CONTEXT: Over the past decade, a number of high-impact natural hazard events, together with the increased recognition of pandemic risks, have intensified interest in health systems' ability to prepare for, and cope with, "surges" (sudden large-scale escalations) in treatment needs. In this article, we identify key concepts and components associated with this emerging research theme. We consider the requirements for a standardized conceptual framework for future research capable of informing policy to reduce the morbidity and mortality impacts of such incidents. Here our objective is to appraise the consistency and utility of existing conceptualizations of health systems' surge capacity and their components, with a view to standardizing concepts and measurements to enable future research to generate a cumulative knowledge base for policy and practice. METHODS: A systematic review of the literature on concepts of health systems' surge capacity, with a narrative summary of key concepts relevant to public health. FINDINGS: The academic literature on surge capacity demonstrates considerable variation in its conceptualization, terms, definitions, and applications. This, together with an absence of detailed and comparable data, has hampered efforts to develop standardized conceptual models, measurements, and metrics. Some degree of consensus is evident for the components of surge capacity, but more work is needed to integrate them. The overwhelming concentration in the United States complicates the generalizability of existing approaches and findings. CONCLUSIONS: The concept of surge capacity is a useful addition to the study of health systems' disaster and/or pandemic planning, mitigation, and response, and it has far-reaching policy implications. Even though research in this area has grown quickly, it has yet to fulfill its potential to generate knowledge to inform policy. Work is needed to generate robust conceptual and analytical frameworks, along with innovations in data collection and methodological approaches that enhance health systems' readiness for, and response to, unpredictable high-consequence surges in demand.