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Malaria and the neglected tropical diseases

In the past, and still today, people living in the
developing world have been, and continue to be,
repeatedly exposed to a number of endemic parasitic
diseases which impose an intolerable economic,
health and social burden on their societies (Stoll,
1947; Sachs and Malaney, 2002). Among the para-
sitic diseases, malaria due to Plasmodium falciparum
inflicts the largest burden (Snow et al., 2005).
Concurrently, hundreds of millions of people are
plagued by a number of so-called neglected tropical
diseases (NTDs). The most significant of these are
Chagas disease in South America, human African
trypanosomiasis, leishmaniasis, lymphatic filariasis,
onchocerciasis, schistosomiasis, soil-transmitted
helminthiasis and trachoma. The scale of the prob-
lem is illustrated in Table 1, which summarises cur-
rent population statistics, including at-risk popula-
tions, estimated numbers of people infected, annual
morbidity and mortality rates and burden estimates
due to malaria and the above-mentioned NTDs.

In recent years, there has been an upsurge in pub-
lic and private spending in global health, with par-

ticular efforts aimed at tackling HIV/AIDS, tubercu-
losis and malaria (Lu et al., 2006). With enhanced
funding coming on stream also for the NTDs, new
partnerships and global alliances have been formed
to tackle a number of NTDs, with preventive
chemotherapy playing a key role (Brady et al., 2006;
Hotez et al., 2006; WHO, 2006). This funding has
coincided with calls to improve the coordination and
integration of national control programmes, placing
emphasis on simultaneous morbidity control due to
NTDs (e.g. schistosomiasis and soil-transmitted
helminthiasis) or to eliminate NTDs as a public-
health problem (e.g. lymphatic filariasis) (Brady et
al., 2006; Lammie et al., 2006). To help allocate
public-health resources, an essential first step is to
delineate and understand the spatial distribution of
different parasitic diseases (Brooker et al., 2006; Hay
and Snow, 2006; Utzinger and de Savigny, 2006).

Mapping and prediction of co-endemic areas

The need

Parasite transmission intensity exhibits significant
spatial and temporal heterogeneity and, because of
their neglected nature, there exists limited informa-
tion about the exact geographical distribution of
most of the NTDs, as well as malaria (Polack et al.,
2005; Hay and Snow, 2006). It follows that the spa-
tial congruence of different NTDs, as well as of
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Disease Causative agent(s) Population 
at risk
(x 106)

People 
infected
(x 106)

Morbidity
(x 106)

Mortality
(x 103)

Burden
(x 106 DALYs)

Reference

Malaria Plasmodium falciparum, 
P. malariae, P. ovale, 
P. vivax

2211 NA 515 1272 46.49 WHO, 2004;
Snow et al.,
2005

Soil-transmitted
helminthiasis

Ascariasis Ascaris lumbricoides 4211 807-1221 350 3-60 1.82-10.5 Bethony et al.,
2006; Lammie
et al., 2006

Hookworm 
disease

Ancylostoma duodenale,
Necator americanus

3195 576-740 150 3-65 0.06-22.1 Bethony et al.,
2006; Lammie
et al., 2006

Trichuriasis Trichuris trichiura 3212 604-795 220 3-10 1.01-6.4 Bethony et al.,
2006; Lammie
et al., 2006

Strongyloidiasis Strongyloides stercoralis ND 30-100 ND ND ND Bethony et al.,
2006

Lymphatic 
filariasis

Wuchereria bancrofti,
Brugia malayi, B. timori

>1000 120 43 0 5.78 Lammie et al.,
2006

Schistosomiasis Schistosoma haematobium,
S. intercalatum, 
S. japonicum, S. mansoni, 
S. mekongi

779 207 120 15-280 1.7-4.5 Lammie et al.,
2006

Trachoma Chlamydia trachomatis ND 150 ND 0 2.33 WHO, 2004

Onchocerciasis Onchocerca volvulus 120 18 ND 0 0.48 Watkins, 2003;
WHO, 2004

Leishmaniasis Leishmania donovani, 
L. chagasi, L. infantum

350 12 ND 51 2.09 Watkins, 2003;
WHO, 2004

Human African
trypasosomiasis

Trypanosoma brucei 
gambiense, 
T. b. rhodesiense

>60 0.5 ND 50 1.53 Watkins, 2003;
WHO, 2004

Chagas disease Trypanosoma cruzi 120 11-18 ND 13 0.67 Watkins, 2003;
WHO, 2004

Table 1. Current global estimates of populations at risk, number of people infected and suffering from morbidity, and annual
mortality rates and burden estimates of malaria and selected NTDs (DALY, disability-adjusted life year; NA, not applicable;
ND, not determined). The DALY is a summary measure of disease burden that combines the impact of illness, disability and
mortality on population health and was last estimated by the World Health Organization in 2002 (http://www.who.int/health-
info/bod/en/index.html).



S. Brooker and J. Utzinger - Geospatial Health 2, 2007, pp. 141-146 143

NTDs and P. falciparum malaria, remains poorly
defined. On the other hand, significant progress has
been made with a number of geospatial tools, such
as geographical information systems (GIS), remote-
ly-sensed environmental data, and geostatistics that
allow to better describe, understand and predict the
geographical distribution of single NTDs (Malone,
2005; Yang et al., 2005; Brooker, 2007). Ultimately,
these geospatial tools offer the potential to improve
the spatio-temporal targeting of control measures
and to enhance the cost-effectiveness of integrated
disease control programmes.

The proposal

In the context of integrated disease control, we
propose that the spatial co-distribution of different
parasite species over large geographical areas, such
as at continental scales, can be based initially on cli-
mate-based disease risk maps (Brooker et al., 2006).
Such maps, however, belie the geographical varia-
tion of co-distribution and co-infection evident at
community and district levels, which is difficult to
capture with existing risk models. To date, only one
study has attempted to analyse the spatial occur-
rence of co-infection at a small spatial scale (an area
of 40 x 60 km) within a single district of a West
African country (Raso et al., 2006). This study
showed that it was possible to predict spatial pat-
terns of Schistosoma mansoni-hookworm co-infec-

tions. Future similar work for different parasite
species in varying transmission settings, coupled
with an improved understanding of spatial risk fac-
tors of different parasite species will allow the pro-
jection of co-endemicity on the basis of remotely-
sensed satellite data, as well as behavioural, demo-
graphic, epidemiological and socio-economic risk
factors. Such research will aid the development of
risk maps which can identify large-scale patterns of
potential overlap, and thus guide regional and
national level integrated disease control efforts.

At finer scales, on the other hand, there remains a
need to undertake rapid and inexpensive assess-
ments of infection levels to guide local control.
Table 2 summarises different approaches that have
been developed and successfully validated for the
rapid assessment of different NTDs. For example, a
simple morbidity questionnaire administered
through the existing education system allows the
rapid delineation of high-risk areas of schistosomia-
sis haematobia, based on the specific symptomatol-
ogy of Schistosoma haematobium, which is the
presence of blood in urine (Lengeler et al., 2002).
With regard to lymphatic filariasis, onchocerciasis
and visceral leishmaniasis, accurate, non-invasive,
rapid antigen detection assays applicable under field
conditions have become available (Weil et al., 1997;
Ayong et al., 2005; Chappuis et al., 2006). In the
case of lymphatic filariasis, mapping of disease dis-
tributions has been based on the use immunochro-

Disease Causative agent(s) Rapid assessment approach Reference

Schistosomiasis Schistosoma haematobium Morbidity questionnaires: reported blood in urine Lengeler et al., 2002

Schistosoma mansoni Morbidity questionnaires: reported blood in stool Lengeler et al., 2002

Close proximity to lakes (< 5 km) Lengeler et al., 2002

Lot quality assurance sampling Brooker et al., 2005

Schistosoma japonicum Morbidity questionnaires: reported blood in stool Zhou et al., 1998

Lymphatic filariasis Wuchereria bancrofti Antigen detection assay: ICT Weil et al., 1997

Lot quality assurance sampling Vanamail et al., 2006

Leishmaniasis Leishmania donovani, 
L. chagasi, L. infantum

Antigen detection assay: K39 strip test Chappuis et al., 2006

Onchocerciasis Onchocerca volvulus Antigen detection assay: Oncho-dipstick test Ayong et al., 2005

Table 2. Tools currently available for rapid and inexpensive assessment of high-risk communities, and hence for mapping pur-
poses, of a number of NTDs.
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matographic card tests (ICT) for the detection of cir-
culating antigen from adult Wuchereria bancrofti
filarial antigenaemia in order to target mass drug
administration (Gyapong et al., 2002).

Recent operational research has also highlighted
the potential of lot quality assurance sampling of a
small number of individuals attending primary
schools for identifying high-risk communities for
schistosomiasis mansoni (Brooker et al., 2005) and
for monitoring lymphatic filariasis control pro-
grammes (Vanamail et al., 2006). Further investiga-
tion and comparison of the cost-effectiveness of dif-
ferent rapid mapping approaches, used singly or in
combination, is clearly warranted. We conjecture
that it should be possible to integrate the rapid map-
ping of different NTDs simultaneously with tools
that are already available, and that this is an area
which merits investigation.

Challenges and opportunities

A major challenge for such geospatial research
will be to integrate the disease-specific ecologies and
epidemiologies of different parasite species and vec-
tor/intermediate host species, as well as contextual
determinants (e.g. behaviour, density and migration
patterns of humans and socio-economic status) into
a single analytical framework. For example, recent
studies have highlighted intrinsic differences in the
spatial heterogeneity of specific diseases depending
on the eco-epidemiological and socio-cultural set-
ting (Gyapong et al., 2002; Brooker et al., 2004).
Hence, understanding the complexity of risk factors
of co-distribution and co-infection require detailed
field studies, including validation of generated risk
maps of co-infections. The studies will also necessi-
tate the development of new geostatistical methods,
building on the successful application of Bayesian
geostatistical approaches in modelling spatial distri-
butions of single parasite species (Gemperli et al.,
2004; Raso et al., 2005; Clements et al., 2006).

Finally, the development of an integrated
approach to map and predict a number of different
NTDs simultaneously would require careful consid-

eration of the different spatial heterogeneities of dif-
ferent species and over what spatial scale variation
occurs, as well as simulation studies to determine
the optimal sample size to capture species-specific
epidemiological patterns.

Concluding remarks

As public-health resources are increasingly avail-
able to address global health issues as part of
unprecedented efforts to meet international devel-
opment goals, large-scale control efforts get under-
way, most recently also to tackle NTDs. The initia-
tion of such control does not, however, signal the
end of geospatial research rather underscores its
vital importance. Numerous geospatial issues require
attention, including geostatistical techniques that
should go hand-in-hand with field studies and oper-
ational research, thus requiring collaboration
among geospatial scientists and public-health spe-
cialists. Such work will determine whether research
can have a real public-health impact rather than
remain only an academic exercise.
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