in (8) could be applied directly in this situation, but without
the requirement for sensitivity analyses. Like recovery biomarkers, predictive biomarkers refer to intake
of nutrients, rather than to food groups, such as fruit and vegetables. For surrogate biomarkers for food
groups, for example, plasma vitamin C, it may be possible to gain information about the possible range
of suitable values to consider for ˇM and �MM for use in the measurement error model. Measurement
error models such as that described in this paper will become more useful still when more is learnt about
potential surrogate biomarkers and when more predictive biomarkers are developed.

4.3. Limitations

We outline here some potential limitations of model (8). We assume for identifiability that the terms hij
are independent across time. This would not be the case if unobserved covariates were associated with
the value of hij . We fitted model (8) again to the EPIC-Norfolk data under the assumption that the cor-
relation between hi1 and hi2 is 0.5, which gave RDRs practically identical to those in Table IV. The hij
are also assumed independent of the covariates; hence, the model does not allow for the possibility that
certain groups of people may have more variability in their dietary intake than others. This assumption

3854
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may not have been of great importance in the illustration because the estimated within-person variability
in true fruit and vegetable intake was small compared with the between-person variability. A related
matter is that the variability of errors in dietary measurements is assumed independent of covariates,
whereas it seems plausible that error variability may be affected by individual characteristics. Both of
these extensions could be incorporated into model (8), and this would result in RDRs being dependent
on covariates.

For surrogate biomarkers, it may be the case that the slope ˇM in model (8) in fact also depends on
individual characteristics and that a random slope may be appropriate, say ˇMi . We believe that it would
not be possible to estimate such a parameter in this model. However, interactions between covariates
ZMij and Tij in the part of the model for the surrogate biomarker could be incorporated. As before, this
would result in RDRs being dependent on covariates.

As outlined in Section 2.3, the measurement error model was fitted by maximum likelihood, assuming
a multivariate normal distribution for the dietary measurements. In this example, we used the self-
reported dietary measurements on the log-transformed scale. A possible disadvantage of the maximum
likelihood approach is that it requires that the dietary exposure is appropriately transformed and then
used on the transformed scale in the outcome model of interest (Appendix C). As noted, an alternative
approach to fitting the measurement error model is to use the estimating equations approach outlined
by Spiegelman et al. [33], which is based on the method of moments. The advantages of the estimating
equations approach are that no distributional assumptions are required and hence that the choice of scale
in the outcome model is not dictated by this. However, the estimating equations approach still makes
assumptions about the scale on which the error models are assumed to hold. If the assumptions of mul-
tivariate normality are met, then the maximum likelihood approach will offer some gains in efficiency
relative to the estimating equations approach. One of our motivations for using the maximum likelihood
approach was that under model (8), there are multiple solutions for some parameters under the methods
of moments, although Spiegelman et al. [33] did suggest a weighted combination of estimates for use
in this situation. A comparison of the two approaches under different measurement error settings may
be warranted.

Finally, the methods presented in this paper have focused on studies in which a single dietary expo-
sure of interest is measured with error. Analyses in nutritional epidemiology often involve more than one
dietary exposure, all of which are likely to be measured with error. In particular, associations are often
adjusted for total energy intake. Rosner et al. [58] extended the method of regression calibration to enable
multivariate measurement error correction. For this situation, multivariate versions of the models such as
those considered in this paper are required. These are possible but require assumptions regarding corre-
lations between errors in self-reported measures of different food or nutrients, and models incorporating
biomarkers have been scarcely used [59]. This presents a major challenge for measurement error correc-
tion methods in nutritional epidemiology. See, for example, Thompson et al. [17] and Zhang et al. [60]
for multivariate measurement error models not incorporating biomarkers. Day et al. [61] investigated the
potential implications of correlated errors and other factors in multivariate measurement error models. In
the context of using a recovery biomarker, Carroll et al. [62] have considered multivariate measurement
error models, although their focus was on using measurements of intake of multiple correlated nutrients
to gain precision in a univariate regression calibration.

4.4. Conclusions

Estimation of RDRs, and therefore correction of diet–disease associations for the effects of measurement
error, is highly sensitive to model assumptions. Depending on the assumptions made, we may conclude
that the observed association between fruit and vegetable intake is either grossly underestimated or even
somewhat overestimated when using FFQs or food records as the main measurement. The common
assumptions that the food record measurement is not subject to scaling bias (ˇR D 1) and that errors
in repeated surrogate biomarker measurement are independent (�MM D 0) may result in a large over-
correction for measurement error. We should take extreme care when interpreting results from estimated
measurement error models and the resulting corrected diet–disease associations. The use of sensitivity
analyses seems vital to understanding the potential impact of error in self-reported dietary measurements
on observed diet–disease associations. Gaining further knowledge of how potential surrogate biomark-
ers are associated with true dietary intake and development of more predictive biomarkers are essential
for increasing our understanding of how error in dietary measurements affects observed diet–disease
associations and in obtaining good estimates of the true effects of diet on health outcomes.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3838–3861
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Appendix A. An alternative version of model (8) including person-specific
error terms

We could alter model (8) so that the error terms �Xij are separated into person-specific and random parts.
This alternative model takes the form

Tij D ˛T C �
0
TZTij C hij C �Ti ;

Qij D ˛Qj C ˇQTij C �
0
QZQij C qi C �

�
Qij
;

Rij D ˛Rj C ˇRTij C �
0
RZRij C ri C �

�
Rij
;

Mij D ˛Mj C ˇMTij C �
0
MZMij C �

�
Mij

:

(A1)

We do not include a person-specific error term for the surrogate biomarker. As already noted with ref-
erence to model (7), we cannot allow for both a person-specific error term in the surrogate biomarker
and different correlations between FFQ and food record measurements made at the same time point and

made at different time points. We assume all error terms in model (A1)
�
qi ; ri ; �

�
Qij
; ��Rij

; ��Mij

�
to be

uncorrelated with Tij and with all covariates. We assume person-specific errors qi and ri to be normally
distributed with means 0, variances �2q and �2r , and correlation corr.qi ; ri / D 	qr . We assume that the
errors ��Xij arise from a normal distribution with mean 0 and variance �2�Xj . The errors ��Mij and ��Mik
.j ¤ k/ have correlation �MM , which is to be specified in a sensitivity analysis. As in model (8), we
cannot estimate �MM without making undesirable assumptions about other error terms. As before, we
also assume ˇR to be fixed. Under this model, we must assume that there is no correlation between the

random error components in repeated measures of the same type, that is, corr
�
��Qij

; ��Qik

�
D 0 and

corr
�
��Rij

; ��Rik

�
D 0. It follows that we are making an assumption that corr.Qij ;QikjTi ; ZQi / and

corr.Rij ; RikjTi ; ZRi / do not differ depending on the values of j; k. The formulation of the error under
model (8) allows for dependence on j; k (refer to (9)): this is not important when there are only two
repeated measurements but allows for more flexibility if there are more than two repeats. Under model
(A1), we use the following notation for correlations between the random error components in FFQ and
food record measurements:

corr
�
��Qij

; ��Rij

�
D ��QRj ;

corr
�
��Qij

; ��Rik

�
D ��QjRk ; j ¤ k:

(A2)

We cannot estimate both ��QRj and ��QjRk . One option is to assume ��QjRk D 0. This assumption
allows for an additional correlation between FFQ and food record measurements made at the same time
point because we are able to estimate ��QRj . However, this assumption also has the consequence that we
are assuming that the correlation corr.Qij ; RikjTi ; ZQi ; ZRi / does not depend on j; k. The alternative
formulation for the error terms used in model (8) allows this bit of extra flexibility in modelling error
correlations longitudinally.

Appendix B. Model (8): regression dilution ratios and correlations

From (8), the conditional RDR for FFQ measurements using exposure Tij is

�QjTj jZ D
cov.Qij ; Tij jZQij ; ZTij /

var.Qij jZQij ; ZTij /
D

ˇQ

�
�2
T jZ
C �2

hj

�

ˇ2Q

�
�2
T jZ
C �2

hj

�
C �2Qj

:

We would calculate an unconditional RDR as

�QjTj D
cov.Qij ; Tij /

var.Qij /
D
ˇQ

�
�2
T jZ
C �2

hj
C � 0T†ZTj �T

�
C � 0T†ZTj ZQj �Q

var.Qij /
;

where

var.Qij /D ˇ
2
Q

�
�2T jZ C �

2
hj
C � 0T†ZTj �T

�
C � 0Q†ZQj �Q C �

0
T†ZTj ZQj

�Q C �
2
Qj
;
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†ZTj
denotes the variance–covariance matrix for the vectors of covariates ZTij and †ZQj denotes the

variance–covariance matrix for the vectors of covariates ZQij , and †ZTj ZQj is the matrix of covari-
ances between covariatesZTij andZQij with .k; l/th term cov.ZTkij ; ZQlij /. The corresponding RDRs
using Ti , �QjT jZ , and �QjT are calculated in the same way as for Tij but with �2

hj
omitted in the numer-

ators, and using Z NTi , the mean of ZTij across time points, in place of ZTij . We find the RDRs for the
food records by replacing Q by R and noting that we assume that �R D 0.

Conditional and unconditional correlations of FFQ measurements with Tij are

CQjTj jZ D corr.Qij ; Tij jZQij ; ZTij /D

ˇQ

r�
�2
T jZ
C �2

hj

�
r
ˇ2Q

�
�2
T jZ
C �2

hj

�
C �2Qj

;

CQjTj D corr.Qij ; Tij /D
ˇQ

�
� 0T˙ZTj

�T C �
2
hj
C �2

T jZ

�
C � 0T˙ZTj ZQj �Qp

var.Qij /
q
� 0T˙ZTj

�T C �
2
hj
C �2

T jZ

:

We calculate CQjT jZ in the same way as CQjTj jZ but with �2
hj

omitted in the numerator and CQjT
in the same way as CQjTj but with �2

hj
omitted everywhere except in var.Qij /.

We find the conditional and unconditional correlations of Ti and Tij with Rij and Mij by replacing
Q by R or M and noting that �R D 0. We approximated variances of RDRs and correlations using the
delta method. In the case of the unconditional RDRs and correlations, we assumed that estimates of �T ,
�Q, and �M are independent of all other parameter estimates to obtain the variance estimates.

Appendix C. Measurement error correction on a transformed scale

Suppose that to fit the chosen measurement error model by maximum likelihood, a transformation, say
h.�/, is applied to the main dietary measurement X . The regression calibration model is therefore of
the form

h.T /D �0C �XT h.X/C e;

say, where h.X/ is normally distributed. Conditional on X , it follows that h.T / is normally distributed
with mean �0 C �XT h.X/ and variance �2e , the variance of the residuals e. To perform a regression
calibration based on dietary intake on the untransformed scale, we need to find the expectation E.T jX/
either by integration or by using a Taylor approximation. When h.x/D log.x/, the required expectation
can be found exactly and is given by

E.T jX/D exp
�
�0C �XT log.X/C �2e =2

�
;

where �XT is the RDR found using transformed measurements and �0 and �2e can be estimated using
the estimated parameters of the fitted measurement error model. We can therefore estimate the true
diet–outcome association by fitting the model

E.Y jT /D g.�0C �1 exp
�
�0C �XT log.X/C �2e =2/

�
;

where, for example, for a linear model, g.x/ D x and for a logistic model, g.x/ D ex=.1 C ex/. It
follows that �1 can be also estimated by fitting the diet–outcome model using X�XT as the exposure
measurement and then dividing the resulting parameter estimate by exp

�
�0C �

2
e =2

�
. This procedure

requires estimation of �0, which depends on an estimate of ˛T , which cannot be estimated unless ˛Rj
is specified alongside ˇR in the sensitivity analyses. Calculating the variance of the resulting estimate to
account for the variability in the estimates of �0, �XT , and �2e is more difficult than in the case where
no back-transformation is required. We could obtain an estimate by bootstrapping.
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