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Abstract 

This thesis explores, develops and implements modelling strategies for studying relationships be­

tween childhood growth and later health, focusing primarily on the relationship between the de­

velopment of body mass index (BMI) in childhood and later obesity. Existing growth models are 

explored, though found to be inflexible and potentially inadequate. Alternative approaches using 

parametric and nonparametric modelling are investigated. 

A distinction between balanced and unbalanced data structure is made because of the ways in 

which missing data can be addressed. A dataset of each type is used for illustration: the Stockholm 

Weight Development Study (SWEDES) and the Uppsala Family Study (UFS). The focus in each 

application is obesity, with the first examining how the adiposity rebound (AR), and the second 

how the adiposity peak (AP) in infancy, relate to later adiposity. In each case a two-stage approach 

is used. 

Subject-specific cubic smoothing splines are used in SWEDES to model childhood BMI and 

estimate the AR for each subject. As childhood BMI data are balanced, missingness can be dealt 

with via mUltiple imputation. The relationship between the AR and late-adolescent adiposity is 

then explored via linear and logistic regression, with both the age and BMI at AR found to be 

strongly and independently associated with late-adolescent adiposity. 

In the UFS, where childhood BMI data are unbalanced, penalised regression splines are used 

within a mixed model framework to model childhood BMI and estimate the AP for each subject. 

The data correlations induced by the family structure of the observations are addressed by fitting 

multilevel models in the second stage. Both age and BMI at AP are found to be positively 

associated with later adiposity. 

The two nonparametric modelling approaches are found to be effective and flexible. Whilst the 

thesis concentrates on BMI development in childhood and later adiposity, the techniques employed, 

both in terms the modelling of growth and the relating of the derived features to the outcomes, 

are far more widely applicable. 
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All models are wrong, some are useful. 

C. E. P. Box [1] 
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Chapter 1 

Introduction 

There is growing recognition that the risks of many adverse health outcomes in later life are affected 

not only by concurrent factors but also by early life variables. The study of the effects of exposures 

arising at different points throughout the life course is referred to as life course epidemiology. 

The life course approach often incorporates longitudinal data - repeated measurement of the 

same variable at different occasions within the same individual. Analysis of longitudinal data 

is complicated by, often complex, correlations between the observed measurements at different 

occasions. This thesis focusses on life course analyses in which the repeated measures are of 

anthropological variables in childhood, and thus describe the growth of individuals. 

In addition to issues surrounding the analysis of longitudinal data, observational studies are 

often subject to missingness. There is an expanding repertoire of techniques to handle missing 

data, but these approaches are not always pursed, jeopardising the validity of any conclusions. 

There may also be more general issues surrounding data structure. If individuals can be con­

sidered as members of groups in which they are likely to be more similar to each other than to 

others outside of the group, then this must be taken into account in any analysis. 

The fitting of models to the growth data for individuals can be seen as a tool to estimate 

values of the growth dimension at ages at which it was not observed, or to identify features of the 

growth curve, such as turning points or points of maximum velocity. Over the course of the last 

few decades many models have been developed to describe t.he growth of certain anthropomet.ric 

dimensions, although more general statistical modelling approaches are also often used. 

Due to its increased prevalence over recent years, obesity has become a major health concern 

worldwide. Because early life factors may prefigure later obesity, this has rightly become the 

focus of much life course research. In particular, attention has often focussed on the identification 

of periods of life which can be considered as 'critical periods' for later obesity. Although not 

necessarily ideal for this purpose, body mass index (BMI, defined as an individual's weight in kg 

divided by the square of their height in metres) has become the most frequently used measure in 

the assessment of obesity. 

This thesis explores, develops and implements modelling st.rategies for studying relationships 
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between childhood growth and later health, focusing primarily on the relationship between the 

development of BMI in childhood and later obesity. In particular, interest lies in modelling indi­

vidual childhood BMI growth curves in order to derive growth features of interest. These includr 

the adiposity peak (AP, the maximum 8MI obtained in infancy before BMI starts to decrea.'le) and 

the adiposity rebound (AR, the period around 6 years of age when BMI begins to increase again 

following a nadir). Exploration of the relationships between the timings of, and levels of adiposity 

at, these growth features and later obesity can provide important insights into the development of 

obesity through the life coursc. 

These relationships are investigated in two different datasets: the Stockholm Weight Develop­

ment Study (SWEDES), a prospective longitudinal study of weight development in 481 children, 

and the Uppsala Family Study (UFS), a study of 602 families, each including two full siblings, 

where growth data is obtained via linkage to health records. 

The thesis is divided into four Parts which correspond to 'Background', 'Approaches for bal­

anced growth data only', 'General approaches' and 'Discussion'. 

In Part I, Chapter 2 provides some background to the subject matter covered in the thesis. 

The general concepts of the life course approach and the modelling of growth are described, and 

the existing literature relating to obesity, which is central to the later applications, discussed. 

The aims of the thesis are presented in Chapter 3, and in Chapter 4 the datasets which are later 

used are introduced. The main statistical issues which are encountered in this type of life course 

analysis, such as data structure and missing dat.a, are discussed in Chapter 5, along with statistical 

approaches which can be used to handle them. In Chapter 6, more specific subject-matter issues are 

discussed. The modelling of childhood growth is reviewed and the potential for using standardised 

measurements in life course studies is explored. 

The distinction between balanced and unbalanced childhood growth data is an important one 

as it affects the approaches which can be used in an analysis. Thus in Part II (Chapters 7 and 8) 

methods are pursued which relate only to situations where the growth data are balanced, whilst. 

Part III (Chapter 9) includes approaches which may be Ilsed for unbalanced growt.h data. However, 

as balanced data are effectively only a special case of unbalanced, the approacheli of Part III are 

also appropriate in the balanced growth data setting. 

Chapter 7 discusses the use of a naive multivariable regression analysis to relate BMI devel­

opment to late-adolescent obesity (in terms of both BMI and percentage body fat (%BF)) in 

SWEDES. Here, the growth data at some or all of the measurement occasions are directly related 

to the later health outcome via multivariable regression, and a complete-case approach to missing 

data is employed. 

This analysis is extended in Chapter 8 where the relationship between the AR and late­

adolescent obesity is more explicitly explored. Childhood BMI trajectories are modelled using 

subject-specific cubic smoothing splines, from which the AR is estimated for each individual and 

related to measures of later adiposity. An essentially separate analysis is conducted in which multi-
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pie imputation (1\11) is used to handle missing data prior to the spline-fitting. A comparison of the 

two analyses provides both epidemiological and methodological insights. Further work considers 

whether the AR can be considered as a critical period for later obesity. 

In Chapter 9 the relationship between the AP during infancy and later obesity is examined in 

the UFS, which includes unbalanced childhood growth data. Penalised regression splines arc used 

within a mixed model framework to model childhood BMI growth and identify the AP for each 

subject. then the association is explored using mixed models to account for the structure in the 

dataset. 

In Part IV (Chapter 10) the preceding epidemiological findings are brought together and the 

methodological considerations arising from the different applications discussed. Areas for future 

work are identified. 

The Appendix reproduces a paper by Silverwood and Cole [3] regarding statistical methods for 

constructing gestational age-related reference intervals and centile charti:i for fetal size. 
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Part I 

Background 
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Chapter 2 

Background 

2.1 The life course approach 

Kllh and Ben-Shlomo [4] define life course epidemiology as, "The study of long-term biological, 

behavioural, and psychosocial processes that link adult health and disease risk to physical or social 

exposures during gestation, childhood, adolescence, earlier in adult life, or across generations". This 

approach emerged to counteract the increasing polarisation of research in chronic disease etiology 

into either biological programming in utero or adult lifestyle factors. Life course epidemiology is 

built on the premise that various biological and social factors throughout life can independently, 

cumulatively and interactively influence health and disease in adult life [5). Whilst the formal 

combination of these factors into a life course model provided a new way of thinking, the idea that 

childhood is important for adult health was not new in epidemiology or public health, being the 

prevailing model of health for the first half of the 20th century [6J. 

The life course approach has found many applications, in particular in the study of how patterns 

of early growth and other factors acting across the life course influence the onset and development 

of a wide array of common chronic diseases [4]. For example, women who grow faster ill childhood 

and reach an adult height above the average for their menarche category have been found to be at 

particularly increased breast cancer risk [7]. 

Perhaps the best known example of a life course association is the developmental origins of 

health and disease (DOHaD) hypothesis. This expands upon the fetal origins of adult disease 

(FOAD) hypothesis, developed mainly by a group at the University of Southampton, led by Pro­

fessor David Barker. Barker and colleagues have shown small size at birth or in infancy to be 

associated with an increased likelihood of adverse health outcomes in adulthood, including cardio­

vascular disease, coronary heart disease, stroke, hypertension, non-insulin dependent diabetes and 

impaired glucose tolerance [8]. This has led to the hypothesis that poor fetal nutrition, observed 

as small size at birth or subsequently, results in fetal adaptations that 'programme' the future 

propensity to chronic diseases in adulthood. 

Whilst many of the studies of Barker and colleagues have shown a direct association between 
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small size in early life and adult health outcomes, in others the relationship has only emerged after 

body size at a later juncture (for example adult body mass index) is adjusted for. In the latter 

case it has been argued [9J that it is probably the change in size between points (,postnatal centile 

crossing') rather than fetal biology that is implicated. 

Although much life course analysis has focussed on chronic disease epidemiology, this approach 

is also applicable within the context of infectious diseases and wider notions of health and wellbeing 

[6). for example in the investigation of prenatal and early life influences on the timing of menarche 

[10). 

Some important conceptual models in the life course approach are critical and sensitive periods, 

and accumulation of risk. Critical and sensitive periods are both limited time windows in which a 

given exposure can have an effect on development and subsequent disease outcome. The difference 

between the two concepts is that outside of this window there is no excess disease risk associated 

with the exposure for critical periods, whilst for sensitive periods the excess risk b merely weaker 

[5J. Accumulation of risk occurs when the effect of an exposure accumulates gradually over the life 

course [6). The ability to distinguish between these conceptual models is, however, often hampered 

by limited data being available at the relevant periods in the life course. 

In general, even when data are available, life course epidemiology raises analytical challenges 

as both temporal and causal hierarchies among the exposures need to be taken into account [11]. 

If properly dealt. with, such an approach allows the examination of dynamic processes and the 

identification of any critical or sensitive periods which may be present [12J. 

As noted above, there are also specific data quality issues. As different time periods and types 

of variables are usually examined, data from multiple sources are often merged, meaning that 

completeness, quality and coverage may vary. As a result, measurement errors and missing values 

affect life course studies to a greater extent than standard observational studies [11). 

2.2 Growth 

Human growth is the process of change in size and shape which occurs between conception and 

full maturity [13]' generally defined in quantitative terms as the increase or decrease of some 

measurable quantity of tissue [14]. 

The formal study of growth has over 300 years of history [15], during which time many models 

to describe the changes in different anthropometric dimensions have been developed. 

2.2.1 Dimensions of growth 

Growth can be defined as the change in anyone of many anthropometric variables. However, 

only height and weight are generally routinely measured in the clinical setting and included in 

medical records [16), thus it is propitious to focus attention on on these two dimensions, as well as 

composite measures obtained by their combination. 

Further anthropometric variables for which measurements may be taken include head, waist. and 
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hip circumferences, skinfold thicknesses (often measured at tricep and subscapular sites) and body 

composition. Body composition is usually considered as either a two-component (fat mass and 

fat-free mass) or four-component (fat mass, protein mass, water mass and mineral mass) model, 

measured using, for example, deuterium dilution, air-displacement plethysmography or dual-energy 

X-ray absorptionmetry [17]. 

Height 

Height is a useful indicator of nutritional status [18]. Growth in height is generally a very regular 

process [19], which is often considered in three phases: infancy, childhood, and adolescence or 

puberty. Infancy is characterised by a high growth velocity immediately after birth and rapid 

deceleration until about 3 years of age [20]. This is followed by childhood, a period of lower, slowly 

decelerating velocity which lasts until the onset of puberty, although a slight increase in velocity, 

referred to as the mid-growth spurt, occurs between age 6 and 8 years in many children [19]. During 

puberty the adolescent growth spurt provides a marked acceleration of growth, then after the period 

of peak velocity there is deceleration until growth ceases [20]. Height changes little once final adult 

height is achieved. 

Females are generally slightly shorter than males until adolescence, then at around age 11 

years they become taller by virtue of their adolescent growth spurt occurring on average two years 

earlier than the males'. By approximately age 14 years, however, males are once again taller as 

their adolescent growth spurt has begun, whilst that of the females is nearly finished [19]. 

Secular increases in adult height (marked increases in the growth of successive generations of 

a popUlation) over the last century or so have been seen globally, although decreasingly so over 

recent decades [21]. This is mirrored in children, though with an additional secular trend towards 

increased developmental tempo meaning that that the adolescent growth spurt is occurring at 

progressively younger ages [22]. 

Weight 

Growth in weight is a somewhat less regular process than that in height, in that greater fluctuations, 

including decreases, are possible, though it still typically follows the phases of growth outlined 

above. 

Females generally weigh a little less than males at birth, though they catch up and become 

heavier by age 9 or 10 years. Males become heavier again once females near the end of puberty at 

age 14 or 15 years [19]. 

Secular increases in weight have been reported in many parts of the world, both in adults and 

children [21]. Clearly this is in part due to the secular increases in height, but increasing adiposity 

ha.<; also been shown to contribute. Whilst increases in height have slowed over the last few decades, 

weight has continued to increase as part of the worldwide obesity epidemic [22]. 
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Weight for height indices 

Whilst weight and height are both, in some sense, reflections of the 'size' of an individual, often 

we are more interested in 'shape'. Information on shape can be obtained from height and weight 

measurements by removing the information on size. This is what weight for height indices try to 

achieve [23). 

As weight is more variable than height, and thus more informative, height needs to be scaled lip 

in some way when calculating weight for height indices. Two common forms of weight for height 

indices are 

and 

W-bH 

W 
Hp 

where Wand H are weight and height, and band p specify how height should be scaled. 

Relative weight A relative weight is obtained by expressing a subject's weight as a fraction of a 

reference weight, which is usually dependent on their height and sex. In adults weight and height 

are linearly related, so a regression line of weight on height in a reference population can be used 

to provide the reference weight for a given height [23). Assuming the fitted regression line is 

W = bH +c, (2.1 ) 

where b is the regression coefficient and c is the intercept, the reference weight, Wn,f, for subject 

i with height Hi can be calculated as 

Wref = bHi + c, 

which corresponds to the average weight for all subjects of height Hi. Then if the weight of the 

subject is Wi their relative weight, Wre/, is 

Wi Wi 
Wrel = -- = . 

Wref bHi + c 

In children, however, weight and height are not linearly related so an approach using the 

regression line of weight on height is not appropriate. A reference weight could instead be obtained 

for a child's height indirectly using existing weight and height for age standards. The age at which 

the child's height, Hi, matches the median height in the height for age standard can be found, then 

the median weight at this age in the weight for age standard used as the child's reference weight, 

lVref [23). 

26 



Indices of the form:" Commonly used weight for height indices such as the weight-height 

ratio (~.), body mass index (Bl\II) or Quetelet's index (Jt) and pondera] index (1tr) are of the 

general form :;:., where n is a whole number. 

Many studies have looked at the correlation between these different indices and height, pre­

ferring the index with the smallest correlation on the grounds that it best approximates relative 

weight. In men, Bl\U has been consistently found to be preferable, whilst in women 8MI and th(' 

weight-height ratio are often seen to be equally useful. In adults, BMI has also been found to be 

the most highly correlated with various measures of body fat [23]. 

The weight-height ratio, BM1 and ponderal index all change appreciably during childhood, so 

the indices need to be adjusted for age in children. This can be achieved by comparing the index 

calculated for a child with the same index calculated for a reference child of the same age and sex, 

creating a relative index. Relative BMI is particularly popular for this purpose as it has been found 

to be virtually uncorrelated with height for much of childhood, as well as having high correlation 

with measures of body fat [23]. 

A related concept to relative BMI is the standardardisation of BMI to create a z-score or SD 

score. Here, mean BM1 in a reference dataset corresponding to the age and sex of a given child is 

subtracted from the calculated 8MI for that child. This is then divided by the standard deviation 

(SD) of the BMI values for that age and sex in the reference dataset. If the distribution of the 

variable is skewed, as is often the case, then an additional parameter may be included to 'normalise' 

the data, as is employed in the Ll\IS approach of Cole [24]. The z-score then indicates how many 

SDs above or below the mean BMI in the reference dataset the 8M1 for the child lies. 

As BMI is the most widely used surrogate measure of adiposity, its involvement in the assess­

ment of obesity is examined more closely in Section 2.3.2. 

Benn index A more generalised form of the above index is the Benn index [25], :t, where 

the exponent for height, p, is now allowed to take a non-integer value which is estimated from 

the population being studied. The value of p should be chosen so as to minimise the correlation 

between the index and height. Although there are several approaches to achieving this, Berm [25] 

advocates calculating the regression coefficient, b, of weight on height as in (2.1), then obtaining p 

as 

biI 
p= W' 

where iI and Ware the population means. Benn [25J also showed that, provided the correlation 

between height and relative adiposity does not differ too much from zero, this index will have a 

correlation with relative adiposity very near the maximum that can be achieved using this type of 

index. 

Many studies have calculated p to be near to 2 in men and between 1 and 2 in women [23], 

though in children the optimal value of p changes with age. One way to use the Benn index with 

children is to analyse the data in narrow bands, calculating a potentially different value of p for 
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each, and thus adjusting simultaneously for both height and age. For much of childhood, including 

infancy, the optimal value of p has been found to be slightly greater than 2, although during 

puberty this increases to 3 [26J. It has, however, been suggested that Benn's assumption of low 

correlation between height and adiposity, which holds in adults, is not satisfied in children [27J. 

2.2.2 Modelling growth 

Why model growth? 

Many attempts have been made to find mathematical curves which fit, and thus summarise, t.he 

growth data of individuals. Indeed, Tanner [19] advises that fitting a curve to the individual values 

is the only way of ext.racting the maximum information about an individual's growth from the data. 

The problem is effectively one of data smoothing. Given a number of points representing 

measurements taken on an individual at different ages, a smooth curve must be found which is 

believed to represent the underlying growth process more closely than the measurements themselves 

[28]. 

Growth models can successfully reduce large amounts of growth data to a small number of 

parameters. This is possible even when there is great variability in the number and spacing of 

measurements between individuals. It is then possible to compare growth between individuals, or 

even populations, using the parameters derived from the fitted models [29]. 

Whilst a major aim of any model must be to provide a satisfactory fit to the data, further 

features of growth models which are desirable include simplicity of the fitting procedure, biological 

interpretability of the model parameters, and model parsimony [30]. However, even the most 

rudimentary model should allow values of the variable to be estimated at ages between those 

where observations were made. Where differentiation of the growth model is possible, growth 

velocities and accelerations can also be examined. This allows identification of turning points 

(maxima and minima), as well as ages at maximum velocity and acceleration, for example peak 

height velocity during the adolescent growth spurt. 

The fitting of growth curves can be considered as related to the area of statistics known as 

functional data analysis [31). This is an approach for analysing data consisting of serial measure­

ments, where each data series is first summarised as a smooth curve. Each curve is then treated 

as a single entity in the analysis. 

Growth models 

Many models have been used to describe human growth. Some relate to specific anthropometric 

variables over specific ranges of ages, whilst others are more general stat.istical modelling techniques. 

There are several models which can describe the growth of either height or weight during the 

first few years of life. They achieve this by incorporating either an exponential function, as in the 

case of Jenss and Bayley [32]. or a logarithmic function, as suggested by Count [33] and extended 

by Berkey and Reed [34J. 
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Other models attempt to model height from birth or infancy right through to final adult height. 

The full model proposed by Count [33] and those of Bock and Thissen [35] and Karlberg [36J achieve 

this by modelling the growth curve as three separate phases, whilst Preece and Baines [29] derived 

a new family of mathematical functions with which to describe the height growth curve. 

More general statistical modelling techniques such as polynomials, fractional polynomials and 

nonparametric modelling have also been employed to model growth, with varying degrees of success. 

2.3 Obesity 

Obesity, a condition of abnormal or excessive fat accumulation in adipose tissue, to the extent that 

health may be impaired, has become a major health concern worldwide in recent decades, with 

prevalence rising steeply [37). In England, for example, the proportion of men classed as obese 

increased from 13.2% in 1993 to 23.1% in 2005, and from 16.4% to 24.8% in women, although there 

was no significant change in the proportion who were overweight [38]. 

Recently, the largest ever UK study into obesity concluded that dramatic and comprehensive 

action was required to stop the majority of the population becoming obese by 2050 [39], leading 

the Health Secretary to describe obesity as a "Potential crisis on the scale of climate change" [40]. 

Obesity is associated with increased risk of many adverse health conditions, including cardiovas­

cular disease [41], type 2 diabetes [42], hypertension [42], and some cancers [43, 44). Additionally, 

obesity may interact with other established risk factors. For example, the increased risks associ­

ated with small birth size for diseases in adulthood such as type 2 diabetes and hypertension are 

exacerbated in subjects who become obese in adulthood [45]. 

Obesity is a particularly intriguing aspect of life course research. Whilst patients with many 

adverse health outcomes are more likely to be obese, current obesity is dependent on the pattern 

of previous growth. This dual role as both an exposure and an outcome poses many interesting 

questions of interpretation [46). 

2.3.1 Childhood obesity 

Obesity in children and adolescents is a serious issue with many health and social consequences that 

often continue into adulthood. The prevalence of childhood obesity is increasing rapidly worldwide 

[37]. For example, obesity among boys aged 2 to 15 years in England rose from 10.9% in 1995 to 

18.0% in 2005, and from 12.0% to 18.1% in girls [38). Overweight among children and adolescents 

in the United States increased from 13.9% in 1999 to 17.1% in 2004 [47J. 

Reilly et al [48] found eight factors to be independently positively associated with obesity at 

age 7 in a UK cohort. They were: parental obesity, very early adiposity rebound, greater than 8 

hours per week spent watching television at age 3 years, catch up growth, high weight z-score at 

ages 8 and 18 months, large weight gain in the first year, high birth weight and short sleep duration 

at age 3 years. 

Obesity in childhood is associated with some immediate effects, including psychosocial out-
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comes. with social isolation and peer problems more common in fatter children [49]. A population­

based survey of 15 and 17 year olds in Sweden [50] found a significant association between adoles­

cent obesity and depression and also experiences of shame, such as being degraded or ridiculed by 

others. 

There is also evidence of childhood obesity being associated with the timing of pulwrty. Sandhu 

et al [51] found for men in the Christ's Hospital cohort that each SD increase in prepubertal BMI 

was associated with a 0.31 year decrease in the age at peak height velocity, which is used as an 

indicator of the timing of puberty. 

However, most consequences of childhood obesity are deferred until adulthood. In a systematic 

review [52], childhood obesity was consistently found to be associated with most of the major car­

diovascular risk factors. leading to the conclusion that obesity-mediated cardiovascular morbidity 

in adulthood can have its origins in childhood obesity. Adolescent obesity was also seen to be 

associated with adverse effects on social and economic outcomes in young adulthood. 

Recently. Baker. Olsen and S0rensen [53] have found high BMI in childhood to be associated 

with increased risk of coronary heart disease (CHD) in adulthood in a large cohort of Danish 

schoolchildren. The risk of having a CHD event was seen to increase linearly with BMI z-score at 

each age in childhood, and also, for a given increase in BMI z-score, to increase as the age of the 

child increases. 

There is a well established pattern of tracking of obesity from childhood to adulthood, meaning 

that even if overweight children avoid health problems in their youth, they have an increased 

likelihood of becoming overweight, and thus encountering the associated adverse health outcomes, 

as adults. 

In a review of obesity tracking [54] it was found that about a third of obese preschool children 

and approximately half of obese school-age children were obese as adults. Generally, the risk of 

adult obesity was found to be at least twice as high for obese children as for nonobese children, 

and greater for children at higher levels of obesity and for children obese at older ages. However, 

most obese adults were not obese children. It was also suggested that the risk of obesity-related 

chronic diseases may be higher among obese adults who were not obese as children. 

Eriksson et al [55) examined the relationship of adult obesity to childhood size in a Finnish 

cohort born in the 1920s and 30s. They found a 3-fold increase in obesity in men and women 

associated with having BM1 greater than 16 kg/m2 at age 7 years compared to BMl less than 14.5 

kg/m2. 

Though the adverse health outcomes associated with obesity usually occur in adulthood [56], the 

ineffectiveness of the treatment of established obesity at this age is widely acknowledged [49]. It is 

thus often suggested that the problems of adult obesity may potentially be avoided by preventative 

measures taken in the more malleable climate of early childhood [57]. As Dr Ian Campbell of the 

National Obesity Forum says, "Clearly we are in the middle of an epidemic that is wreaking havoc 

on our children. The optimal time to intervene is in childhood, before irreversible damage has been 

done and while lifelong good habits can be learnt" [58]. 
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2.3.2 Assessment of obesity 

\Vhilst obesity. be it in childhood or adulthood, is thought to lead to adverse health outcomrs. 

difficulties remain in assessing whether or not, or to what extent, an individual should be considered 

'overweight' or ·obese'. 

Body mass index 

Accurate evaluation of obesity requires that both lean mass and fatness be taken into account [59J. 

but the ideal definition for obesity. based on percentage body fat, is impractical for epidemiological 

use [60J. As a result of these conflicting requirements, BMI has become the preferred measure of 

adiposity for routine clinical and public health purposes [16J. 

Bl\II has been claimed to be a reliable and valid measure of adiposity in adults [16J, giving an 

index that is broadly independent of height and equally applicable to men and women, which has 

proved exceptionally useful for large scale epidemiological work [61J. It has been found to be highly 

correlated with fat mass, to have a similar level of correlation with waist girth as fat mass does, 

and to have a similar level of correlation with abdominal visceral fat as both fat mass and waist 

girth do [62J. It is thus argued that BMI is perfectly adequate for clinical practice and popUlation 

research. 

However, Bl\U has been accused of having limited accuracy as it acts as a proxy for both lean 

mass and fat mass but can distinguish neither [59]. Maynard et al [63] found in a longitudinal study 

that despite BMI being highly correlated with both total body fat and percent body fat, it was also 

correlated with fat-free mass. Consequently individuals who are exceptionally muscular may be 

misclassified as overweight or obese. There is also much individual variability in the relationship 

between Bl\II and cardiovascular risk factors and long term health outcomes [64J. 

The use of 8MI to investigate adiposity in children is complicated further by the manner in 

which BMI changes from birth through to early adulthood [61]' with relationships between the fat 

and fat-free components of the body being affected by varying growth rates and maturity levels 

[63J. For most individuals. BMI increases from birth until about age 9 months, then decreases until 

around age 6 years, before increasing once more. This pattern is evident in the BMI curve for a 

typical child shown in Fig. 2.1. Despite these inherent complexities, 8MI has been widely used in 

pediatrics owing to the ease with which measurements can be made on infants and children, and 

the often routine manner in which serial height and weight measurements are recorded. 

Pietrobelli et al [65] found BM1 to be strongly associated with both total body fat and per­

centage body fat measured by dual X-ray absorptiometry in a sample of Italian children and 

adolescents. Whilst this supports the use of 8M1 as a fatness measure in groups of children and 

adolescents, caution is recommended when comparing 8MI across groups that differ in age. 

BMI measurements may be standardised into age- and sex-specific z-scores using reference data, 

which is suggested as a useful approach for assessing adiposity cross-sectionally. As a measure for 

change in adiposity. however, the z-score may be less than ideal [66]. 
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Fig. 2.1: A typical body mass index (BMI) growth curve through childhood. 

Defining overweight and obesity in terms of body mass index 

'Whilst a large B~II value is likely to be indicative of an individual with greater adiposity, 'cut 

off' values have bet'n sought with which to categorise individuals into different levels of obesity 

and overweight. A cut off point of 30 kg/m2 is recognised internationally as a definition of adult 

obesity, but the \rorld Health Organization (\rHO) have gone further in defining a pragmatic adult 

classification system based on associations betwet'n B~n and all cause mortality [37], as given in 

Table 2.1. 

B~II category B~II (kg/m2) 

Cnderweight <18.5 

Ideal 18.5-24.9 

Pre-obese ("overweight') 25.0-29.9 

Obese class I 30.0-34.9 

Obese class II 35.0-39.9 

Obese class III >40.0 

Table 2.1: World Health Organisation body mass index (BMI) categories [37J. 

\Vher!:'as an approach based, albeit crudely. on known risk ratios for different levels of BMI is 

possible for an adult classification system, the fact that BMI in childhood changes substantially 

with age (as seen for the individual in Fig. 2.1), and a scarcity of equivalent data for children, 

makes it difficult to identify health based cut offs for children. 

The most COllllllon method to overcome this is through the use of reference data to calculate 

age- and sex-specific B!\11 centiles or z-scores for individuals relative to the reference population. 

Subjects above a certain centile or z-score may then be defined as 'overweight' or 'obese', which 

has bet'n found to be a reasonable approach for screening those at risk from excess adiposity [63] 
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with acceptable diagnostic accuracy for high body fat [67]. Commonly used BMI reference data 

include those for the UK dating from 1990 [68] and for the USA from 2000 [69]. 

A slightly different approach has been used to create explicit international BMI cut off values 

for children [60]. Here. data were pooled from several studies around the world, then the centiles 

corresponding to the adult BMI cut offs for overweight and obesity in Table 2.1 identified and 

extrapolated back through childhood, so that the same proportion of children are classified as 

overweight and obese at each age. 

Childhood BMI growth references of this nature, however, represent only a snapshot of the 

reference population at one point in time, so do not reflect secular trends [16). As secular increases 

in childhood BMI are well established [37J, BMI growth references would need to be regularly 

updated if the aim was simply to describe the current BMI distribution. As this would then 

mask the secular trends, BMI growth references, for example the UK 1990 reference [70], may be 

intentionally 'frozen' at a certain point in time so that trends can be related to that fixed baseline 

[64J. 

Recently, the WHO have developed new international growth standards [71J. These differ from 

the growth references in that they summarise how children ought to grow, rather than merely how 

the children in the reference sample do grow. This is achieved by focussing on children who are 

growing 'optimally', and can thus be viewed as a model for other children to follow [72]. 

However, the use of cut off points to define obesity in terms of BMI is, whilst convenient, not 

ideal, as the use of arbitrary dichotomous (or categorical) classifications will inevitably result in a 

substantial number of individuals entering or leaving the 'obese' group over time [49J. 

2.3.3 The role of growth in obesity 

As obesity is known to track from childhood through to adulthood [54, 73], obesity at any age 

in childhood leads to increased likelihood of obesity in adulthood. However, certain more specific 

patterns of growth in childhood have been found to be associated with the development of obesity. 

Dietz [74J posits three critical periods in childhood: gestation and early infancy, the adiposity 

rebound, and adolescence. This provides a convenient framework for exploring the life course 

approach to investigating obesity [75J. 

Infancy Whilst some studies have found there to be little evidence of size in infancy predicting 

later obesity [76], most find that infants who are at the highest end of the distribution for weight 

or BMI are at increased risk of later obesity [77). 

Similarly, infants who grow more rapidly have been seen to be more likely to become obese 

[77]. For example, Ekelund et al [78J found increasing weight gain in infancy (from birth to age 

6 months) (as well as in early childhood (age 3 to 6 years)) to be associated with greater BMI, 

fat mass, relative fat mass and waist circumference, but also fat-free mass, at ag'e 17 years in a 

Swedish cohort study. 

Rapid weight gain is closely related to the concept of 'catch-up growth'. Catch-up growth is 
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a property of human growth whereby children return to their genetic trajectory after a period of 

reduced growth. for example because of illness [79]. Whilst catch-up growth can thus occur at any 

age, it is most commonly observed during the first year or two of life in those of small size at hirth. 

which is often taken as an indicator of intrauterine growth restriction. There is strong evidence 

that postnatal catch-up growth is positively associated with later obesity [80]. 

Ong et at [45) found that children who gained more than 0.67 z-scores of weight in the first two 

years of life had lower weight, length, and ponderal index at birth than other children, and were 

more likely to have been exposured to maternal smoking during pregnancy, indicating potential 

intrauterine growth restriction. These children generally became heavier, taller and fatter (in terms 

of BMI, percentage body fat and waist circumference) at five years than other children. 

In a small study of low and normal birthweight children, Ibanez et at [81) found the low 

birthweight children to have similar weight to the normal birthweight children (i.e. to exhibit 

catch-up growth) by age 2 years. By age 4 years, however. the low birthweight children gained 

more abdominal fat and body adiposity and less lean mass than the normal birthweight children. 

Adiposity rebound The term' adiposity rebound' (AR) was introduced by Rolland-Cachera et 

at [82J to describe the period around 6 years of age when BMI begins to increase following a nadir. 

This feature of the BMI curve can be clearly seen for the individual in Fig. 2.1. Their initial work 

showed a relationship between age at AR and adiposity at age 16 years, with early AR (before 

age 5.5 years) being followed by a significantly higher adiposity level than a later AR (after age 

7 years) [82]. Rolland-Cachera et at [83] went on to confirm that the predictive value of AR lasts 

until young adulthood. This is important as after AR, increasing adiposity with age might stop 

earlier among those with advanced AR than among those with delayed AR, removing the influence 

of age at AR on adult adiposity. 

More recent studies investigating AR have drawn similar conclusions. Siervogel et at [84] found 

a negative correlation between age at AR and BMI at age 18 in a US longitudinal study. Whitaker 

et at [85] introduced a further explanatory variable, 8MI at AR, and found adult obesity rates to 

be higher in those who were 'heavy' (8MI z-score 2: 0.05) versus 'lean' (8MI z-score, < -0.54) at 

AR (24% versus 4%) and in those with early (age < 4.8 years) versus late (age 2: 6.2 years) AR 

(25% versus 5%). Williams et at [86] found in a longitudinal study of a New Zealand cohort that 

BMI in early adulthood (ages 18 and 21 years) was associated with both age and 8MI at AR. Guo 

et at [87] found an early AR to be associated with adult 8MI overweight status in females, though 

not in males. in the Fels Longitudinal Study. In a US cohort Freedman et at [88] found subjects 

with an early AR (age less than 5 years) to be on average 4-5 kg/m 2 heavier in earlier adulthood 

than subjects with a late AR (age 7 years or later), although this association was not independent 

of childhood 8MI levels. 

There have been fewer studies concerning the AR in developing countries, but that of Corvalan 

et at [89J found increases in BMI between age 3 and 7 years to be strongly associated with adult 

fat mass and abdominal fat, though also associated with fat-free mass, in a study in Guatemala. 
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Whilst not focusing explicitly on the AR the association between upward BMI centile crossing 

over the period of AR and later adiposity is supportive of previous findings regarding the AR. 

Parental obesity, an established risk factor for obesity, has been found to be associated with 

earlier AR [90], suggesting that it may operate, at least. in part, t.hrough influence on the timing 

of the AR. 

The ability to predict adult fatness in early childhood has led to the suggestion that the AR is 

a 'critical period' of growth [74]. However Cole [91] disagrees, arguing that age at AR reflects level 

and rate of change of Br.-II centile at that age, with upward BMI centile crossing at the AR and 

other ages in childhood predicting later obesity. Cole goes on to suggest. that, instead, the period 

leading up to the AR is in fact a critical period when children 'choose' a trajectory of st.atic, rising 

or falling centile which predicts both their age and BMI at AR. 

Whilst referred to as the 'adiposity' rebound, this feature is generally defined in terms of the 

BMI growth curve. Although BMI is relatively well correlated with measures of adiposity in 

childhood, there is only limited evidence that the AR is truly a feature of adiposity and not just 

of Br.-n. Thus the AR could perhaps be more accurately described as the 'BMI rebound' as it. is 

elsewhere [87). 

Adolescence Fewer studies concentrate on adolescence as a critical period for obesity, perhaps 

due to it being more temporally proximal to adulthood and thus less suitable for the application 

of interventions. 

In the Fels Longitudinal Study, Guo et al [87] found maximum BMI velocity during pubescence 

to be associated with adult overweight status, with a 1 kg/m2 per year increase in maximum BMI 

velocity being associated with almost three times the risk of being overweight in males and nearly 

double the risk in females. BMI level at maximum BMI velocity in pubescence was also associated 

with adult overweight status, with a 1 kg/m2 increase in BMI leading to double the risk of being 

overweight in males and over three times the risk in females. Thus, in contrast to other studies 

reporting the importance of the AR for subsequent obesity, Guo et al provide evidence of the 

greater importance of adolescence. 

In an Indian population-based cohort, whilst higher BMI and BMI gain in infancy and early 

childhood were found to predict adult lean mass more strongly than adult adiposity, greater BMI 

and BMI gain in late childhood and adolescence were found to predict increased adult adiposity 

[92]' again illustrating the importance of this period for the development of obesity. 

2.4 Summary 

The life course approach is a useful framework in which to study a variety of health olltcomes. One 

such outcome, which is encountering an increasing amount of interest due to its rising prevalence 

worldwide in recent years, is obesity. Whilst the life course approach has been seen to be a 

fruitful method by which to examine the development of obesity, many previous studies have had 

limitations. 
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Issues surrounding data availability mean that often only limited periods of the life course can 

be examined, or that the data for a given period are insufficient for an extensive analysis. Related 

to this, many studies also face problems of missing data, which are not always well handled. These 

are issues which further studies must address more thoroughly. 

~Iany previous studies which utilise longitudinal growth data would benefit from more explicit 

modelling of growth. In particular, when the AR is being estimated so that its timing can be 

a.'>sessed for its influence on later obesity, growth modelling is often inadequate [87) or non-existent 

[88). 

The timing of the AR has been consistently found to be inversely related to later obesity, leading 

to it being suggested as a critical period in the development of obesity [74). However, others argue 

that the observed relationship is more statistical than physiological [91). Further research regarding 

the effect of BMI centile crossing around the period of the AR may be illuminating. Of specific 

interest is whether the timing of the AR has any real predictive ability for later obesity beyond 

that of BMI and BMI velocity (or, equivalently, BMI centile crossing) at a similar age. 

Whilst the relationship between the AR and later obesity has been widely examined, other 

features of the BMI growth curve have been less well studied in this context. The AR, as a turning 

point, is a readily identifiable feature of the typical BMI growth curve. So, however, is the point 

at which BMI reaches a maximum in infancy, which is seen clearly in the individual in Fig. 2.1, 

although this feature has received little interest. Examination of the association between the timing 

of this feature and later obesity may also prove fruitful. In particular, the combination of this with 

existing knowledge regarding the development of obesity around the period of AR and adolescence 

would make the study of obesity more truly a 'life course' discipline. 
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Chapter 3 

Aims 

The overall aim of this thesis is: 

To explore, develop and implement modelling strategies for studying relationships 

between childhood growth and later health. 

This aim is split into two sub-aims: 

1. To investigate and utilise existing methods for describing and modelling features 

of childhood growth, expanding and developing them where necessary; 

The modelling of childhood growth involves complex correlated data, often affected by miss­

ingness. Existing growth models for anthropometric variables including height, weight and 

BMI are explored, and alternatives using parametric and nonparametric modelling inves­

tigated. The roles of data structure and data missingness are considered and approaches 

under different scenarios developed. Features of individual growth trajectories such as max­

ima, minima and periods of greatest growth velocity can then be derived from these models. 

2. To examine and implement methods for relating features of childhood growth to 

later outcomes; 

Once derived, features of childhood growth can then be related to later health outcomes. 

The role of data structure is again important here, so mixed model approaches are considered 

alongside regression analysis techniques. 

These approaches are illustrated using several datasets: the Stockholm Weight Development 

Study (SWEDES), the Uppsala Family Study, and three of the British national birth cohorts 

(National Survey of Health and Development, National Child Development Study and British 

Cohort Study). 

The main relationship of interest is that between childhood BMI trajectory and later obesity. 
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Chapter 4 

Introducing the datasets 

This thesis utilises data from a variety of different datasets, which are briefly described in this 

chapter. 

Two of the datasets (the Stockholm Weight Development Study (SWEDES), described in Sec­

tion 4.1, and the Uppsala Family Study (UFS), described in Section 4.2) include longitudinal 

measurements of childhood growth, as well as several measures of later health outcomes. These 

datasets thus correspond to the type of data structure on which the thesis concentrates and are 

used in the exploration, development and implementation of modelling strategies. More specifi­

cally, it is the relationship between childhood growth in BMI and later obesity that is examined in 

each instance. The key difference between these two datasets with regards to the present analytical 

framework is in the longitudinal childhood growth data. In SWEDES these data are measured 

at common ages across all subjects and are thus balanced, whilst in the UFS measurements are 

not restricted to common ages, resulting in unbalanced data. This has implications for the type 

of analytical model which can be used and the manner in which missing (or sparse) data can be 

handled. 

The remaining three datasets described in this chapter - the National Survey of Health and 

Development (NSHD) (Section 4.3.1), the National Child Development Study (NCDS) (Section 

4.3.2) and the British Cohort Study (BCS) (Section 4.3.3) - are British national birth cohorts. 

The data collected at the various follow-up ages in each cohort provide longitudinal measures of 

childhood growth which are semi-balanced in the sense that there is a pre-specified age at which 

they were intended to be observed, but there is some degree of variability in the actual ages 

at which measurements were taken. Although suitable measures of later health outcomes could 

potentially be derived in each cohort, this is not pursued as these datasets are not used for the 

same purpose as SWEDES and the UFS. Instead, the British birth cohorts are used to illustrate 

the standardardisation of childhood BMI data into age- and sex-specific z-scores. In this context 

it is the national representativeness of and the temporal differences between the cohorts which are 

the important features of the datasets. 
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4.1 Stockholm Weight Development Study 

The Stockholm Weight Development Study (SWEDES) is a prospective longitudinal study of 

weight development in the offspring of mothers who participated in the Stockholm Pregnancy 

and Women's Nutrition (SPAWN) Study. All mothers attending 14 maternity clinics in sonthern 

Stockholm over a 12 month period between 1984 and 1985 were invited to participate in the SPAWN 

study. Two thousand three hundred and forty-two women agreed to participate and were studied 

retrospectively during pregnancy at maternity clinics, and monitored prospectively for up to 1 year 

after delivery [93]. One thousand four hundred and twenty-three of these women completed the 

SPAWN study at 1 year follow-up and from these, 481 mothers and their offspring were invited to 

participate in the follow-up study (SWEDES) when the offspring were approximately 17 years of 

age [94J. 

As part of the SPAWN study, weight and length at birth of the offspring were recorded from 

hospital records and gestational age estimated from date of the last menstrual period reported by 

the mother. During infancy, height and weight were measured as part of routine visits to a child 

welfare centre by standard clinical procedures. Measurements were taken three further times after 

birth during the first year (at 6, 9 and 12 months) and annually thereafter until age 6 years [78]. 

From age 7 years onwards annual measurements of height and weight were recorded in journals by 

the offsprings' schools. 

The SWEDES follow-up, when the offspring were approximately 17 years old, involved mea­

surement of a variety of anthropometric, metabolic, psychological and lifestyle variables for the 

mothers, their offspring, or both, of which only those relevant to the analyses in this thesis are 

detailed here. 

Anthropometric variables such as standing height, weight, waist circumference and body compo­

sition were measured in the same manner for both mothers and offspring at physical examinations. 

Standing height was measured to the nearest 0.5 cm with subjects stood in bare feet against a 

wall-mounted stadiometer. Body weight was measured to the nearest 0.1 kg using a BodPod scale 

with subjects wearing light clothing [94]. Body volume was measured using the BodPod system, 

which utilises air-displacement plethysmography. Fat mass, percentage fat mass (or percentage 

body fat, %BF) and fat-free mass were then calculated according to the equation of Siri [95] using 

the software provided by the manufacturer. Measurements were taken in duplicate with subjects 

wearing tight underwear or swimwear and a swimcap [78]. A further element to the SWEDES 

follow-up was a questionnaire covering maternal education, occupation and monthly income. 

The sample within the SWEDES dataset represents a mixed metropolitan popUlation from 

both the inner city and suburban districts of Stockholm, with a distribution in social groups that 

has been established to correspond reasonably well to the population in the Stockholm area [96]. 

The SWEDES data have previously been used in several published analyses, including a de­

scription of the associations between physical activity and fat mass in adolescents [94] and an 

examination of the associations between rapid weight gain in infancy and early childhood in rela­

tion to body composition in young adults [78]. 
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4.2 Uppsala Family Study 

The Uppsalastudien 'Familij och Hiilsa' or Uppsala Family Study (UFS) was designed to survey and 

examine families comprised of two full-siblings and their biological mother and father. All families 

with at least two consecutive singleton children delivered at term (38-41 weeks of gestation) and 

within 36 months of each other at the Uppsala Academic Hospital, Uppsala, Sweden, between 1987 

and 1995 were considered potentially eligible for the study. Children also had to share the same 

biological father and families had to live within Uppsala county at the time of the study, with both 

parents of Nordic origin. If there were more than two children in the same family fulfilling these 

criteria then the eldest pair of siblings were chosen [97J. 

By linkage between the Swedish Medical Birth Registry (a complete population-based register 

of births in Sweden) and the current population register, 5226 women and their 10,452 offspring 

were identified as fulfilling the above criteria and hence comprised the sampling frame for the 

study. In March 2000 letters were sent to the families inviting them to take part. A small number 

of respondent families were excluded at this point either because the father was not living within 

Uppsala county or because one or both parents were born outside of the Nordic area [98]. 

Initially the focus for the linked dataset was to study early and maternal effects on blood 

pressure and cardiovascular disease [99]. To increase statistical efficiency it was decided to invite 

only families where the siblings were either both in the top or bottom quarter of the birthweight 

distribution ('concordant high' or 'concordant low' birthweight) or the sex-adjusted difference in 

birthweight between them was 0.4 kg or more (,discordant' birthweight). 

Of the respondents to the initial letters, 1,967 families fell into one of these sampling groups and 

were invited to take part in the study. 71% of these families responded, with just under half agreeing 

to take part. leading to the eventual recruitment of 602 families (31% of those eligible). Of these, 

328 sibling pairs had discordant birthweight, 137 sibling pairs had concordant low birthweight, and 

137 sibling pairs had concordant high birthweight. Participation rates were very similar across all 

three sampling groups. 

Children's birth data, including gestational age, birthweight, length and head circumference, 

and placental weight, were obtained from mothers' obstetric records through the Swedish Medical 

Birth Registry. Parental birth data were obtained from grandmothers' obstetric records. Children's 

postnatal growth data, including serial measurements of height and weight, were obtained from 

health records, kept by Child Health Centres (if the child was younger than 6 years) or at schools. 

All children. all mothers and 569 (94.5% of) fathers had a physical examination between May 

2000 and November 2001 when children were aged 5-13 years, at which the following measurements 

were recorded: blood pressure, height, sitting height, weight, tricep and subscapular skinfolds, 

waist and hip circumference, and children's Tanner stage [19J. All anthropometric measurements 

were taken three times and the mean value used. In particular, height was measured with a 

wall-fixed stadiometer to an accuracy of 0.1 cm with subjects walking around the room between 

measurements and weight was measured with the subject wearing underwear to an accuracy of 0.1 

kg using electronic scales [98J. From the concurrent observed height and weight values, body mass 
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index (BMI) was obtained, from which BMI z-scores were calculated using the Swedish population 

reference values [100!. 

Parents were also asked to complete questionnaires (one for each of the four family members) 

concerning demographic and socioeconomic circumstances, lifestyle, health-related behaviour and 

medical history. These were returned by 581 (96.5% of) younger children, older children and 

mothers and 552 (91.7% of) fathers. 

The main analyses for this study have been published and show an inverse associat.ion bet.ween 

childhood systolic blood pressure (SBP) and birthweight of -2.3 mmHg/kg (95% CI -4.4 to -0.3) 

within families and -1.5 mmHg/kg (95% CI -3.1 to 0.0) between families, after adjustment for 

gestational age, sex, and height and weight at examination [101J. The existence of an inverse 

association of birthweight with SBP within families demonstrates that factors that vary between 

pregnancies in the same woman can influence later blood pressure of offspring. Also, morning 

cortisol has been found to have no association with size at birth, and to not mediate the birthweight­

blood pressure association [102J. 

4.3 National birth cohorts 

Three prospective, longitudinal national birth cohorts, dating respect.ively from 1946, 1958 and 

1970 are utilised in the thesis. These cohorts are by design nationally representative and all three 

remain important ongoing, multidisciplinary studies. 

4.3.1 National Survey of Health and Development 

The National Survey of Health and Development (NSHD) was the first of the British national birth 

cohort studies and remains one of the longest running large-scale studies of human development 

in the world. It began as a national maternity survey designed to investigate the cost of childbirth 

and the quality of associated health care following concern over falling birth rates [1031. 

The target sample for the first data collection was the 16,695 registered births in England, 

Scotland and Wales that occurred in the first week of March 1946, of which 13,687 were successfully 

surveyed. From this original population a sample totalling 5,362 children and consisting of all those 

whose fathers were non-manual or agricultural workers and a randomly selected one in four sample 

of children of other manual workers was selected from the population of married mothers having 

single births. A weighting can be applied in analyses in order to adjust for this sampling procedure 

[104]. 

This sample has now been studied 21 times, most recently at age 53 years [103]. At differ­

ent follow-up ages data have been obtained to address questions regarding growth, development. 

morbidity, educational experience and attainment, delinquency, income, occupation, and physical 

and mental function using various methods of data collection, including via midwives, obstetri­

cians, health visitors, school nurses and doctors, teachers, postal questionnaires, interviewers and 

research nurses [105J. Many findings and publications have resulted from the NSHD. 
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Analyses in this thesis use anthropometric data from the collections at ages 4, 6, 7, 11 and 15 

years in the NSHD. At these ages children were measured and weighed in their underclothes by 

school doctors or nurses (106]. Electronic data were obtained directly from the Medical Research 

Council NSHD team at University College London. 

4.3.2 National Child Development Study 

The National Child Development Study (NCDS) takes as its subjects all the people born in Eng­

land, Scotland and Wales in one week in March 1958. It has its origins in the Perinatal Mortality 

Survey, which initially included over 17,000 subjects and aimed to identify social and obstetric 

factors linked to stillbirth and neonatal death. From this original focus, the NCDS has broadened 

its scope to include many aspects of health, education, and social development [107]. 

Following the initial birth survey in 1958, there have to date been six attempts to trace all 

members of the birth cohort, at ages 7, 11, 16, 23, 33 and 42 years. At birth, information was 

obtained from the mother and from medical records by the midwife. At the first three surveys, 

information was obtained from parents, head teachers, class teachers, school health services and the 

subjects themselves via interviews, questionnaires and medical examinations. At the later surveys 

information was gathered using professional survey research interviewers. The birth cohort was 

augmented by including immigrants born in the relevant week in the target sample for the first 

three follow-ups [108). There have been over 900 publications involving the NCDS to date, and 

the cohort has been extremely influential in its impact on policy and practice [107). 

This thesis uses anthropometric data from the NCDS at follow-up at ages 7, 11 and 16 years, 

at which children were measured and weighed in their underclothes as part of their medical ex­

amination [106J. Electronic data for the NCDS were obtained from the UK Data Archive [109) 

and relevant variables identified with the help of the data dictionary provided by the Centre for 

Longitudinal Studies [110J. 

4.3.3 British Cohort Study 

The British Cohort Study (BCS) follows a similar pattern to the NCDS, taking as its subjects all 

those living in England, Scotland and Wales who were born in one week in April 1970. Data were 

collected about the births and families of over 17,000 subjects, initially focussing on the medical 

management of pregnancy and birth. Since then, however, the scope ha..'! broadened to include 

physical, educational, social and economic development [111). 

Since birth there have been six further attempts to gather information from the whole cohort, 

at ages 5, 10, 15, 26, 30 and 34 years. Information at birth was collected using a questionnaire 

completed by the midwife and supplemented by data from clinical records. Data at later surveys 

were collected using a variety of interviews, questionnaires, medical examinations, tests of ability 

and postal surveys. Additional people born in the same week who immigrated to the UK or were 

identified subsequently have been added to the cohort [112). To date there have been over 300 

publications based on analysis of data from the BCS [111] 
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Anthropometric variables measured by school medical staff with a standardised techniqup [113) 

at follow-up ages 10 and 16 years are used in this thesis. Weight wa.'i not mea.'inred at age G years 

so this follow-up age is not included. Electronic data for the BCS were oht.ained from t.he UK Data 

Archive [114], with relevant variables identified with the help of the data dictionary provided by 

the Centre for Longitudinal Studies [115). 
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Chapter 5 

Statistical • Issues and methods 

There are several statistical issues which are pertinent to the present aim of relating a later health 

outcome to longitudinal growth data collected earlier in life. Data structure, both in terms of 

the longitudinal data and the potential of further overall hierarchical structure, are discussed in 

Section 5.1. Missing data are an issue in almost all epidemiological studies. The nature of missing 

data and statistical methods to deal with this are outlined in Section 5.2. 

Two methodological approaches relevant to the work presented in this thesis are then described. 

The first, a single-stage analysis, relates the later outcome directly to the earlier observed values. 

This is discussed in Section 5.3. An alternative two-stage approach, whereby the longit.udinal 

growth data for each individual is first modelled, then the later outcome related to one or more 

features of the fitted growth curve, is introduced in Section 5.4. Commonly-used methods are only 

discussed briefly whilst for more novel approaches greater details are given. 

Section 5.5 provides an overview of the statistical isslles and methods discllssed in this chapter. 

5.1 Data structure 

It is important to acknowledge the structure of a dataset. as part of any analysis. General hierar­

chical structure is considered in Section 5.1.1, and t.he role of longitudinal data, which is central 

to the life course approach, is discussed in Section 5.1.2. 

5.1.1 Hierarchical data 

In many situations it is natural to consider individuals as belonging to groups, such as families, 

school classes or geographical areas. The members of these groups, or clusters, are likely to be 

more similar to each other than to other members of the population, for example the physical 

characteristics of siblings being more similar than those of unrelated individuals. Thus the cluster 

in this case is the family. Clusters may also be nested within one another. For example, families 

may be considered as belonging to towns. As a result, these type of data are often referred to a 

hierarchical data. 
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Many statistical models are based on the assumption that separate observations ill a sample an' 

independent of one another, meaning that the value of one observation is not influenced by the value 

of another [116). But clustered data of this nature means that this assumption of indepC'ndcllcc 

is unlikely to hold, and to analyse such data as if they were independent would lead to bias [117]. 

One approach to handling hierarchical data is through the use of mixed models, aiS discllssed ill 

Section 5.3.3. 

5.1.2 Longitudinal growth data 

In longitudinal studies several measurements are taken on the same individual over time, in con­

trast to cross-sectional studies in which measurements are taken at a single time point. This 

enables direct study of the change in a variable over time. Longitudinal data can be collect.ed 

either prospectively, following subjects forwards in time, or retrospectively, by extracting mUltiple 

measurements on each individual from historical records [118]. 

Longitudinal studies are a special case of hierarchical data. Here, t.he 'clusters' are the subjects, 

with repeated observations on the same subject likely to be more similar to each other than to 

observations on other subjects [116]. As a result, longitudinal data require special statist.ical 

methods which take into account this hierarchical structure in order to draw valid inferences [118]. 

In the present setting of relating a single later outcome to earlier longitudinal growth data, the 

aim is not explicitly to describe the pattern of growth observed. However, it may be advantageous 

to do this as the first stage in a two-stage analysis, as described in Section 5.4. If growth is to be 

modelled for more than one individual using data which have been collected longitudinally, t.hen 

the structure of the dat.a must be taken into account. This is again achievable using mixed models, 

as described in Section 5.4.1.3. 

5.1.2.1 Balanced and unbalanced longitudinal growth data 

The terms 'balanced' and 'unbalanced' are often used with slightly varying connotations. Here, 

they are taken be descriptive of study design rather than data missing ness, and the concern is only 

with the collection of longitudinal growth data. 

Balanced longitudinal growth data are defined as data resulting from studies where the anthro­

pometric variable of interest is intended to be observed at the same set of common ages for each 

subject in the study. Whether the variable is actually observed for a given individual at a given 

age is immaterial. Unbalanced longitudinal growth data, on the other hand, occur when there is 

no intention to observe the anthropometric variable at a common set of ages for each subject. 

More formally, let there be m subjects in a longitudinal study designed so that subject i, 

i = 1, ... ,m, is observed ni times at ages Xij, j = 1, ... , ni. If, for each value of j, Xi] = Xi'j for 

all i and i', the the longitudinal dataset is balanced. Implicit in this is that, since Xi", = Xi'TI" for 

all i and i', both the intended number of observations and the age at the final observation are the 

same for every subject. If, however, for any value of j there exists an age x,') so that Xij of Xi'.!, 

then the longitudinal dataset is unbalanced. Under this scenario there is no necessity for either t.he 
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number of observations or the age at the final observation to agree between subjects. 

Distinguishing between balanced and unbalanced longitudinal growth data is important as it 

has implications on the statistical approaches which can be utilised ill any analysis. III particlllar, 

many methods of analysis can only cope with balanced data [118J. For example, a multivariable 

regression analysis of a later outcome (for example, overweight in adulthood) on a longitudinally 

observed anthropometric variable (for example, height) at each observation time would not be 

possible if the data are unbalanced. 

5.2 Missing data 

Missing data occur whenever a datum which was expected to be prescnt in a dataset is unavailable. 

This could, for example, be because an individual has refused to answer a certain question in 

a survey, a sample was accidently destroyed in a laboratory, or a study ran out of funding so 

was unable to complete the data collection to the intended extent. Missing data are an almost 

unavoidable problem in many epidemiological studies, and the nature of life course research means 

that the problem may be particularly acutc under this approach [119]. 

However, data can only be 'missing' if, in some sense, they are 'expected'. Thus, when con-

sidering longitudinal growth data, missing data can only be defined when the data are balanced, 

as defined in Section 5.1.2.1. In unbalanced longitudinal growth data there are no specific ages at 

which observations are expected, so the concept of 'missingness' cannot be considered in the same 

way. However, there may still be periods when an individual has few or no observat.ions, which is 

of similar concern. This is referred to as data sparseness. 

Missing data patterns and mechanisms are introduced in Section 5.2.1. Then several different 

approaches to the handling of missing data are outlined: complete-case analysis (Section 5.2.2), 

single imputation (Section 5.2.3), and mUltiple imputation (Section 5.2.4). 

5.2.1 Missing data patterns and mechanisms 

Little and Rubin [120J suggest that it is useful to distinguish the missing data pattern, which de­

scribes which values are observed and which are missing, and the missing data mechanism, which 

concerns the relationship between missingness and the values of the variables. 

Consider a dataset including p variables, l'j, j = 1, ... , p. Here no distinction is drawn bet.ween 

explanatory and outcome variables. Let Yij be the value of variable l'j for subject i, i = 1, . .. , n. 

Then let Y = (Yij) represent the n x p data matrix. Now define the missing data indicator' matrix 

M = (mij), with mij = 1 if Yij is missing and mij = 0 if Yij is non-missing. The matrix M then 

defines the missing data pattern [120j. 

When considering longitudinal data, a distinction may wish to be made between data miss­

ing intermittently or due to dropout. Using this notation, missing values occur due to dropout if 
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whenever Yi) is missing, so are Yik for all k ~ j. Otherwise we say that the missing values are 

intermittent. In general, dealing with intermittent missing values is more difficult than dealing 

with missing values due to dropout [118J. 

Missing data mechanisms describe the relationship between missingness and the values of the 

variables, and are crucial as the properties of missing data methods depend very strongly on the na­

ture of these dependencies [120J. The following framework for discussing missing data mechanisms 

is based on the definitions of Little and Rubin [120J. 

Data are said to be missing completely at random (MCAR) if missingness does not depend on 

the values of the data Y, either missing or observed, such that 

P(M/Y) = P(M). 

Let Yabs denote the observed components of Y, and Y.nis the missing components, so that 

Y = (Yabs , Ymis ). Then data are said to be missing at random (MAR) if missingness depends 

only on the components of the data Y that are observed (Yahs ), and not on those that are missing 

(Ymis ), such that 

P(M/Y) = P(M/Yobs). 

If missingness depends on the components of Y that are missing (Ymis ) then the missing data 

mechanism is said to be not missing at random (NMAR). 

The missing data mechanism has implications on the level of bias affecting different analyses, as 

well as the methods which are needed to correct for such bias. MAR is the minimal condition under 

which explicit incorporation of the missing data mechanism is not required. Thus the distinction 

between MAR and NMAR is often an important one. However, the observed data in a given 

dataset cannot be used to distinguish between MAR and NMAR mechanisms without additional 

untestable assumptions [121]. 

5.2.2 Complete-case analysis 

A complete-case analysis restricts attention to the subsample of subjects with complete cascs, 

excluding all individuals who have missing values for any of the variables being considered, whether 

outcome or explanatory. 

A complete-case analysis is generally easy to carry out since standard statistical analyses in­

tended for use with fully complete datasets can be applied without modification. This approach 

may be satisfactory with small amounts of missing data, but when this is not the case the loss of 

information in discarding incomplete cases can be great. This results in not just a loss of precision 

due to the reduced sample size, but also bias if the missing data mechanism is not MCAR [120]. 

As a result, this strategy is generally inappropriate [120]. One possible exception is when there 

is a specific interest in the sub-population of completers [118]' although this situation is rather 

unusual. 
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Complete-case analysis is currently the most often used approach to handling missing data in 

life course epidemiology [119], and remains widely used in many epidemiological analyses, though 

efforts are being made to move beyond this [122]. 

5.2.3 Single imputation 

Imputation describes a collection of methods whereby missing values are 'filled in' or imputed with a 

value which is, in some sense, plausible. Standard statistical procedures for complete data analysis 

can then be used to analyse the imputed dataset, with the imputed values treated identically to 

the non-missing values [123]. Here it is necessary to distinguish between the imputation model, 

used to obtain the value to be imputed, and the analyst's model, which is then fitted to the set of 

observed and imputed data [119]. 

Imputation is a general and flexible method for handling missing data problems [120] which 

incorporates many different specific approaches. Single imputation, whereby each missing value iH 

imputed only once, contrasts with multiple imputation, described in Section 5.2.4, in which each 

value is imputed several times. 

There are many simple approaches by which values for imputation can be obtained. Mean and 

regression imputation are described briefly here. 

Mean imputation involves replacing the missing value (say Yij, the value of variable ~. for 

subject i) with the mean value of that variable (Yj ) over the non-missing values within the sample. 

Whilst this imputation method is incredibly simple, it is not recommended as its imputation 

model is never likely to be realistic, meaning that, even if the data are MCAR, the resulting esti­

mates of the analyst's model will almost always be biased [119]. 

Regression imputation involves replacing each missing value by a prediction of its expected 

value given the other values that are observed for that subject. For example, if Yk is a continuous 

variable which is missing for subject i then 

could be used as the imputed value. Here, fio, fil, ... ,fik:-I, fik+ I, ... , fip are first estimated by 

fitting the linear regression of Yk on Y1 , .•. , Yk- 1 , Yk+l,"" Yp for all subjects with complete dat.a. 

Single imputation may, similarly to a complete-case analysis, be quite reasonable if t.he pro­

portion of missing values is small [123J. However, the imputed values are effectively treated as 

known and thus, without special adjustments, single imputation cannot reflect the uncertainty 

surrounding the prediction of the missing values, meaning that inference will overstate precision. 

Although single imputation remains in wide use for handling missing data in many studies, it is 

becoming increasingly discouraged [122]. 
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5.2.4 Multiple imputation 

Multiple imputation (Ml) is one of several proper methods for dealing with missing data. Here, a:,; 

elsewhere [119], proper is used to refer to missing data methods which can be used for data which 

are MAR, regardless of the missing value pat.tern, and which provide unbiased elltimat.es of the 

parameters and t.heir standard errors in the analyst's mode!. 

MI takes the idea of single imputation a step further by replacing each missing value in the 

dataset with a set of plausible values which are drawn from the predictive distribution of the missing 

data given the observed data. The inclusion of a random component reflects that imputed values 

are estimated rather than known with certainty. The MI procedure results in multiple datasets, 

each completed with independently imputed values, which are individually analysed using standard 

complete data procedures. The results from these analyses are then combined, using essentially the 

same process regardless of the complete data analysis used. The variability among the results of the 

analyses provides a measure of the uncertainty due to missing data, which, when combined with 

measures of ordinary sample variation, lead to a single inferential statement about the parameters 

of interest [124]. 

MI was originally developed for handling missing data in complex surveys used to create public­

use datasets [125J. Consequently it. is a powerful tool for more general large datasets with missing 

values across many variables. 

Statistical assumptions 

The key assumption underlying Ml is that of ignorability (or ignorable missingness). Ignorability 

is made up of two parts-the assumption of data being MAR and the distinctness of parameters­

which must both be satisfied. 

The MAR assumption is as defined in Section 5.2.1. Although the MAR assumption cannot be 

verified with the data and may be questionable in some situations, the assumption becomes more 

plausible as more variables are included in the imputation model [126J. 

For ignorable missing data, the parameters B of the data model and the parameters ( of the 

model for the missing data indicators in M must also be distinct, meaning that any joint prior 

distribution applied to (B,O must factor into independent marginal priors for () and ~ [124J. That 

is, knowing the values of () does not provide any additional information about ~, and vice versa. 

Markov chain Monte Carlo 

Markov chain Monte Carlo (MCMC) is a collection of methods for simulat.ing random draws 

from nonstandard distributions via Markov chains [123J. Markov chains are sequences of random 

variables in which the distribution of each element depends on the value of the previous one [124J. 

Markov chains can be constructed so that they stabilise, or converge, to a distribution of interest.. 

By repeatedly simulating steps from such a chain, draws are simulated from the distribution. 

In a MI setting, MCMC is used to create independent imputations for the missing values, 

which are then used for repeated imputation inference. MCMC is one of the primary methods for 
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generating imputations in non-trivial missing data problems [124]. 

The aim is to impute independent realisations of P(Y.llislYobs), the po.sterior predictive dis­

tribution of the missing data given the observed data. Suppose that Y = (Yobs, Yrnis ) follows it 

parametric model P(YIO) where 0 has a prior distribution and Yrnis b ignorably missing. Now 

P(YrnislYobs) may be rewritten as 

where P(YmislYobs, 0) is the conditional predictive distribution of Y.llis given 0 and P(OIYobs) is the 

observed-data posterior of 0 [124]. An imputation for Y.nis can thus be created by first simulating 

a random draw of the unknown parameters from their observed-data posterior 

(5.1 ) 

followed by a random draw of the missing values from their conditional predictive distribution [123] 

(5.2) 

Often, however, (5.1) cannot be easily summarised or simulated. Augmentation of Yah. by an 

assumed value of Ymis to give a complete-data posterior of 

gives a more easily handled alternative [124]. Thus, consider an iterative, two-step process in 

which, given a current guess O(t) of the parameter, a value for the missing data is first drawn from 

the conditional predictive distribution for Ymis 

(t+l) P(Y. IY. n(t)) Ymis rv mis obs, U . (5.3) 

Then, conditioning on the value obtained in (5.3), a new value of 0 is drawn from a simulat.ed 

complete-data posterior 

O(t+1) rv P(OIY, y(t+l)) 
obs, nllS . (5.4) 

Repeating (5.3) and (5.4) from a starting value 0(0) yields a stochastic sequence 

whose stationary distribution is 

P(O, Y.nislYabs), 

Hence the sequences 

{(O(t)), t = 1,2, ... } 
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and 

{ ( 
(t) 

Ymis )' t = 1,2, ... } 

have stationary distributions of 

and 

P(Ymis/Yobs) 

respectively [124]. Thus for a suitably large t, B(t) can be considered an approximate draw from 

P(B/Yobs) and Y~~! an approximate draw from P(Y;nis/Yobs). The imputation of t.he missing value 

in (5.1) is oft.en referred to as the Imputation (or 1-) st.ep, while the drawing of B from t.he complete­

data posterior in (5.2) is the Posterior (or P-) step. 

However, in general it is not advisable to use successive iterates of Yn~~~ as they tend to be 

correlated [124]. Thus subsampling may be utilised, whereby every kth iterate (i .. e Y~~J, Y,,~7;'), ... ) 
is instead used, where k is large enough so that the draws are approximately independent. 

Assessing convergence 

Investigation of the convergence of the MCMC process is essential to confirm that sufficient itera­

tions have passed for the results to be reliable. 

Time-series plots Convergence may be assessed by examining the iterates of B from the sim­

ulation run. When B is multidimensional, the behaviour of various components of B, for example 

variable means and variances, can be investigated separately. Plotting successive estimates of a 

given component, say ( = (B), at each iteration against the iteration number t forms a time-series 

plot. This provides a quick and easy way to assess convergence for that component [124], with 

long-term increasing or decreasing trends indicating that successive iterations are highly correlated 

and that the series of iterations has not yet converged [127]. 

Autocorrelation plots Autocorrelation plots also provide a more explicit means to examine the 

relationships between successive component estimates. The lag-k autocorrelation for a stationary 

series {(t) : t = 1,2, ... , m} is defined to be [124] 

A sample estimate of Pk is given by [124J 

L;n~k«((t) _ ()«((t+k) - () 
rk = E::1 (((t) - 0 2 

where ( is the mean of the series. A plot of rk against k provides a useful summary of linear serial 

dependence, with long-term trends in ( indicating slow convergence to stationarity [124]. 
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Inference 

The following approach for multiple imputation inference is based on that presented by Rubin 

[128]. 

Suppose again that Y = (Yobs , Ymi.) and let Q denote a generic scalar quantity which is to be 

estimated, for example a mean, correlation or regression coefficient. Let Q = Q(Yohs. Y;lIis) be the 

estimate of Q that would be used if no data were missing. Let U = U(Yobs, Ymis ) be the estimated 

variance associated with Q, so that vTJ is the complete data standard error. With rn imputations 

there are m independent simulated versions of Ymis : Y';I~~' ... , y.;;:). Thus there can be calculat.ed 

m different versions of Q and U. Let 

and 

U(t) - U(Y, y(t») 
- obs, mis 

be the point and variance estimates for the tth set of imputed data, t = 1, ... , Tn. Then the 

multiple imputation point estimate for Q is simply the arithmetic mean of the m point estimates, 

- 1 ~ '(t) Q = - L..JQ . 
m t=l 

To obtain a variance estimate for Q, both the within-imputation variance and the between-imputation 

variance must be considered. The within-imputation variance is the mean of the m variance esti-

mates, 

1 Tn u= - L:U(t). 
m t=l 

However, this assumes that all the observations are actually observed, so use of this alone would 

provide an underestimate of the variance. It is thus necessary to include a measure of the between­

imputation variance (the variance of the m point estimates), 

So the total variance is defined as 

T=U+(I+m- 1 )B, 

and inferences are based on Student's t-approximation 

with degrees of freedom 
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v=(m-l)(I+( (j )2 
l+m~I)B 

A measure of the relative increase in variance due to missing data is provided by 

(l+m~l)B 
r = -'----,..---'--

U 

and the rate of missing data is approximately [123J 

A= _r_. 
l+r (5.5 ) 

These results generalise to situations involving more than a single parameter, although some 

complexities are introduced. 

How many imputations are required? 

The relative efficiency (RE) of an estimate based on m imputations to one based on nn infinite 

number of imputations is approximately [123J 

( A) ~l 
RE = 1 +;; , (5.6) 

where A is the rate of missing information as defined in (5.5). It can be seen from (5.6) that even 

with 50% missing information, an estimate based on m = 10 imputations has over of 95% the 

efficiency of one based on an infinite number of imputations. This has lead to the suggestion that 

unless rates of missing information are unusually high, there tends to be little or no practical benefit 

to using more than 5 to 10 imputations [123J. However, it has more recently been suggested [121J 

that far greater values of m may be more appropriate, with 100~200 required in some instances. 

With recent increases in available computing power meaning that it is practicable to use relatively 

large numbers of imputations, there would appear little reason not to do so. 

5.3 Single-stage analysis 

In a single-stage analysis the raw longitudinal anthropometric measurements in childhood are 

related directly to the distal outcome. Methods to achieve this include linear regression (discussed 

in Section 5.3.1), logistic regression (Section 5.3.2) and mixed modelling (Section 5.3.3). 

However, these modelling approaches all require the anthropometric measurements to occur at 

the same ages in each individual. In other words, these techniques are restricted to datsets where 

the longitudinal data are balanced, as defined in Section 5.1.2.1. 

5.3.1 Linear regression 

Linear regression is a statistical approach which can be used to examine the dependency of a 

continuous outcome on one or more explanatory variables. When only a single explanatory variable 
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is being considered it is referred to as simple linear regression, and when there are more than olle 

it is multivariable or multiple linear regression. 

The general formulation of the linear regression model includes explanatory variables of arbi~ 

trary nature, but in the context of a single~stage analysis of the relationship between childhood 

growth and a later outcome, some or all of the explanatory variables may be repeated observations 

of the same anthropometric variable. 

Consider a continuous outcome variable y (for example, BMI in adulthood) and p explanatory 

variables, Xj, j = 1, ... , p, which may be continuous (for example, BMI at a given age in childhood). 

dichotomous (for example, overweight vs. normal at a given age in childhood) or categorical (for 

example, obese vs. overweight vs. normal at a given age in childhood). Dichotomous explanatory 

variables should be coded 0 and 1, whilst each category of a categorical explanatory variable should 

be represented relative to a baseline category using dummy indicator variables. also coded 0 and 

1. Let Yi and Xij be, respectively, the observed values of y and Xj for subject i, i = 1, ... , m. Then 

the multivariable linear regression model for y on x j, j == 1, ... ,p, is given by 

(5.7) 

where the Ci are independent and identically distributed with Ci "" N(O, a 2 ), for i == 1, ... , m. 

The interpretation of the parameter (3j, j == 1, ... ,p, in (5.7) differs depending on the type 

of variable that x j is. If x J is continuous then (3j is the estimated increase in the outcome Y 

associated with a unit increase in Xj with all other explanatory variables (Xk, k ~ j) held constant 

(i.e. adjusting for all other explanatory variables). If Xj is dichotomous then (3j is the estimated 

increase in the outcome y associated with the exposure Xj, adjusting for all other explanatory 

variables. If Xj is a dummy indicator variable corresponding to a categorical variable then (3j is 

the estimated increase in the outcome y associated with the relevant category of the categorical 

variable relative to the baseline category, again adjusting for all other explanatory variables. 

As all the estimated regression coefficients are mutually adjusted, any potentially confounding 

factors can be easily handled by including them in the multivariable linear regression model. Thus, 

for example, in a linear regression model of adult BMI on BMI measured at various ages through 

childhood, if the actual age at which adult BMI is observed differs between subjects, this may want 

to be taken into account. By including the age at measurement as a variable in the model, the 

estimated relationship between childhood BMI and adult BMI will be adjusted accordingly. Effect 

modification can also be assessed through the introduction of interaction terms to the regression 

model. 

The regression coefficients (31, ... , (3p can be estimated using the method of ordinary least 

squares (OLS), which minimises the sum of the squared residuals between the observed data points 

and the fitted regression function [116J. 

Multivariable linear regression is well suited to life course analysis involving serial anthropo~ 

metric observations, although this approach does have several limitations. Firstly, each subject 

requires measurements to have been taken at every time point which appears in the model in order 
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to be included in the analysis. Secondly, the longitudinal data needs to be iJalanced, as defillf'd in 

Section 5.1. 2.1. Also, the regression coefficients are not constrained to vary smoothly across age, 

which would seem a more biologically plausible description of the relationship being studied [461. 

Matrix notation 

Let y be a continuous outcome variable and Xj, j = 1, ... ,p, be p explanatory variables. Let y, 

and Xij be, respectively, the observed values of y and Xj for subject i, i = 1, ... ,m. Let 

where 

X;= 

Then (5.7) can be written as 

y = X{3 + g, (5.8) 

referred to as the general linear model representation. The OLS estimator of {3 is thell given by 

(1291 

(5.9) 

Life course plots 

In the case when the explanatory variables Xj, j = 1, ... ,p, are observations of the same variable 

at different ages (possibly with additional explanatory variables for adjustment), life course plots 

can prove a useful aid in the interpretation of multivariable linear regression coefficients. 

Initially, consider a continuous outcome variable y and an anthropometric variable x which 

is measured at two different ages to provide the explanatory variables XI . and X2. These are 

then converted to age- and sex-specific z-scores (ZI and Z2) with a mean of 0, a SD of 1 and a 

normal distribution, so that the regression coefficients will be comparable [130]. From (5.7) the 

multivariable linear regression model for y on ZI and Z2 can be given by 

(5.10) 

This can be rewritten as [130] 

(5.11 ) 
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or [46] 

(5.12) 

where (Z2 - zd is the change in z-score (or growth) of t.he anthropometric variable between the 

two measurements. 

These three different parameterisations of the same model illustrate the duality of size and 

growth. However, the effect of a 1 SD increase in growth between the two measurements is seen 

to differ between (5.11) and (5.12). In (5.11) the result is an increase of -{h (or a dccrea.-;e of {3d 

in y, whilst in (5.12) it is a {32 increase in y. This is because they are conditioned differently. In 

(5.11) adjustment is for Z2, whilst in (5.12) it is for Zl [46J. 

Life course plots, introduced by Cole [130]' are a graphical device which can help disentangle 

the effects of both the size and growth components of the anthropometric variable t.hrough time. 

The coefficients from the multivariable linear regression (5.10) (Zl and Z2) are plotted against. t.he 

corresponding ages at measurement, with connecting lines between the coefficients. The life course 

plot can be easily extended to include more than two occasions of measurement [46], with the 

regression coefficients plotted and connected in the same manner. 

Life course plots show the effect of size in terms of the mutually adjusted regression coefficients 

at different ages. In addition, the difference between pairs of coefficients is proportional to the 

size of the regression coefficient for growth between the two corresponding ages [46]. The most 

important function of the life course plot is to emphasise the dual nature of size and growth, so 

that both appear on the same graph [130]. 

5.3.2 Logistic regression 

It is often the case that the outcome variable in an analysis is measured on a dichotomous scale. An 

example of this would be an assessment of whether an individual is overweight or not. The logistic 

regression model has become, in many fields, the standard method of analysis in this situation 

[131]. 

Consider a dichotomous outcome variable y and p explanatory variables, Xl, ... ,x'P ' which may 

again be continuous, dichotomous or categorical. Let x represent the set of explanatory variables, 

Define 7r(x) to be the expected value of y given the observed values of X or, equivalently, the 

probability of y being equal to 1 given the observed values of x, 

7r(X) = E(ylx) = P(y = llx). 

Allow 7r(x) to be represented by the logistic regression model 

ei30+i31Xl + ... +i3p x,. 
7T(X) = 1 + e/30+/31xl + ... +/3p xp 
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and define g(x) to be the logit function 

(5.15) 

The function g(x) is thus the logarithm of the odds of y taking value 1 given the observed values 

of x, where 

odds(y = Ilx) = P(y = li x ). 
P(y = Olx) (5.16) 

Substituting (5.14) into (5.15) it can be seen that 

Thus g(x) is similar to the multivariable linear regression model (5.7), sharing many of its desirable 

properties such as being linear in its parameters and being able to take any value between -00 

and 00 [131). 

The odds ratio (OR) is the ratio of the odds of the event of interest happening in an 'exposed' 

group to the odds of the event of interest happening in an 'unexposed' group [116]. When the 

explanatory variable (say x j) is dichotomous then the OR compares the odds in the two levels of 

the variable, 

odds(y = llx = 1) 
OR(x) = ) 

J odds(y = Ilxj = 0)' (5.17) 

Similarly, if x j is a dummy indicator variable corresponding to a categorical variable then the 

OR compares the odds in that category to the odds in the baseline category. If, however, Xj is 

continuous then the OR relates to the change in odds due to a unit increase in Xj, 

OR(x ) = odds(y = lix) = a + 1) 
) odds(y = llx) = a) (5.18) 

It can be shown [131) using (5.17) or (5.18), (5.16), (5.13) and (5.14) that 

(5.19 ) 

when all the other explanatory variables (Xk' k "I j) are kept constant. Due to their case of 

interpretation, ORs are usually the parameters of interest in a logistic regression analysis rather 

than the regression coefficients themselves. The simple relationship (5.19) is the fundament.al 

reason why logistic regression has proven to be such a powerful analytic research tool [131). 

As with multivariable linear regression, the estimated logistic regression coefficients (and hence 

the ORs) are mutually adjusted, meaning that potential confounding factors can be accommodated 

through inclusion in the logistic regression model. Effect modification can also be assessed through 

the introduction of interaction terms to the regression model. 

The logistic regression model is generally fitted using maximum likelihood estimation (MLE). 
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Matrix notation 

Let y be a dichotomous outcome variable and Xj, j = 1, ... ,p, be p explanatory variables. Let y, 

and Xij be, respectively, the observed values of y and Xj for subject. i, i = 1, ... ,m. Let. 

where 

Xi = 

Then the general logistic regression model can be written as 

logit(y) = X{3, (5.20) 

which is the same form as the general linear model (5.8) but with logit(y) as the outcome rather 

than y. The MLE estimator of {3 is then given by (5.9). 

5.3.3 Mixed models 

Hierarchical data, whereby members of clusters are likely to be more similar to each other than 

to other members of the population, were introduced in Section 5.1.1. The statistical methods 

for relating longitudinal data in childhood to a later outcome discussed so far (linear and logistic 

regression) rely on subjects being independent of one another, so their use with hierarchical data 

could lead to bias. Mixed models (also known as random effect, multilevel and hierarchical models), 

however, provide an extensive and flexible class of models suitable for handling such data [132]. 

Mixed models allow data to be viewed as a series of levels nested within one another to form 

a hierarchy. Explicitly defining the structure in this way as part of the modelling process enables 

the influences of variables at different levels to be examined and the induced clustering effects to 

be correctly accounted for. 

Random intercepts model 

Consider a study of school children who belong to different classes in a school, where a continuolls 

outcome variable y (for example, BMI at age 11 years) and a single explanatory variable x (for 

example, BMI at age 5 years) are observed for each child. Let Yij and Xij be, respectively, t.he 

observed values of y and x for subject j, j = 1, ... , ni, in class i, i = 1, ... , m. Then the random 

intercepts linear model, representing the simplest mixed model approach, is given by 

Yij = (130 + Ui) + 131 Xij + Cij (5.21) 
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where Ui '" N(O, a~) and Cij '" N(O, a;) are both independent and identically distributed, and all 

Ui are independent of all Cij. 

Now /30 + /31Xij gives the 'average' relationship between the outcome y and the explanatory 

variable x, with /30 and /31 referred to as the fixed effects or fixed parameters. The Ui arf' the cla .. ~s­

specific random effects (or level-2 residuals) and the Cij are the level-l residuals. both modellf'd 

as random draws from normally distributed random variables. As (5.21) contains both fixed and 

random effects, it is known as a mixed model. 

Fitting an ordinary linear regression line to the data, ignoring their hierarchical nature, would 

give a biased estimate of the true relationship. The fitting of a mixed model allows the structure 

of the data to be explicitly accounted for. 

The class-specific regression lines estimated by the mixed model draw strength from the mean 

regression line, with classes with fewer observations drawing greater strength [132]. In this way, 

mixed models can be used to handle missing (or sparse) data. 

Intra-class correlation The random intercepts model allows for within-class correlation. The 

covariance between the observed outcome y for two subjects, j and j', j =J j', in class i is 

COV(Yij, Yij') = var(ui) = a~ 

and the variance for an observed outcome Yij for subject j in class i is 

resulting in a correlation coefficient of 

a;' 
p = --::---"'--::-

a~ + a;- (5.22) 

This is more generally referred to in mixed modelling as the intra-class correlation and is a measure 

of how much more similar a subject is to others in their cluster than to individuals outside their 

cluster. 

Random intercepts and slopes model 

The random intercepts model, with the relationship in each class being restricted to linearity 

and to taking the same slope as in every other class, is often insufficient to study accurately the 

relationships inherent in the data. One natural extension is to allow each class to have their own 

slope in addition to their own intercept, creating a random intercepts and slopes linear model, 

given by 

(5.23) 

where the terms UOi, Uli and Cij are considered as random variables with UOi '" N(O, a~ol, Uli '" 

N(O, a~l) and Cij '" N(O, a;). Now UOi and UOi' are independent of each other for i =J ii, Uli and 
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Uli' are independent of each other for i -I- i', E;J and Ei'J' are independent of each other unless 

i = i' and j = j', UOi and ci'J are independent of each other for all i, i' and j, and 1l]i and Ei'j 

are independent of each other for all i, i' and j. However, U.Oi and Uli may be correlated, wit.h 

Further extensions 

Further extensions to the mixed model can include allowing additional explanatory variables to 

have random effects (giving estimates of class-specific effects for the variable), adding further levels 

to the hierarchy, incorporating nonlinear relationships, and including multivariate responses. 

Matrix notation 

Let y be a continuous outcome variable and x be a single explanatory variable. Let Yij and Xij be, 

respectively, the observed values of y and x for subject j, j = 1, ... ,ni, in 'cluster' i, i = 1, ... ,171. 

Let 

y= 

Z= 

o 0 

where 

with 

o 
o 

and 

/3= (:) 

and ei = 

Then the random intercepts model (5.21) can be written as 

y = X/3 + Zu + e. (5.24) 

Here, /3 are the fixed effects and u and e are random effects, both are assumed to be Normally 

distributed. The matrices X and Z are design matrices. E(y) = X/3 summarises the fixed com­

ponent of the model, Zu describes the between-subject random effects and e the within-subjects 

random effects. 
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General linear mixed model 

Indeed, any mixed model for Normal responses can be expressed in the form (5.24) with 

This is referred to as the general linear mixed model representation [1291. G and R denote tilE' 

variance-covariance matrices for u and g respectively. 

It can now be seen that. t.he general linear model (5.8) is just a special case of the general linear 

mixed model (5.24) with Z = o. 

Best linear unbiased prediction (BL UP) Estimat.ion of {3, predict.ion of u, and estimation 

of the parameters in G and R in the general linear mixed model (5.24) can be obtained via the 

notion of best linear unbiased prediction (BLUP). Estimates are linear in the sense that they are 

linear functions of the data, y, unbiased in the sense that the average value of the est.imate is equal 

to the average value of the quantity being est.imated, best in the sense that they have minimum 

mean squared error within the class of linear unbiased estimators, and predictors to distinguish 

them from estimators of fixed effects [133]. 

The BLUP solutions for (3 and u can be shown [133] to be 

(5.25) 

and 

BLUP(u) == ii == GZTy-l(y - X(3) (5.26) 

where Y == cov(Zu + €) == ZGZT + R. 

One derivation of the BLUP solutions [133] additionally assumes that u and g are normally 

distributed and leads to the BLUP criterion 

(5.27) 

From this the BLUP of «(3, u) can also be written as [134] 

with fitted values 

(5.28) 
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Estimation of covariance matrices The BLUPs of f3 and u given in (5.25) and (5.26) depend 

on G = cov(u) and R = COV(e), either directly, indirection through V = COV(ZU+e) = ZGZT +R. 

or both. 

The parameters in these covariance matrices are typically estimated via maximum likelihood 

(ML) or restricted maximum likelihood (REl'I'IL). The main advantage of REML over ML is that 

REML takes into account the degrees of freedom for the fixed effects in the model. For small 

sample sizes REML is expected to be more accurate than ML, but for large samples there is little 

difference between the two approaches [134]. 

In practice. the BLUPs of f3 and u given in (5.25) and (5.26) are usually replaced by 

and 

where G and V are obtained by plugging in the estimates of their parameters. 

5.4 Two-stage analysis 

In the single-stage analysis described in Section 5.3 the raw longitudinal anthropometric measure­

ments in childhood are related directly to the distal outcome. However, this approach is confined 

to datasets in which the longitudinal data are balanced, aB defined in Section 5.1.2.1. As many 

datasets from observational studies are in fact unbalanced, it is important to consider alternative 

modelling approaches. 

One obvious approach would be to create balanced data out of the unbalanced data by deriving 

values for the anthropometric variables at common time points for each subject, which could be 

achieved via linear interpolation between the observed data points. Once values are defined at 

common time points then the single-stage approaches described in Section 5.3 can be utilised in 

exactly the same way as previously. 

However, linear interpolation is effectively just the simplest example of a fitted growth model 

for each individual, which could take a variety offorms. Indeed, modelling each subject's growth in 

this manner need not just be for the purpose of deriving estimates of the anthropometric variable 

at common time points. Alternative features of the growth curve, such as turning points and ages 

at maximum velocities and accelerations, can also be derived given a suitable fitted model. These 

can then be used as exposures and related to later outcomes. 

Clearly this type of analysis may also be of interest when dealing with balanced longitudinal 

data. Indeed, issues such as collinearity between the anthropometric measurements at. different 

ages and missing data, which may affect balanced longitudinal data, may also be addressed via the 

fitting of growth curves. 
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Thus the general two-stage analysis approach becomes one whereby in the first stage 'growth' 

through childhood is modelled for each individual using the longitudinal anthropometric mea .. ''illre­

ments. 'Growth features' are t.hen derived from t.he growth curves and related to the later outcome 

in the second stage. 

Alternative approaches for the modelling of longitudinal growth data are described in Section 

5.4.1, then in Section 5.4.2 methods for relating the derived growth features to the later outcome 

are discussed. 

5.4.1 Modelling growth 

There are many existing models for human growth which are commonly used, differing in which 

anthropometric variables they can describe and over what range of ages. As alternatives to these, 

more general statistical modelling approaches can also be employed. 

Models which have been developed specifically to describe growth are not addressed here as 

they are discussed in detail in Section 6.1.1. However, the more general statistical models are 

introduced. The parametric approaches of polynomial (Section 5.4.1.1) and fractional polynomial 

(Section 5.4.1.2) modelling are briefly discussed, as well as the use of mixed models (Section 5.4.1.3) 

in the context of growth modelling. Two nonparametric methods are also introduced: smoothing 

splines (Section 5.4.1.4) and regression splines (Section 5.4.1.5). 

5.4.1.1 Polynomials 

Polynomials can represent a wide variety of curve shapes, so have often been used in the modelling 

of growth. Polynomial growth models can be fitted for an individual in a similar manner to the 

linear regression model in Section 5.3.1. Whilst in the linear regression model a later outcome is 

modelled as a function of an anthropometric variable observed at a set of common time points 

across individuals, in subject-specific polynomial growth curves the anthropometric variable is 

modelled as a function of the ages at which it is observed (raised to a set of exponents) within an 

individual. 

More specifically, let y be a continuous anthropometric variable. For subject i, i = 1, ... ,m, 

consider the ni observations of y, Yij, j = 1, ... , ni, made at age Xij. Then the degree p polynomial 

model for subject i is given by 

(5.29) 

where the Cij are are independent and identically distributed with Cij ~ N (0, (72), for i = 1, ... ,m 

and j = 1, ... , ni. 

Matrix notation 

Let 
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y= and e = 

where Yij, Xi) and Cj are defined as above. Then (5.29) can again be written in the general linear 

model form (5.8), 

y = X(3 + e. 

5.4.1.2 Fractional polynomials 

Although conventional polynomials, as described in Section 5.4.1.1, are a popular modelling tool, 

low degree polynomials are severely limited in their range of curve shapes and higher degree 

polynomials often produce undesirable artifacts, such as 'edge effects' and 'waves'. Fractional 

polynomials (FPs), introduced by Royston and Altman [135], extend the range of modeb afforded 

by conventional polynomials by allowing parameters to also take fractional powers. 

Let y be a continuous anthropometric variable. For subject i, i = 1, ... , m, consider the ni 

observations of y, Yi), j = 1, ... ,ni, made at age Xij. Then a FP of degree m with powers Pl, ... ,Pm 

for subject i is defined as 

where, by convention, x?) is defined to be log(xij)' As a result, all values of Xij must be greater 

than zero. 

If one or more power in the model is duplicated then the model will include 'repeated powers'. 

A FP of degree m with m powers of P is defined as 

Yij = (3lxfj + (32 x f}og(Xij) + ... + (3m Xfj (lOg(Xij))m-l, 

though a general FP may include some unique and some repeated powers. 

The powers are chosen from a predetermined set, usually taken to be {-2, -1, -0.5,0,0.5,1,2, 3}. 

Whilst entirely feasible, there has been found to be little advantage in adding intermediate frac­

tional powers to this set [136]. 

Estimation of the best fitting FP for a given dataset involves both a systematic search for 

the best power or combination of powers from the permitted set and estimation of the associated 

parameter coefficients. This selection process includes fitting a model for each combination of 

powers in the permitted set. This means, for example, that fitting a FP of degree 2 using the 

standard set detailed above would involve fitting a different model for each of the 36 permissable 

combinations of powers. From these models the one with lowest deviance is chosen to be optimal. 

FPs include many useful curves and can include features such as asymptotes and single points 

of inflection. They give at least as good a fit to data as a conventional polynomial of corresponding 

degree and often offer a better fit than conventional polynomials of higher degree. 
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However, polynomials, even when extended to include FPs, have limitations as a method of 

producing smooth growth curves. Their fitting is global rather than local so that changes in 

coefficient values to improve the fit of the curve at one age may have unwanted effects at other 

ages [117J. 

5.4.1.3 Mixed models 

Mixed models, introduced in Section 5.3.3 as a method to incorporate data structure into a single­

stage analysis, are also a useful tool for modelling longitudinal growth data [137J. Instead of it 

being responses within a group of individuals which are likely to be more similar (more highly 

correlated), in the modelling of longitudinal growth data it is the anthropometric measurements 

within an individual. 

Random intercepts model 

Consider a longitudinal study of an anthropometric dimension y which is measured repeatedly in 

a sample of m children. Let Yij be the observed measurement for subject i, i = 1, ... ,m, at age 

Xij, j = 1, ... , ni' Now time is the level-1 variable and subjects are the level-2 variable in the 

hierarchy, whereas previously (in Section 5.3.3) subjects were the level-l variable. 

The random intercepts linear model is again given by (5.21), but now flo + fllXij gives the 

'population average' growth trajectory. The parameters flo and fll are again fixed effects and the 

Uj are now subject-specific random effects, which model the deviation of the growth curve of subject. 

i from the population average growth curve. 

Intra-class correlation The intra-class correlation (5.22) now provides a measure of the degree 

to which a measurement for an individual is more similar to their own other measurements than 

to those for other people [138]. 

Random intercepts and slopes model 

Allowing each subject to have their own slope in addition to t.heir own intercept gives the random 

intercepts and slopes linear model (5.23). The parameters are as defined in Section 5.3.3 but Ulj 

is now the subject-specific slope. 

Further extensions 

Mixed models for longitudinal growth data can be extended in the same way as detailed in Section 

5.3.3. One particularly fruitful advance has been the incorporation of smoothing methods into the 

mixed model framework. This is examined in Section 5.4.1.5. 

When measurements for an individual are taken sufficiently close together in time, then the 

assumption of independence among the Cjj may not hold. This can be dealt with via the explicit 

modelling of the autocorrelation structure [139]. 
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Matrix notation 

When used to model individual growth curves, the mixed model can again be written in the general 

linear mixed model form (5.24), with matrices as defined in Section 5.3.3. 

5.4.1.4 Smoothing splines 

An alternative to the parametric modelling approaches discussed thus far is provided by the related 

nonparametric approaches of smoothing splines, discussed in this section, and regression splines, 

discussed in Section 5.4.1.5. 

Let y be a continuous anthropometric variable. For subject i, i = 1, ... , m, consider the ni 

observations of Y, Yij, j = 1, ... , ni, made at age Xij. Suppose that a growth curve 9 is fitted to 

the longitudinal growth data of subject i. Then the goodness of fit of 9 can be assessed via the 

residual sum of squares 

ni 

L{Yij - g(Xij)V 
j=l 

(5.30) 

Smoothing splines use a roughness penalty approach to quantify the 'roughness' of a fitted 

curve and examine the trade-off between this and the goodness of fit of the curve. One widely used 

method of quantifying the roughness of a twice-differentiable curve g, a function of x defined on 

the interval [a, b], is to calculate its integrated squared second derivative, 

(5.31) 

Now suppose that Xi!,' .. , Xin, lie in the interval [a, b] and satisfy a < Xi1 < ... < Xin, < b. 

Given a smoothing parameter (l > 0, the goodness of fit (5.30) and the roughness penalty (5.31) 

can be combined to give the penalised sum of squares [140] 

n, JIJ 2 "2 L {Yij - g(Xij)} + (l {g (x)} dx, 
J=l a 

(5.32) 

with the penalised least squares estimator 9 defined to be the minimiser of (5.32) over all twicc­

differentiable functions g. 

The smoothing parameter (l represents the rate of exchange between residual error and local 

variation [141]. For a given (l, 9 will be the 'best' compromise between smoothness and goodness 

of fit. Large (l emphasises the roughness penalty term in (5.32), leading to little curvature in g. 

As (l tends to infinity the roughness penalty term dominates (5.32), so 9 will approach the linear 

regression fit. Small (l emphasises the residual sum of squares term in (5.32), leading to a 9 which 

follows the meanders of the data closely. Thus as (l tends to zero the roughness penalty disappears 

from (5.32) and 9 will approach an interpolating curve. 

It can be shown [140] that 9 is necessarily a natural cubic spline with knots at ages Xi1,···, Xi"" 

meaning that [140] 
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1. on each interval (a,Xit),(Xil,Xi2), ... ,(xin,b), g is a cubic polynomial, 

2. these polynomials fit together at the interval boundaries XiI, ... , Xin, in such a way that g 
itself and its first and second derivatives are continuous at each knot Xij, and hence on the 

whole of [a, bJ, and 

3. 9 is linear on the two extreme intervals [a, XiI] and [Xin" b]. 

Cross-validation 

Thus in order to obtain a fitted cubic smoothing spline growth curve for the data of suhject i, 

the only parameter which needs to be specified is the smoothing parameter Q. There have heen 

a number of 'automatic' procedures proposed for choosing Q, probably the best well known being 

cross-validation (CV). The basic principal is to leave the data points out one at a time, choosing 

the value of Q for which the remaining data points best predict the missing data point. More 

formally, let g;;ij be the smoothing spline calculated from all the data pairs except (Xij, Yij), under 

a smoothing parameter value of Q. The CV choice of Q is then the value of Q minimising the 

cross-validation score [141) 

Generalised cross-validation (GCV) is a modified form of cross-validation which has some com­

putational advantages [140J. 

Equivalent degrees of freedom 

Although when fitting non parametric curves parameters do not arise in the same way as in the 

parametric equivalents, it is often desirable to obtain an indication of the effective number of 

parameters for a fitted spline. In parametric regression the number of fitted parameters, and thus 

the number of degrees of freedom, can be calculated as 

trace(A) 

where A is the hat matrix for the fitted curve. The nonparametric analogy of this is the equivalent 

degrees of freedom (EDF), defined as 

trace(A(Q)) 

where A(Q) is the hat matrix associated with spline smoothing with smoothing parameter Q, often 

referred to as the smoother matrix. EDF allows direct comparison with polynomials fits as a spline 

with v EDF summarises the data to about the same extent as a (v - I)-degree polynomial [134J. 

Using EDF, as opposed to the smoothing paramenter Q itself, may well provide a more intuitive 

way of specifying the 'complexity' of the fitted cure [140J. 
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5.4.1.5 Regression splines 

Regression splines are another non parametric approach which can be used for the modelling of 

individual growth curves. Although related to the smoothing splines described in Section 5.4.l.5. 

they have practical advantages in certain circumstances. 

Models, bases and knots 

Again, let y be a continuous anthropometric variable. For subject i, i = 1, ... ,Tn, consider the 7Li 

observations of y, Yij, j = 1, ... ,ni, made at age Xij' Suppose that an individual growth curve for 

subject i is to be fitted. 

Linear regression models If the relationship between Y and x appears to be linear for subject 

i then the simple linear regression model, 

(5.33) 

may be thought suitable, where t:ij are the residuals associated with the jth fitted value which are 

assumed to be independent realisations of a random variable with mean zero. The right hand side 

of the simple linear regression model can be obtained as a linear combination of the functions 

1 and x. (5.34) 

These functions are referred to as the basis for the simple linear regression model. Similarly, the 

basis for the quadratic regression model, 

is 

Linear regression spline models In situations where parametric models are not sufficiently 

flexible to capture the shape of a curve, further functions can be added to the basis. One extension 

to the simple linear regression model of (5.33) would be to allow the model to have two differently 

sloped sections which meet at, say, K. This model is a linear regression spline model with 1 knot. 

The basis for this model would be formed by adding an additional function to (5.34) which is 0 to 

the left of K and positively sloped from K onwards. Define 

x+ = max(O, x). (5.35 ) 

Then this additional function can be written as (x - K) +, the basis for the linear regression spline 

model with 1 knot as 
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and the model itself as 

The number of linear sections in the linear regression spline model, and hence the amount of 

detail it can represent, can be increased by increasing the number of knots. More generally, a 

linear regression spline model with K knots at 11:1, •.• ,II:K has basis 

and model 

K 

Yij = {30 + {31 X ij + L Uk (Xij - II:kh + Cij· 

k=1 

(5.36) 

Higher degree regression spline models The fitting of linear regression spline models as 

given in (5.36) results in continuous piecewise linear functions, which is unlikely to be appropriate 

for the modelling of growth. Quadratic regression spline models include an additional x 2 term in 

the basis as well as replacing each (x - 11: .. )+ by (x - II:k)~' As the resulting function is piecewise 

quadratic it will have a continuous first derivative meaning a much smoother appearance than the 

linear spline model. 

Clearly the degree of the regression spline model can be increased further, leading to the 

generalisation of a regression spline model oj degree p, with basis 

1, x, ... , xP, (x - 11:]) ~ , .•• , (x - II: K ) ~ , 

referred to as the truncated power basis of degree p, and model 

K 

Yij = {30 + (31 Xij + ... + f3pX;j + L U,,(XiJ - K'k)~ + Cij· (5.37) 
k=] 

A regression spline of degree p will be continuous on p - 1 derivatives, meaning that higher degree 

regression spline models become increasingly more smooth. 

Penalised regression spline modelling 

Penalised linear regression spline models Consider the linear spline model with K knot.s as 

given in (5.36) and let 
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y= ) 
(5.38) 

and u = ( ~l ) 

U~ . 

Now let 

C 
Xi! (Xi1 - K1h (Xi1 - KK)+ 

) "( = (XZ) = 

Xin l 
(xn, - Kd+ (Xi", - KK)+ 

(30 
(5.39) 

J~ ( ~) 
(31 

and U1 

Also define the norm of a vector v, denoted Ilvll, to be 

IIvll = v'vTv. 

Then the OLS fit of the linear regression spline model for subject i can be written as 

y = ,,(J, where J minimises lIy - "(8112. (5.40) 

As unconstrained fitting of U1,' .. , UK will result in a 'wiggly' fit [134], a constraint such as 

'L:=1 uZ < C for some constant C may be imposed. Letting 

0 0 0 0 

0 0 0 0 ), 0 ( O2,, 02XK 
D= 0 0 1 

OKx2 IKxK 

(5.41) 

0 0 0 1 

this minimisation problem can be written as 

minimise lIy - ,,(811 2 subject to 8T D8 ~ C. 

Using Lagrange multipliers it can be shown [134] that this is equivalent to minimising 

(5.42) 
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for some A 2: O. This has the solution [134] 

with fitted values given by 

(5.43) 

The term A 2()TD() penalises fits that are not sufficiently smooth, so is referred to as the roughness 

penalty. The amount of smoothing is controlled by A, the smoothing parameter. For A = 0 the 

fitted model corresponds to the unconstrained case given in (5.40). As A increases the fit becomes 

increasing less rough until, as A approaches infinity, the least-squares linear regression line is 

approached. 

Higher degree penalised regression spline models Consider now fitting the generalised 

regression spline model of degree p as given in (5.37) to the growth data of subject i. The vectors 

y and u remain the same as in (5.38) but now 

Z= 
(Xd -. KK)~ ) _ ( ~o ) 

. , f3 - : ' 

(xm, - KK)~ f3p 

(Xii - KK)~ ) 

(Xin, - KK)~ 

,~(XZ) ~ ( 

1 Xi! X;! (Xii - /',;!)~ 

1 Xin 1 

p 
Xin, - KIl~ x in1 

f30 

and ()= (~) f3p 

U! 

UK 

Following a similar argument to above the fitted values can be shown to be [134] 

where now 

D = ( O(p+!)x(p+l) 

OKx(p+!) 
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5.4.1.6 Regression splines as mixed models 

Recall the general linear mixed model representation (5.24) and thE' best linear unbiased predictor 

(BLUP) criterion (5.27) given in Section 5.3.3. Considering again the linear regression spline' model 

given in (5.36), suppose that COV(e) = a;1. Because 

~6 ~ (XZ) ( : ) ~ Xj3 + Zu and 6
T

D6 ~ ( : r D ( : ) ~ lIull' 

(5.42) can be rewritten as 

Dividing this by a; gives 

1 II 2 ,,\2 2 - Y - X{3 - Zull + -Ilull . a; a; (5.45) 

By treating u as a set of random coefficients with 

Cov(u) = a~I where (5.46) 

(5.45) becomes 

Setting G = a~I and R = a;I this becomes precisely the BLUP criterion (5.27). As a result, the 

penalised regression spline can be represented in the linear mixed model form (5.24), namely 

y = X{3 + Zu + e 

with 

(5.4 7) 

This mixed model representation means that penalised regression spline models can be easily 

implemented using standard statistical software. 

To illustrate the relationship between penalised regression splines and mixed models, consider 

the expression for the fitted values from the mixed model using the BLUP estimates of {3 and u as 

given in (5.28). Letting G = a~I and R = a;I as in (5.47), D = (02X2 02XK) as in (5.41) 
OKx2 IKxK 

2 

and ,,\2 = ~ as in (5.46), this becomes 
C7" 

which is precisely the expression for the fitted values from the penalised regression spline given in 

(5.43). 
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Subject-specific penalised regression splines 

Penalised regression spline models have thus far been described as a method for fitting a growth 

curve to the longitudinal data for a single individual (the generic 'subject i'). Whilst curves could 

be fitted in this way for each subject in a dataset, penalised regression splines provide a far more 

succinct approach to obtaining subject-specific curves. 

In Section 5.4.1.3 mixed models were described as a method for obtaining subject-specific 

growth curves. However, the type of curve shape available when using mixed models is restricted 

when only parametric modelling approaches are considered. 

As penalised regression splines can be handled within the mixed model framework they can also 

be easily extended in this manner. This fusion between parametric mixed modelling and smoothing 

is referred to as semiparametric mixed modelling [134]. 

Consider the linear regression spline model of (5.36) with K knots at 1'£1,·'" "'K, 

K 

Yij = fJo + fJ1Xij + L Uk(Xij - I'£k)+ + Cij, (5.48) 
k=1 

where YiJ denotes the observed response for subject i, i = 1, ... ,m, at. time Xi.j, j = 1, ... ,ni· This 

model can be extended via the inclusion of subject.-specific random parameters which model t.he 

deviation of a given individual's curve from t.he population average curve. Whilst, in the simplest 

cases, random intercept or random slope terms could be introduced, given that the underlying 

population average function is a spline, in many instances it will be necessary for the subject­

specific deviations from this to also be modelled as splines. So, for example, the linear regression 

spline model given by (5.48) can be extended to give 

K K 

Yij = fJo + fJ1XiJ + L UdXiJ - I'£k)+ + aiD + ailXij + L Vik(Xij - II:k)+ + Cij (5.49) 

k=1 k=l 

where Uk '" N(O, 0';), (aiD, ailf ,..., N(O, ~), where ~ is an unstructured 2 x 2 covariance mat.rix, 

Vik ,..., N(O, a~) and Cij ,..., N(O, an Now Uk and Uk' are independent of each other for k f k', 

aiD and ai'D are independent of each other for i f i', ail and ai'l are independent of each other 

for i :I i', Vik and Vi'k' are independent of each other unless i = i' and k = k', Cij and ci'J' are 

independent of each other unless i = i' and j = j', Uk and aiO are independent of each other for 

all i and k, Uk and ail are independent of each other for all i and k, Uk and Vik' are independent. 

of each other for all i, k and k', Uk and Cij are independent of each other for all i, j and k, aiD and 

ai'l are independent of each other for i f i', aiD and Vi'k are independent of each other for all i, i' 

and k, aiD and Ci'j are independent of each other for all i, i' and j, ail and Vi'k are independent of 

each other for all i, i' and k, ail and Ci'j are independent. of each other for all i, i' and j. However, 

aiD and ail may be correlated 

The fitted subject-specific curve for each subject is now the sum of the linear regression spline 

population average curve and a further subject-specific linear regression spline which models t.he 
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deviation from this. All the subject-specific parameters, aiD, ail and Vi), ... , ViK. are modelled as 

random effects with mean O. 

Letting 

Z= 

where 

Yi= 

with 

Xm 0 0 

ai = 
( 

aiO ) , 

ail 

( 

0';'1 

G=Cov(u)= ~ 

o 
o 

o 

U= 

(blockdiag ~h:<=i:<=m 

o 
this model can again be fitted using the general linear mixed model form of (5.24). 

) 

The model (5.49) can be easily extended so that either the population average curve, the 

subject-specific deviations from this, or both, are of degree greater than one. 

5.4.2 Relating derived growth parameters to later outcomes 

In the first stage of the two-stage analysis approach, individual growth curves are fitted for the 

anthropometric variable of interest. From these fitted curves, estimates of the anthropometric 
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variable at common time points or 'growth features', such as turning points and ages at maximum 

velocities and accelerations, can be derived. 

In the second stage, these derived explanatory variables are related to the distal outcome. The 

statistical approaches for this second stage differ little from the methods detailed for the single­

stage analysis in Section 5.3. If the outcome variable is continuous then linear regression (Section 

5.3.1) can be used. Likewise, if the outcome is dichotomous then logistic regression (Section 5.3.2) 

may be suitable. Again, if any further hierarchical structure is present in the data then it it is 

important to take account of this through mixed modelling (Section 5.3.3). 

A two-stage analysis approach is used in two different analyses in this thesis. In the first (Chap­

ter 8), the second stage involves relating late-adolescent body mass index (BMI) and percentage 

body fat (%BF) to derived features of the childhood BMI growth curve, particularly the location 

of the adiposity rebound (AR, see Section 2.3.3). Continuous values of late-adolescent BMI and 

%BF are related to the AR location using linear regression. The measurements of late-adolescent 

BMI and %BF are also used to define 'overweight' and 'overfat' status for each individual, which 

is related to the AR location using logistic regression. 

In Chapter 9 a two-stage analysis approach is also used, in which BMI z-score observed later 

in childhood is related to the derived location of the adiposity peak (AP) seen in infancy. The 

dataset used in this instance includes sibling pairs - this is taken into account through the use of 

a mixed modelling approach. 

5.5 Methodological overview 

When studying relationships between childhood growth and later health, there are several key 

issues which must be considered: 

• Data structure, in particular hierarchical structure, can create correlations between individ­

uals. This should be taken into account when relating later health to childhood growth, for 

example through the use of mixed modelling . 

• When the childhood growth data are balanced they can be subject to missing data, and when 

they are unbalanced they can be subject to the related issue of data sparsity. Either case 

can be addressed via the fitting of individual growth models as the first stage of a two-stage 

analysis approach. If the data are balanced then an alternative is to use MI. 

• Repeated measures of childhood growth within an individual are likely to be correlated. This 

can lead to problems of collinearity if repeated measures are used in a distal outcome model. 

The fitting of individual growth model!; can again be used as a tool to overcome this . 

• If individual growth models are to be used, there are a variety of different approaches. 

It is the aim of this thesis to explore, develop and implement statistical methods to address 

these issues. 
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Fig. 5.1 and Fig. 5.2 provide schematic overviews of the statistical methods used in this t.hesis 

for, respectively, balanced and unbalanced childhood growth data. It should be emphasised that 

these diagrams do not try to include all potential analysis approaches which could be considered 

for a given scenario. Clearly there could be many further viable alternat.ives. 

Whilst unbalanced data are inherently more difficult to deal with, it is, somewhat paradoxi­

cally, the balanced data diagram (Fig. 5.1) which is the more complex. This is because all the 

approaches which arc available for unbalanced data can be used with balanced data, but there are 

also additional balanced data-specific approaches. 

The following comments relate to the labels in Fig. 5.1, the diagram concerning balanced 

childhood growth data: 

1. If the data are incomplete then MI, as described in Sect 5.2.4, may be used. If MI is used, 

the result is several multiply imputed datasets, which can be partitioned into childhood 

growth data and outcome variables. If MI is not used, the original raw data can be similarly 

partitioned into childhood growth data and outcome variables (hence the two paths labelled 

'No' emanating from the 'Use multiple imputation'?' decision node). 

2. If derived features of growth, such as estimated values, velocities or ages at maxima or 

minima, are required then either the raw childhood growth data (if MI is not used) or the 

multiply imputed childhood growth data (if MI is used) are used in the 'Growth modelling' 

section of the diagram. This results in a two-stage analysis approach, as described in Section 

5.4. If derived features of growth are not required, then the raw childhood growth data or the 

multiply imputed childhood growth data are used directly in the 'Distal outcome modelling' 

section. This is a single-stage analysis approach, as described in Section 5.3. 

3. In the 'Growth modelling' section, individual growth curves are fitted to either the raw 

childhood growth data (if MI is not used) or to the multiply imputed childhood growth data 

(if MI is used). If there is an existing growth model which is adequate for the purpose, then 

this may be utilised. Otherwise a more general statistical approach, as described in Section 

5.4.1, may be employed. Models may be developed within a mixed model framework, as 

described for linear models in Section 5.4.1.3 and for regression splines in Section 5.4.1.6, or 

fitted as entirely subject-specific curves. From the fitted growth models, the required growth 

features may be derived. These are then used in the 'Distal outcome modelling' section. 

4. In the 'Distal outcome modelling' section, the outcome variables, which may be either raw 

or multiply imputed, are related to the explanatory variables of interest. In a single-stage 

analysis these will be either the raw or multiply imputed childhood growth data, and in a 

two-stage analysis these will be the derived growth features, which potentially also result from 

mUltiply imputed data. If no further data structure, for example of a hierarchical nature, 

needs to be taken into account, then simple regression models such as those described in 

Section 5.3.1 and Section 5.3.2 and referred to in Section 5.4.2 can be used. If further data 
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structure does need to be taken into account then a mixed model approach, as described in 

Section 5.3.3 and referred to in Section 5.4.2, should be used. 

Thus it can be seen that the single-stage analysis approach described in Section 5.3 requires only 

the 'Distal outcome modelling' section of the framework, whereas the two-stage modelling approach 

of Section 5.4 includes both the 'Growth modelling' and 'Distal outcome modelling' sections. The 

potential use of l\II, which precedes both these sections, exists outside of the previollsly defined 

single- or two-stage modelling framework. It can thus be helpful to consider MI as a 'stage zero'. 

The following comments relate to the labels in Fig. 5.2, the diagram concerning unbalanced 

childhood growth data, and describe some of the differences between this diagram and the one 

concerning balanced childhood growth data (Fig. 5.1): 

1. As the childhood growth data are unbalanced, MI cannot be Ilsed. Thus the raw childhood 

growth data and outcome variables are used at each stage. 

2. The childhood growth data being unbalanced also means that a single-stage analysis ap­

proach, as described in Section 5.3, cannot be used. Thus the childhood growth data are 

used in the 'Growth modelling' section of the diagram as part of a two-stage analysis ap­

proach, as described in Section 5.4. 

3. In the 'Growth modelling' section, individual growth curves are fitted to the childhood growth 

data. This can again be via an existing growth model or a more general statistical approach. 

The required growth features are derived from the fitted growth curves are used in the 'Distal 

outcome modelling' section. 

4. In the 'Distal outcome modelling' section, the outcome variables are related to the derived 

growth features. Again, this can be via simple regression models if no further data structure 

needs to be taken into account, or by mixed models if this is not the case. 

In the remainder of this thesis, elements of the frameworks described in Fig. 5.1 and Fig. 5.2 

are developed in more detail in order that they can be applied in appropriate scenarios. 
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Chapter 6 

Subject-matter • Issues 

This Chapter addresses two 'subject-matter issues', namely the modelling of growth (Section 6.1) 

and the standardisation of anthropometric variables into z-scores (Section 6.2). 

Many different models for describing human growth have been developed over the last few 

decades, with varying degrees of success. These models often differ in the anthropometric variables 

and range of ages for which they can be used. Additionally to these very specific models are more 

general statistical modelling approaches, both parametric and non parametric, which have also 

sometimes been used for modelling growth. In Section 6.1 these various models and modelling 

approaches are reviewed and illustrated. 

Observations of anthropometric variables are often standardised to create z-scores or SD scores, 

as briefly introduced in Section 2.2.l. Calculated z-scores provide a measure of how many stan­

dard deviations (SDs) above or below the mean of some distribution the observed measurement 

lies. When considering a given anthropometric variable observed at two different ages, either 

within the same individual or across different individuals, a comparison of the measurements is 

difficult to interpret. This is because the distribution of the variable, and hence its expectation. is 

age-dependent. However, if both measurements are transformed onto the z-score scale using distri­

butions which correspond to the age at which the measurements were taken, then the z-scores no 

longer have an age-dependent expectation. This makes a direct comparison much more meaningful. 

Issues surrounding the standardisation of anthropometric variables into z-scores are explored in 

Section 6.2. 

6.1 Modelling growth 

l'vlodeis are often sought to reduce large amounts of growth dat.a for an individual to a small number 

of parameters. Many different models have been suggested over the course of the last few decades 

for this purpose, differing in which anthropometric variables they describe and over what range 

of ages. Some have been developed specifically for modelling growth (Section 6.l.1), whilst others 

are more general statistical modelling approaches (Section 6.l.2). 

The aim of this chapt.er is to provide a brief review of the most influential of these individual 
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growth models, along with examples of their fits to real data which are presented simply for 

illustrative purposes. The chapter is not intended to be a comprehensive review and no formal 

comparisons between the models are made. In particular, providing examples where the fit of a 

given model to a given set of data appears to be unsatisfactory is in no way intended to 'prove' 

the model to be inadequate. 

Only individual growth models, as opposed to those intended to be fitted on populations (for 

example in the development of growth references), are discussed. Some of the latter are covered in 

relation to fetal growth by Silverwood and Cole [3] in the Appendix. 

Besides obtaining a satisfactory fit to the data, desirable features of a growth model include 

simplicity of the fitting procedure, biological interpretability of the model parameters, and model 

parsimony [30], so these will be considered in what follows. 

A further feature of interest is whether there is any SUbjectivity involved in the model fitting, 

for example by having to examine the data for an individual to determine over what range of ages 

a certain part of the model needs to be fitted. If input from the user is required in this manner 

for each subject then it impacts on the 'automatability' of the model, which is of obviolls concern 

with larger datasets. 

The data used in this chapter concern a selected group of subjects partaking in the Uppsala 

Family Study (UFS, see Section 4.2). 

Because several of the models are intended to model height between birth and age 6 years, 

participants with relevant profiles over this period, referred to as 'Subject A' and 'Subject B', were 

selected. Subject A has more 'typical' observed height values, whilst SUbject B displays slightly 

more unusual growth. In particular, Subject B has an observed height value at approximate age 

3 years which is somewhat greater than may be expected. Whilst it is possibly the case that this 

data point is erroneous, perhaps as a result of measurement error, and thus should not be taken 

into account when modelling the height of the individual, it does remain within the bounds of 

biological plausibility, so its incorporation into the height model may be deemed important. 

Where the models are suggested for use with weight as well as height, they are applied to 

'Subject C' and 'Subject D'. Subject C is again a more 'typical' pattern of weight development 

from birth to age 6 years, whilst Subject D deviates from this somewhat. Given the consistency of 

this deviation seen in the observed weights, as opposed to the single anomalous height measurement 

seen in Subject B, this would appear to be the 'true' growth pattern, meaning that models should 

ideally be able to handle it. 

Several of the models describe growth in height from birth or infancy right through to adult 

height. To illustrate these models an individual, 'Subject E', is selected who has a good coverage 

of data points throughout this period and a final observed height at a relatively late age. 

To evaluate models that have been proposed for studying growth in BMI, particularly around 

the adiposity rebound (AR, see Section 2.3.3), two additional UFS participants, identified as 'Sub­

ject F' and 'Subject G', have been selected. Again, the former is a more 'typical' pattern of BMI 
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development around this period, whilst the latter is somewhat atypical. 

6.1.1 Models developed specifically for growth 

Many of the models in common use have been developed specifically for the purpose of modelling 

human growth, as opposed to being more general statistical modelling techniques. The most in­

fluential of these are discussed here in chronological order. The Jenss-Bayley and Berkey-Rred 

models cover only the first few years of life but have been suggested for use with multiple anthro­

pometric measures. The Count, Bock-Thissen, Preece-Baines, Karlberg and JPPS models, on the 

other hand, describe height from birth or infancy right through to final adult height. The models 

also differ in their complexity and the number and interpretability of their parameters. 

6.1.1.1 Jenss-Bayley 

Because of the complexity of modelling the growth curve in its entirety, many early modelling 

attempts concentrated on shorter periods of the growth curve [142] . .1enss and Bayley [32] presented 

the first widely used model in 1937, describing either height or weight during the first 6 years of 

life. The Jenss-Bayley model is given by 

(6.1 ) 

where y is height or weight at time t, and aI, a2, a3 and a4 are the parameters to be estimated. 

The exponential component in (6.1) accommodates the rapidly decelerating growth usually seen 

during infancy, then approaches the linear asymptote. After infancy the exponential component 

makes negligible contribution to the model so growth is effectively linear with growth velocity a2. 

One feature of the .1enss-Bayley curve is that the value of en. gives a measure of the acceleration 

of growth at any point relative to the acceleration one unit of time prior to that. This is referred 

to as the 'growth constant' and it is independent of the scale used. Jenss and Bayley [32] suggest 

using this to compare the growth of different characteristics within the same child or across different 

children. 

Berkey [30] fitted the .1enss-Bayley model to height and weight data for a sample of children 

frolll Boston and found it to be robust to variability in either the number or location of ages at 

which measurements are available. Mean residuals from both fitted models were found to be small, 

except perhaps at age 6 months when considering height. 

Other applications of the Jenss-Bayley curve include modelling height and weight between birth 

and age 8 years in a study of US children [143], modelling height, weight and head circumference 

in the first year of life in a sample of Indian children [144], and within a mixed model framework 

to provide parameters describing growth in height for use in screening for Turner syndrome [145]. 

Although there are now many alternatives to the Jenss-Bayley model, it remains popular for 

modelling both height and weight in early life [146]. 
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Fig. 6.1 shows fitted Jenss-Bayley height curves for Subject A and Subject B and Fig. 6.2 hows 

fitted Jenss-Bayley weight curves for Subject C and Subject D. Model fitting is carried out using 

the nl procedure in Stata [147], which allows the fitting of nonlinear functions using least squares 

regression. There is no subjectivity involved in the model fitting, making it an extremely simple 

procedure. 

The fitted Jenss-Bayley height curve for Subject A can be seen to fit the data very well. For 

Subject B the fit is not quite so good, with the model appearing to overestimate height around 

age 1 to 2 years and the curve remaining virtually linear between age 2 and 4 years even though 

this results in a poor fit to the point at age 3 years. This illustrates the inflexible nature of the 

Jenss-Bayley curve. 
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Fig. 6.1: Observed height measurements and fitted Jenss-Baylcy height curve for two subjects in the Uppsala 

Famjly Study. 

The fitted weight curve for Subject C in Fig. 6.2 again provides an excellent fit to the data. 
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For Subject D, however, the model systematically underestimates weight between age 6 months 

and 1 year, then overestimates it up to around age 5 years. Whilst thi pattern of weight growth 

may be somewhat extreme, this again shows that the rigid form of the Jenss-Bayley model given 

by the combination of exponential and linear components may not always be appropriate. 

o 

'" 

0 
N 

c;; 
C 
E 
OJ 

~ 
0 
~ 

o 

o 2 

o 2 

• Observed measurements 

Subject C 

Age (years) 

Subject 0 

• 

Age (years) 
4 

4 

• • 

• 

Fitted Jenss-Bayley curve 

6 

6 

Fig. 6 .2: Observed weight measurements and fitted Jenss-Bayley weight curve for two subjects in the Uppsala 

Family Study. 

6.1.1.2 Count 

Another growth model which has been widely used is that of Count [33], dating from 1943. Al­

though pre ented as a model for height in three sections, often only the first, more generally 

applicable, of the e (the 'A-curve') i used, with modelling restricted to the first 6 years of life 

after birth . 

The A-curve (no relation to 'Subject A' in the present context) is the logarithmic curve given 
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by 

(6.2) 

where y i~ the fitted dimension at time t, and QJ, Q2 and (1'3 are the paramet.ers to be est.imated. 

The A-curve projects backwards so that a fitted value of zero occurs at approximately the t.ime of 

conception. The parameter Q3 can be interpreted as the main component of rapid early childhood 

growth and Q2 as the velocity of the typically linear preschool growth. 

This model is popular for fitting both height and weight curves in early life [146] and has been 

used by Count [148] to model various skull dimensions from age 1 year right through to age 16 

years. 

Berkey [30] compared the Count A-curve with the Jenss-Bayley model by fitting them t.o both 

height and weight data for children between age 3 months and 6 years. The Count model was found 

to provide an overall poorer fit than the Jenss-Bayley model for both dimensions, with the mean 

residuals at each age showing systematic deficiencies. It was concluded t.hat, due to the inadequate 

fit of the Count A-curve, the use of estimated sizes, velocities or accelerations from the model at 

any age should be avoided. However, despite the poor fit, the estimated parameters of the Count 

model were found to be able to discriminate reliably between individuals, so that analyses based 

on the parameters rather than estimated values could still be viable [30]. 

The Count A-curve is illustrated for height using Subject A and Subject B in Fig. 6.3 and 

for weight using Subject C and Subject D in Fig. 6.4. Because the Count A-curve is linear in its 

parameters it can be fitted using ordinary least squares regression, for example with the regress 

procedure in Stata [147]. There are no subjective decisions to be made as part of the model fitting 

procedure, making it very straightforward. 

The A-curve is seen to fit the height data of Subject A well, though perhaps marginally less 

so than the Jenss-Bayley curve in Fig. 6.1. The curve also provides a reasonable fit to the height 

data of Subject B, though again does not deviate from linearity around age 3 years when the 

anomalously high data point is encountered. 

The fitted weight A-curve for Subject C in Fig. 6.4 provides a significantly poorer fit to t.he 

data than the equivalent Jenss-Bayley curve, with systematic underestimation of weight up to age 

1 year, then overestimation up to age 4 years. The fitted curve for Subject D is also a poor fit, 

though similarly so to the .lenss-Bayley curve in Fig. 6.2. 

When considering height throughout the period of growth, Count [33] advises the addition of a 

further two sections to the model. From approximately age 6 years to age 11 years (between 'first­

molar time' and 'second-molar time', as Count describes it.) there is a simple st.ep-up of velocity 

which is accounted for by the 'B-curve', 
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where (31 and (32 are the parameters to be estimated. 

After this age there is then a further increase in growth velocity during adolescence before 

height flattens out. This adolescent growth spurt is modelled using a logistic function, referred to 

as the 'AH-curve', 

_ + "'12 
Y-"'11 1 + e'Y3+'Y4 t ' 

where "'11 is the value of Y attained before the adolescent growth spurt, and "'12, "'13 and "'14 are to 

be estimated. The AH-curve has two horizontal asymptotes and a point of inflection so is able to 

model both the attainment of adult. height and the peak in height velocity [28). 

Count [33J argues that the two accelerations of growth modelled by the B-curve and the AH­

curve speed up the process of growth but do not alter the final height obtained. Without the first 

acceleration (the B-curve), the same final height would be attained, albeit at a later date. The sec­

ond acceleration (the AH-curve), however, does not affect the age at which adult height is achieved, 

it merely increases growth velocity above that of the pre-pubertal growth pattern initially, then 

reduces it below that of the pre-pubertal growth pattern so that height ceases to increase. 

Fig. 6.5 shows the full Count model fitted to the height data of Subject E. Both the A- and 

B-curves can be fitted using ordinary least squares regression, although the AH-curve requires the 

use of nonlinear least squares regression. As the ages at which the B-curve and AH-curve should 

be introduced are only approximately defined by Count, these must be decided upon, introducing 

a level of subjectivity into the model fitting. It thus takes some degree of experience to be able to 

fit the Count model optimally. 

The upper plot in Fig. 6.5 illustrates the three separate components to the model. The B-curve 

is introduced at age 6 years and the AH-curve at age 11 years. These ages result in a good fit to the 

data for each component of the model, jllstifying the selections. Clearly, if the A-curve continued 

until a later age it would eventually reach the height obtained at the end of the AH-curve. Also, if 

the B-curve continued it appears that it would intersect wit.h the AH-curve at approximately the 

same age aB the AH-curve is reaching final adult height, as postulated by Count. The lower plot 

in Fig. 6.5 shows the final fitted Count model, which fits the data well at all ages. However, the 

large number of model parameters may make interpretation difficult. 

6.1.1.3 Berkey-Reed 

Berkey and Reed [34) tried to improve upon the Count A-curve by adding an additional term to 

give 

(6.3) 

where y is the fitted dimension at time t and (Xl, (X2, (X3 and (X4 are the parameters to be estimated. 

The additional term behaves not dissimilarly to the exponential term in the Jenss-Bayley model, 

enhancing the flexibility of the Count model. In particular, this means that growth can be described 
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in which the velocity does not simply decelerate smoothly but fluctuates, causing inflection points 

in the growth curve. Whilst being mainly intended for the modelling of growth in height, Berkey 

and Reed [34] suggest the model may also be appropriate for weight and head circumference. 

As well as the four-parameter model given in (6.3), a five-parameter model can be obtained 

by the inclusion of '05 (t) 2" allowing an additional inflection point in the growth curve. Further 

inflection points could also be allowed for, if deemed necessary, by inclusion of 0'6 ( t ):.1, 07 (+) 4. 

etc. 

The Berkey-Reed model is linear in its parameters, similarly to the Count model but. as opposed 

to the nonlinear Jenss-Bayley model. Whilst Berkey and Reed consider this as an advantage, this 

is now largely irrelevant due to the nonlinear model fitting routines available in most statistical 

soft.ware. 

Berkey and Reed [34] fitted the four- and five-parameter Berkey-Reed models to recumbent 

length measurements for 229 children of age 3 months to 6 years. They found that the four­

parameter model was a significant improvement over the Count model in terms of fit to the growth 

data, even though the former is only a simple ext.ension of t.he latter. The four-parameter model 

and the Jenss-Bayley model were seen to have comparable age-specific mean residuals, but the 

Berkey-Reed model tended to have smaller residual variances. It was concluded that the Berkey­

Reed model provided a significantly better overall fit than the Jenss-Bayley model. 

Fig. 6.6 shows the Berkey-Reed four-parameter model fitted to the height data for Subject A 

and Subject B and Fig. 6.7 includes the equivalent weight models for Subject C and Subject D. 

The models are straightforward to fit using ordinary least squares regression. 

The fitted height curves for both Subject A and Subject B are again seen to fit well to the 

data, with the exception of the anomalously high height value for Subject B. similarly to the 

Jenss-Bayley and Count curves in Fig. 6.1 and Fig. 6.3. 

The fitted Berkey-Reed weight curve for Subject C in Fig. 6.7 fits the data well, similarly to the 

equivalent Jenss-Bayley model in Fig. 6.2, avoiding the systematic biases seen in the Count curve 

in Fig. 6.4. The fitted curve for Subject D closely resembles the fits from both the Jenss-Bayley 

and Count models. 

6.1.1.4 Bock-Thissen 

Bock and Thissen [35] developed a triple-logistic model which expanded upon a previous double­

logistic version [149]. The model describes growth in height from age 1 year to adulthood using 

separate components for 'early childhood', 'middle childhood' and 'adolescence' given by 

5< J( YA - J 
y = + + -.....::...:.-'----,---,-

1 + e-O'1 (t-0'2) 1 + e- i31 (t-fh) 1 + e-I'I(1-1'2)' 

Here, Y is fitted height at time t, YA is final adult height and t5 is the contribution of pre-pubertal 

growth to adult height. °1, (31 and 1'1 arc the maximum growth velocities within, respectively, the 

cariy childhood, middle childhood and adolescent components, and 02, (32 and 1'2 are the ages at 
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which these velocities occur. € and ( = 1- € are the proportion of pre-adolescent growth attributable 

to the early and middle childhood components respectively, and YA - 6 is the contribution of the 

adolescent component to adult height [150]. 

The parameter YA is generally suggested as being observed final adult height, the inclusion of 

which results in a fitted curve which is constrained to pass through this value [142]. However, if 

adult height is not known there appears to be little reason why it cannot be included in the model 

as a parameter to be estimated provided sufficient data are available. 

The Bock-Thissen growth model is fitted to the height data of Subject E from age 1 year 

unwards in Fig. 6.8. As the observed height measurements do not quite continue until adult height 

is reached, is included in the model as a parameter to be estimated. As the model is nonlinear in 

its parameters it is fitted via nonlinear least squares regression. Model fitting is simple but the 

model may fail to converge unless initial parameter values reasonably close to the final estimated 

values are supplied. 

The fitted curves for each component of the model for Subject E are shown separately in the 

upper plot of Fig. 6.8. In this instance there is a somewhat surprising feature of the fitted curves 

in that the early childhood component does not directly model growth by itself due to the middle 

childhood component making a non-zero contribution to the overall curve from the very start of 

the age range examined. However, as the early childhood curve is clearly non-zero itself, it still 

makes a large contrihution to the shape of the overall curve. The value of adult height estimated 

from the model is 176 cm. The final fitted model is shown in the lower plot of Fig. 6.8 and is seen 

to provide a good fit to the data, similar to that provided by the Count model in Fig. 6.5. However, 

the Count curve also models height through the first year of life whereas the Bock-Thissen model 

does not. 

6.1.1.5 Preece-Baines 

Preece and Baines [29] developed a new family of mathematical functions with which to describe 

the height growth curve, each of which derive from the same parent differential equation, 

dy - = a(t)(YA - y), 
dt 

(6.4) 

where Y is height at time t, YA is final adult height and a(t) is a function of time which differs 

between the models. 

Three models derived from (6.4) are described by Preece and Baines and found t.o be superior 

to previous models. Their 'Modell', which describes height from age 2 years to maturity, was 

found to be especially accurate and robust [29]. It is given by 

Y = YA - enl(t~f3) + eQ2(t~f3)' (6.5) 

where a} and a2 are rate constants, (3 is a time constant and Yf3 is height at t = f3. In the Preece-

Baines model adult height is included as a parameter to be estimated, allowing use of this model 
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for data where final size is not known [142J. 

Thi model has been found to be useful for summarising the dynamics of the pubertal growth 

purt [146] and has been used extensively for fitting longitudinal data on height [28] . However, 

the inadequacy of the Preece-Baines model for fitting data concerning infants if often seen as a 

disadvantage [151J. 

In Fig. 6.9 the Preece-Baines Modell given in (6.5) is fitted using nonlinear least squares 

e timation to height from age 2 years onward for Subject E. As the model is fitted in a single 

stage and no decision need to be made regarding where different components begin and end, the 

modelling fitting is very straightforward. 

The goodness of fit of the model appears to be comparable to both the Count model in Fig. 6.5 

and the Bock-Thi sen model in Fig. 6.8. The estimated final adult height from the model is 178 

em, which is comparable to the value of 176 cm found from fitting the Bock-Thissen model. 
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Fig. 6.9: Observed height measurements and fitted Preece-Baines Modell height curve for a subject in the Uppsala 

Family Study. 

6.1.1.6 Karlberg 

Karl berg [36], in light of a perceived lack of attention paid to the endocrinology of the growth 

proce by existing model, developed the 'ICP ' model, named after the 'infancy', 'childhood' and 

'puberty' component into which it is split. The components are additive and partly superimposed, 

with each phase de cribing growth using a different function. 

The infancy component consists of a constantly decelerating function which effectively starts 

before birth then continues through infancy before tailing off by age 3- 4 years. This is represented 

b ' the exponential function 

(6.6) 
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The childhood phase, starting during the first year of life at age te , slowly decelerates until final 

height is obtained at age tE and is modelled using a simple quadratic function, 

(6.7) 

The final component, puberty, accounts for the additional growth experienced during the adolescent 

growth spurt. Height accelerates until age at peak velocity (tv), then decelerates until growth 

ceases at t E. This phase is modelled by the logistic function 

(6.8) 

In each of these functions y denotes height at time t and a" (Ji and 1i are the parameters to be 

estimated. 

Karlberg [36] recommends the fitting of the ICP model to be done in a sequential manner. 

Firstly, the ages at te and tE should be identified. The former can be determined from a plot 

of calculated velocities between consecutive height observations against age as the age during the 

first year of life when height velocity shows an abrupt increase. The latter can be identified from 

a plot of height against age as the age at which final height is obtained. Secondly, the childhood 

function (6.7) is fitted to the observed height values between approximately age 3 years and age 

11 years used ordinary least squares regression. Next, the childhood function is extrapolated 

backwards int.o infancy and the infancy component of the model (6.6) is fitted to the residuals using 

nonlinear least squares regression. Finally, the childhood function is also extrapolated forwards 

into adolescence and the puberty function (6.8) is fitted to the residuals, again using nonlinear 

least squares regression. 

Clearly the model fitting procedure is somewhat complex and includes a degree of subjectivity. 

Indeed, Karlberg admits that to make the most of the rcp model a researcher would need consid­

erable experience of this sequential approach [36]. 

Fig. 6.10 shows the Karlberg ICP curve fitted for Subject E. The model is quite difficult and 

time-consuming to fit, with the required identification of te and tE, in particular, meaning that 

an element of subjectivity is introduced. 

The upper plot illustrates how the separate components contribute to the final model, with 

each fitting the observed data points well. Whilst the adolescent growth spurt, as modelled by the 

puberty component, results in relatively little deviation from the fitted childhood component, the 

curve still provides a good fit to the data during this period. The overall curve shown in the lower 

plot. of Fig. 6.10 illustrates a similarly good fit to the Count (Fig. 6.5), Bock-Thissen (Fig. 6.8) and 

Preece-Baines (Fig. 6.9) models. Of these alternatives, however, only the Count curve includes 

growth within the first year of life as the Karlberg ICP model does. 
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6.1.1. 7 Jolicoeur-Pontier-Pernin-Sempe 

The seven-parameter model introduced by Jolicoeur, Pontier, Pernin and Sempe [151] (the 'JPPS' 

model) describes growth in height from birth until maturity. The model is given by 

y = A (1 _ 1 ) 
1 + (tt/al)f3! + (tt!a2)f32 + (tt/a3)(J3 ' 

where tt is 'total age'. which takes as its origin the point of conception. The parameters al ..... a3 

are positive time-scale factors, while /31, ... ,/33 are positive dimensionless exponents. 

Jolicoeur et at [151] illustrated the model by fitting it to data from a sample of individuals 

observed longitudinally between age 1 month and age 19 years. The residual sum of squares were 

found to be 7.5 times greater on average than for the Preece-Baines model. As the Preece-Baines 

model was never proffered as a solution to the modelling of infant data [29], much of this difference 

is understandably seen at younger ages. Jolicoeur et at [151] do, however, acknowledge that the 

JPPS model is unable to model to mid-growth spurt. 

Ledford and Cole [152] also compared the performance of the JPPS model with that of the 

Preece-Baines model. though using only data for ages greater than 1 year due to the acknowledged 

deficiencies of the Preece-Baines model in infancy. The JPPS model was found to be less easy to 

fit than the Preece-Baines model, with convergence problems for some individuals. In spite of this, 

the JPPS model was observed to provide as consistently better fit. 

The JPPS model is fitted to the height data of Subject E in Fig. 6.11. As time since conception 

is not known explicitly, tt is taken to be age plus the average duration of pregnancy (0.75 years), as 

has been practiced elsewhere [151, 152]. The model is fitted via nonlinear least squares regression, 

and no problems were experienced with convergence. 

The model can be seen to provide a similarly good fit to the data as many of the previously 

described models for height. As with the Karlberg ICP model, the JPPS model also benefits from 

being able to model growth within the first year of life. 

6.1.1.8 Summary of the models developed specifically for growth 

Table 6.1 summarises the dimensions it is possible to model and age range covered for each specific 

growth model. 

6.1.2 General statistical modelling approaches 

As opposed to the models developed specifically for growth discussed in Section 6.1.1, many more 

generally statistical modelling approaches have been suggested to describe individual growth trajec­

tories. Polynomials. fractional polynomials and nonparametric modelling techniques are discussed 

here. As these approaches are more general they can potentially be used to model growth in any 

anthropometric variable over any age range, although limitations inherent in the techniques Illay 

restrict their usefulness. 
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~Iodel 

.lens -Bayley [32J 

Count A-curve [33J 

Count (full model) [33J 

Berkey-R<,ed [34J 

Bock-Thi n [35J 

Preece-Baines [29J 

Karlbcrg [36J 

Jolicoeur-Pontier-Pernin- empe [151J 

Dimension( ) modelled 

Height 

'Weight 

Height 

Weight 

Skull dimen ions 

Height 

Height 

Weight 

Head circumference 

Height 

Height 

Height 

Height 

Age range covered 

Birth 6 years 

Birth- 6 years 

Birth final adult height 

Birth 6 years 

1 year final adult height 

2 years final adult height 

Birth final adult height 

Birth final adult height 

Table 6.1: ummary of the models develop d specifically for growth. 
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6.1.2.1 Polynomials 

Polynomial models, as described in Section 5.4.1.1, were relied upon in much of the early statistical 

analyses of growth data as they are easy to fit [30]. Also, in theory at least, they can be made to 

fit curves of almost arbitrary shape [28]. 

For example, cubic polynomials have been used to describe BMI development between age 2 

years and 18 years [84] and between age 2 years and 25 years [87], and quartic polynomials to 

model height and weight growth between birth and age 2.5 years [145]. 

Despite their historically widespread lise, however, polynomials suffer from a number of dis­

advantages. Generally, they are severely limited in their range of curve shapes, especially when 

considering polynomials of low degree. They are poor at modelling curves that approach an 

asymptote so, for example, need many terms to cope with height data near maturity [28]. Sim­

ilarly, polynomials of high degree are often needed to fit data which contain observations prior 

to one year of age [30]. Polynomials are also notorious for their poor behaviour near the ends of 

the age range covered by the data [34], so-called 'edge effects'. A further concern may be that 

estimated parameters corresponding to a given polynomial have no real biological meaning. 

Whilst these issues have led some to conclude that the use of polynomials to describe human 

growth should be avoided [153]' others argue that polynomials can have their uses, especially when 

growth is studied over relatively short periods [28]. 

Pol~'nomials of different degrees are fitted to height data for Subject A and Subject B ill Fig. 6.12 

and to B1\H data for Subject F and Subject G in Fig. 6.13. As polynomials of any degree are linear 

in t heir parameters they can be fitted via ordinary least squares regression. 

For both Subject A and Subject B, the degree 2 (quadratic) polynomial can be seen to provide 

a poor fit to the height data. It underestimates height at younger ages whilst overestimating it at 

older ages. For Subject B it even shows height to be decreasing at around age 5 years, which is 

clearly implausible. The degree 3 (cubic) polynomial provides a better fit to the data, but because 

of the predetermined shape it is forced to take the resulting trajectory shows increasing height 

velocity for both individuals from approximately age 4 years onwards. Again, this contradicts 

what would be anticipated. The degree 4 (quartic) polynomial is a further improvement OIl the fit 

to the data points, but once more the inflexibility of the curve shape makes it far from ideal, with 

height appearing to reach an asymptote around the age of the last measurement in both cases. 

As the pattern of BMI development differs greatly between Subject F and Subject G, the quality 

of fit of the polynomials in Fig. 6.13 does also. For Subject F, all the polynomial curves fit the 

data relatively well, though this clearly improves as the degree of the polynomial increases. The 

B1\II development of Subject G, on the other hand, is not well described by any of the polynomial 

curves. The main features of the data are high and relatively constant BMI for the first few years, 

with similarly high 81\11 at the end of the age range and a minimum in between. The quadratic 

curve does not describe any of these features at all. The cubic curve fares a little better, but shows 

a maximulll at age 3 years which is clearly not present in the data. The quartic curve fits these 

100 



o 
N 

o 
o 

o 
<0 

E 
E.. 
E 
Ol 
'Qj 

o 
o 

IO 
a) 

o 
<0 

o 

o 

• 

/ 
' / 

, / 
/ 

/ 
/ 

' / 
/ 

2 

2 

Subject A 

Age (years) 

Subject 8 

Age (years) 

Observed measurements 

Fitted cubic 

4 

4 

Fitted quadratic 

Fitted quartic 

6 

6 

Fig. 6.12: Observed height measurements and fitted polynomial curves for two subjects in the UppsaJa Family 

Study. 

101 



early data omewhat better. but if there was interest in modelling the sharp fall in BMI at around 

age 5.5 year , then none of the e polynomials would be appropriate. Similarly, identification of the 

age at which the minimum BMI occurs using these models would give unreliable results as the fit 

around thi age i poor. 

Whilst increasing the degree of the polynomial further would possibly improve the fit of the 

curve to the data point. it is unlikely to remove the unwanted edge effects' as these are inherent 

aspect of the polynomial form. 
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6.1.2.2 Fract ional polynomials 

Fractional pol llomial (FP), de cribed in Section 5.4.1.2, extend the range of models afforded by 

conventional polynomials by allowing parameters to al 0 take fractional power . Thi means that 
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FPs provide many useful curves and can include features such as asymptotes and single point~ of 

inflection. They give at least as good a fit to data as a conventional polynomial of corresponding 

degree and often offer a better fit than a conventional polynomial of higher degree. Similarly to 

conventional polynomials, however, estimated parameter values often have no obvious biological 

meaning. 

FPs are frequently used in growth modelling, although often not explicitly referred to ~~ such. 

For example, the Count A-curve (6.2) is a degree 2 FP with powers (0, 1) and the Berkey-Reed 

model (6.3) is a degree 3 FP with powers (-1,0,1). 

FPs of any degree can be fitted via ordinary least squares regression. Estimation of the best 

fitting FP involves both a systematic search for the best power or combination of powers from 

the permitted set and estimation of the associated parameter coefficients. This selection process 

includes fitting a model for each combination of powers, so in practice fitting of FPs is usually 

carried out using specially designed procedures, for example fracpoly regress in Stata [147]. 

FPs of different degrees are fitted to height data for SUbject A and Subject B (Fig. 6.14) and 

to BMI data for Subject F and Subject G (Fig. 6.15). 

For Subject A the optimal degree 2 FP is found t.o have powers (0, 0.5), giving t.he model 

(6.9) 

and the optimal degree 3 FP to have powers (0, 0, 2), giving 

(6.10) 

Both the degree 2 and degree 3 FPs are seen to fit the height data for Subject A similarly well. 

The fitted FPs for Subject B have powers (0.5, 1) and (0,0,5, 3), giving 

(6.11) 

and 

(6.12) 

although in this instance the inclusion of a third term results in two of the coefficients becoming 

non-significant. Again, these two models are almost identical when plotted in Fig. 6.14. Thus for 

both Subject A and Subject B further increasing the degree of the FP would be unlikely to lead 

to significant improvements in the fitted curves. 

The degree 2 FP models for Subject A and Subject B ((6.9) and (6.11)) both differ from the 

Count A-curve by only one term, with Subject A retaining the logarithmic term but replacing the 

linear term and Subject B retaining the linear term but replacing the logarithmic term. Although 

this may seem somewhat counter-intuitive for Subject B, these changes manifest themselves in 

Fig. 6.14 as allowing the curvature seen in the first few years of life to continue throughout the 
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range of ages observed. This is as opposed to the clearly linear curves seen for older ages when 

using the Count model in Fig. 6.3. Thus. as the degree 2 FP powers required for the Count A-curve 

are available when fitting the height curves for Subject A and Subject B yet are not chosen as 

optimal. it can be concluded that (6.9) and (6.11) provide better fits to the data than the Connt 

A-cun·e. Indeed. this can be more formally assessed via comparison of the deviance for each model. 

For Subject A this is 37.4 (degree 2 FP) vs. 56.0 (Count A-curve) and for Subject B this is 62.4 

vs. 78.3. so in bot h cases the degree 2 FP fit is a clear improvement.. 

The fitted degree 3 FPs ((6.10) and (6.12)) differ from the Berkey-Reed model, although both 

retain the same underlying logarithmic function. This again shows that the fitted FP models 

provide a better fit to the data than the Berkey-Reed model. However, comparison of the plots 

in Fig. 6.14 with those in Fig. 6.6 illustrates the lack of any real difference in the curve shapes. 

This is reinforced by an examination of the model deviances. which are smaller in the FPs, though 

not markedly so: 18.0 (degree 3 FP) vs. 20.5 (Berkey-Reed) for Subject A and 61.5 vs. 65.7 for 

Subject B. 

The fitted degree 2 and 3 FPs for the B!\n data of Subject. F in Fig. 6.15 have powers (0.5. 1) 

and (3. 3. 3) respectively, giving models 

y = f3t + Ihto.5 + fht. 

and 

\Vhilst the parameters in these models are completely different, the fitted curves they produce are 

again very similar. suggesting there may be little to gain by fitting FPs of higher degree. This 

can be tested more formally. again using the deviance. The degree 3 FP has a deviance of 0.88. 

compared to 0.03 for the degree 4 FP. Although this does show some improvement in fit. it is far 

from being statistically significant (P = 0.96). 

The fitted degree 2, 3 and 4 FPs for Subject G have optimal powers (3, 3). (3, 3,3) and (1, 1, 

1, 1) respectively. giving models 

and 

Interestingly. the degree 3 FP takes the same powers as the degree 3 FP for Subject F. Additionally, 

whilst t he degree 3 FP for Subject G can be seen to be a simple extension of t.he degree 2 model. 

the degree 4 model is completely different. 
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The re ulting curves, however. are seen to be poor fits to the data. The degree 2 FP does not 

de cribe even the major features of the data, whilst the degree 3 and 4 FPs struggle to model the 

harp decline in Bl\II and both feature unwanted edge effects at young ages. Indeed, the fitted 

FP curves are not dissimilar from the quadratic, cubic and quartic polynomial curves in Fig. 6.13, 

showing that FPs are also inadequate to model the delicate features of this growth pattern. 

N 
N 

~o 
NN 
< 
E 
0, 
~ 

cD 

CD 

..... 

2 

2 

.... 
'-

'-

• 

• 

~ , 
'- ~ 

4 

.... 

Subject F 

./ 
./ 

6 

n 
...:: 

/. 
/ . 

/ 

Age (years) 

Subject G 

/' 
/' 

8 

I 

. /' ~ 
I 

I 

• >.:' .. . -- ..... .... .; ' ........ • , 

4 

, , , 
"­

"-
"-
" " 

6 

I. 
I , 

/ , 
/ : 

/ 

' ....... // " 
• 

.... ;-, .... - - ­, , 

8 10 
Age (years) 

Observed measurements 

Fitted degree 3 FP 

Fitted degree 2 FP 

Fitted degree 4 FP 

• t 

10 

• 

F ig . 6 .1 5 : Observed body mass index (BM1) and fitted fractional polynomial (FP) curves for two subjects in the 

lJppsaJa Family Study. 

A further concern regarding FPs may be that, even for a given degree, the optimal FP s [or 

two individuals may differ in the powers that they take, making it impossible to compare the 

estimated parameters between them. This is the ca e in three of the four examples used here. If 

this comparability of model parameters is a desirable feature of the model fitting, then all subjects 

hould b forced to have FPs with the same combination of powers. This could be decided upon 

by. [or example, initially allowing a FP to be optimally fitted for each individual, analysing the 
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distribution of the resultant power combinations, then refitting the FPs with each forced to take 

the most commonly observed combination of powers. However, this would result in sub-optimally 

fitted FP models for some individuals. 

6.1.2.3 Nonparametric modelling 

All the methods discussed thus far impose a set algebraic form upon t.he fitted growth curve, 

although for FPs a greater degree of flexibility is available, and are thus parametric. One problem 

with this type of approach is that the given form may simply be too rigid to model the true 

complexities of the growth process [28]. This can be overcome by considering nonparametric 

modelling. 

Nonparametric modelling is introduced in Section 5.4.1, where smoothing splines (Section 

5.4.1.4) and regression splines (Section 5.4.1.5) are considered. Fitting splines can be consid­

ered as a compromise between achieving a close fit to the data points and the smoothness of the 

curve [28]. 

Cubic spline functions were used by Largo et al [154] to smooth height velocity data in a 

longitudinal study. The resultant curves were then analysed to yield estimates of certain points of 

interest, for example peak height velocity. 

Whilst a potential disadvantage of some of the previously considered parametric models is that 

the estimated paramet.ers lack any biological interpretability, this is compounded in non parametric 

approaches by the number of parameters often involved. Also, whilst the derivatives of a spline can 

be generally obtained, they will be less smooth than the curve itself. Thus, for example, the first 

derivative of a cubic spline is piecewise quadratic, whilst the second derivative consists of linear 

sections. 

Cubic smoothing splines are fitted to the height data of Subject A and Subject B in Fig. 6.16 

and the BMI data of Subject F and Subject G in Fig. 6.17. Cubic smoothing splines are piecewise 

cubic polynomials which employ a roughness penalty approach to ensure that the fit of a curve is 

determined not only by its goodness of fit to the data but also but its smoothness [140]. 

Although there exist several 'automatic' procedures for selecting the smoothing parameter 

used in the model fitting (for example cross-validation, see Section 5.4.1.4), manually specifying 

the degree of smoothing may be preferable in growth modelling. This can be achieved by specifying 

the smoothing parameter itself or by using equivalent degrees of freedom (EDF, see Section 5.4.1.4). 

For each individual, splines are fitted using several different EDF values. These have been 

selected to try to illustrate cases of 'underfitting' (where the curve is too smooth and thus provides 

a poor fit to the dat.a), 'overfitting' (where the curve is not sufficiently smooth, resulting in an 

implausibly 'wiggly' growth curve), and a reasonable compromise between the two. However, it 

should be noted that a 'reasonable compromise' is both subjective and dependent on the aims of 

the curve fitting. 

The splines are fitted using the smooth. spline function in R [155]. Basic curve fitting with 
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user-defined EDF values is easily implemented. 

The fitted cubic smoothing spline for the height data of Subject A in Fig. 6.16 with an EDF 

of 3 can be seen to provide a poor fit to the data as too much emphasis is placed on the roughness 

penalty. With an EDF of 20 (the number of data points to which the spline is fitted) the curve 

interpolates the data points, although in this instance the points lie almost on a smooth trajectory 

so this is perhaps not wholly unreasonable. The final fitted cubic smoothing spline, with an EDF 

of 7, is a compromise between these two fits. Whilst this curve is by no means constrained to pass 

through the data points, it is very similar to the interpolating curve in this instance. 

The plot for Subject B again shows that with a low EDF value the model is underfitted. 

Increasing the EDF so that it is equal to the number of data points again provides an interpolation, 

but with this individual this results in a less biologically plausible curve. It does, however, mean 

that the fitted curve acknowledges the unexpectedly high height value at approximately age three 

years. which other models have failed to do in any meaningful way. If it is not believed that this 

observed height value is the true value of height at this age (for example if the measurement could 

be expected to be subject to measurement error), then a compromise can be reached whereby 

the curve describes a 'growth spurt' at this age without being constrained to interpolate the data 

points. This is the case with an EDF of 6, which is also shown to provide a good fit to the data at 

other ages. This exemplifies how smoothing splines have scope for 'fine-tuning' which allows the 

user to try to identify specific features of the growth curve to greater or lesser extents. 

In Fig. 6.17 the fitted smoothing splines for the BMI data of Subject F follow a similar pattern. 

with an EDF of 4 providing a smooth curve which is a poor fit to the data and an EDF of 10 

resulting in a curve which passes through all the data points but is insufficiently smooth. Using 

an EDF of 6 appears to be a reasonable compromise. 

As the pattern of BMI development for Subject G is somewhat more complex, there is greater 

variability in the shape of the fitted splines. Whilst a low EDF again underfits, the interpolation is 

in this case clearly implausible. Using an EDF of 6 provides a curve which describes the underlying 

trajectory of the growth reasonably well, but for this individual it is somewhat less obvious exactly 

what this is, meaning that a greater level of subjectivity is involved. 

This ability to 'fine-tune' the fitted spline means that if identification of a particular feature 

is deemed a priority, for example the point of minimum BMI, this can be achieved, although 

potentially to the detriment of the fit of the curve at other ages. This aspect of spline modelling 

also has implications for the automatability of the process, as the 'optimal' degree of smoothing 

may differ between individuals and may only be assessable manually (as opposed to using an 

automatic procedure such as CV). Similarly to the approach suggested for FPs, the spline for each 

individual could be forced to take the same predetermined degree of smoothing, though again this 

may result in sub-optimal fits for some subjects. 

108 



a 
N 

a 
a 
~ 

E 
~ 
:E 
0> 
iVa 
Ieo 

/ 

a 
CD 

0 

• 

a 
N 

o 

• 

Subject A 

:;.-
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

2 
Age (years) 

Observed measurements 

Fitted spline, EDF=7 

Subject B 

2 
Age (years) 

Observed measurements 

Fitted spline, EDF=6 

4 

" ..-
" 

~"" 
..-c-

L:; 

4 

Fitted spline, EDF=3 

Fitted spline, EDF=20 

Fitted spline, EDF=3 

Fitted spline, EDF=21 

6 

6 

Fig, 6.16: Observed height measurements and fit ted sp line curves for two subjects il1 t he Uppsala Family t udy. 

109 



N 
N 

CD 

CD 

2 

2 

• 

• 

Subject F 

__ ...r: 

4 6 
Age (years) 

Observed measurements 

Fitted spline, EDF=6 

" 

4 

,-, ' , ' , , , , , 

Subject G 

6 
Age (years) 

Observed measurements 

Fitted spline, EDF=6 

: 

8 10 

Fitted spline, EDF=4 

Fitted spline, EDF=10 

8 10 

Fitted spline, EDF=4 

Fitted spline. EDF=11 

Fig. 6 .17: Observed body mass index (BMI) measurements and fitted spline curve for a subject in t he UppsaJa 

Family tudy. 

110 



6.1.3 Discussion 

There is a vast array of both specifically developed growth models and more general modelling 

approaches available, each with its own advantages and disadvantages. The user must. therefore 

consider carefully what they require from their model before selecting one. 

If the aim is to fit. models for height, weight, or possibly other anthropometric variables, through 

infancy and early childhood then the Jenss-Bayley, Count A-curve or Berkey-Reed models may 

suffice. Each provides a simple model with a small number of biologically interpretable parameters. 

These models can be fit easily (even the nonlinear Jenss-Bayley) with modern software and with 

no subjective decisions to be made, meaning that model fitt.ing can be automated across multiple 

individuals. These models will fit data displaying a 'usual' pattern of growth well, perhaps with 

the exception of the Count model around age 1 year, but if data deviate far from this then the 

rigid form of these models mean that they may be inappropriate. 

Several models are also available for fitting height from birth or infancy right through to final 

adult height. The Count, Bock-Thissen, Preece-Baines, Karlberg and JPPS models all achieve 

this objective well, again providing that the data being considered do not deviate too far from 

the expected trajectory. Whilst all these models, unsurprisingly given the greater ranges of ages 

covered, include more parameters than t.hose focussing on infancy and early childhood, they st.ill 

retain some level of biological interpretabilit.y. The Count and Karlberg models are more time­

consuming to fit as they involve a degree of subjectivity in deciding at what ages components 

of the model begin and end. This means that automating the curve fitting process becomes far 

more difficult. The Bock-Thissen, Preece-Baines and JPPS models are all more straightforward 

to fit, but. the relative simplicity of the latter two models means that detailed features such as the 

mid-growth spurt cannot be identified. 

Polynomial models, whilst being useful for modelling many anthropometric variables over short 

time-frames, are generally not recommended for modelling growth. They are extremely limited 

in their range of curve shapes and cannot effectively model data approaching asymptotes. The 

presence of edge effects means that finding a polynomial which fits well across the entirety of the 

data is often difficult. Polynomial parameters are also unlikely to have any obvious biological 

meaning. However, the simplicity and automatabilty of fitting polynomials with modern software 

means that they remain frequently used. 

FPs offer some advantages over conventional polynomials, with the expanded range of curve 

shapes meaning that asymptotes and points of inflection can be handled more easily. Again, with 

modern statistical software the fitting of FPs is simple and can be fully automated. However, the 

presence of edge effects can still be troublesome in some applications and the possibility of having 

differing power combinations across individuals may also lead to problems with interpretation. 

The flexibility of nonparametric approaches is particularly appealing. The lack of a pre-defined 

algebraic form means that they can provide models for arbitrary anthropometric measures. The 

ability to 'fine-tune' the amount of smoothing of spline curves means that different curves can 

be fitted depending on the aims of the analysis, although this does also have implications for 
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automatability. The lack of a concise functional form may be seen as a disadvantage, but given 

that estimated fitted values and derivatives can be simply obtained for any given age using most 

modern statist.ical software this is not necessarily a problem. 

To conclude, many of the models which have been developed specifically for growth are perfectly 

adequate for applications which involve the anthropometric variables and cover the range of ages for 

which they were designed. However, when wishing to model a variable for which an explicit growth 

model has not been specifically developed, then alternatives must be sought. In these situations, the 

use of a non parametric modelling approach would appear preferable to the parametric approaches 

examined. An example of an application where nonparametric modelling could prove fruitful is in 

describing individual trajectories of BMI in order to identify ages at which turning points in the 

growth curves occur. This method is pursued in later chapters. 

6.2 Standardisation of measurements 

In this section the standardisation of anthropometric variables into z-scores is examined. The gen­

eral issues are introduced in Section 6.2.1, then in Section 6.2.2 the use of contemporary references 

datasets to calculated BMI z-scores in historical datasets is investigated. 

6.2.1 Issues 

Standardisation of ant.hropometric variables to create z-scores or SD scores is introduced in Section 

2.2.1. Generally. z-scores are a way of comparing an observation of a variable t.o some relevant 

distribution. The observed value is transformed into a z-score by subtracting the mean value of 

the distribution, then dividing by the standard deviation (SD) of the distribution. The z-score of 

the observation t.hen expresses in terms of SDs how far the observation lies from the centre of the 

distribution. 

There is thus flexibility in the choice of distribution to which the observed value is compared. 

Often a reference dataset is chosen which is nationally representative. The calculated z-score then 

provides a measure of how many SDs above or below the national average the observed value lies. 

An alternative approach, if the observation being considered comes from a larger sample of data, 

is to use the sample mean and SD of the observed values themselves. The calculated z-score then 

indicates the position of each observation relative to the other observed values. When a separate 

reference dataset is used, the z-scores are said to be externally standardised, and when they are 

related to their own distribution they are internally standardised. 

The choice of reference dataset, or of the subset of data to standardise within if standardisation 

is internal. depends on whether observations Can be considered to corne from the same distribu­

tion. For example. if height in adulthood is being considered, there are acknowledged differences 

bet.ween males and females. Thus. for externally standardised dat.a, only reference data pertaining 

to individuals of t.he same sex as the individual under consideration should be used. Similarly. 

internally standardised z-scores should only be standardised within individuals of the same sex. 
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This approach produces sex-adjusted z-scores, as the calculated value for an individual indicates 

the proximity of their observation to the average value for their sex. 

When the distribution of the variable being considered is age-dependent, for example height 

in childhood, standardisation should only involve individuals of the same sex and age as the 

individual whose observed value is being considered. This produces sex- and age-adjusted z-scores. 

Age-dependent variables such as height in childhood are generally difficult to compare between 

different ages, and z-scores calculated in this manner have emerged as a useful tool to facilitate 

comparison. Tracking of an anthropometric variables is defined as the maintenance of a relative 

position within a distribution of values in a population over time [156]. The calculation of z-scores 

thus provides a means of identifying and monitoring tracking in individuals. 

Subtraction of the mean and division by the SO of a distribution will only produce reliable z­

score values if the distribution is approximately normally distributed. If the distribution is skewed 

then a transformation may first be used to normalise the distribution. A generalistion of this 

approach to age-dependent variables is provided by the LMS method of Cole [24], in which the 

skewness of the distribution, as well as the median and variability, is allowed to vary with age. 

6.2.2 Standardisation of historical data using contemporary reference 

datasets 

In this section the use of contemporary references datasets to calculated BMI z-scores in historical 

datasets is investigated. 

6.2.2.1 Introduction 

Bl\1I has become the most widely used surrogate measure of adiposity. Although BMI has short­

comings, not least the inability to differentiate between lean mass and fat mass, it is widely used 

in pediatrics owing to the ease with which measurements can be made on infants and children, and 

the often routine manner in which serial anthropometric measurements are recorded. 

The use of BMI to investigate adiposity in children is complicated further by the manner in 

which 8MI shows profound changes from birth through to early adulthood [61], with relationships 

between the fat and fat-free components of the body being affected by varying growth rates and 

maturity levels [63]. However, one tool which is often used to facilitating comparisons across ages 

is the calculation of BMI z-scores. 

There exist contemporary BMI growth reference data, notably the 1990 reference data for 

the United Kingdom and the 2000 Centers for Disease Control and Prevention (CDC) reference 

data for the United States, which are frequently used to standardise BMI values. Standardisation 

of a mea.~urement using an external reference dataset allows an assessment of the position of 

the measurement within the reference distribution. However, it is unclear whether these growth 

references are useful as comparisons to less contemporary data. Specifically, given the widely 

acknowledged increases in childhood BMI over recent years, it may be expected that, on average, 

childhood BMI in historical datasets would be lower than in the contemporary growth references, 
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leading to a preponderance of negative BM1 z-scores. If standardisation does lead to z-scores which 

do not follow a standard normal distribut.ion, then there are implications for any analysis using 

these standardised values. 

The aim of the present analysis is to assess how useful contemporary BM1 growth references 

are when looking at historical British datasets. This is achieved by the calculation and analysis 

of standardised Bl\U measurements (z-scores) using both the 1990 UK and 2000 CDC growth 

references for three different British birth cohorts. These cohorts (National Survey of Health 

and Development (NSHD), National Child Development Study (NCDS) and British Cohort Study 

(BCS)) are chosen for their national representativeness, range of years of birth (1916-1970), range 

of ages for which BM1 data are available (4-16 years) and longitudinal nature, meaning t.hat the 

same children can be examined at several follow-up ages in each cohort. 

6.2.2.2 Subjects 

Three prospective. longitudinal national birth cohorts, dating respectively from 1946, 1958 and 

1970 are examined. These cohorts are by design nationally representative. The BM1 values in each 

of these cohorts of children are standardised using the 1990 UK and 2000 CDC BM1 references. 

The cohorts and reference datasets are detailed below. 

As all three cohorts analysed are made up of children resident in the UK, the 1990 UK growth 

references would be the more appropriate choice for standardisation of the data and thus are 

presented first. However, as the 2000 CDC growth references would also often be used, their appli­

cation remains of great interest. Since this reference dataset is both temporally and geographically 

less similar to the historical datasets, it may be expected that the BM1 z-scores calculated would 

lie further away from zero. 

National birth cohorts 

Data from the National Survey of Health and Development (NSHD), National Child Development 

Study (NCDS) and British Cohort Study (BCS) are used. These datasets are described in more 

detail in Section 4.3.1. Briefly, the three datasets are prospective, longitudinal, nationally rep­

resentat.ive birth cohorts. dating respectively from 1946 (NSHD), 1958 (NCDS) and 1970 (BCS). 

The present analysis includes data from follow-up at ages 4, 6, 7, 11 and 15 years from the NSIID, 

7. 11 and 16 years from the NCDS, and 10 and 16 years from the BCS. 

BMI growth references 

1990 BMI reference curves for the United Kingdom (1990 UK) BM1 reference curves 

for UK children were developed for the first time in the mid-1990s [68] based on data collected 

between 1978 and 1990. Data from 11 distinct surveys were combined, between them recording 

BM1 from birt.h to age 23, with most. being representative of England, Scotland and Wales and 

all but one being cross-sectional. Summary centile curves were fitted using the LMS method and 

penalised likelihood [24]. 
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2000 Centers for Disease Control and Prevention growth charts for the United States 

(2000 CDC) The 2000 Centers for Disease Control and Prevention (CDC) growth charts for 

the United States represent a revised version of the 1977 National Center for Health Statistics 

(NCHS) growth charts and include BrvII-for-age charts [157]. Most of the data came from the 

National Health and Nutrition Examination Survey (NHANES) cross-sectional studies conducted 

from 1963 to 1994, though some supplementary data sources were also utilised. Initial cnrve 

smoothing for selected major percentiles was accomplished with various parametric and nonpara­

metric procedures, then a normalisation procedure was used to generate z-scores that closely match 

the smoothed percentile curves [69]. 

6.2.2.3 Methods 

For each child at each follow-up age in each cohort. BMI z-scores are calculated using bot.h the 

1990 UK and 2000 CDC BMI reference dat.aset.s. For a BMI z-score to be calculated for a given 

child, and thus for the child to be included in the analysis, data for age, sex and BMI are required. 

Alt.hough each follow-up in each cohort was planned at a specific age, the actual measurements 

occur over a range of ages. Thus a further stipulation imposed is that all children included at 

a given follow-up age must have had their measurement within 6 months of the median age at 

measurement wit.hin that follow-up age group. This ensures some degree of homogeneity of age 

within each age group. 

The calculation of BMI z-scores using the 1990 UK and 2000 CDC growth references uses the 

LMS method developed by Cole and Green [24]. The LMS method summarises the changes in BMI 

dist.ribution through childhood in a reference dataset by three curves representing the median (M), 

coefficient of variation (8) and a measure of skewness (L) based on the Box-Cox power required to 

transform the data to normality. The three parameters are constrained to change smoothly wit.h 

age, and estimated using penalised maximum likelihood. Once the L, M and 8 parameters are 

defined for a reference dataset they can then be used to calculate the BMI value corresponding to 

any given percentile or z-score, enabling in the construction of growth charts. Conversely, given 

a Bl\H measurement, the L, !vI and 8 parameters can be used to calculate where, in terms of 

percentile or z-score, said measurement would occur relative to the distribution of the reference 

dataset. 

The 1990 UK BMI-for-age LMS parameters are extracted from the Microsoft Excel add-in 

ImsGrowth [158], with equivalent parameters for the 2000 CDC growth reference obtained via the 

CDC website [159]. 

The z-score (z) for a given BMI measurement (X) is calculated as 

z= 
(X/M)L - 1 

if L -1= 0 
L8 

or 

10g(X/M) 
if L = 0 z= 

8 
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where L, M and S are the growth reference LMS parameters corresponding to the age of the child. 

If the Br-.n values for a study agree closely with the growth reference then the z-scores cal­

culated should be normally distributed with mean and standard deviation ° and 1, respectively. 

Once calculated, BMI z-scores in each cohort may then be assessed at each follow-up age for any 

systematic deviation from this (i.e. any systematic difference from the growth reference). 

Br-.n measurements are deemed implausible if they correspond to an absolute z-score (using the 

1990 UK growth reference) greater than six and are thus excluded, as has been practiced elsewhere 

[160]. 

Representativeness of the data 

The extent to which any results can be extrapolated is dependent of the representativeness of the 

data. In the present analysis this is affected by both the proportion of individuals for whom data 

were successfully collected and, within those for whom data are available, the proportion who are 

included in the present analysis. 

Table 6.2 details these characterist.ics for each follow-up age in each birth cohort. 'Target. 

sample' in each inst.ance is the maximum possible number of individuals for whom data could 

potentially be collected after the exclusion of the dead, t.hose living abroad and permanent refusals. 

'Achieved sample' is the number of individuals for whom at least one response was recorded. 'Sex, 

age or BMI missing' for an individual means that their BMI z-score cannot be calculated so they 

are excluded from the analysis. 'Age> 6 months from follow-up median' for an individual means 

that the age at which their BMI was observed is not sufficiently similar to the other ages within 

the age group to allow their inclusion in the analysis. 

In the NSHD the achieved sample at each follow-up age was between 90 and 96% of the target 

sample. There are between 9 and 17% individuals excluded from the analysis due to missing sex, 

age or BMI at each follow-up age, though virtually all measurements occur within the required 

12 month interval. As a result, of the achieved sample between 83 and 90% are included in the 

analysis. 

The NCDS includes similarly high levels of achieved sample at each follow-up age (87-92%), 

though a greater degree of missing sex, age or BMI data, particularly at age 16 years (25%). Thus 

between 73 and 82% of the achieved sample at each follow-up age is included in the analysis. 

Whilst the proportion of the target sample achieved in the BCS was of a similar magnitude 

to the other cohorts at follow-up age lO years, at age 16 years the data collection was noticeably 

handicapped by a teachers' strike [111]. Additionally, over 50% of children have either sex, age or 

BMI values missing so cannot be included in the analysis, meaning that at age 16 years the BCS 

cannot be considered as nationally representative as the other cohorts. 

From Table 6.2 it can be seen that the requirement for data to have been recorded within 6 

months of the median age at each follow-up age rarely results in the exclusion of a significant 

amount of data and never more than 1% of the achieved sample. 
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Year Initial Follow- Target Achieved Excluded from analysis Included 

Cohort of cohort up sample at sample at Sex, age or BMI Age> 6 months from III 

birth size age follow-up A follow-upA (%B) missing (%C) follow-up median (%C) analysis (%C) 

4 4,900 4,700 (95.9%) 520 (11.1%) 23 (0.5%) 4,157 (88.4%) 

6 4,858 4,603 (94.8%) 758 (16.5%) 13 (0.3%) 3,832 (83.0%) 

NSHD 1946 5,362 7 4,838 4,480 (92.6%) 542 (12.1%) 5 (0.1%) 3,933 (87.8%) 

11 4,799 4,281 (89.2%) 402 (9.4%) 9 (0.2%) 3,870 (90.4%) 

....- 15 4,790 4,274 (89.2%) 698 (16.3%) 10 (0.2%) 3,566 (83.4%) 
-.J 

7 16,727 15,425 (92.2%) 2,168 (14.1%) 589 (3.8%) 12,668 (82.1%) 

NCDS 1958 17,634 11 16,754 15,337 (91.5%) 2,848 (18.6%) o (0.0%) 12,489 (81.4%) 

16 16,901 14,647 (86.7%) 3,609 (24.8%) 299 (2.0%) 10,739 (73.3%) 

10 17,275 14,874 (84.90/0) 2,901 (19.5%) 419 (2.8%) 11,554 (77.7%) 
BCS 1970 17,287 

16 17,529 11,621 (66.3%) 5,905 (50.8%) 262 (2.3%) 5,454 (46.9%) 

Table 6.2: Representativeness of the data. NSHD is the National Survey of Health and Development, NCDS is the National Child Development Study and BCS is the British Cohort Study. 

A Information taken from [161] (NSHD), [107] (NCDS) and [111] (BCS). B Percentage of target sample at follow-up. C Percentage of achieved sample at follow-up. 



6.2.2.4 Results 

The split between males and females and summaries of the age and BMI distributions for the 

subset of cohort members who are included in the analysis are shown in Table 6.3. In each cuhort 

at each follow-up age. except the less-representative age 16 years follow-up in the BCS, there are 

slightly more males than females. Due to the skewed nature of the age and BMI distributions. 

medians and inter-quartile ranges (IQRs) are presented. Both the magnitude and the variability 

of B!\II can be seen to increase after about age 7 years. 

The distributions of the calculated BMI z-scores for each birth cohort using the 1990 UK and 

2000 CDC growth references are shown in Table 6.4 and Table 6.5, respectively. Once more, 

medians and IQRs are presented due to the skewed nature of the distributions. 

There is clearly a great deal of variation in the median values of BMI z-score in the cohorts at 

different follow-up ages. Median z-scores are generally positive in early childhood before decreasing, 

often becoming negative, then increasing once more. These results are more easily interpretable 

when plotted graphically. 

Fig. 6.18 and Fig. 6.19 show the median BMI z-score plotted against the median age at each 

follow-up age in the three cohorts. Fig. 6.18 displays the BMI z-scores calculated using the 1990 

UK (upper plot) and 2000 CDC (lower plot) growth references for males, and Fig. 6.19 shows the 

equivalent plots for females. Whilst the four plots show all three cohorts to exhibit similar patterns 

of Bl\U z-score throughout childhood, there are some cohort-, sex- and growth reference-specific 

features. 

For the males of all three cohorts, using the 1990 UK growth references (Fig. 6.18, upper plot) 

results in a median BMI z-score that is positive but decreasing through early childhood, reaching a 

minimum around age 11 years before increasing once more. In the NSHD (the oldest birth cohort) 

this minimum value corresponds to a BMI z-score of approximately zero, whereas in the other 

cohorts the minima are clearly negative. Use of the 2000 CDC growth references (Fig. 6.18, lower 

plot) results in a similar pattern of median BMI z-score through early childhood. In this case, 

however, all three cohorts cross into negativity, with more extreme minimum values exhibited, 

then, rather than returning to positivity, merely level off and remain negative. 

Over the age range for which data are available for more than one cohort a cross-cohort com­

parison can be made. It can be seen that at age 6-7 years the median BMI z-scores for the NSHD 

and NCDS are very similar whereas at later ages it is the NCDS and the BCS that take similar 

values with those for the NSHD clearly greater, especially around age 11 years. 

The pattern of BMI z-score over age in the females (Fig. 6.19) is not dissimilar to that in 

the males, though the growth reference-specific differences are less marked. Under both growth 

references the median BMI z-score is positive though decreasing through early childhood before 

crossing into negativity, with all three cohorts reaching a minimum of about -0.2 around age 11 

years. Median BMI z-scores then increase once more to exhibit positive values in adolescence. 

118 



Follow- Male/ BMI (kg/m2 ) 

Cohort 
Age (years) 

up female Males Females 

age split Min. Median Max. IQR Min. Median Max. IQR Min. Median Max. IQR 

4 52.5/47.5 4.2 4.3 4.8 0.0 11.2 16.2 22.9 1.9 10.7 15.9 22.6 2.2 

6 52.7/47.3 5.9 6.0 6.5 0.1 11.8 15.9 22.6 1.7 11.9 15.6 23.2 1.7 

NSHD 7 51.8/48.2 6.9 7.0 7.5 0.1 11.0 15.8 24.8 1.7 11.8 15.5 26.2 1.8 

11 52.0/48.0 10.7 10.8 11.3 0.1 12.5 16.9 29.8 2.3 11.4 17.0 32.9 2.9 
...... 

15 52.5/47.5 14.3 14.5 15.0 0.3 13.0 19.3 33.8 2.8 12.1 20.3 39.8 3.5 ...... 
'Cl 

7 51.7/48.3 7.1 7.3 7.8 0.2 10.7 15.8 29.0 1.7 10.0 15.6 28.2 2.0 

NCDS 11 51.1/48.9 10.9 11.4 11.8 0.1 11.7 16.8 32.9 2.4 10.9 17.1 37.7 3.1 

16 51.7/48.3 15.4 15.8 16.3 0.2 13.0 19.8 43.9 2.9 12.5 20.6 41.1 3.5 

10 51.6/48.4 10.1 10.5 11.0 0.3 10.9 16.4 29.4 2.2 10.2 16.6 30.9 2.8 
BCS 

16 48.7/51.3 16.3 16.7 17.2 0.3 13.0 20.5 67.6 3.4 13.0 21.0 48.1 3.8 

Table 6.3: Distributions of key variables for subjects included in the analysis, by sex. NSHD is the National Survey of Health and Development, NCDS is the National Child Development 

Study and BCS is the British Cohort Study. BMI is body mass index. IQR is the inter-quartile range. 



Follow- BMI z-score 

Cohort 
Males up Females 

age Min. Median Max. IQR Min. Median Max. IQR 

4 -5.59 0.41 3.85 1.45 -5.44 0.21 3.40 1.41 

6 -4.14 0.29 3.23 l.29 -3.07 0.08 3.14 1.06 

NSHDD 7 -5.33 0.16 3.44 1.17 -3.13 -0.07 3.32 1.10 

11 -3.55 0.02 3.16 1.13 -4.43 -0.19 3.37 1.35 

15 -4.70 0.08 3.15 1.20 -5.30 0.23 3.63 l.30 

7 -5.85 0.14 4.09 1.15 -5.57 -0.08 3.65 1.18 

NCDS 11 -4.88 -0.14 3.37 1.29 -5.28 -0.28 3.73 l.45 

16 -5.15 0.01 3.84 1.24 -5.10 0.08 3.69 1.28 

10 -5.75 -0.16 3.17 1.19 -5.97 -0.27 3.18 l.35 
BCS 

16 -5.50 0.03 4.66 1.37 -4.89 0.09 4.15 1.37 

Table 6.4: Distributions of calculated body mass index (BMI) z-scores using the 1990 United Kingdom (UK) 

growth reference, by sex. NSHD is the National Survey of Health and Development, NCDS is the Nat.ional Child 

Development Study and BCS is the British Cohort Study. D Results weighted to adjust for the one in four sampling 

of children from manual and self-employed workers. 

Follow- BMI z-score 

Cohort up Males Females 

age Min. Median Max. IQR Min. Median Max. IQR 

4 -6.46 0.53 3.70 1.49 -8.35 0.50 2.84 1.38 

6 -5.07 0.36 2.50 1.23 -3.89 0.25 2.46 l.05 

NSHD D 7 -7.04 0.18 2.52 1.11 -3.83 0.06 2.49 1.10 

11 -3.90 -0.12 2.33 1.05 -4.68 -0.17 2.48 l.22 

15 -5.03 -0.13 2.37 1.10 -5.54 0.21 2.49 1.08 

7 -7.90 0.15 2.79 1.10 -8.05 0.04 2.64 1.17 

NCDS 11 -5.42 -0.29 2.46 l.20 -5.61 -0.24 2.66 1.30 

16 -5.51 -0.21 2.87 1.15 -5.47 0.08 2.47 1.08 

10 -6.75 -0.28 2.33 1.13 -6.73 -0.24 2.38 1.24 
BCS 

16 -5.98 -0.23 3.43 l.27 -5.45 0.06 2.59 1.16 

Table 6.5: Distributions of calculated body mass index (BMI) z-scores using the 2000 Centers for Disease Control 

and Prevention (CDC) growth reference, by sex. NSHD is the National Survey of Health and Development, NCDS 

is the National Child Development Study and BCS is the British Cohort Study. D Results weight.ed t.o adjust for 

the one in four sampling of children from manual and self-employed workers. 
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The main difference between the two plot in Fig. 6.19 i that when using the 2000 CDC growth 

reference the median B)'H z- core i noticeably greater through early childhood, resulting in it 

becoming negative lightly later. 

In terms of the difference ' between the cohorts within each plot the pattern is somewhat similar 

to that een for the male, with median BMI z-score in the SHD and the NCDS similar at age 

6 7 vear then median B)'II z- core in the SHD becoming increasingly greater than in the other 

two cohort at older age. 
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Fig. 6.1 : Plots of body mass index (B~IJ) z-score calculated using the 2000 Centers for Disease Control and 

Pre\" ntion (CDC) (upper plot) and 1990 United Kingdom (UK) (lower plot) growth references against age for 

mal". :\ IlD is the il.'ational Survey of Health and Development, lCDS is the lational Child Development Study 

and BC is the British Cohort tudy. 
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Fig. 6.19: Plots of body mass index (BMI) z-score calculated using the 2000 Centers for Disease Control and 

Prevention (CDC) reference (upper plot) and 1990 United Kingdom (UK) (lower plot) growth references against 

age for females. NSHD is the National Survey of Health and Development, NCDS is the National Child Development 

Study and BC is the British Cohort Study. 
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6.2.2.5 Differences between the growth references 

Whilst the overall trends in median BMI z-score profile are clearly similar under the two growth 

references, there are some differences. The 2000 CDC reference data appear to decrease the z­

score value relative to the 1990 UK data somewhat in males at follow-up ages of 10 years and 

older, whereas females of follow-up age 7 years and younger see an increased BMI z-score. These 

observations correspond to the differences between the growth references evident in Fig. 6.20, 

showing median BMI in each growth reference plotted against age, for males (upper plot) and 

females (lower plot). The upper plot shows that up to approximately age 8 years, the two medians 

for the males are very similar, but then the 2000 CDC median becomes noticeably and increaHingly 

greater than the 1990 UK median. This means that males of this age would have a reduced BMI 

z-score if calculated with the 2000 CDC reference data. However, in females (lower plot), it is 

bet.ween the ages of approximately 3 and 10 years that there is a difference between the two 

reference medians, with the 2000 CDC median being the lower in this instance. This result.s in 

any BMI z-scores calculated over this age range being greater when using the 2000 CDC reference 

data. 

6.2.2.6 Discussion 

This analysis has uncovered a tendency for historical cohorts of children born between 1946 and 

1970 to differ in terms of Bl\H distribution from both the 1990 UK and 2000 CDC growth references. 

Moreover. the deviations exhibited are systematic and largely similar between the hist.orical cohorts. 

All three cohorts have positive but decreasing BMI z-score through early childhood. There is a 

general trend for z-scores to become negative in the pre-pubertal period, attaining a minimum 

value in early puberty, before beginning to increase once more, most markedly in females, in the 

late-pubertal period. 

Given the widely acknowledged obesity 'epidemic' evident over recent years [37], it may be 

expected that the calculation of z-scores in historical cohorts using contemporary reference data 

would lead to largely, if not wholly, negative values. Compounding this in the case of the 2000 

CDC growth reference is the fact that the reference data are drawn from the US popUlation, a 

country generally thought to have a higher prevalence of overweight and obesity than that from 

which the historical cohorts are drawn. As has been seen from Fig. 6.18 and Fig. 6.19, however, 

median Br..n z-score in the historical cohorts is frequently not negative. 

Aside from the growth reference-specific effects of the standardisation, it may be expected that 

the historical cohorts show a temporal ordering, with those born more recently having higher BMI 

z-scores. In addition to its less temporal proximity, one may also expect childhood BMI in the 

NSHD to be lower than in the other cohorts due to cohort members' nutrition being influenced 

by food rationing which continued after the war until 1954 [162]. However, from Fig. 6.18 and 

Fig. 6.19 it can be seen that for both males and females BMI z-score in the NSHD is at least a 

high as, and generally higher than, that seen in the other cohorts. 

To expect patterns in BM! z-score through childhood in the historical cohorts to be merely 
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Fig. 6 .20: Plots of median body mass index (BMI) in the 1990 United Kingdom (UK) and 2000 Centers for Disease 

Control and Prevention (CDC) growth references against age for males (upper plot) and females (lower plot). 
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'negative' may be something of an over-simplification. For median BMI z-score in a given cohort. 

to take a constant value of, say, -0.2 across the entire range of ages would mean the median BMI 

within the cohort being equal to the median BMI in the reference dataset. minus 0.2 of a standard 

deviation at each follow-up age. Implicit in this is that the median BMI growth trajectories in 

the historical cohort and the reference dataset follow the same shape. However, acknowledged 

secular changes in growth patterns over the last century, particularly a trend towards a fastpl' 

developmental tempo [22], mean this may not be true. Indeed, the results observed in the present. 

analysis could plausibly be explained by more rapid development in the reference data relative to 

that seen in the historical cohorts. 

One way to describe the BMI growth trajectory is by t.he timing of the adiposity rebound (AR, 

see Section 2.3.3). The AR is the period around age 6 years when BMI begins to increase again 

following a nadir, and the age at which the AR occurs has been shown to be inversely associated 

with adiposity in adolescence and adulthood [82, 83, 84, 85,86,87,88,89]. Thus a secular increase 

in developmental tempo would be evidenced by an advancing AR. Eriksson et at [163] have shown 

precisely this occurrence in Swedish children between 1973-5 and 1985-7. 

A later AR in the historical cohorts could certainly lead to the trends in BMI z-score which 

have been identified, as is illustrated in Fig. 6.21. The upper plot in Fig. 6.21 is of BMI against age 

including, alongside the 1990 UK growth reference median, the median of an artificially constructed 

dataset. This dataset. has been constructed by taking the 1990 UK growth reference median BMI 

values and stretching the timescale using a multiplicative shift, with an additional component 

allowing this slowing down of the developmental tempo to fade away over time. The outcome of 

this manipulation is a shift in the age at which the AR occurs from age 5.9 years in the 1990 UK 

median to age 6.7 years. BMI z-scores for this artificially constructed dataset, calculated using the 

1990 UK reference data and the same method as previously detailed, are presented in the lower 

part of Fig. 6.21, plotted against age. The similarity between this plot and many of the equivalent 

plots for the cohorts included in this analysis is apparent. This illustrates that delayed AR alone 

could plausibly explain the patterns evident in the analysis. 

That an earlier AR is associated with increased later adiposity may help explain the positive 

BMI z-scores in early childhood in the historical cohorts. Though the growth references and 

historical cohorts examined here are not truly comparable in the same way as, say, two individuals 

in the same cohort, it is not inconceivable that a similar mechanism could be at work, with the 

earlier adiposity rebound of the reference data leading to increased adiposity at a later date. In 

this way, the positive z-scores evident in early childhood could be attributed solely to the earlier 

adiposity rebound in the reference data, with the possibility of greater adiposity in adulthood in 

the more contemporary reference dataset bringing the findings more in line with recent trends. 

This does, however, conflict somewhat with the positive z-scores around age 15 years, particularly 

in the NSHD, which remain more difficult to explain. 

If the children in the historical datasets and the children in the growth references are indeed 

following slightly different growth trajectories then comparison of the two groups of children at 
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specific ages is not comparing like-for-like, thus may be considered inappropriate. 

That the BMI z-score trends are seen even in samples of individuals as temporally similar as the 

BCS subjects (born in 1970) and the subjects who contribut.ed to the 1990 UK growth references 

(data collected between 1978 and 1990) suggel:itl:i that it is not necessarily the 'historical' aspect of 

the data which is the cause. Indeed, regardless of the relative points in time at which the data and 

the reference data were collected, if the age-specific BMI distributions differ between the two in a 

systematic manner, as has been seen here, then the calculated z-scores can be easily misinterpreted. 

To conclude, unless any differences in the age-specific 8MI distributions between the data 

and the reference data are explored and acknowledged, calculated z-scores should be viewed with 

caution and their use in analyses could potentially lead to misleading conclusions. 
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Part II 

Approaches for balanced growth 

data only 
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This thesis focuses on relating childhood growth, in the form of repeated observations of an 

anthropometric variable for each child, to a later health outcome. An important distinction with 

regards to the analytical approaches which may be utilised in this scenario is between balanced and 

unbalanced childhood growth data. In Chapters 7 and 8 modelling strategies for use with balanced 

childhood growth data are explored, developed and implemented. 

Balanced growth data, as defined in Section 5.1.2.1, are data resulting from studies where the 

anthropometric variable of interest is intended to be observed at the same set of common ages for 

each subject in the study. Whether the variable is actually observed for a given individual at a 

given age is immaterial. 

One important consequence of balanced growth data is that a single-stage analysis, outlined 

in Section 5.3, may be used to related the later health outcome directly to the observed growth 

variable. This could involve, for example, a linear regression of the later health outcome on the 

growth variable observed at each age. This type of analysis approach is explored in Chapter 

7, where measures of late-adolescent adiposity (body mass index (BMI) and percentage body fat 

(%BF)) are related to observed values of BMI between age 1 and 10 years in the Stockholm Weight 

Development Study (SWEDES). 

Balanced growth data also mean that there are specific ages at which data are 'expected'. Thus 

missing data can be considered in the traditional sense, as discussed in Section 5.2. There are many 

approaches for dealing with missing data in balanced datsets. In Chapter 8 multiple imputation 

(MI), as described in Section 5.2.4, is used to handle the issue of missing data in SWEDES when 

relating the location of the adiposity rebound (AR, see Section 2.3.3) to late-adolescent adiposity 

(BMI and %BF). 
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Chapter 7 

Naive multivariable regression 

analysis 

A sit.uation often encountered in life course analysis is that of balanced longitudinal data observed 

in earlier life being related to a single outcome in later life. Examples of this include childhood 

height being related to breast cancer risk [7J, childhood length/height and weight t.o adolescent. 

blood pressure [164], and childhood BMI and dietary int.ake to BMI at age 8 years [165J. 

One common approach to this situation is to regress the later outcome on some or all of the 

earlier longitudinal data. This is referred to as multivariable regression. However, results obtained 

when including many childhood measurements in a regression model may be difficult to interpret, 

especially if observations are close together in time, due to their respective conditioning [11]. This 

is referred to as multiplicity. Further to this, as the longitudinal data may be highly correlated 

within individuals, collinearity can affect the analysis. An additional concern is data missingness, 

which will often occur in this type of application. 

The main issues surrounding multivariable regression are discussed in Section 7.1 and an il­

lustrative application, regarding the relationship between childhood BMI development and late­

adolescent adiposity in the Stockholm Weight Development Study, provided in Section 7.2. 

7.1 Issues 

The main issues to consider when using multivariable regression are problems with model inter­

pretation due to multiplicity and co IIi nearity, as well as the potential effects of missing data. 

7.1.1 Multiplicity and collinearity 

When using a multivariable model to relate a later outcome to several measurements of the same 

variable taken through childhood, the estimated papameters may be difficult to interpret, partic­

ularly if the if measurements are taken close together in time, due to their respect.ive conditioning 

[l1J. This is referred to as multiplicity. 
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Additionally, collinearity may further obscure interpretation. Collinearity occur~ when there 

is an almost linear relation~hip between two or more explanatory variables in a multivariable 

regression analysis. Collinearity means that changes in one explanatory variable can effect.ively be 

compensated for by changes in other variables, so that very different sets of regression coefficients 

provide similarly good fits to the data [117]. This results in large standard errors corresponding to 

the estimated regression coefficients when near-collinear covariates are included in the same model, 

making interpretation difficult. Including collinear explanat.ory variables in a regression model can 

lead to the erroneous conclusion that the collinear variables are not associated with the out.come 

[116]. 

In longitudinal data, where data are merely earlier or later observations of the same variable for 

a given subject, both multiplicity and collinearity can be especially prevalent, with the likelihood 

of encountering problems increasing as the length of interval between successive measurement.s is 

reduced. 

7.1.2 Missing data 

rvIissing data can affect both the longitudinal growth data observed earlier in life and the outcome 

in later life. In the datasets utilised in this thesis (see Chapter 4), the childhood growth data are 

collated retrospectively from multiple sources, mainly through linkage to existing dataset5, making 

them particularly liable to missingness. However, even if the childhood growth data were collected 

prospectively, missing data may still occur through attrition or for logistical reasons. The outcome 

variables in these studies are measured prospectively and specifically for the study, making data 

missingness less likely. Thus attention is focused more on missing values within t.he longitudinal 

growth data. 

Missing values arise in longitudinal data whenever the sequences of measurements from one 

or more subjects are incomplete, in the sense that intended measurements are not available for 

some reason [118]. When faced with a longitudinal dataset with missing values the problem is then 

whether or not the values on an individual that are available can be used in an analysis and, if 

so, how [117]. One simple way to deal with this issue is to discard all incomplete sequences, an 

approach known as complete-case analysis, as described in Section 5.2.2. 

The most appealing feature of complete-case analysis is its simplicity since it allows st.andard 

statistical analysis to be applied without modifications. However, discarding incomplete cases also 

results in a loss of information, which manifests itself as a loss of precision, and the potential 

introduction of bias. Precision is lost by virtue of the reduced sample size and bias may be 

introduced when the missing data mechanism is not one of 'missing completely at random' [120] 

(MCAR, see Section 5.2.1), meaning a systematic difference between those included in and those 

excluded from the analysis. 
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7.2 Investigating the relationship between childhood body 

mass index development and late-adolescent adiposity 

in the Stockholm Weight Development Study 

In this section, a single-stage analysis approach is used to investigate the relationship between 

childhood BMI development and late-adolescent adiposity (in terms of both BMI and percentage 

body fat (%BF)) in the Stockholm Weight Development Study (SWEDES). A multivariable linear 

regression model is used which includes all available explanatory variables with no concern for 

the collinearity between them. Missing data are dealt with via a complete-case analysis approach. 

Whilst this type of naive analysis is often used, it is clearly far from ideal. 

7.2.1 Introduction 

A critical period for overweight or obesity is defined as a time associated with an increased risk of 

onset, complications or persistence of overweight or obesity [166]. Such periods are important to 

identify in order to target interventions to prevent children at high risk from becoming overweight 

or obese, especially given the widely-reported increases in prevalence of obesity over recent years. 

Several periods during childhood have been suggested as critical for adverse adiposity devel­

opment [74]. However, few studies have been able to examine the effects of BMI development 

throughout the entirety childhood. The aim of this study is to investigate critical periods of 

childhood BMI development for adiposity in late-adolescence. 

The Stockholm Weight Development Study (SWEDES) is a prospective longitudinal study 

which provides a healthy contemporary birth cohort in which to investigate the relationships be­

tween childhood BMI development and late-adolescent adiposity. Annual weight and height mea­

surements are available throughout childhood, allowing BMI development to be examined in detail. 

Measurement of many anthropometric variables at follow-up when the SWEDES participants were 

approximately 17 years old, in particular BMI and percentage body fat (%BF), provide measures 

of late-adolescent adiposity. 

The SWEDES dataset brings with it the issue of missing data, particularly among the child­

hood BMI values. This is dealt with via a complete-case analysis approach, whereby all relevant. 

childhood BMI values as well as the outcome variable are required for a subject to be included. 

Analysis is by standard multivariable regression. 

This analysis formed part of the work presented at the 4th World Congress on Developmental 

Origins of Health and Disease (DOHaD), held 13-16 September 2006 at the University of Utrecht 

in The Netherlands [167]. 

7.2.2 Subjects 

A general introduction to the Stockholm Weight Development Study (SWEDES) can be found in 

Section 4.l. As the present analysis focuses on the offspring as opposed to the mothers, the terms 
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'subject' and 'individual' will henceforth refer to the offspring in the study. Similarly, 'examination' 

should be taken to mean the occasion of the measurement of the anthropometric variables as part 

of the SWEDES follow-up when the offspring are approximately 17 years old. 

For the purposes of the present analysis the data are reduced to the subset of annual observations 

between age 1 and 10 years inclusive. This is to avoid using as predictors variables that are 

temporally too close to the outcomes. 

7.2.3 Methods 

Multivariable regression models 

8i.,1I and %BF at examination are related to childhood BMI development using standard multi­

variable regression models, as introduced in Section 5.3.1. Childhood BMI development is defined 

as either each of the 10 childhood BMI observations or the 9 childhood BMI velocities calculated 

by taking the differences of consecutive BMI observations and dividing by the time between them 

(one year). 

Each model includes either all 10 childhood BMI observations or BMI at age 1 year plus all 

9 childhood BMI velocities, as well as age at examination. It is necessary to adjust for age at 

examination in this manner as both outcomes are age dependent meaning that the relationships 

could potentially be confounded by the age at which the measurements are taken. Models are 

fitted separately for males and females due to acknowledged differences in the BMI growth curves 

[68]. 

The model relating childhood BMI to BMI at examination in either males or females is thus 

E(BMIcxam) 

+,8sBMIs + ,8gBMIg + ,8IOBMIlO + 8 agecxam 
10 

,80 + E,8i BMIi + 8 agecxam 
i=1 

(7.1 ) 

where BMIcxam is BMI at examination, BM!; is BMI at age i years, i = 1, ... ,10, and agecxarn 

is age at examination. Here, ,8i represents the conditional effect attributed to a 1 kgjm 2 increase 

in BMI at age i years when all of the other variables (i.e. BMI at all other ages and age at 

examination) are held constant. 

Similarly, the model relating childhood BMI velocity to BMI at examination in either males or 

females is 

+'7BMIveI7 + IsBMIvels + IgBMIveig + llOBMIvellO + 8 agecxarn 
10 

10 + I1BMh + I: liBMIveli + 8 agecxam 
i=2 
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where BM1vel; is BM1 velocity between age i - 1 and i years, i = 2, ' .. ,10. Now 1'1 reprcscnts the 

effect of a 1 kg/m 2 increase in BM1 at age 1 years controlled for all childhood BM1 velocities and 

age at examination, whilst 1';, i = 2, ' . , , 10, is the effect of a 1 kg/m2year increase in BM1 velocity 

between age i - 1 and i years controlled for BMI age 1 year, all other BMI velocities and age at 

examination. 

The models for %BF at examination are identical to (7.1) and (7.2) with the outcome changed 

to %BFcxam , 

As 

BM1 j - BM1 j _ 1 
BMIvel; = 1 = BMIi - BM1i- l , 

(7.2) can be rewritten as 

E(BMIcxam) 
10 

I'D + I'IBM1l + L I';(BMIi - BMIi_d + c5 agecxam 
;=2 

9 

I'D + 2)I'i - T'i+l)BMIi + I'lOBMIlO + c5 agecxam 
i=1 

Comparing (7,3) to (7.1) it can be seen that 

and 

Thus for i = 1, ... , 9, 

Ii = (Ji for i = 0 and 10 

I'i - I'i+ 1 = {3i for i = 1" .. , 9. 

10 
I'i = {3i + I'i+l = E {3j. 

j=i 

(7,3) 

(7.4) 

(7,5) 

So the coefficient for BMI velocity over each interval, I'i' being the sum of all the conditional 

effects associated with BMI between age i and 10 years ({3i,' .. , (31O), is the cumulative effect of 

increasing each BMI measurement between age i and 10 years by 1 kg/m 2 , This is equivalent to 

an upwards shift of 1 kg/m 2 across the entire BMI trajectory from age i onwards. 

Thus it can be seen that (7,1) and (7.2) are merely reparameterisations of the same model. 

This has been shown elsewhere for similar, though often less complex, models [130, 11,46], 

Since, additionally, 1'10 = {31O = I:;~10 {3j from (7.4), this equivalence means that the reparam­

eterisation in (7.2) can be rewritten as 
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Collinearity 

Collinearity occurs when there is a near-linear relationship between two or more explanatory vari­

ables. If only two variables are involved then this is merely correlation so can be identified froIll 

the correlation matrix of the explanatory variables. 

If collinearity occurs between more than two explanatory variables then this may not be obvious 

from their pairwise correlation coefficients. Collinearity can often be identified by a comparison 

of the standard errors of the regression coefficients for an explanatory variable in univariable 

and multivariable models. For example, the univariable model relating 8MI at a given age in 

childhood to BMI at examination may be compared with the multivariable model relating 8MI 

though childhood to BMI at examination. If collinearity is high then there will be a dramatic 

increase in the standard error of the regression coefficient [116]. 

Additionally, a more formal statistic which can be used to measure possible collinearity is the 

variance inflation factor (VIF). For a given explanatory variable, say 8MI; in (7.1), the VIF is 

defined as 

VIF _ 1 
- 1- R~MI, 

(7.6) 

where R~MI, is the proportion of the variability in 8MI; that is explained by the other variables 

when BMI; is the dependent variable in a regression on all the remaining explanatory variables 

(BMI), j i= i, and agecxam )' 

A VIF of 1 (which occurs when R~MI; = 0) indicates orthogonality of the explanatory variables, 

whilst a high VIF may imply a problem with collinearity. Suggested values of the VIF above which 

it is appropriate to be concerned with collinearity differ somewhat, with 'rule of thumb' cut off 

values of both 5 [129] and 10 [117] suggested. 

Missing data 

Using complete-case multivariable regression means that for an individual to be included in the 

analysis they must have data present for each variable in the model. Thus in the present analysis 

a subject must have all 10 childhood BMI values present as well as 8MI (or %BF) and age at 

examination. When the number of explanatory variables in the model is large, as in this case, even 

if the proportion of missing data on each variable is small, this can result in a large proportion of 

individuals being excluded from the analysis. 

In the SWEDES dataset all 481 subjects have BMI at examination recorded along with their 

age at this measurement and only seven individuals have missing %8F at examination. It is thus 

missing childhood BMI values which are the most troublesome in this instance. Table 7.1 shows 

the number of recorded childhood BMI observations for each subject. It can be seen that approxi­

mately half of individuals have recorded BMI values at all 10 ages ('complete childhood 8MI data') 

and half have observed BMI at fewer that 10 ages ('incomplete childhood BMI data'). The per­

centage of subjects with complete childhood 8MI data is virtually identical in males and females 
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(47.5 vs. 47.7). Around 20% of subjects have no childhood BMI data whatsoever. The next most 

frequent number of observed values is 4, occurring in 13.5% of subjects, which is quite anomalous 

given the infrequency with which similar numbers of observed values occur. Of those subjects with 

4 observations virtually all are at ages 7, 8, 9 and 10 years (results not shown), indicating that 

data from their school journals (covering age 7 years onwards) are present, whilst data from their 

health care centre journals (covering ages up to 7 years) are not. 

Number of observations Frequency Percentage 

0 95 19.8 

1 0.2 

2 16 3.3 

3 7 1.5 

4 65 13.5 

5 4 0.8 

6 6 1.3 

7 6 1.3 

8 23 4.8 

9 29 6.0 

10 229 47.6 

Total 481 100 

Table 7.1: Number of recorded childhood body mass index observations per subject. 

Table 7.2 compares the mean BMI values through childhood as well as the mean BMI and %BF 

at examination between subjects with complete childhood BMI data and those with incomplete 

childhood BMI data. The differences are seen to be relatively small for the childhood BMI values 

but more significant for both BMI and %BF at examination. Conducting t-tests between the two 

subgroups reinforces this observation: of the twenty t-tests for childhood BMI, only one is signifi­

cant at the 5% level (females age 5 years, P = 0.03), which is what would be expected by chance 

alone, whereas all four t-tests for the measurements taken at examination are significant (BMI in 

males, P = 0.02; BMI in females, P = 0.02; %BF in males, P < 0.001; and %BF in females, 

P = 0.05). However, these comparisons between the complete and incomplete subgroups, particu­

larly those for childhood BMI, must be treated with some caution as the number of subjects with 

incomplete data which contribute to them are often only a small proportion of those who should 

contribute (for example, only 14 of the 106 incomplete males contribute at age 6 years). This 

means that those individuals who do contribute may not be representative of the larger subgroup, 

rendering the comparison somewhat questionable. 

In the present analysis, both BMI and %BF at examination are used as outcomes. Fig. 7.1 
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Males (n = 202) Females (n = 279) 

Variable Complete (n = 96) Incomplete (n = 106) Complete (n = 133) Incomplete (n = 146) 

Frequency Mean Frequency Mean Frequency Mean Frequency Mean 

BMI (kg/m2
) 

at age (years) 

1 96 17.6 27 17.4 133 17.2 43 17.2 

2 96 16.9 23 16.7 133 16.5 38 16.8 

3 96 16.3 24 16.1 133 16.1 36 15.9 

4 96 15.8 27 15.6 133 15.6 40 15.9 

- 5 96 15.6 23 15.8 133 15.5 29 16.1 
'" -.:J 

6 96 15.5 14 15.5 133 15.5 22 15.9 

7 96 15.5 51 15.9 133 16.0 80 16.3 

8 96 16.2 49 16.5 133 16.5 84 16.6 

9 96 16.6 50 17.0 133 16.9 76 16.9 

10 96 17.2 46 17.7 133 17.4 75 17.7 

At examination 

BMI (kgjm2
) 96 20.6 106 21.6 133 21.0 146 21.9 

%BF 95 14.3 105 18.0 130 28.6 144 30.1 

Table 7.2: Comparison of mean body mass index (BMI) through childhood and mean body mass index and percentage body fat (%BF) at examination between subjects with complete 

childhood body mass index data and those with incomplete childhood body mass index data. 



illu. trate the univariate and bivariate distributions of the e variables separately for males and 
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7.2.4 Results 

Correlation between childhood BMI at different ages 

As discussed in Section 7.2.3, collinear explanatory variables may potentially be identified from 

their correlation coefficients. Table 7.3 shows the correlation matrices for BMI through childhood, 

for males and females separately, restricted to those subjects with complete childhood B1\l1 data. 

It can be seen for both sexes that BMI at a given ages is strongly and positively correlated with 

BMI at similar ages, meaning that subjects tend to retain a similar level of BMI relative to their 

contemporaries (B1\fJ tracking) over a period of several years. However, the magnitude of these 

correlations diminishes as the interval between the measurements (the lag) increases. For a given 

lag, the strength of the correlation is seen to increase as age increases. This is evidence of strongcr 

tracking at older ages. 

Another way to view the correlation coefficients is via correlation contour plots, as shown in 

Fig. 7.2 and Fig. 7.3 for males and females, respectively. Here, age at BMI measurement is plotted 

on both axes with the correlation coefficient corresponding to a given pair of ages displayed by the 

appropriate colour according to the key on the right hand side. In this way, regions (i.e. pairs of 

ages) with similar levels of correlation will be the same colour and thus easily identifiable. 

The patterns for males and females are seen to be largely similar. By definition, when the two 

ages being considered are the same the correlation coefficient will be one, so the points on the 

line y = x will be the darkest shade of purple. Either side of this line the correlation is seen t.o 

decrease, albeit relatively slowly. The distance that a given contour line (Le. a given correlation) 

lies away from the line y = x tends to increase as age increases. This is seen most clearly in the 

females. This means that, for example, the correlation between age 2 and 3 years (a lag of one 

year) is approximately equal to the correlation between age 6 and 8 years (a lag of two years) in 

females, and is again evidence of BMI tracking increasing with age. 

In both plots there is a region around 6-7 years where correlation is less than would be ex­

pected. There are two possible explanations for this. Firstly, this corresponds to the age when 

the measurement of height and weight are transferred from the child welfare centre to schools so 

this could imply some level of discontinuity in the measurement procedures. Secondly, this is thc 

age around which the adiposity rebound (AR, see Section 2.3.3) would be expected to occur. At 

this age those individuals who are pre-AR will still have decreasing BMI and those post-AR wiII 

be increasing so correlation is likely to be reduced. 

Whilst the observed features of the correlation contour plots could all be deduced from the 

values in the correlation matrices, the graphical display does aid interpretation. 

The high levels of correlation, particularly between measurements only one year apart, means 

that in a multiple regression model including BMI at all ages collinearity may potentially be a 

problem. 
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Males (n = 96) 

BMI at BMI at age (years) 

age (years) 2 3 4 5 6 7 8 9 10 

2 0.75 

3 0.63 0.77 

4 0.58 0.76 0.80 

5 0.58 0.71 0.73 0.82 1 

6 0.51 0.58 0.65 0.69 0.89 

7 0.55 0.59 0.59 0.61 0.72 0.75 

8 0.42 0.52 0.51 0.59 0.73 0.71 0.90 1 

9 0.39 0.51 0.50 0.54 0.69 0.68 0.86 0.95 

10 0.36 0.48 0.43 0.46 0.60 0.60 0.81 0.90 0.94 

Females (n = 133) 

BMI at BMI at age (years) 

age (years) 2 3 4 5 6 7 8 9 10 

2 0.64 1 

3 0.66 0.82 

4 0.64 0.73 0.84 

5 0.53 0.64 0.73 0.88 

6 0.47 0.59 0.66 0.80 0.92 1 

7 0.44 0.53 0.60 0.73 0.83 0.83 

8 0.34 0.46 0.52 0.65 0.78 0.80 0.92 1 

9 0.31 0.43 0.48 0.62 0.75 0.79 0.89 0.94 1 

10 0.30 0.37 0.41 0.56 0.67 0.72 0.82 0.85 0.93 

Table 1.3: Estimated correlation coefficients between body mass index (BMI) at different ages through childhood. 

by sex. 
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Fig. 7.2: Correlation contour plot for body mass index (8MI) through childhood in males. 
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Fig. 7.3: Correlation contour plot for body mass index (BMI) through childhood ill females. 
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Correlation between childhood BMI velocity at different ages 

Table 7.4 displays the correlation matrices for 8MI velocity at each age through childhood. sep­

arately for males and females, again restricted to those subjects with complete childhood 8MI 

data. The correlation coefficients take both positive and negative values but are generally close 

to zero. There are few obvious features, though a tendency for relatively strong negative correla­

tions corresponding to a 1 year lag can be seen at younger ages. This signifies that those subjects 

who incr('&~e 8MI more quickly than their contemporaries in one year are likely to increase BMI 

relatively less quickly the next year, and vice versa. This could be interpreted as subjects having 

'spurts' of increasing BM1 at different times through the first few years of life but all obtaining 

similar levels of BI\II eventually. 

Also shown in Table 7.4 are the correlations between BM1 at age 1 year and BM1 velocity at 

each age through childhood. As BM1 at age 1 year is included in the model relating childhood BM1 

velocity to late-adolescent BM1 or %BF, (7.2), the potential for collinearity between BM1 age 1 

year and BM1 velocity at any age should also be considered. Again, correlations are generally weak, 

with the only discernible pattern being a negative correlation between BM1 age 1 year and BM1 

velocity in the first year (females) or two (males) after this age. This implies that the individuals 

who have low BM! at age 1 year are likely to increase BM! more quickly over the next year or 

two, and vice versa. Again, this can be considered in terms of spurts of growth at different ages in 

infancy against a backdrop of similar underlying growth patterns. 

Fig. 7.4 and Fig. 7.5 show the correlation contour plots for BM1 velocity through childhood for 

males and females, respectively. The colours used are the same as those in Fig. 7.2 and Fig. 7.3 so 

that the plots are directly comparable. Aside from the high correlation along the line y = x, which 

is equal to 1 by definition, there is a lack of any regions of meaningful correlation. The only obvious 

pattern in the correlation which is present is the previously mentioned negative correlations at 1 

year lag through infancy (note that the seemingly positive region in Fig. 7.4 in infancy is an artifact 

of the positive correlation between BM! velocity at age 1-2 and 3-4 years rather than a positive 

correlation at 1 year lag). This trend appears to extend later into life amongst males. 

The generally weak correlations seen between the variables mean there there is less likely to be 

problems with collinearity when BM! at age 1 year and BM1 velocity through childhood are used 

as explanatory variables in (7.2). However, it should be remembered that collinearity between 

more than two variables may not be evident from the pairwise correlation coefficients. 

Childhood BMI and late-adolescent BMI 

Before applying the multivariable regression models detailed in Section 7.2.3, in which the relation­

ship between late-adolescent BMI or %BF and BM1 at a given age in childhood is adjusted for BM! 

at every other age in childhood, it is useful to first consider the unadjusted relationships hetween 

the late-adolescent outcomes and BM! at each age in childhood in turn. These relationships can 

be assessed using separate regression models, all of which should again include age at examina­

tion. The results obtained, when compared to their adjusted equivalents from the IIlllltivariable 
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Males (n = 96) 

Br.-II velocity BMI at BM! velocity at age (years) 

at age (years) age 1 year 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 

1-2 -0.26 

2-3 -0.25 -0.32 

3-4 -0.17 0.06 -0.43 

4-5 0.03 -0.11 -0.05 -0.25 

,5-6 0.04 -0.13 0.20 -0.17 0.18 

6-7 0.10 -0.02 -0.17 -0.00 -0.20 -0.30 

7-8 -0.13 0.18 -0.01 0.20 0.16 -0.14 -0.10 

8-9 0.05 0.14 -0.04 -0.16 0.16 0.11 0.06 0.01 

9-10 0.02 0.07 -0.19 0.01 0.00 0.02 0.20 0.15 0.04 

Females (n = 133) 

Br.-II velocit.v BM! at BMI velocity at age (years) 

at age (years) age 1 year 1-2 2~3 3-4 4-5 5-6 6-7 7-8 8-9 

1-2 -0.51 

2-3 -0.06 -0.43 1 

3-4 0.07 -0.10 -0.17 

4-5 -0.22 0.08 -0.03 -0.06 

5-6 -0.06 0.06 -0.08 0.01 0.04 

6-7 0.12 -0.03 0.03 0.08 -0.03 -0.21 

7-8 -0.16 0.10 0.01 0.00 0.31 0.08 -0.12 

8·-9 -0.01 0.05 -0.03 0.14 0.06 0.13 0.01 -0.09 

9-10 0.06 -0.10 -0.01 0.09 -0.04 0.09 0.09 -0.10 0.21 

Table 7.4: Estimated correlation coefficients between body mass index (BMI) at age 1 year and body mass index 

velocity at different ages through childhood, by sex. 
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regression models, allow an assessment of the effect of adjustment for BMI at the other ages in 

childhood and a comparison of the standard errors for the equivalent estimated coefficients may 

help indicate the presence of collinearity. 

Table 7.5 shows the estimated coefficients, standard errors, 95% confidence intervals and P­

values for the regression models of BMI at examination fitted separately on BMI at each age in 

childhood for males and females. For both sexes the relationship between BMI at examination and 

childhood Bl\fI is positive at every age in childhood. In males the estimated coefficients increase in 

magnitude before reaching a peak at around age 7-8 years and are highly statistically significant 

(P < 0.001) from age 5 years onwards. In females the estimated coefficients peak at. little earlier, at 

around age 6 years. and are highly statistically significant (P < 0.001) at every age examined. This 

shows that, ignoring BMI at other ages, an increase in BMI at any age is likely to lead to increased 

late-adolescent BMI, though this is particularly true around the ages at which the magnitude of 

the coefficients peaks. 

Bl\lI (kg/m 2) at Males (n = 96) Females (n = 133) 

age (years) Coeff. SE 95% CI P-value Coeff. SE 95% CI P-value 

0.50 0.22 0.06,0.94 0.03 0.63 0.15 0.33,0.92 <0.001 

2 0.61 0.20 0.22, 1.01 0.003 0.97 0.15 0.67, 1.27 <0.001 

3 0.50 0.22 0.07,0.94 0.03 0.99 0.17 0.65, 1.33 <0.001 

4 0.78 0.23 0.32, 1.25 0.001 0.99 0.15 0.69, 1.29 <0.001 

5 0.93 0.22 0.49, 1.37 <0.001 1.15 0.14 0.87, 1.43 <0.001 

6 0.85 0.18 0.48, 1.21 <0.001 1.19 0.12 0.95, 1.43 <0.001 

7 1.13 0.15 0.83, 1.42 <0.001 l.06 0.09 0.88, 1.23 <0.001 

8 1.14 0.12 0.91, 1.38 <0.001 0.93 0.09 0.77, 1.10 <0.001 

9 1.05 0.10 0.84, 1.25 <0.001 0.92 0.07 0.78, 1.07 <0.001 

10 0.98 0.09 0.81, 1.15 <0.001 0.79 0.07 0.66, 0.92 <0.001 

Table 7.5: Estimated coefficients (coelf.), standard errors (SE), 95% confidence intervals (eI) and P-values from 

Wald tests for the regression models of body mass index (8MI) at examination fitted separately on body mass index 

at different ages in childhood, by sex. Models are adjusted for age at examination. 

Table 7.6 shows the estimated coefficients, standard errors, 95% confidence intervals and P­

values for the mUltiple regression models of BMI at examination fitted on BMI through childhood 

for males and females, as given in (7.1). In males only the most recent (age 10 years) BMI 

observation is seen to be strongly (and positively) related to BMI at examination, conditional 011 

Bl\JI at other ages through childhood. Thus for two males with similar BMI age 1 to 9 years, 

the one with greater BMI at age 10 years would have the greater predicted late-adolescent BMI. 

The results for females are somewhat less easy to disentangle, with BMI at ages 2, 7 and 9 years 

positively associated with BMI at examination but BMI at age 8 years negatively associated, 

meaning that having lower BMI at this age tends to lead to higher late-adolescent BML The lack 
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of a positive relationship between BMI at the last available age (10 years) and BMI fl.t examination 

in females is likely to be due to confounding by pubertal stage. At this age, those females who 

are more developmentally advanced will experience the adolescent growth spurt in height [168] 

meaning that their BMI is reduced. As an early menarche is known to be associated with later 

obesity [75]. these same females are likely to have a higher BMI at examination. Thus, for different 

reasons, females with both low and high BMI at age 10 years could be considered at risk for higher 

late-adolescent BMI, with the two effects cancelling each other out. This does not. appear to he an 

issue for males, which may be expected given that the adolescent growth spurt occurs on average 

two yean; later in males than in females [168]. 

BMI (kg/m 2
) at Males (n = 96) Females (n = 133) 

age (years) Coeff. SE 95% CI P-value Coeff. SE 95% CI P-value 

0.06 0.24 -0.42,0.55 0.80 0.09 0.14 -0.18, 0.37 0.51 

2 0.02 0.29 -0.55,0.59 0.95 0.56 0.19 0.18, 0.94 0.001 

3 -0.44 0.28 -1.01,0.12 0.12 0.00 0.27 -0.53, 0.52 0.99 

4 0.45 0.36 -0.26, 1.16 0.21 -0.54 0.30 -1.14, 0.06 0.08 

5 -0.71 0.48 -1.67,0.25 0.14 -0.35 0.35 -1.05, 0.35 0.33 

6 0.30 0.33 -0.35,0.95 0.36 0.44 0.27 -0.09, 0.97 0.10 

7 -0.14 0.34 -0.82,0.55 0.69 0.61 0.24 0.13, 1.09 0.01 

8 0.44 0.44 -0.43, 1.32 0.32 -0.61 0.28 -1.17, -0.06 0.03 

9 0.09 0.43 -0.76,0.94 0.84 0.79 0.29 0.21, 1.37 0.01 

10 0.76 0.28 0.20, 1.33 0.01 0.16 0.16 -0.16, 0.49 0.32 

Table 1.6: Estimated coefficients (coeff.), standard errors (SE), 95% confidence intervals (eI) and P-values from 

Wald tests for the multivariable regression models of body mass index (BMI) at examination fitted on body mass 

index through childhood, by sex. Models arc adjusted for age at examination. 

A comparison of the adjusted regression coefficients in Table 7.6 with their unadjusted equiv­

alents in Table 7.5 illustrates the large impact that adjustment for BMI at other ages through 

childhood has. Whilst the unadjusted coefficients are all positive and largely highly statistically 

significant, their adjusted equivalents are markedly different, with some suggesting a negative rela­

tionship and few providing any strong support (i.e. a highly significant P-value) for a relationship 

in either direction. Additionally, although at younger ages the standard errors of the estimated 

coefficients are similar in the unadjusted and adjusted models, at older ages they are up to 3-4 

times as great in the adjusted models. 

Another way to present the results in Table 7.6 which may help in interpreting the conditional 

impact of each repeated measure [11] is in a life course plot [130], introduced in Section 5.3.1. Here, 

the regression coefficients are re-estimated using standardised childhood BMI values to provide 

comparable coefficients which are then plotted against age. The upper plot in Fig. 7.6 makes it 

clear that in males only the most recent BMI observation has any meaningful relationship with BMI 
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at examination. \Vhen the coefficients in a life course plot switch sign between two ages there is 

evidence that change in the explanatory variable over this interval affect the outcome of interest 

[11 J. Thus the corresponding plot for female , as well as reinforcing the previous observations, 

sugg t that a relative reduction in BMI between age 2 and 4 years, a relative increase between 

age 4 and 7 year, a relative decrease between age 7 and years and a relative increase between 

age and 9 year are all as ociated with higher BMI at examination. It is also apparent from the 

life course plot that the confidence intervals (CIs) for the estimated coefficients tend to increase 

as age increase . 
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Fig. 7.6 : Life course plots for models of body mass index (BMI) at examination on body mass index through 

chjldhood for males (upper plot) and females (lower plot). 
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Childhood BMI and late-adolescent %BF 

Table 7.7 shows the estimated coefficients, standard errors, 95% confidence intervals and P-valups 

for the regression models of %BF at examination fitted separately on Bl\II at each age in childhood 

for males and females. As with Bl\1I at examination, the relationship between %BF at examination 

ancl childhood Bl\lI is positive at every age in childhood for both sexes. Again, the estimated 

coefficients increase in magnitude through early childhood, reaching a peak at around age 7 years 

in males and age 6 years in females, before decreasing a littlp. In males the coefficients arc highly 

statistically significant (P < 0.001) from age 7 years onwards and from age 5 years in females. 

This provides evidence that, ignoring BMI at other ages, an increase in BMI at any age tends to 

lead increased %BF at examination, particularly around the ages at which the magnitude of the 

coefficients peaks. 

Bl\II (kg/m2 ) at Males (n = 96) Females (n = 133) 

age (years) Coeff. SE 95% CI P-value Coeff. SE 95% CI P-value 

1.30 0.50 0.30, 2.29 0.Q1 0.70 0.38 -0.06, 1.45 0.07 

2 1.02 0.47 0.10, 1.95 0.03 1.08 0.41 0.27, 1.90 0.01 

3 1.12 0.50 0.12,2.12 0.03 0.91 0.46 0.00, 1.81 0.05 

4 1.16 0.55 0.07, 2.25 0.04 1.03 0.41 0.21, 1.85 0.02 

5 1.67 0.52 0.64, 2.70 0.002 1.46 0.40 0.68, 2.25 <0.001 

6 1.53 0.44 0.66, 2.40 0.001 1.75 0.35 1.04, 2.45 <0.001 

7 1.76 0.39 0.98, 2.54 <0.001 1.54 0.28 0.99, 2.09 <0.001 

8 1.57 0.34 0.89, 2.26 <0.001 1.48 0.25 0.98, 1.98 <0.001 

9 1.45 0.31 0.85, 2.06 <0.001 1.48 0.22 1.04, 1.93 <0.001 

10 1.38 0.27 0.84, 1.91 <0.001 1.25 0.20 0.85, 1.66 <0.001 

Table 1.1: Estimated coefficients (coeff.), standard errors (SE), 95% confidence intervals (el) and P-values from 

Wald tests for the regression models of percentage body fat (%BF) at examination fitted separately on body mass 

index at different ages in childhood, by sex. Models are adjusted for age at examination. 

Results for the multivariable models relating childhood BMI to %BF at examination are given 

in Table 7.8 and plotted in Fig. 7.7. The shape of the life course plots are very similar to those for 

the models with BMI at examination as outcome, which may be expected given the high degree 

of correlation between BMI and %BF at examination (see Fig. 7.1). However, at no ages in either 

sex are the estimated coefficients in Table 7.8 statistically significant at the 5% level, contrasting 

markedly with the estimated coefficients in Table 7.6. In the models with BMI at examination as 

outcome it may be expected that stronger relationships be found as the outcome is merely a later 

measurement of the explanatory variable. \Vith %BF as outcome, however, this is not the case. 

An alternative way to consider this is that, with %BF as outcome, we would icleaIly like to 

have longitudinal observations of childhood %BF as exposures. Similarly to the model with B1U at 

examination as outcome and childhood BMI observations as explanatory variables, both outcome 
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Fig. 7.7: Life course plots for models of percentage body fat (%BF) at examination fitted on body mass index 

(BMI) through childhood fOT males (upper p lot) and females (lower plot). 
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8M1 (kg/m2) at Males (n = 95) Females (n = 130) 

age (years) Coeff. SE 95% C1 P-value Coeff. SE 95% C1 P-value 

0.90 0.77 -0.64,2.45 0.25 0.43 0.47 -0.51, 1.36 0.:~7 

2 -0.85 0.91 -2.67,0.96 0.35 0.80 0.66 -0.50, 2.10 0.23 

3 0.20 0.90 -1.60,2.00 0.83 -0.48 0.91 -2.27, 1.32 0.60 

4 -0.51 1.13 -2.76, 1.74 0.65 -1.56 1.04 -3.61,0.50 0.14 

5 0.43 1.53 -2.60, 3.47 0.78 -1.19 1.19 -3.54, 1.16 0.32 

6 0.29 1.04 -1.78, 2.35 0.78 1.57 0.91 -0.22,3.37 0.09 

7 0.42 1.10 -1.76,2.60 0.70 0.53 0.82 -1.09, 2.16 0.52 

8 -0.25 1.40 -3.03,2.53 0.86 -0.66 0.95 -2.54, 1.21 0.49 

9 -0.41 1.36 -3.12, 2.30 0.76 1.77 0.99 -0.19,3.72 0.08 

10 1.55 0.90 -0.23,3.34 0.09 0.04 0.55 -1.05, 1.13 0.95 

Table 1.8: Estimated coefficients (coeff.), standard errors (SE), 95% confidence intervals (eI) and P-values from 

Wald tests for the multivariable regression models of percentage body fat (%BF) at examination fitted on body 

mass index (BM!) through childhood, by sex. Models are adjusted for age at examination. 

and exposures would then be observations of the same variable. As longitudinal measures of %BF 

through childhood are not available, observed BMI is used as a proxy. The reduction in the 

significance of the associations can then be thought of as attenuation due to 'measurement error' 

in the exposures. 

Again, a comparison of the unadjusted relationships between the late-adolescent %BF and BMI 

at each age in childhood in Table 7.7 and the mutually adjusted relationships in Table 7.8 allows 

an assessment of the effect of adjustment for BMI at the other ages in childhood. The differences 

observed are similar to those when considering BMI at examination - the unadjusted coefficients 

are all positive and largely highly statistically significant, but the adjusted coefficients do not have 

such a coherent pattern, with little evidence of a relationship between childhood BMI at any age 

and late-adolescent %BF. The standard errors are also increased in the mutually adjusted model, 

especially at older ages where they can be 3-4 times as great. 

Collinearity in the models for childhood BMI 

The models for both BMI and %BF at examination with childhood BMI observations as the 

explanatory variables, given in Table 7.6 and Table 7.8, are somewhat difficult to interpret due to 

the estimated coefficients often changing sign and having large standard errors. Whilst difficulty 

of interpretation is always likely in multiple regression models including repeated measures taken 

close together in time due to multiplicity, collinearity may provide an alternative explanation for 

unexpected values of regression coefficients and large standard errors. 

The high correlations already observed amongst the explanatory variables (see Table 7.3) may 

indicate that collinearity will be a problem in the multiple regression models. Additionally, com­

parisons of the multiple regression models with the univariate regression models (i.e. comparing 
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Table 7.6 with Table 7.5, and Table 7.8 with Table 7.7) shows the standard errors of the estimated 

regression coefficients to increase by up to 3-4 times. Again, this suggests that there may be 

collinearity present in the explanatory variables. 

A more formal approach to the identification of potential collinearity is through use of the 

variance inflation factor (VIF), introduced in Section 7.2.3. Table 7.9 shows the calculated VIF 

for B!\n at each age through childhood according to (7.6). It can be seen that for both sexes there 

are several ages when the VIF is greater than 10, and it is greater than 5 for the majority of ages. 

This again suggests that the results of the models with childhood BMI as explanatory variables 

may be affected by collinearity. 

BMI at VIF 

age (years) Males (n = 96) Females (n = 133) 

2.7 2.0 

2 4.4 3.2 

3 3.7 5.0 

4 4.9 8.0 

5 9.4 11.0 

6 6.0 7.4 

7 7.6 9.5 

8 16.2 14.9 

9 19.1 19.4 

10 10.4 7.7 

Table 7.9: Variance inflation factor (VIF) for body mass index (BMI) at each age through childhood, by sex. 

It should be noted that the correlations between the standardised childhood BMI values used 

in the life course plots (Fig. 7.6 and Fig. 7.7) will be identical to those between the unstandardised 

values in the original multivariable regression models (Table 7.6 and Table 7.8), and thus any 

collinearity between the explanatory variables will not be affected by the standardisation. 

Childhood BMI velocity and late-adolescent BMI 

Again, it is informative to look at the unadjusted as well as adjusted regression models. Table 7.10 

shows the estimated coefficients, standard errors, 95% confidence intervals and P-values for the 

regression models of BMI at examination fitted separately on BMI velocity at each age in childhood 

for males and females. In males, there is little evidence of a relationship between BMI velocity 

and BMI at examination before age 5 years, though after this there is fairly strong evidence of 

a positive relationship, especially between age 7 and 8 years. In females, there is evidence of a 

positive relationship between BMI velocity and BMI at examination from age 3 years onwards. 

This relationship is seen to be particularly strong between age 5 and 9 years, apart from the 

rather anomalous result for age 7-8 years. The negative coefficient corresponding to BMI velocity 
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between age 2 and 3 years in both males and females should also be noted. Although not strong, 

there is some evidence that a high BMI velocity over this period is associated with a lower BMI 

at examination. 

BMI velocity 

(kgjm2year) Males (n = 96) Females (n = 133) 

at age (years) Coeff. SE 95% CI P-value Coeff. SE 95% CI P-value 

1-2 0.43 0.31 -O.lS, 1.04 0.16 0.2S 0.19 -0.10,0.66 0.15 

2-3 -0.44 0.31 -1.06, O.lS 0.17 -0.49 0.29 -1.07,0.09 0.10 

3-4 0042 0.37 -0.31, 1.15 0.25 0.61 0.32 -0.02, 1.23 0.06 

4-5 0.54 0040 -0.26, 1.34 0.19 0.75 0.36 0.05, 1.46 0.04 

5-6 0.S4 0043 -0.02, 1.69 0.06 1.24 0.38 0048, 2.00 0.002 

6-7 0.80 0.26 0.28, 1.33 0.003 0.96 0.22 0.53, 1.39 <0.001 

7-S 1.45 0.35 0.75,2.15 <0.001 0.29 0.31 -0.33,0.90 0.36 

8-9 1.30 0.45 0.41, 2.19 0.01 1.31 0.31 0.70, 1.92 <0.001 

9-10 1.29 DAD 0.53, 2.04 0.001 0045 0.25 -0.05,0.95 O.OS 

Table 7.10: Estimated coefficients (coeff.), standard errors (SE), 95% confidence intervals (el) and P-values from 

Wald tests for the regression models of body mass index (BMI) at examination fitted separately on body mass index 

velocity at different ages in childhood, by sex. Models are adjusted for age at examinat.ion. 

Table 7.11 shows the estimated coefficients, standard errors, 95% confidence intervals and P­

values for the multiple regression models of BMI at examination fitted on BMI at age 1 year 

and BMI velocity through childhood for males and females, as given in (7.2). For both males 

and females BMI velocity at virtually every age is seen to be positively associated with BMI at 

examination (conditional on BMI at age 1 year and BMI velocity at every other age), though the 

strength of t.he relationship varies with age. In both sexes BMI at age 1 year is also strongly 

positively associated with BMI at. examination conditional on BMI velocity through childhood 

showing that for a given childhood BMI trajectory those with higher BMI at agc 1 year are likely 

to have higher BMI in late adolescence. 

A comparison of the unadjusted regression models in Table 7.10 with the mutually adjusted 

regression models in Table 7.11 shows that adjustment for BMI velocity at other ages (as well at 

BMI age 1 year) generally leads to larger estimated coefficients and greater statistical significance 

at younger ages, but smaller coefficients and reduced statistical significance at older ages. This 

means that having a high BMI velocity at a younger age is not a very good predictor for late­

adolescent BMI when taken on its own, but a high BMI velocity at a younger age will tend to lead 

higher BMI at examination for a fixed pattern of BMI velocity at older ages. Similarly, whilst a 

high BMI velocity at older ages is a relatively good predictor of high BMI at examination when 

taken on its own, perhaps as it is indicative of individuals who have a high BMI velocity throughout 

childhood, when it is considered in conjunction with a fixed pattern of BMI velocity up to that age 
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Males (n = 96) Females (n = 133) 

Coeff. SE 95% CI P-value Coeff. SE 95% CI P-value 

BMI (kg/m2) 
0.83 0.18 0.47, 1.19 <0.001 1.16 0.13 0.91, 1.41 <0.001 

at age 1 year 

BMI velocity 

(kg/m2year) 

at age (years) 

1-2 0.77 0.26 0.26, 1.28 0.004 1.07 0.17 0.73, 1.40 <0.001 

2-3 0.75 0.32 0.13, 1.38 0.02 0.50 0.23 0.06,0.95 0.03 

3-4 1.20 0.34 0.52, 1.88 0.001 0.51 0.21 0.09,0.92 0.02 

4-5 0.75 0.32 0.12, 1.38 0.02 1.05 0.24 0.57, 1.53 <0.001 

5-6 1.46 0.32 0.82, 2.10 <0.001 1.40 0.26 0.89, 1.90 <0.001 

6-7 1.16 0.20 0.75, 1.56 <0.001 0.95 0.15 0.66, 1.25 <0.001 

7-8 1.29 0.29 0.72, 1.87 <0.001 0.35 0.21 -0.06,0.75 0.10 

8-9 0.85 0.32 0.21, 1.49 0.01 0.96 0.21 0.54, 1.38 <0.001 

9-10 0.76 0.28 0.20, 1.33 0.01 0.16 0.16 -0.16,0.49 0.32 

Table 7.11: Estimated coefficients (coeff.), standard errors (SE), 95% confidence intervals (eI) and P-values from 

Wald tests for the multivariable regression models of body mass index (BMI) at examination fitted on body mass 

index velocity through childhood, by sex. Models are adjusted for age at examination. 
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the association is reduced. Additionally, the standard errors of the estimated regression coefficients 

in the multivariable models are generally very similar to those for the univariable models - indeed, 

the standard errors are often reduced in the mutually adjusted models. 

In both sexes, though particularly in females, the period between age 1 and 2 years appears 

important for the development of late-adolescent BM!. In males a further key period is between 5 

and 8 years of age, whilst females have a corresponding period between age 4 and 7 years. Both 

of these intervals cover ages when subjects will be experiencing the AR and this slight sex-specific 

difference corresponds to the earlier AR often observed in females [681. Because BMI is at a 

minimum at AR, at ages either side of AR an increased BMI velocity is indicative of all earlier 

AR. This is borne out in Fig. 7.8 which shows artificially created BMI trajectories for the ages 

around AR (upper plot) and the corresponding BMI velocities (lower plot). The solid line in t.he 

upper plot represents a subject with an AR at age 6.5 years. The BMI velocity corresponding 

to this trajectory (in this case the derivative of the 8MI function) is plotted, also with a solid 

line, in the lower plot. The age at which the 8MI velocity crosses the x-axis corresponds to the 

age at AR. The dashed line in the lower plot corresponds to a subject with a BM1 velocity that 

is consistently greater than that of the first subject. This results in the dashed line crossing the 

x-axis, and hence this individual having their AR, at a younger age (5.5 years). The dashed line 

in the upper plot shows a BMI trajectory that would correspond to this BM1 velocity. Whilst this 

explanation is somewhat contrived, it serves to illustrate that increased BMI velocity around the 

AR is associated with an earlier AR. So, given that it is often suggested (see Section 2.3.3) that 

an earlier AR is predictive of higher later adiposity, it should be no surprise that increased BMI 

velocity around the AR is associated with higher BM1 at examination. 

It should also be noted that the estimated coefficients in Table 7.11, when compared to those 

in Table 7.6, conform to (7.4) and (7.5), as has previously been discussed by De Stavola et al [111· 

For example, in males, 

10 

1'1 = 0.83 = 0.06 + 0.02 - 0.44 + 0.45 - 0.71 + 0.30 - 0.14 + 0.44 + 0.09 + 0.76 = L {3j 
j=l 

and 

10 

1'2 = 0.77 = 0.02 - 0.44 + 0.45 - 0.71 + 0.30 - 0.14 + 0.44 + 0.09 + 0.76 = L {3j. 
)=2 

Childhood BMI velocity and late-adolescent %BF 

Table 7.12 shows the estimated coefficients standard errors, 95% confidence intervals and P-values , 
for the regression models of %BF at examination fitted separately on BM1 velocity at each age 

in childhood for males and females. There is little evidence of an association between %8F and 

BM1 velocity before age 4 years in either sex, though after this age there is a more obvious 

positive relationship. Evidence for the association is stronger in males age 4-5 and 8-10 years 
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and is particularly strong in females age 5-6 and 8-9 years, where a 1 kg/m2year increll.<>e ill BMI 

velocity is estimated to lead to a 2-3% increase in %BF at examination .. 

Bt>.n velocity 

(kg/ 1\1
2 }'C'ar) Males (n = 96) Females (n = 133) 

at age (vears) Coeff. SE 95% CI P-value Coeff. SE 95% CI P-value 

1-2 -0.17 0.71 -1.57, 1.24 0.81 0.30 0.47 -0.63, 1.23 0.53 

2-3 -0.14 0.72 -1.58, 1.29 0.84 -0.99 0.73 -2.43,0.44 0.17 

3-4 -0.40 0.85 -2.08, 1.29 0.64 0.92 0.77 -0.61, 2..15 0.2/1 

4-5 1.64 0.91 -0.17,3.45 0.07 2.08 0.87 0.37, 3.80 0.02 

5-6 1.53 0.99 -0.44,3.50 0.13 3.07 0.92 1.2/1, 4.90 D.OOl 

6-7 0.89 0.62 -0.35,2.13 0.16 1.38 0.55 0.30,2.47 0.01 

7-8 1.16 0.87 -0.57,2.88 0.19 1.23 0.74 -0.23,2.70 0.10 

8-9 1.94 1.06 -0.16,4.04 0.07 2.31 0.77 0.78, 3.84 0.003 

9-10 1.90 0.90 0.12,3.68 0.04 0.59 0.61 -0.62, 1.80 0.34 

Table 7.12: Estimated coefficients (coeff.), standard errors (SE), 95% confidence intervals (eI) and P-values from 

Wald tests for the regression models of percentage body fat (%8F) at examination fitted separately on body ma.,s 

index (8MI) velocity at different ages in childhood, by sex. Models are adjusted for age at examination. 

The results for the multivariable models relating childhood BMI velocity to %BF at examination 

arc given in Table 7.13. Similarly to the models with Bl\n at examination as outcome (Table 7.11), 

the estimated Bl\n velocity coefficients over each interval are all positive, but here the CIs are much 

wider meaning that evidence for a.'.;sociations is weaker. Indeed, in the model for males there arc 

no intervals in which the relationship is statistically significant at the 5% level. However, the ages 

at which there is some evidence, albeit weak, of an association between BMI vrlocity and late­

adolescent %BF in males is similarly around the ages when the AR would be expected to occur. 

This is also true for females, though the evidence of a nlPaningful association is far st.ronger. The 

reasons behind these similar but reduced significance relationships arc as discussed previously. 

There is also relatively strong evidence that increased Bl\n at age 1 is associated with increased 

%BF at examination in both sexes. Again, the estimated coefficients in Table 7.8 and Table 7.13 

adhere to (7.4) and (7.5). 

A comparison of the unadjusted models in Table 7.12 with their adjusted equivalents in Table 

7.13 suggests that, similarly to when considering BMI at examination as the outcollle, adjustmPlIt 

leads to increased estimated coefficipnts and greater statistical significance at younger ages, but 

decreased coefficients and reduced statistical significance at older ages. As the two out.comes arr 

correlated, these similarities are hardly surprising. Again, the standard errors for each pst.imated 

regression coefficient are very similar in the unadjusted and adjusted models for both males and 

females. 
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Males (n = 96) Females (n = 133) 

Coeff. SE 95% CI P-value Coeff. SE 95% CI P-value 

BMI (kg/m2) 
1.78 0.58 0.63, 2.92 0.003 1.25 0.43 0.40, 2.10 0.004 

at age 1 year 

BMI velocity 

(kg/m2year) 

at age (years) 

1-2 0.88 0.82 -0.74,2.50 0.29 0.82 0.58 -0.32, 1.96 0.16 

2-3 1.73 1.01 -0.28,3.74 0,09 0.02 0,77 -1.50, 1.54 0,98 

3-4 1.53 1.09 -0.63, 3.70 0,16 0,50 0,71 -0.89, 1.90 0.48 

4-5 2.04 1.01 0.04,4.05 0,05 2.06 0.82 0.43, 3,69 0,01 

5-6 1.61 1.02 -0.43, 3.64 0,12 3.25 0.86 1.54,4.95 <0.001 

6-7 1.32 0.65 0.02, 2.62 0.05 1.67 0.51 0.67, 2.68 0.001 

7-8 0,90 0,92 -0.94,2.74 0,33 1.14 0.69 -0.24,2.52 0,10 

8-9 1.15 1.03 -0.90,3.19 0,27 1.80 0.72 0.38,3.23 0,01 

9-10 1.55 0,90 -0.23,3.34 0,09 0.04 0,55 -1.05, 1.13 0,95 

Table 7.13: Estimated coefficients (coefT,), standard errors (SE), 95% confidence int.ervals (ell and P-values from 

Wald test.s for the multivariable regression models of percent.age body fat (%BF) at examinat.ion fitted on body 

mass index (8MI) velocity through childhood, by sex. Models are adjusted for age at. examination, 
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Collinearity in the models for childhood BMI velocity 

The models for BMI and %BF at examination with childhood BMI velocities as the explanatory 

variables. given in Table 7.11 and Table 7.13. are far easier to interpret than those with childhood 

BMI observations as the explanatory variables due to all the estimated coefficients being positive 

and their standard errors being relatively small. In the same way in which collinearity is explored as 

an explanation for the results when childhood BMI observations are used as explanatory variables. 

it is insightful to investigate the extent of collinearity in the childhood BMI velocities. 

As previously noted (see Table 7.4) the pairwise correlations between BMI velocities at different 

ages through childhood are generally very low. Although this does not allow assessment of possible 

collinearity between B~n velocity at three or more ages in childhood, it may be expected that if 

there is colJinearity is most likely to be displayed BMI velocity values over adjacent time periods 

and there is little evidence of this. 

Comparison of the unadjusted (Table 7.10 and Table 7.12) and mutually adjusted (Table 7.11 

and Table 7.13) models shows little difference between the standard errors of the estimated re­

gression coefficients. As a large increase in standard errors in the multivariable models relative to 

the univariable equivalents would be indicative of collinearity, this is again suggestive of a lack of 

collinearity. 

Finally. the VIF for each BMI velocity, as well as BMT at age 1 year, is calculated and shown in 

Table 7.14. There are no variables with a VIF greater than approximately 2 in either sex, providing 

no evidence of collinearity among the explanatory variables. 

VTF 

Males (n = 96) Females (n = 133) 

BMI at age 1 year 1.5 1.7 

BMT velocity at age (years) 

1-2 1.7 2.0 

2-3 2.3 1.5 

3-4 2.0 1.1 

4-5 1.4 1.2 

5--6 1.3 1.1 

6-7 1.3 1.1 

7-8 1.4 1.2 

8-9 1.1 1.1 

9-10 1.2 1.1 

Table 7.14: Variance inflation factor (VIF) for body mass index (BM!) velocity over each int.erval through child­

hood, by sex. 

Thus. when considering childhood BMT velocities rather than BMT itself as the explanatory 
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variables there is evidence of reduced collinearity. This provides some explanation as to why the 

B1\lI velocity models are more easily interpretable. 

7.2.5 Discussion 

Conclusions 

The multiple regression analyses using childhood BMI observations (as opposed to B1\1I velocities) 

as the explanatory variables are often difficult to interpret due to changing size and significance 

of the coefficients caused by the respective conditioning between BMI at different ages, although 

interpretation is aided somewhat by the use of life course plots. In males it can be seen that, 

conditional on BMI at other ages in childhood, only the most recent BMI measurement is associated 

with late-adolescent BMI. In females the relationships appear more complex, with Bl\lI at different 

ages, and changes in BMI between different ages, through childhood being associated with later 

adiposity in different ways. 

Although models including many repeated childhood measurements are often found to be dif­

ficult to interpret due to the respective conditioning [11], in this instance there appears to be 

evidence of collinearity between the childhood BMI measures which exacerbates the problem of 

interpretation. This is evidenced through high pairwise correlation coefficients, increased stan­

dard errors of estimated regression coefficients in multi variable models relative to the univariable 

equivalents, and high VIF values. 

The reparameterisation of the model so that childhood BMI velocity is used as the explanatory 

variable makes interpretation somewhat simpler. Whilst high BMI velocity at any age is seen to 

tend to lead to higher late-adolescent BMI, it is between age 1 and 2 years and the period between 

age 4 and 7 years in females and between 5 and 8 years in males that this relationship is strongest. 

This latter observation suggests that an earlier AR is associated with higher late-adolescent BMI. 

When using childhood BMI velocities there is little evidence of collinearity (low pairwise corre­

lation, similar standard errors in the univariable and multivariable models, and low VIF values), 

which is likely to contribute to making the models more ea.<;ily interpretable. 

Whether considering B1\lI or BMI velocity, the relationship between childhood BMI develop­

ment and later %BF is seen to be similar, though less strong, than that with later BMI. The 

similarities are likely due to the high correlation between BMI and %BF at examination, whilst 

the reduced significance of associations could be attributed to %BF not being merely a later ob­

servation of the exposure, as is the case when considering BMI as outcome. 

Thus it can be concluded that the periods between age 1 and 2 years and around the AR appear 

to be critical periods of BMI development for late-adolescent adiposity. 

Missing data For all the models examined and in both sexes the number of subjects contributing 

to the analysis is less than 50%. This high level of exclusion is as a result of relatively lower levels of 

missing data for childhood BMI at each age being compounded when using a complete-case analysis 

approach. This means that only if the missing individuals can be considered as 'missing completely 
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at random' [120] (MCAR, see Section 5.2.1) will the results remain unbiased. Whilst this is difficult 

to assess categorically, comparison of different variables between those with complete childhood 

BMI data and those with incomplete childhood BMI data can provide some indication. It has been 

seen that childhood BMI is similar between these two subgroups at each age, whilst both BMI 

and %BF at examination are differ somewhat. Whilst the number of individuals contributing to 

these comparisons are often small, this may suggest that those subjects with incomplete childhood 

BMI data who are excluded from the analysis may not be MCAR. If this is the case then the 

analysis may be biased and results for subjects with complete childhood BMI data Illay not be 

extrapolatable to the wider dataset, raising concerns about the conclusions drawn. 

Previously published results Whilst, as discussed, the results obtained may be somewhat 

questionable due to the large proportion of excluded subjects, it is still of interest to compare them 

to previously published studies. However, relatively few have attempted to investigate critical 

periods of BMI development for adiposity in late adolescence in the same way as the present 

analysis. Many tend to focus on childhood weight, rather than BMI, development and often 

concentrate on younger ages (,catch-up growth'). Another novel aspect of the present analysis is 

the availability of annual BMI observations through childhood, a luxury which is afforded by few 

datasets. Nevertheless, where results can be compared with previous studies, they do largely agree. 

Ong et al [45] found that 'catch-up growth' in the first 2 years of life is positively associated 

with obesity at age 5 in a recent British cohort.. Whilst catch-up growth is here defined in terms 

of an increase in relative weight between birth and age 2, this is not completely removed from the 

positive association seen between high BMf velocity and later adiposity in the present study. 

Corvalan et al [89] determined the associations between changes in BMI over several inter­

vals covering childhood and adult BMI, %BF, abdominal circumference and fat-free mass in a 

Guatemalan cohort. Whilst they found change in BMI between age 3 and 7 years to be strongly 

and positively associated with all four adult body composition measures, change in BMI between 

age 1 and 3 years was not associated with any of them. They suggest, as in the present analysis, 

that their results support findings elsewhere that early AR predicts later fatness. 

Alternative approaches 

Collinearity is seen to be a potential issue in the present analysis when considering childhood BMI 

observations. The analysis also suffers from the large proportions of subjects who must be excluded 

from the multiple regression modelling. Alternative approaches should be considered which can 

deal with these problems. Other issues are also raised, such as the relationship between the timing 

of the AR and later adiposity, which could be better investigated using different methods. 

Collinearity It has been seen that a reparameterisation of the original model, formulated in 

terms of childhood BMI, into one in terms of BMI velocity has reduced the collinearity between 

the explanatory variables and resulted in more sensible results. 
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An alternative approach to overcome the problems caused by collinearity, whilst still working 

within a multivariable regression framework, would be to remove some of the ages at which child­

hood Bl\fI is observed from the model. A very simple way to achieve this would be by using, say, 

only Bl\lI observations at even ages. The correlations at one year lag would then be removed, 

although this variable selection procedure is somewhat arbitrary. Variable removal could also be 

achieved via some form of stepwise selection procedure whereby variables are included or excluded 

from the model according to some predetermined criteria. Alternatively, ages for inclusion could 

be selected by studying the average BMI growth curve and picking ages which correspond to ob­

vious features, such as the AR. This would then ensure that the effects of these features can still 

be estimated. One approach which is specific to the use of growth velocities is to initially fit the 

model on all available velocities then identify any consecutive intervals with similar estimated co­

efficients. The growth velocities can then by recalculated to cover the combined intervals and the 

model refitted [11]. Regardless of the approach used, the effect of the removal of a small proportion 

of the parameters should be negligible as the high coIIinearity means that fewer variables can still 

retain almost all the information present in the full model [117]. 

Alternative methods beyond multivariable regression which would also resolve the problems 

due to collinearity are discussed later. 

Missing data This analysis has illustrated that use of a complete-case approach is potentially 

inappropriate, especially when many variables, each with missing data, are being used. Only when 

the proportion of missing data is small and uninformative, and thus the pay-off of exploiting the 

information in the incomplete cases minimal, maya complete-case analysis be justified [120]. Thus 

complete-case analysis is not generally a recommended approach, except perhaps in the rare cases 

when the question of interest is genuinely confined to the sUbpopulation of com pieters [118]. 

However, it should be noted that complete-case analyses remain in common use, often, seem­

ingly, with little concern for the consequences of the exclusion of a relatively large proportion of 

the data, although efforts are being made to persuade researchers away from this approach [122]. 

Clearly alternatives need to be considered. 

The removal of explanatory variables from the model, described above as a means to avoid the 

problems caused by coIlinearity, would also have the effect of increasing the proportion of subjects 

which could be included in the analysis. If, for example, 10 explanatory variables are used in 

the model and each individual has, independently, a probability of 0.9 of having each variable 

observed then the proportion of subjects with all 10 variables observed (Le. the proportion used 

in a complete-case analysis) would be expected to be 0.35. However, if the number of explanatory 

variables is reduced to 5 then this proportion is increased to 0.59. 

Because the SWEDES data are balanced (see Section 5.1.2.1), one viable approach which would 

handle the issue of missing data yet retain all the childhood BMI growth observations is multiple 
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imputation [120] (MI, see Section 5.2.4). Here, each missing value (i.e. each unobserved child­

hood B~n value) would be replaced by a set of plausible values which represent the uncertainly 

surrounding to value to be imputed. This would create multiple datasets, each completed with 

independently imputed values, which would then be analysed using mUltiple regression in an iden­

tical manner to the present analysis. As each subject in each dataset would then have complete 

childhood BMl data, none of them would be excluded from the analyses. The results from the 

separate analyses would then be combined, leading to a single inferential statement about the 

parameters of interest [124J. Use of Ml would not, however, overcome the problems of collinearity. 

~n is used in the SWEDES dataset in Chapter 8, albeit in a slightly different application. 

Beyond multivariable regression Structural equation models (SEMs) are an extension of 

standard regression models to include multiple outcomes, called 'endogenous variables', and un­

observable 'latent' variables 1169J. SEMs are made up of two components, the 'structural model' 

and the 'measurement model'. The measurement part specifies how proxy or manifest measures 

of unmeasured or unmeasurable latent variables are related to the latent variables. The structural 

part defines the relation between the latent variables and one or more outcomes. 

An equivalent analysis would assume that a subject's BMI growth profile is determined by a 

latent process that influences their late-adolescent BMI and %BF. Childhood BMI development 

would then be parameterised in terms of 'true' BMI or BMI velocity at different ages, which would 

be latent variables manifested by the observed childhood BMI values, forming the measurement 

model. The structural part of the model then defines how these latent variables influence late­

adolescent BMI or %BF [l1J. 

Under the assumption that subjects without a given observed childhood B!vII value are 'miss­

ing at random' (MAR, see Section 5.2.1), models can be fitted on aU individuals with at least one 

observed childhood BMI value. Thus SEMs have the advantage of handling missingness directly. 

The strong positive associations seen between BMI velocity around the AR and late-adolescent 

BMI and, to a lesser extent, %BF indicate a possible relationship between the timing of the AR 

and later adiposity. Estimation of the point at which the AR occurs in each individual would allow 

this relationship to be examined more explicitly. One crude approach would be to use the age 

at the minimum observed BM! value for an individual, perhaps restricted to a certain interval of 

ages. as an estimate of the age at AR. This would, however, restrict estimated ages at AR to being 

integer values, losing much information contained within the observed BMI values, and would also 

be very susceptible to measurement error. 

As an extension to this, the fitting of subject-specific BMI growth curves to the observed 

longitudinal BMI data as an initial step of an analysis is an appealing and potentially fruitful 

approach. Indeed, going beyond repeated measures to understand trajectories is a theme that it 

has been suggested should be more often addressed in life course epidemiology 1170]. From the 

fitted curves, minima can be derived to use as estimated locations for the AR. Childhood BMI could 
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be modelled using parametric (for example polynomial) or non-parameteric (for example spline) 

curves. The latter of these approaches is utilised in Chapter 8 to investigate the relationship 

between the AR and late-adolescent adiposity in SWEDES. Whilst clearly some childhood Bi\H 

values are required to be observed in order to fit the curve, the necessity for all 10 childhood BMI 

values to be present. as in the complete-case multivariable regression, could be relaxed. This would 

mean that a higher proportion of subjects could contribute to the analysis. 
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Chapter 8 

Examining the relationship 

between the adiposity rebound 

and late-adolescent obesity in the 

Stockholm Weight Development 

Study 

8.1 Introduction 

The term 'adiposity rebound' (AR) is used to describe the period around 6 years of age when 

BMI begins to increase following a nadir. There is evidence that the age at AR is associated with 

later adiposity, with children displaying a earlier AR being at increased risk of obesity. Given the 

widely-reported increases in prevalence of obesity over recent years a more thorough understanding 

of the relationship between the AR and later adiposity is important. 

The Stockholm Weight Development Study (SWEDES) is a prospective longitudinal study 

which provides a healthy contemporary birth cohort in which to investigate the relationships be­

tween the AR and late-adolescent adiposity. Annual weight and height measurements are available 

throughout childhood, allowing the BMI trajectory to be examined. Many anthropometric vari­

ables were also measured at follow-up when the SWEDES participants were approximately 17 

years old. In particular, BMI and percentage body fat (%BF) provide measures of late-adolescent 

adiposity and are used as outcomes in the present analysis. 

The epidemiological aims are to assess the extent to which the AR is associated with late­

adolescent adiposity, and to investigate whether the period around the AR can be considered as 

a 'critical period' for later obesity. In order to achieve this, different methodological approaches 
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must be explored, developed and implemented. 

As parametric techniques often fail to adequately model the BMI trajectory. subject-specific 

cubic smoothing splines are fitted to the childhood BMI values for each individual in the dataset. 

The fitted splines are then used to derive estimates of the age at adiposity rebound and the BMI 

at this age for each individual. These derived explanatory variables are then related to BMI and 

%BF in adolescence, through use of logistic and linear regression, to investigate the association 

between AR and adolescent adiposity. 

The SWEDES dataset brings with it the issue of missing data, particularly aml?ng the childhood 

BMI values. With a balanced dataset such as SWEDES this can be dealt with via multiple 

imputation (MI). As the methodology being used here is of interest as well as the results of its 

application, in each instance both the results using the original data only and the results using the 

imputed datasets are presented and compared. 

The fitted splines also allow the estimation of BMI and BMI velocity for any given age in 

childhood. These estimated values can then be used to try and investigate whether the AR can 

considered as a 'critical period' for adolescent adiposity. 

The analysis using the original data only formed part of the work presented at the 4th World 

Congress on Developmental Origins of Health and Disease (DOHaD), held 13-16 September 2006 

at the University of Utrecht in The Netherlands [167]. 

8.2 Subjects 

A general introduction to the Stockholm Weight Development Study (SWEDES) can be found in 

Section 4.1. As in Chapter 7, the terms 'subject' and 'individual' continue to refer to the offspring 

in the study, and 'examination' to the occasion of the measurement of the anthropometric variables 

as part of the SWEDES follow-up when the offspring are approximately 17 years old. 

The childhood growth data are again reduced to the subset of annual observations between age 

1 and 10 years inclusive. These are referred to as the 'childhood BMI measurements'. The lower 

end of this range should be sufficiently low to capture any very early ARs yet late enough to avoid 

the additional curve-fitting complications caused by the BMI peak often observed within the first 

year of life. The upper end of this range should be sufficiently late to capture the entire range 

of plausible ages for AR without being so late as to confuse their identification by also including 

further undulations in the BMI trajectory associated with the pubertal period. The outcome 

variables are BMI and %BF measured at examination when the subjects are approximately 17 

years old. 

BMI through childhood and at examination is calculated as weight/height 2 (kg/m 2
). Of the 

481 individuals in the study, 95 (19.8%) have no BMI observations whatsoever (i.e. no concurrent 

height and weight observations) between age 1 and 10 years. Using the data in their initial form 

these individuals can contribute nothing to any analysis involving childhood BMI trajectory. Even 

under a MI approach they can only contribute if the entire childhood BMI trajectory is imputed, 
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which is rather unappealing. Thus these 95 individuals are excluded from the analysis at this stage 

leaving 386 eligible subjects. 

This group of 386 individuals are referred to throughout as the 'original dataset'. Whilst clearly 

they are not the 'original' dataset in the sense that some of the initial 481 subjects have been 

excluded, this dataset remains 'original' in the context of the data themselves being unchanged. 

This is in opposition to the imputed datasets in which any values missing in the original dataset 

will be 'filled in'. 

It is important to investigate whether those individuals with no observed BMI values who are 

excluded from the analysis differ from those with at least one observed BMI value who are included. 

Table 8.1 summarises by inclusion status the distributions of a variety of variables at birth and at 

examination. 

The majority of the variables examined appear to have very similar distributions in those who 

are included in and those who are excluded from the analysis, although both included males and 

females perhaps seem to be a little heavier at birth. Several of the variables at examination have 

differing mean values but median values which differ markedly less. This is likely to be evidence 

of skew in the distribution or a small number of outlying values having a large effect on the mean, 

so should be of little concern. The standard deviations (SDs) in those who are excluded from the 

analysis are often seen to be greater, though because of the small sample sizes involved this may 

again be due to one or two outlying values. 

That the distributions of these variables appear to be very similar in the two subsets is important 

as it suggests that the excluded individuals are little more than a random group of the SWEDES 

dataset - or, to use the language of Rubin (see Section 5.2.1), they are 'missing completely at 

random' (MCAR). The result of this is that their exclusion should not bias the results obtained 

using the remaining 386 individuals in the dataset. 

8.3 Methods 

In previous studies, several different approaches have been employed to estimate the location of the 

AR (meaning both the age and BMI at AR) in each individual. The most basic method is to take it 

to be the lowest observed BMI value [88], though more often the observed BMI values are plotted 

and the AR visually determined by identification of the point of lowest BMI [82, 83, 90, 165]. 

Alternatively, individual BMI curves may be fitted to the data, and from them the AR location 

derived. Cubic polynomials are often used for this purpose [84, 85, 86] and have also been extended 

to a random coefficients model [86]. A final approach is to obtain growth curves for the logarithm 

of height and the logarithm of weight for each individual using random coefficient cubic polynomial 

models. Velocity curves are then derived from t.he fitted curves and the age at AR found as the 

point when the velocity of the log-transformed weight curve exceeds twice the velocity of the 

log-transformed height curve [171, 172]. 

Alt.hough it has been suggested that estimating the AR location visually reflects the physiolog-
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Males (n = 202) 

Variable 
Included (n = 159)) Excluded (n = 43) 

Mean Median SD Mean Median SD 

At birth 

Gestational age (weeks) 39.5 40 1.8 39.6 40 2.3 

Weight (kg) 3.56 3.53 0.54 3.42 3.42 0.52 

At examination 

Age (years) 16.9 16.9 0.4 17.0 17.0 0.4 

Weight (kg) 68.2 66.2 11.0 70.5 67.1 14.9 

Height (m) 1.80 1.80 0.06 1.79 1.79 0.06 

BMI (kg/m2 ) 20.9 20.2 2.8 22.0 20.5 4.5 

Waist circumference (cm) 74.6 73 7.4 78.4 74 11.5 

Hip circumference (cm) 92.5 91 7.3 94.5 92 9.2 

%BF 15.5 14.2 6.7 19.0 15.9 9.2 

Females (n = 279) 

Variable 
Included (n = 227) Excluded (n = 52) 

Mean Median SD Mean Median SD 

At birth 

Gestational age (weeks) 39.5 40 1.6 39.8 40 1.4 

Weight (kg) 3.43 3.48 0.48 3.39 3.40 0.47 

At examination 

Age (years) 16.8 16.8 0.4 16.8 16.8 0.4 

Weight (kg) 59.3 59.0 8.8 61.3 59.9 10.6 

Height (m) 1.67 1.67 0.06 1.67 1.66 0.05 

BMI (kg/m2) 21.3 20.8 3.0 22.1 21.5 3.6 

Waist circumference (cm) 71.0 70 6.7 73.1 71.5 8.6 

Hip circumference (cm) 91.9 92 6.5 93.6 93 7.3 

%BF 29.0 28.3 6.3 31.3 31.3 6.8 

Table 8.1: Distributions of variables at birth and at examination for subjects in the Stockholm Weight Development 

Study, by inclusion in the analysis and sex. 13MI is body mass index and %13F is percentage body fat. 
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ical basis of the AR better than estimation via polynomial fitting [173]' visual inspection of each 

BMI curve may not be practicable for large datasets. Additionally, as BMI curve fitting has been 

restricted to cubic polynomials, the deficiencies seen in the model fitting approach may be due to 

the specific model used. In particular, the use of a parametric model may not provide sufficient 

flexibility of curve shape to model BMI around the period of AR, as discussed in Section 6.l. 

Thus in the present application non-parametric subject-specific cubic smoothing splines are used 

to model BMI growth and derive estimates of the AR location. This is described in Section 8.3.l. 

An additional issue to be addressed in the present application is missing data, which particularly 

affects the childhood BMI values in SWEDES. As growth curves are to be fitted to the BMI values 

it is not imperative that each individual has the same number of observed BMI values, but if the 

extent of missing data is great then the curve fitting may not be able to provide estimates of the 

AR location. As the growth data in SWEDES are balanced, missing data may be dealt with using 

MI. The MI approach used is detailed in Section 8.3.2. 

Due to the relatively complex approach to analysis, a schematic overview of the methods is 

provided in Section 8.3.3 for clarification. 

8.3.1 Spline fitting 

A theoretical background to smoothing splines is provided in Section 5.4.1.4. Here, more application­

specific details such as data requirements, the selection of the smoothing parameters, the estimation 

of the AR location, and the software used in the spline fitting are discussed. 

Data requirements 

The 386 eligible individuals in the SWEDES dataset have between 1 and 10 non-missing annual 

BMI observations. Clearly attempting to fit a spline and derive from it the location of the minimum 

value with just a handful of points is unlikely to provide reliable results. Thus the following 

requirements are introduced which have to be satisfied in order for a spline to be fitted: a child 

must have 6 or more data points in total, at least 2 of which must be at age 6 years or younger, 

and at least 2 of which must be at age 6 years or older. 

Selection of the smoothing parameters 

Selection of the smoothing parameter for the splines is a key issue which can be done in a variety of 

ways. Green and Silverman [140] discuss two philosophical approaches to the question of choosing 

the smoothing parameter. The first regards the freedom of choice as an advantageous feature of 

the procedure whereby a variety of values can be experimented with and a subjectively optimal 

choice made. The second line of thought is that an automatic procedure is preferable so that the 

data themselves are choosing the value of the smoothing parameter. 

In the present study both these elements seem to be of importance. The potential to vary the 

smoothing parameter between individuals in order to optimise the reliability of the identified AR 

is clearly essential. However, use of a common smoothing parameter, or at least a common method 
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by which to obtain it, would ensure comparability across individuals and remove the need to decide 

on smoothing parameters on an individual-by-individual basis. Whist this latter point may not be 

of too much concern with a sample size of 386, when using much larger datasets (for example the 

100 imputed datasets each with 386 subjects) the procedure would become very time-consuming. 

To assess methods by which the smoothing parameter could be chosen, either by the use of an 

existing automatic procedure or the selection of a global parameter for use across the dataset, an 

analysis is carried out on a subset of individuals. As the spline fitting procedure necessitates at 

least six non-missing BMI values for an individual, subjects in analysis of the original data can have 

either 6, 7, 8, 9 or 10 values to which the spline must be fit. As this is a relatively wide range, and 

because the selection of the smoothing parameter is often dependent on the number of data points, 

a stratified random subsample of 8 individuals (where possible) from each subgroup (i.e. those 

with 6 data points, those wit.h 7, etc.) is taken. Each subject then has fitted several splines using 

cross-validation (CV), generalised cross-validation (GCV) and a variety of user-specified equivalent 

degrees of freedom (EDF) values (3, 4, 5, 6, 7 and 8). 

Following this examination of different smoothing parameters an o~erall strategy for the smooth­

ing parameter to use for each individual is devised. Subject-specific splines are then fitted to each 

individual meeting the previously defined data requirements. 

Estimation of the adiposity rebound location 

The estimated location of the AR for each individual is then defined as the minimum value of 

their fitted spline. Whilst all 10 BMI values between age 1 and 10 years are used in the spline­

fitting procedure when present, the estimated AR is only searched for between age 2 and 9 years. 

This range of ages encompasses those over which the AR has generally been identified in previous 

studies. Identification of ARs outside of this interval would also be somewhat unreliable as ages 

would then be nearing the extremes of the interval over which the spline is fit. 

The most simple criterion for identifying the minimum is as the point at which the first deriva­

tive of the fitted spline changes from negative to positive. However, this approach could easily 

identify situations which are either implausible or undesirable in the context of the AR, such as 

multiple minima and minor local minima or points of inflect.ion which are of no real interest. To 

overcome the latter problem it is also necessitated that the value of the first derivative of the fitted 

spline be negative one year prior to the identified minimum and positive one year after. If after 

this stipulation there still exist multiple minima then the likelihood is that such minima are true 

features of the data. In these instances it is not possible to identify an AR, meaning that these 

individuals cannot contribute to any analysis which includes either dimension of the AR. 

Software 

Spline fitting is carried out using the smooth. spline package in R [155], a procedure for one­

dimensional cubic spline fitting. The package allows user-specification of the degree of smoothing 

in terms of the smoothing parameter Il, or in terms of the EDF, as well as automatic choice 
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via cross-validation (CV). With fewer than 50 distinct points, as is the case for all individuals 

in the study, the expression is minimised over cubic splines with knots allowed at all the data 

points, so the curve obtained is precisely the cubic spline smoother [140]. A further package, 

predict. smooth. spline, can then be used to calculate the estimated curve or its derivatives at 

any specified points. 

8.3.2 Multiple imputation 

A theoretical background to multiple imputation is provided in Section 5.2.4. In this section the 

variables to be included in the imputation model are discussed and the imputation specifications 

detailed. Some additions to the standard complete-data inference approach are also introduced. 

Imputed variables 

Many subjects in the SWEDES dataset have one or more missing BMI values (i.e. either missing 

height, weight or both for a given age) between age 1 and 10 years. When the number of missing 

BMI values for an individual is small this may result in a less reliable estimate of the location of 

the AR. When many BMI values are missing there may be insufficient non-missing BMI values 

for a spline to be fitted at all so that no estimate of the location of the AR can be made. This 

means that the individual cannot contribute to the analysis, reducing the effective sample size, 

and hence the precision of the estimates. Also, bias may be introduced if those not contributing 

to the analysis are not missing completely at random (MCAR) [120]. Imputation of the missing 

BMI values means that every individual has the full 10 data points so that a spline can be fitted, 

which should increase the proportion of subjects contributing to the analysis. 

The adolescent outcomes - BMI and %BF at examination - have fewer missing values. 

Indeed, BMI at examination is fully observed and %BF has only 7 missing values (l.8%). Again, 

if subjects with missing %BF are excluded from the analysis the same concerns exist. Imputation 

of the missing %BF values ensures that all individuals can be included in the analysis, provided 

the the necessary explanatory variables can be derived from the fitted spline. 

Schafer [124] suggests that for high-quality unbiased imputations to be obtained for a given 

variable it is important to include in the imputation model variables potentially related to either 

the variable of interest itself or its pattern of missingness. Whilst it has been suggested that 

the number of predictors in the imputation model should be as large as possible to make the 

MAR assumption more plausible [126], it may be impracticable to do so due to limitations in 

computing resources or in the data themselves [124]. As a result, potential explanatory variables 

are only included in the imputation model if doing so is deemed appropriate given Schafer's above 

conditions. 

All height and weight variables (those at birth, 1, 3, 6 and 9 months, and 1 to 15 years) 

are included in the imputation model due to their relation with the missing height and weight 

values. Gestational age is also included for this reason. Height, weight, waist circumference, hip 

circumference, fat mass, fat-free mass, and systolic and diastolic blood pressure at examination 
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are included due to their relationship with %BF at examination, and also, to a lesser extent, with 

childhood BMI. 

Several maternal variables (BMI and %BF at examination, type of employment, monthly in­

come, hours worked per week, education level, civil status, country of origin, number of children 

and age at the birth of the child included in the study) are also included as they are judged to 

be likely to be related to either the missing values themselves (in the case of the anthropometric 

variables and country of origin) or to the patterns of missingness (in the case of indicators of 

socioeconomic status (SES)). As both the education level [94] and occupation [78] of the mother 

have previously been used as proxies for SES in published analyses using these data they are both 

taken to be reliable indicators. 

Whilst the application of MI by Markov Chain Monte Carlo (l\·fCMC), as described in Section 

5.2.4, assumes multivariate normality, inferences may be robust to departures from this assumption 

if the amount of missing information is not large [124]. A number of the variables included in the 

imputation model are categorical, but as these are all virtually or entirely fully observed and only 

appear in the imputation model to improve the quality of the imputations (i.e. they do not appear 

in the analysis model), this should not cause any problems. Several continuous variables which 

are in the analysis model. and thus for which the quality of the imputed values is more important, 

exhibit slightly skewed distributions. In these cases a suitable transformation is applied prior to 

the MI procedure. 

Imputation specifications 

As the missing data pattern is intermittent (see Section 5.2.1), MCMC, 3.', described in Section 

5.2.4, is is an appropriate method by which to generate the imputed values. 

In the MI procedure, the expectation-maximisation (EM) algorithm is used to derive a set of 

initial parameter values for the MCMC. The EM algorithm is a technique for maximum likelihood 

estimation (MLE) in parametric models for incomplete data. It is an iterative procedure, which 

repeats the same two steps until convergence. In the first (expectation) step, the conditional ex­

pectation of the complete-data log likelihood given the observed data and the present parameter 

estimates is calculated. In the second (maximisation) step, the parameter estimates which max­

imise the complete-data log likelihood calculated in the first step are found. These estimates are 

then fed back into the first step [120]. 

The EM algorithm can thus be used to compute the mean vector and covariance matrix for 

the variables prior to application of MCMC. The means and standard deviations (SDs) from the 

available cases are used as the initial estimates for the EM algorithm, with correlations set to zero. 

A noninformative Jeffreys prior is used to derive the starting values for the MCMC process from 

the EM algorithm [127]. 

Full-data imputation is carried out using a single chain for all imputations with 200 initial burn­

in iterations before the first imputation and 100 iterations between each subsequent imputation. 

Whilst in general relatively few imputations may be required to provide a relative efficiency 
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close to one (see Section 5.2.4), the large number of variables with missing data and the occasionally 

high proportions of missing data for a given variable mean that a greater number may be advisable 

here. A lack of constraints on computing power and the ease with which many datasets may be 

analysed also mean that there seems little point in risking having too few imputations. Thus one 

hundred imputed datasets are created. 

Time-series and autocorrelation plots of parameters from iterations, as detailed in Section 5.2.4, 

are examined to ensure appropriate convergence of the MCMC process. 

Complete-data inferences 

Once suitably obtained, the imputed datasets can be analysed using standard procedures for 

complete data and the within-imputation results combined as described in Section 5.2.4. Regardless 

of the complete-data analysis approach used, the process of combining results across the imputed 

datasets is essentially the same, resulting in valid statistical inferences that properly reflect the 

uncertainly due to missing values. 

In the present context, interest mainly lies in the location of the AR itself, and how this relates 

to measures of late-adolescent adiposity. Thus the within-imputation results to be combined will 

include summary statistics of age and BMI at AR, estimated correlation coefficients, and estimated 

coefficients in models relating the AR to later adiposity. 

Whilst the combination of estimates of means and regression coefficients is simply achieved using 

the previously described approach, this requires a slight amendment when combining correlation 

coefficients across imputed datasets. A further issue is the extension of medians to the MI setting. 

Details regarding these somewhat non-standard approaches are provided below. 

Correlation coefficients Correlation coefficients between several variables (age and BMI at AR, 

BMI and %BF at examination) are of interest in the present analysis. Whilst a sample correlation 

coefficient between a pair of variables within an imputed dataset can be calculated in the normal 

way, the distribution of these correlation coefficients across the imputed datasets will be skewed, 

making their combination less simple [127]. The distribution of the sample correlation coefficients 

r can, however, be normalised through Fisher's z transformation, 

z = ~ log (1 + r) . 
2 1 - r 

The distribution of z is then approximately normal with mean 

and variance 

log (1 + p) 
I-p 

1 
n - 3' 

where p is the population correlation coefficient and n is the number of observations contributing 

to the calculation of the sample correlation coefficient. z can then be combined across the imputed 
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datasets in the usual manner and the associated variances used to calculate confidence limits 

if required. These values can then be transformed back to give an estimate of the correlation 

coefficient and confidence limits using 

r = tanh(z). 

Mean medians In a simple setting, when the distribution of a variable is skewed it is often 

preferable to use the median as a measure of the 'average' of the variable as opposed to the mean. 

The generalisation of the median to a MI setting is, however, not so obvious. Thus the proposed 

statistic for use in this situation is the 'mean median', defined as the mean of the median values 

within each imputed dataset. 

Software 

!\II is carried out using the MI procedure in SAS [174). The 100 imputed datasets are then analyzed 

using standard SAS procedures (CORR, REG, GENMOD) and the MIANALYZE procedure used to combine 

the results and generate valid statistical inferences. 

8.3.3 Diagrammatic overview of methods 

The complex multi-stage nature of the present analysis means that it is not always easy to follow. 

Fig. 8.1 is provided as a diagrammatic summary of the analysis methods used. 

The following comments relate to the labels in Fig. 8.1: 

1. Start with the original data, which includes all 481 subjects. Of these, the 95 subjects with 

no observed childhood BMI values are excluded from the analysis, whilst the remaining 386 

individuals are included. 

2. These individuals have data which are subject to missingness. This can potentially be handled 

through MI. 

3. If MI is not used, then the 'original dataset' is used. This can be partitioned into childhood 

BMI data and outcome variables. 

4. Splines are fitted to those individuals with childhood BMI data meeting the data require­

ments. whilst those for whom this is not the case are excluded from the analysis at this 

point. 

5. Of those subjects for whom a spline is fitted, not all will have a successfully identified AR. 

Those that do not are again excluded from the analysis at this point. 

6. Individuals who do have a fitted spline and an estimated AR, however, are included in the 

final distal outcome model. Here, one or both dimensions of the AR are related to the 

outcome variables. 
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The right hand side of Fig. 8.1. which describes the analysis when MI is used, could be explained 

in an analogous manner. 

The structure within Fig. 8.1 can be seen to fit into the overall schematic overview of the 

statistical met hods for balanced data (Fig. 5.1) presented in Section 5.5. 

8.4 Missing data 

Table 8.2 shows the number of observed childhood BMI measurements at each age in the original 

data. The patterns of observed data are similar in males and females, with around 70-75% ob­

served up to age 6 years (data from health care centre journals), then around 90-95% observed 

from age 7 years onwards (data from school journals). 

Age Number (%) of observed childhood BMI measurements 

(years) Males (n = 159) Females (n = 227) Total (n = 386) 

123 (77.4%) 176 (77.5%) 299 (77.5%) 

2 119 (74.8%) 171 (75.3%) 290 (75.1 %) 

3 120 (75.5%) 169 (74.4%) 289 (74.9%) 

4 123 (77.4%) 173 (76.2%) 296 (76.7%) 

5 119 (74.8%) 162 (71.4%) 281 (72.8%) 

6 110 (69.2%) 155 (68.3%) 265 (68.7%) 

7 147 (92.5%) 213 (93.8%) 360 (93.3%) 

8 145 (91.2%) 217 (95.6%) 362 (93.8%) 

9 146 (91.8%) 209 (92.1%) 355 (92.0%) 

10 142 (89.3%) 208 (91.6%) 350 (90.7%) 

Table 8.2: Number of observed childhood body mass index (BMI) measurements at each age, by 

sex. 

Table 8.3 shows the number of observed childhood BMI measurements per subject. Similar 

distributions are again seen in the males and females with the majority of individuals (around 

60%) having the full 10 values observed. The next most frequent number of observed values is 4, 

occurring in around 17% of subjects, which is quite anomalous given the infrequency with which 

similar numbers of observed values occur. Of those subjects with 4 observations virtually all are 

at ages 7, 8, 9 and 10 years (results not shown), indicating that data from their school journals 

(covering age 7 years onwards) are present, whilst data from their health care centre journals (cov­

ering ages up to 7 years) are not. 

It is important to investigate whether those individuals with a sufficient number of observed 

BMI measurements between age 1 and 10 years to be included in the spline-fitting procedure 
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Number of observed Frequency (%) 

childhood BMI measurements Males (n = 159) Females (n = 227) Total (n = 386) 

1 (0.6%) 0 (0.0%) (0.3%) 

2 7 (4.4%) 9 (4.0%) 16 (4.2%) 

3 3 (1.9%) 4 (l.8%) 7 (l.8%) 

4 27 (17.0%) 38 (16.7%) 65 (16.8%) 

5 0 (0.0%) 4 (1.8%) 4 (1.0%) 

6 1 (0.6%) 5 (2.2%) 6 (1.6%) 

7 5 (3.1%) 1 (0.4%) 6 (1.6%) 

8 10 (6.3%) 13 (5.7%) 23 (6.0%) 

9 9 (5.7%) 20 (8.8%) 29 (7.5%) 

10 96 (60.4%) 133 (58.6%) 229 (59.3%) 

Table 8.3: Number of observed childhood body mass index (BMI) measurements per subject, by 

sex. 

of Section 8.3.1, and thus potentially in any analyses, differ from those who do not. Table 8.4 

summarises the distributions of a variety of variables at birth and at examination for subjects with 

different numbers of observed BMI measurements. 

As individuals require at least 6 measurements to be eligible for the spline-fitting procedure, 

both those with 6-9 and 10 measurements will have splines fit when the original data are analysed 

and thus, potentially, contribute to any analysis. Those with 10 measurements, however, have no 

missing data so will remain identical in each of the 100 imputed datasets, whilst those with with 

6-9 measurements will have 1-4 imputed values. 

Subjects with 1-5 BMI measurements, however, have insufficient data points to allow subject­

specific splines to be fitted thus will not contribute to any analysis using the original data. They 

will have 5-9 values imputed in the imputed datasets and thus, when these are analysed, will 

qualify for the spline-fitting procedure. 

Differences in the variables examined in Table 8.4 between those subjects with varying degrees 

of observed BMI values are highly sex-specific. In females all of the variables appear to be relatively 

similarly distributed, regardless of the number of BMI values observed. In males, however, there 

are some clear trends. At birth, those with 5 or fewer observed values appear heavier than those 

with 6 or more. At examination this same group still have, on average, greater weight, and also 

greater BMI, waist and hip circumferences, and %BF. 

8.5 Exploratory analyses 

Exploratory analyses using the original data only (Section 8.5.1) and using the imputed datasets 

(Section 8.5.2) are presented. 
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Males (n = 159) 

Number of observed childhood BMI measurements 

Variable 
1-5 (n = 38) 6-9 (n = 25) 10 (n = 96) 

Mean Median SD Mean Median SD Mean Median SD 

At birth 

Cest. age (weeks) 39.6 40 1.9 39.1 39 2.2 39.5 40 1.6 

Weight (kg) 3.70 3.63 0.57 3.46 3.48 0.57 3.53 3.53 0.51 

At examination 

Age (years) 16.9 16.9 0.4 16.9 17.0 0.4 16.8 16.9 0.4 

Weight (kg) 72.7 70.4 12.4 68.5 63.2 13.0 66.3 64.5 9.4 

Height (m) 1.82 1.82 0.06 1.82 1.83 0.06 1.79 1.79 0.06 

B~II (kgjm2
) 21.9 20.9 3.3 20.6 19.2 3.1 20.6 20.0 2.4 

Waist eire. (em) 77.8 76 9.0 74.0 73 9.7 73.4 73 5.6 

Hip eire. (em) 95.8 94 8.5 92.2 91 8.6 91.3 91 5.9 

%BF 18.2 16.3 8.3 16.1 14.4 6.9 14.3 13.9 5.6 

Females (n = 227) 

Number of observed childhood BMI measurements 

Variable 
1-5 (n = 55) 6-9 (n = 39) 10 (n = 133) 

Mean Median SD Mean Median SD Mean Median SD 

At birth 

Cest. age (weeks) 39.4 39 1.4 39.4 40 2.2 39.5 40 39.5 

Weight (kg) 3.48 3.47 0.42 3.36 3.50 0.58 3.43 3.45 0.46 

At examination 

Age (years) 16.9 16.9 0.4 16.8 16.8 0.4 16.8 16.8 0.4 

Weight (kg) 59.6 59.1 8.7 60.7 59.4 10.3 58.8 58.5 8.4 

Height (m) 1.66 1.65 0.06 1.67 1.67 0.06 1.67 1.67 0.06 

BMI (kgjm2
) 21.8 21.1 3.3 21.8 20.9 3.8 21.0 20.8 2.5 

Waist eire. (em) 71.1 70 7.0 72.4 70 8.5 70.6 70 5.9 

Hip eire. (em) 92.8 93 6.5 91.9 92 7.4 91.6 91 6.3 

%BF 29.1 28.2 6.6 30.1 29.3 6.8 28.6 28.2 6.0 

Table 8.4: Distributions of variables at birth and at examination, by number of observed childhood body mass 

index (BMI) measurements and sex. Cest. age is gestational age, waist circ. is waist circumference, hip eire. is hip 

circumference and %BF is percentage body fat.) 
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.5.1 Using t h e original data only 

Fig. .2 iIlustrat both the univariate and bivariate distributions of 13MI and %13F at examina­

tion. From the hi tograms it can be seen that both males and females have positively skewed 

distribution of both 13?-.fI and %13F at examination. Meanwhile, the scatterplots show a clear 

po itive association between the two measures of adiposity. Indeed, the correlations between the 

two dimen ion, calculated using the log-transformed variables due to the skew, are 0.57 and 0.63 

in male and femal re pecti vely. 
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Fig. 8. 2 : Unhnriate and bivariate distributions of body mass index (BMI) and percentage body fat (%BF) at 

examilllltion ill th original data, by sex, for the 3 6 subjects included in the analysis. 

Fig. .3 include plot of median 13MI through childhood in the three subgroups defined by the 

tertilcs of ag -adjusted 13111 at examination (low, medium and high) . A sex-specific simple linear 

regr SSiOIl of 131fT at examination on age at examination is first fitted and the residuals used to 
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define the age-adjusted BMI at examination tertiles. The percentage of individuals with observed 

BMI values contributing to each plotted point is given in Table 8.5 and ranges between 62 and 

100% in males and between 55 and 99% in females. 

Whilst it is evident that the median BMI levels in the subgroups take the ordering that they do 

at examination well in advance of this point, providing evidence of BMI tracking, there are some 

sex-specific differences. In females, this ordering is established by age 1 year and the median BMI 

values in the subgroups diverge at a relatively constant rate from this age onwards. In the males, 

however, until age 6 years the median BMI within the medium and high BMI at examination 

subgroups are very similar, after which point those in the high BMI at examination tertile gain 

BM! much more rapidly than the other two subgroups. In the females there is also some evidence 

that a higher BMI at examination corresponds to an earlier minimum median BMI, though in the 

males this is less obvious. 

Males (n = 159) 

Subgroup of BMI Age (years) 

at examination 1 2 3 4 5 6 7 8 910 1112131415 

Low (n = 53) 87 83 83 87 83 79 96 92 87 92 87 89 89 83 77 

Medium (n = 53) 77 74 76 76 74 66 92 91 96 85 100 87 94 85 75 

High (n = 53) 68 68 68 70 68 62 89 91 92 91 94 91 89 85 77 

Females (n = 227) 

Subgroup of BMI Age (years) 

at examination 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Low (n = 75) 79 77 77 80 71 67 91 93 96 88 95 95 97 92 71 

Medium (n = 76) 83 80 80 80 78 76 97 99 95 95 92 93 93 87 63 

High (n = 76) 71 68 66 68 66 62 93 95 86 92 80 88 86 83 55 

Table 8.5: Percentage of individuals with observed body mass index (BMI) values at each age in 

each subgroup of body mass index at examination in the original data, by sex. 

Fig. 8.4 includes the equivalent plots to those in Fig. 8.3 but with the subgroups defined in terms 

of age-adjusted %BF rather than BMI at examination. Age-adjusted %BF is calculated using an 

analogous method to that for age-adjusted BM!. The percentage of individuals with observed BMI 

values contributing to each plotted point is given in Table 8.6 and ranges between 64 and 98% in 

males and between 59 and 97% in females. 

The median BMI trajectories seen in the plots are not dissimilar to those for the subgroups 

defined on BMI at examination, which, given the high levels of correlation between BMI and %BF 
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at examination not urpli ing. As in Fig. .3. the median BMI corresponding to the high %BF 

at exantination ubgroup i uppermost from age 1 year in females, whereas this is not the case 

until age 5 year in male. From Fig. .4, however, it is noticeable that this median trajectory then 

ctiverge' more rapidly away from the others whilst, particularly in females, the trajectories corre­

. ponding to medium and low %BF at examination remain similar. There is only weak evidence in 

ither s x of a negati\'e association between age at minimum median BMI and %BF at examination. 
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. 5.2 ing the imputed datasets 

Fig. .5 pre. ent equivalent plot to Fig. .3 but using the 100 imputed datasets rather than only 

the original data. The m dian Bi\ll ill each individual at each age between 1 and 15 years and at 
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Males (n = 157) 

Subgroup of %BF Age (years) 

at examination 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Low (n = 52) 85 81 81 83 77 71 98 94 92 90 94 94 87 85 75 

Medium (n = 52) 79 75 77 79 79 71 94 90 94 87 96 87 96 85 81 

High (n = 53) 68 68 68 70 68 64 87 91 89 92 91 87 89 85 74 

Females (n = 222) 

Subgroup of %BF Age (years) 

at examination 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Low (n := 74) 82 81 81 84 74 69 92 95 95 92 92 97 96 88 66 

~Iedium (n := 74) 73 72 72 72 69 68 96 97 96 91 95 89 91 88 64 

High (n := 74) 77 73 70 73 70 68 93 96 86 92 81 89 91 86 59 

Table 8.6: Percentage of individuals with observed body mass index (BMI) values at each age in 

each subgroup of percentage body fat (%BF) at examination in the original data, by sex. 

examination is first calculated across the imputed datasets. Note that where BMI is observed for 

an individual at a given age this median is merely the observed value. A sex-specific simple linear 

regression of median BMI at examination on age at examination is then fitted and the residuals 

used to calculate the age-adjusted median BMI at examination tertiles, from which the BMI at 

examination subgroups are defined. The median BMI at a given age in a given subgroup is then 

calculated as the median of each of the subgroup members' median BMI at that age. 

As the imputation procedure ensures that at every age each individual has a BMI value, all 

subjects within a subgroup contribute to the plotted value at each age. However, as each individual 

contributes values from 100 datasets, each point is effectively a summary of values totalling 100 

times the number subjects within the subgroup. The percentage of individuals with imputed (as 

opposed to observed) BMI values contributing to each plotted point is given in Table 8.7 and 

ranges between a and 34% in males and between 1 and 45% in females. 

The median BMI trajectories shown in Fig. 8.5 are very similar to those in Fig. 8.3. As the 

majority of BMI values are observed at each age, and thus contribute to each plot in the same way, 

this is largely expected, though the degree of similarity suggests that the imputed BMI values at 

each age in each subgroup must be similar to those observed in other individuals. The only slight 

differences from Fig. 8.3 are that at age 1 year the median BMI values in the subgroups now take 

the same ordering as they do at examination, and at age 6 years the median BMI corresponding to a 

high BMI at examination is now greater than that corresponding to a medium BMI at. examination. 
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Males (n = 159) 

Subgroup of BMI Age (years) 

at examination 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Low (n = 53) 13 17 17 13 17 21 4 8 13 8 13 11 11 17 23 

r.-ledium (n = 53) 23 26 25 25 26 34 8 9 4 15 0 13 6 15 25 

High (11 = 53) 32 32 32 30 32 38 11 9 8 9 6 9 11 15 23 

Females (n = 227) 

Subgroup of Br.-II Age (years) 

at examination 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Low (n = 75) 21 23 23 20 29 33 9 7 4 12 5 5 3 8 29 

r-.ledium (n = 76) 17 20 20 20 22 24 3 1 5 5 8 7 7 13 37 

High (n = 76) 29 32 34 32 34 38 7 5 14 8 20 12 14 17 45 

Table 8.7: Percentage of individuals with imputed body mass index (BMI) values at each age in 

each subgroup of body mass index at examination in the 100 imputed datasets, by sex. 

Fig. 8.6 includes plots equivalent to those in Fig. 8.5 but with the subgroups defined in terms 

of age-adjusted %BF rather than BMI at examination. Age-adjusted %BF is calculated using an 

analogous method to that for age-adjusted BMI. The percentage of individuals with imputed BMI 

values contributing to each plotted point is given in Table 8.8 and ranges between 4 and 36% in 

males and between 3 and 41 % in females. 

The median Br-.n trajectories seen in the plots are virtually identical to those in Fig. 8.4, the 

equivalent plot using only the original data rather the imputed datasets. This is again indicative 

that the imputed BMI values, or at least their median within an individual, are very similar to the 

observed values within the same subgroup for a given age. 

8.6 Spline fitting 

Details of the application of the spline-fitting procedure described in Section 8.3.1, using both the 

original data only (Section 8.6.1) and the imputed datasets (Section 8.6.2), follow. 

8.6.1 Using the original data only 

As can be seen from Table 8.2 in Section 8.4, 293 out of the 386 subjects (75.9%) have the required 

6 observed Brvn values between age 1 and 10 years to have splines fitted. 
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Males (n=159) 

Subgroup of %BF Age (years) 

at examination 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Low (n = 53) 15 19 19 17 23 28 4 8 8 11 6 8 13 17 25 

Medium (n = 53) 21 25 23 21 21 28 6 9 6 13 4 13 4 15 19 

High (n = 53) 32 32 32 30 32 36 13 9 11 8 9 13 11 15 26 

Females (n = 227) 

Subgroup of %BF Age (years) 

at examination 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Low (n = 75) 17 19 19 16 25 31 8 5 5 8 8 3 4 12 33 

Medium (n = 76) 26 28 28 28 30 32 4 3 4 9 5 11 9 12 37 

High (n = 76) 24 28 30 28 30 33 7 5 14 8 20 11 11 14 41 

Table 8.8: Percentage of individuals with imputed body mass index (BMI) values at each age in 

each subgroup of percentage body fat (%BF) at examination in the 100 imputed datasets, by sex. 

Selection of the smoothing parameters 

Smoothing splines using a variety of different smoothing parameters are fitted to a stratified random 

sample of individuals with the required number of observed BMI values, as detailed in Section 8.3.l. 

Fig. 8.7 shows the diagnostic output corresponding to one of the randomly selected subjects 

with 9 data points. In each plot the circular markers are the original data values with the fitted 

spline represented by the solid line. The plots across the top row of the output, from left to right, 

show the original data and the splines fitted using CV and GCV. The remaining plots show the 

splines fitted using the EDF values as labelled. Both the CV and GCV procedures in this instance 

result in an EDF of 9, corresponding to interpolation of the data points. This results in insufficient 

smoothing and an undesirable spline fit. Of the alternative pre-specified EDF values, 3, 4 and 5 

appear to provide excessive smoothing, resulting in unreliable identification of the AR. EDF of 8, 

on the other hand, results in a spline very close to an interpolation of the data points once more. 

The plots corresponding to EDF of both 6 and 7 display splines which are sufficiently smoothed 

to exclude minor deviations due to measurement error or other noise yet still appear to reliably 

identify the location of the AR. However, as these interpretations are subjective the assessment of 

the optimal degree of smoothness is clearly not definitive. 

The procedure is repeated for all individuals in the stratified random sample and a subject­

specific subjectively optimal EDF value, or range of EDF values when appropriate, selected for 

each, which are then analysed across the strata. It is immediately apparent that on the whole 

neither CV nor GCV provide a suitable degree of smoothing for the AR to be reliably identified. 
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Fig. 8.7: Fitted splines for a randomly selected individual with the degree of smoothing defined by cross-validation 

(CV). generalised cross-validation (GCV), and equivalent degrees of freedom (EDF) ranging from 3 to 8. 

Of the user-specified EDF values it emerges that for all subjects with 6 or 7 data points an EDF of 

5 provides an optimal, or at least acceptable, level of fit to the data. Similarly, for those with 8, 9 

or 10 data points an EDF of 6 is deemed appropriate. Thus it is decided that these values should 

be used across the dataset and a rule created in the spline-fitting routine specifying the EDF as a 

function of the number of non-missing BMI values. 

Estimation of the adiposity rebound location 

Fig. 8.8 shows examples of fitted splines for four individuals. In each plot the circular markers 

and solid lines again represent the original data values and fitted splines respectively. The upper­

left plot shows a subject with data to which the fitted spline is in close agreement and an AR 

identified. The identified AR is signified by the square symbol, through which passes a vertical 

line corresponding to the age at AR and a horizontal line corresponding to the BMI at AR. Most 

of the fitted splines in the dataset are of this type. 

The upper-right example again shows a well-fitting spline, though this time it is clearly not 

possible to identify an AR from the plot as it is monotone increasing. There are several individuals 

who have data of this type, and also some with monotone decreasing functions. As no AR can 

be identified. study members with this type of BMI trajectory cannot be included in any analyses 

which include either dimension of the AR. 

The plot in the bottom-left shows a fitted spline with multiple minima. There are several 

examples of individuals with data corresponding to this type of spline. As no single AR location 

can be identified, subjects with this type of data pattern cannot contribute to analyses which 
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Fig. 8.8: Examples of fitted splines for four individuals. 

include either age or BMI at AR. 

The final example in the bottom-right plot is of an individual with insufficient data points for 

an AR to be reliably identified, thus no spline is even fitted to the data. As previously discussed, 

t hen> are a substantial number of study members with insufficient data, often with a missing data 

pattern ::;imilar to that in the example whereby data are unobserved at younger ages then observed 

at later time points. Again, these subjects cannot be included in any analysis including either 

dimension of the AR. 

8.6.2 Using the imputed datasets 

In the 100 imputed datasets each individual has the full 10 non-missing BMI values between age 1 

and 10 years, thus all 386 subjects meet the requirement of having 6 data points in order to have 

splines fitted. The spline-fitting procedure is identical to that followed using the original data only. 

As each individual has 10 data points, however, an EDF of 6 is used in each and every instance. 

Whilst ::;plines can be fitted to every subject when using the imputed datasets, there are still 

many individuals for whom AR location cannot be estimated from the fitted spline. The fitted 

splines for these subjects are generally either monotonic increasing or decreasing, or have multiple 

minima. as discussed in relation to Fig. 8.8 in Section 8.6.1. 
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8.7 Estimated adiposity rebound locations 

The ages and corresponding BMI values at the ARs estimated from the fitted suhject-specific 

splines. using both the original data only (Section 8.7.1) and the imputed datasets (Section 8.7.2), 

are examined. 

8.7.1 Using the original data only 

By fitting splines to the original data using the method outlined in Section 8.3.l, estimated ARs 

are identified for 261 individuals (67.6%). Table 8.9 summarises the age and BMI at which the 

identified ARs occur. As the distribution of BMI at AR exhibits a slight skew it is more reliable 

to use the median. as opposed to the mean, as a measure of the 'average' value. Median age at. 

AR was found to be 5.7 years in the 111 males for which AR was identified and 5.5 years in the 

227 females. with corresponding median BMI at AR values of 15.2 kg/m2 and 15.0 kg/m2. 

Total number Number (%) of subjects Age at AR (years) BMI at AR (kg/m 2
) 

Sex 

of subjects with AR identified Mean Median SO Mean Median SO 

1\lal('s 159 111 (69.8%) 5.7 5.7 1.2 15.2 15.2 1.0 

Females 227 150 (66.1%) 5.3 5.5 1.2 15.1 15.0 1.3 

Table 8.9: Distributions of age and body mass index (BMI) at adiposity rebound (AR) in the original data, by 

sex. 

Fig. 8.9 illustrates both the univariate and bivariate distributions of age and BMI at AR. From 

thl' histograms it can be seen that both males and females have slightly positively skewed distribu­

tions of BMI at AR. Meanwhile, the scatterplots show an association between the two dimensions 

of AR. with an earlier AR generally being associated with a higher BMI at AR and a later AR 

with a lower BMI, though this is more apparent in the females. Indeed, the correlations between 

the two dimensions (calculated using log-transformed BMI at AR) are -0.23 and -0.34 in males 

and females respectively. 

Table 8.10 summarises the distributions of a variety of variables at birth and at examinat.ion 

for individuals with and without an estimated AR identified. Those individuab with an identified 

AR do seem to differ in some aspects to those with no identified AR. In particular, males with 

an identified AR appear to have lower weight at birth and lower weight, BMI, waist and hip 

circumferences, and %BF at examination. As all t.hese variables are age-dependent it is important 

to observe that the average age at which examinations took place was very similar between those 

with and without identified ARs, meaning this is unlikely to be a factor in these discrepancies. 

Females display a similar difference in weight at birth, though those with AR identified appear 

similar to those with AR not identified in terms of the measurements at examination. Also of note 

is the greater variability in observed values for almost all variables among those with no identified 
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AR, particularly the male. 

In term of com pari on between male and female anthropometry, these results are largely as 

would be expected. At birth there is little difference between the exes, though at examination 

male hm'e greater average weight and height and, whilst BMI distribution is similar between the 

'ex~, female:; generally have greater %BF. 

Fig. .10 are plot of B II and %BF at examination against age and BMI at AR. In males, it can 

be seen that age at AR i negatively associated with both BMI and %BF at examination (correlation 

coefficient· (calculated u ing log-tran formed B 11) -0.43 and -0.36, respectively) and BMI at AR 

is positively as ociated with both B 11 and %BF at examination (correlation coefficients (again 

calculated u ing log-transformed BMI) 0.56 and 0.3 , respectively). The relationships appear 

imilar for female, with correlation coefficients of -0.46 and -0.32 between age at AR and Bl\II and 

~IcBF at examination and 0.70 and 0.3 between BMI at AR and BMI and %BF at examination . 

. 7.2 U ing the imputed datasets 

The number of individual for which an estimated AR can be identified as part of the spline-fitting 

proce differ' between imputed datasets. Table .11 summarises the number of subjects for which 

e~tirnated Afu; are identified in the 100 imputed datasets. For both males and females AR is 

identified in at least ·1% of individuals in each imputed dataset, with a median of over 88%. 

Table .12 ummari e the distributions of age and BMI at AR in those subjects for whom an 

e timated AR is identified. The 'overall mean', SD and 'mean median' are calculated as described 

in ections 5.2. J and .3.2. Due to the slightly skewed nature of the distributions it is again ex­

p dient to dicu . 'average' values in terms of the latter measure. The mean median age at AR 

O\'er all imputations i found to be 5.7 year in males and 5.4 years in females with corresponding 

mean median B II at AR value of 15.2 kg/m 2 and 15.0 kg/m2. 

Table .13 ummari e the distributions of a variety of variables at birth and at examination 

for individuals with and without an estimated AR identified, with summary statistics calculated 

~ in Table .12 Comparing tho e with and without an identifiable AR, most mean median values 

arc not dissimilar. In particular. mean median Bl\II and %BF at examination in both males and 

female are \'cryimilar. though therc i greater variability among those with AR not identified. 

However. the relath'ely mall ample ize for both males and females with AR not identified may 

make the as ociated figure' Ie reliable. 

Whilst weight and height are generally greater in males than females, mean median BMI at 

cxamination is lightly greater in female. with mean median %BF at examination far greater. 
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l\Iales (n = 159) 

Variable 
AR identified (n = 111) AR not identified (n = 48) 

Mean Median SD Mean Median SD 

At birth 

Gestational age (week) 39.5 40 1. 39.5 40 1.8 

Weight (kg) 3.53 3.52 0.52 3.62 3.62 0.58 

t examination 

Age (year) 16. 16.9 0.4 16.9 16.9 0.4 

Weight (kg) 66.9 64.5 9.6 71.2 69.3 13.5 

Height (m) 1. 1 1. 0 0.06 1.81 1.81 0.06 

Bl\II (kg/m2 ) 20.6 19.9 2.4 21.6 20.7 3.5 

\\'aist circumference (em) 73.5 73 5.7 77.1 74.5 10.0 

Hip circumference (em) 91.5 91 6.2 94.8 93 8.9 

%BF 14.5 13.9 5. 16.8 8.0 

Females (n = 227) 

Variable 
AR identified (n = 150) AR not identified (n = 77) 

Mean Median SD Mean Median SD 

At birth 

Gestational age (week) 39.6 40 1.5 39.2 39 1.7 

\reight (kg) 3.40 3.43 0.46 3.47 3.51 0.50 

At examination 

Age b:ears) 16. 16. 0.4 16.9 16.9 0.4 

\\'flight (kg) 59.4 5 .9 8.5 59.2 59.1 9.4 

Height (01) 1.67 1.67 0.06 1.66 1.65 0.06 

Bl\II (kg/m2) 21.2 20. 2.9 21.6 21.1 3.2 

\ raist circumference (cm) 71.1 70 6.6 71.1 70 6.9 

Hip circumference (cm) 91. 91.5 6.4 92.2 92 6.9 

%BF 29.1 2 .9 6.2 28.7 2 .0 6.6 

Table .10: Di~lribulion of variables at birth and at examination in the original data, by adiposity rebound CAR) 

IdentIficatIon and sex. o is standard deviation, BMI is body mass index and %BI' is percentage body fat. 
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Fig. .10: Body rna.>" index (8.\!I) and percentage body fat (%BF) at examination against age and body mass 

index at adipOSity rebound (AR) in the original data, by sex. 

Subject with AR identified 

ex TOlal subject in each imputation (%) 

:'Iin. Median Max. 

~Iale . 159 134 ( 4.3%) 141 146 (91. %) 

Female 227 207 (91.2%) 

Total 3 6 351 (90.9%) 

Tabl .11: :-\umbl'r of subjects with adiposity rebound (AR) identified in the 100 imputed datasets , by sex. 
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Sex 

~Iales 

Females 

Age at AR (years) BMI at AR (kg/m2
) 

Overall mean Mean median SE Overall mean Mean median SE 

5.6 

5.3 

5.7 

5.4 

1.2 

1.3 

15.3 

15.1 

15.2 

15.0 

1.0 

1.3 

Table 8.12: Distributions of age and body mass index (8M!) at adiposity rebound (AR) in the 100 imputed 

datasets. by sex. SE is the standard error of t.he overall mean. 

8.7.3 Comparison of results using the original data only and results 

using the imputed datasets 

A comparison of Table 8.11 with Table 8.9 shows that use of the multiple imputation procedure 

allows a far greater proportion of individuals to have an estimated AR successfully identified than 

use of the original data alone. Table 8.14 is a more explicit comparison of the number of imputed 

datasets in which the estimated AR can be successfully identified dependent on whether or not 

the AR can be successfully identified using the original data. In both males and females it can be 

seen that about 90% of those subjects for whom the AR is successfully identified using the original 

data have the AR successfully identified all 100 of the imputed datasets. Of the remaining 10%, 

the majority have a sucessfully identified AR in more than 80 of the 100 imputed datasets. That 

an individual's post-imputation data can successfully have a subject-specific spline fitted and an 

AR identified when the same is true for their pre-imputation data is somewhat reassuring as it 

indicates that the imputation procedure is producing reasonable values. 

Of those individuals for whom an AR cannot be successfully identified using the original data, 

around 60% of both males and females have an AR successfully identified more than 80 of the 100 

imputed datasets. Whilst around 20% of individuals cannot have an AR successfully identified in 

any of the imputed datasets, the vast majority can now contribute to any analysis undertaken in 

at least some of the imputed datasets. As a result, the number of males contributing to analyses 

increa.<.;es from 111 (69.8%) using the original data to a median of 141 (88.7%) using the imputed 

datasets. The equivalent increase in females is from 150 (66.1 %) to a median of 200 (88.1 %). This 

enlarged sample size should increase the power of any analysis. 

Whilst the effective sample sizes are increased, a comparison of Table 8.12 with Table 8.9 shows 

that the distribution of identified ARs changes little. The 'mean median' ages at AR over the 100 

imputation datasets of 5.7 and 5.4 years for males and females respectively are very similar to 

the medians of 5.7 and 5.5 years using the original data. The mean median BMI at AR values of 

15.2 kg/m 2 (males) and 15.0 kg/m2 (females) in the imputed datasets are identical to the medians 

using the original data. 

The summaries of distributions of various anthropometric variables in the 100 imputed datasets 

(Table 8.13) show that the differences between those subjects with AR identified and not identified 
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Males (n = 159) 

Variable 
AR identified (n = 134-146) AR not identified (n = 13-25) 

Overall Mean Overall Mean 
SE SE 

mean median mean median 

At birth 

Gestational age (weeks) 39.5 40.0 1.8 39.2 39.9 1.7 

\\'('ight (kg) 3.57 3.53 0.53 3.48 3.60 0.63 

At examination 

Ag(' (years) 16.9 16.9 0.4 16.9 16.9 0.3 

W('ight (kg) 68.3 66.6 10.6 66.9 64.2 14.4 

Height (m) 1.81 1.80 0.06 1.79 1. 78 0.07 

B~II (kg/m2) 20.9 20.2 2.7 20.6 20.3 3.4 

Waist circumference (em) 74.6 73.7 6.9 74.2 71.5 11.0 

Hip circumference (em) 92.6 91.3 7.1 92.0 90.6 8.9 

%BF 15.4 14.0 6.7 16.1 16.1 6.8 

Females (n = 227) 

AR identified (n = 193-207) AR not identified (n = 20-34) 
Variable 

Overall Mean Overall Mean 
SE SE 

mean median mean median 

At birth 

Gestational age (weeks) 39.5 40.0 1.6 39.3 39.3 1.7 

Weight (kg) 3.41 3.44 0.47 3.53 3.59 0.55 

At examination 

Age (years) 16.8 16.8 0.4 16.8 16.8 0.4 

\Veight (kg) 59.4 59.1 8.5 58.7 56.6 10.9 

Height (m) 1.67 1.67 0.06 1.65 1.65 0.05 

Bl\lI (kg/m2) 21.3 20.9 2.8 21.4 20.6 3.8 

Waist circumference (em) 71.0 70.0 6.5 71.1 68.9 7.8 

Hip circumference (em) 92.0 92.0 6.3 91.2 89.2 8.1 

%BF 29.1 28.8 6.3 28.3 27.0 7.6 

Table 8.13: Distributions of variables at birth and at examination in the 100 imputed datasets, by adiposity 

rebound (AR) identification and sex. SE is the standard error of the overall mean, BM! is body mass index and 

%BF is percentage body fat .. 
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Number of Males (11. = 159) Females (11. = 227) Total (11. = :i86) 

imputed AR identified using AR identified using AR identified using 

datasets with original data? Total (11. = 159) original data? Total (n = 227) original data? Total (n = 386) 

AR identified No (11. = 48) Yes (11. = 111) No (11. = 77) Yes (n = 150) No (11. = 125) Yes (11. = 261) 

0 10 (20.8%) o (0.0%) 10 (6.3%) 13 (16.9%) o (0.0%) 13 (5.7%) 23 (18.4%) o (0.0%) 23 (6.0%) 

1-20 o (0.0%) 1 (0.9%) 1 (0.6%) o (0.0%) 2 (1.3%) 2 (0.9%) o (0.0%) 3 (1.2%) 3 (0.8%) 

21-40 o (0.0%) o (0.0%) o (0.0%) 1 (1.3%) 1 (0.7%) 2 (0.9%) 1 (0.8%) 1 (0.4%) 2 (0.5%) 

41--60 2 (4.2%) o (0.0%) 2 (1.3%) 6 (7.8%) o (0.0%) 6 (2.6%) 8 (6.4%) o (0.0%) 8 (2.1%) 

61-80 8 (16.7%) 3 (2.7%) 11 (6.9%) 9 (11.7%) 4 (2.7%) 13 (5.7%) 17 (13.6%) 7 (2.7%) 24 (6.2%) 

81-99 26 (54.2%) 8 (7.2%) 34 (21.4%) 46 (59.7%) 9 (6.0%) 55 (24.2%) 72 (57.6%) 17 (6.5%) 89 (23.1%) 

100 2 (4.2%) 99 (89.2%) 101 (63.5%) 2 (2.6%) 134 (89.3%) 136 (59.9%) 4 (3.2%) 233 (89.3%) 237 (61.4%) 

Table 8.14: Number and percentage (%) of imputed datasets in which the adiposity rebound (AR) can be successfully identified, by adiposity rebound identification 

in the original dataset and sex. 



are generally reduced from those when using the original data (Table 8.10). However, these figures 

should be viewed with some caution due to the small sample sizes for those with AR not identified. 

8.7.4 Comparison with previously published results 

~ledian age at AR is found to be 5.7 years in those males for whom estimat.ed AR is successfully 

identified when using both the original data only or the imputed dat.asets. In females, median 

age at AR is 5.5 years when using the original data only and 5.4 years when utilising multiple 

imputation. These values correspond reasonably well to previously published results. 

Rolland-Cachera et al [82], in their initial AR paper concerning a sample of 151 French children 

from a longitudinal study of growth started in 1953, found 23 of the 79 males in their st.udy (29.1 %) 

and 23 of the 72 females (31.9%) to have AR at age less than or equal to 5.5 years. This compares 

to equivalent figures of 43.2% and 52.7% for SWEDES. Rolland-Cachera et al reported that 28 

(3.5.4%) of the males and 25 (34.7%) of the females at age greater than or equal t.o 7.0 years, 

compared to 14.4% in both males and females in the present study. 

Siervogel et al [84J fitted subject-specific cubic polynomials on log(BMI) for each of 496 children 

in the Fels longitudinal study. They reported mean ages at AR of 5.1 years and 5.3 years for males 

and females respectively. This finding of younger age at AR in males as opposed females does not 

agree with that. seen using SWEDES and is rather anomalous when compared to ot.her results. 

Using a similar method to Siervogel et al for a USA study of 390 children born 1965-71 Whitaker 

et al [85] reported mean ages at AR of 5.8 years (males) and 5.4 years (females). 

Williams et al [86J investigated age at AR using two different methods for a study of 922 New 

Zealand children born 1972-73. The first method, fitting subject-specific cubic polynomials on 

log(Bl\!I), resulted in mean ages at AR of 6.3 years for males and 6.1 years for females. The 

second method, utilising a random coefficients model fitted on log(BMI) with two separate cubic 

polynomials for males and females and a different cubic polynomial for each individual, gave 

corresponding values of 6.0 years and 5.6 years. 

\\'ilIiams [172] fitted random coefficient cubic polynomials for log(height) and log(weight) for fl 

study of 803 New Zealand children born 1972-3. Velocity curves were calculated by taking the first 

derivatives of the fitted curves and ARs identified as the point at which the velocity of log(weight) 

becomes greater than twice the velocity of log(height). Mean age at AR was reported to be 6.6 

years for males and 6.0 years for females. 

Skinner et at [165J visually determined the ARs of 70 white children born in 1992 in the USA. 

They reported mean ages at AR of 4.7 years (males) and 4.5 years (females). 

For a contemporary dataset of 39 white girls in New Zealand Taylor et al [171], using a similar 

method to Williams [172], reported a mean age at AR of 5.1 years for the females in the study. 

Clearly there is a certain amount of heterogeneity in the previously published results, as would 

be expected given the temporal, geographic~l and methodological differences between the studies. 

The present results using the SWEDES dataset are generally similar to those using dataset!> with 

comparable characteristics. One observable trend is that in the older datasets there is a tendency 

197 



towards later AR. whilst studies using the more contemporary datasets generally report younger 

ages at AR. This shift may be attributed to the acknowledged secular trends in increasing devel­

opmental tempo over recent years [22J. 

Few previously published results regarding the AR have reported the BMI as well as the age 

at AR. For the S\VEDES dataset median BMI at AR was found to be 15.2 kg/m2 for males and 

IS.0 kg/m2 for females when using the original data only, with identical figures being obtained for 

t 11(' imputed datasets. 

These values are again comparable to previously published results, with Siervogel et al [84J 

reporting BMI at AR values of 15.6 kg/m2 for males and 14.8 kg/m2 for females, and Williams 

et at [86J finding values of 15.8 kg/m2 and 15.2 kg/m2 using subject-specific cubic polynomials 

on 10g(Br--n) and 15.7 kg/m2 and IS.5 kg/m2 using a random coefficients cubic polynomial model 

fitted on log(BMI). 

Some previously published studies have also included calculated correlation coefficients between 

the two dimensions of AR and later outcome variables. Again, results using SWEDES appear 

largely comparable. 

In the present study the correlation between age at AR and BMI at examination (mean age 

16.8±O.4 years) is found to be -0.43 using the original data only and -0.47 using the imputed 

datasets for males. and -0.46 (original data only) and -0.44 (imputed datasets) for females. 

Siervogel et al [84J reported corresponding correlations of -0.46 for males and -0.54 for females, 

although their outcome was measured at age 18 years. Williams et al [86J found correlations of 

-0.59 (males) and -0.39 (females) for BMI age 18 years, and -0.56 and -0.43 for BMI age 21 

years. 

Using the SWEDES dataset, the correlation between BMI at AR and BMI at examination is 

found to be 0.56 (original data only) and 0.53 (imputed datasets) for males, with corresponding 

values of 0.70 and 0.64 for females. Siervogel et al [84J reported correlations of 0.51 and 0.58 for 

males and females respectively, whereas Williams et al [86] found them to be 0.61 (males) and 0.39 

(females) for Br--n at age 18 years and 0.48 and 0.43 at age 21 years. 

8.8 Graphical exploration of the adiposity rebound 

An initial exploration of the AR using graphical methods is enlightening. Only plots using the 

original data are examined as equivalent plots using the imputed datasets, taking the median value 

at each time point, are very similar. 

First, plots of median BMI through childhood in different subgroups are examined. These plots 

are useful tools to informally assess any patterns in the data, but, as data are examined on a group 

level. the temptation to make inferences on an individual level must be avoided. 
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Fig. 8.11 is a plot of median BMI through childhood in the three subgroups defined by t.h(' 

sex-specific tertiles of age at AR. An 'early AR' corresponds t.o an age less than 5.24 years in Illales 

and 4.96 years in females, with a 'late AR' being an age greater than 6.30 years in males and 5.87 

years in females. A 'middle AR' corresponds to the ages between these values. Th£' percentage of 

individuals who contribute to each plotted point is given in Table 8.15 and ranges between 74 and 

100% in males and between 58 and 100% in females. 

Both males and females with an early AR appear to have the highest level of BMI at AR, but 

only in the females does a late AR correspond to the lowest BMI at AR. It can be seen for both 

males and females that at age 15 years those with an early AR have the highest median BMI and 

those with a late AR the lowest. In fact, by age 7 years in the males and 5 years in the females 

this ordering is already established, remaining the same throughout this period. This is evidence 

of Br.-n tracking. 

In the period before the AR the levels of BMI in the subgroups are much more similar and the 

ordering of the tertiles more changeable. At age 1 year the ordering is the same as in adolescence 

with an early AR corresponding to the highest BMI and a late AR to the lowest BMI in both males 

and females. Those with an early AR then have a rapid reduction in BMI immediately before AR, 

so that at this point they in fact have the lowest median BMI. 

Males (n = 111) 

Subgroup of Age (years) 

age at AR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Early (n = 36) 100 97 100 100 94 92 97 97 89 92 94 92 92 86 89 

Middle (n = 38) 100 95 97 100 97 84 97 95 87 95 87 87 87 74 79 

Late (n = 37) 100 100 1QO 100 97 92 95 95 97 92 97 92 95 92 78 

Females (n = 150) 

Subgroup of Age (years) 

age at AR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Early (n = 50) 100 98 96 96 92 90 100 98 92 98 90 94 92 92 70 

l\liddle (1/ = 50) 100 98 98 98 94 96 98 96 96 96 92 96 90 88 58 

Late (n = 50) 98 98 98 100 98 88 96 96 96 94 86 96 94 96 64 

Table 8.15: Percentage of individuals with observed body mass index (EMI) values at each age in 

each subgroup of age at adiposity rebound (AR) in the original data, by sex. 

Fig. 8.12 is an identical plot to Fig. 8.11 but with both age and BMI centred about their 

median values in each subgroup. This allows a comparison of the shape of the median BMI 

t.rajectory within each subgroup separately from the effects of the displacement caused by the 
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definition of the subgroup. A this definition remains the same, the number of observed EMI 

values contributing to each plotted point is the ame as for Fig. .11, as given in Table .15. 

From Fig. .12 it can be een, e pecially in females. that the median trajectories are very imilar 

in each ubgroup from the age at AR (0 on the x-axis) onwards. Thi indicate that, besides the 

di placement in age cau ed by defining the subgroup on age at AR and the displacement in EMI 

cau ed by the as ociation between age and EMI at AR, the BMI trajectorie differ very little. The 

BM! trajectorie at ages before AR, however, have much greater variability, with those with an 

early AR having the highe t level of E?U at a given amount of time before AR. 
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Fig. .12: Centred median body mass index (BMI) through childhood in the original data, by age at adiposity 

rebound (AR) and sex. 

Fig. .13 is a plot of median EMI through childhood in the three ubgToup defined by the 

tertile of EMI at AR. A 'low m,1! at AR' correspond to a EMI of Ie s than 14. 4 kg/m2 for 
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males and 14.56 kg/m 2 for females, with a 'high BMI at AR' being a BMI greater than 15.60 

kg/m
2 

in males and 15.53 kg/m 2 in females. A 'medium BMI at AR' corresponds to it BMI 

between these values. The number of observed BMI values contributing to each plotted point is 

given in Table 8.16 and ranges between 76 and 100% in males and between 56 and 100% in females. 

It can be seen that for both males and females throughout the entirety of the age range examined 

those with a high BMI at AR have the highest median BMI and those with a low BMI at AR the 

lowest. \Vhilst the median BMI levels in the tertiles are slightly more similar at age 1 year, beyond 

this age the differences remain relatively constant. This shows that the differences in BMI evident 

at age 1.5 years are already established at much younger ages, again providing strong evidence of 

BJ\lI tracking. 

In the males the minimum median BMI observed in each tertile is at approximately the same 

age, whereas in the females there is some evidence that a higher BMI at AR corresponds to an 

earlier AR. 

Males (n = 111) 

Subgroup of Age (years) 

8M! at AR 2 3 4 5 6 7 8 9 10 11 12 13 11 15 

Low (11 = 37) 100 100 97 100 95 89 97 95 86 95 86 89 89 81 76 

Medium (71 = 37) 100 95 100 100 97 86 97 92 95 89 95 89 92 84 86 

High (n = 37) 100 97 100 100 97 92 95 100 92 95 97 92 92 86 84 

Females (n = 150) 

Subgroup of Age (years) 

8M! at AR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Low (n = 50) 98 98 98 96 88 88 94 96 96 94 90 94 94 94 76 

l\ledium (n = 50) 100 98 98 100 96 90 100 96 96 96 90 98 94 94 60 

High (n = 50) 100 98 96 98 100 96 100 98 92 98 88 94 88 88 56 

Table 8.16: Percentage of individuals with observed body mass index (BMI) values at each age in 

each subgroup of body mass index at adiposity rebound (AR) in the original data, by sex. 

Fig. 8.14 is another plot of median BMI through childhood within subsets of the data, though 

this time showing the effects of interaction between age and BMI at AR. Rather than split each 

dimension of AR into three subgroups, providing nine interaction subgroups each with low member­

ship. each is split ahout the median (as given in Table 8.9), resulting in four interaction subgroups 

(early AR and low Br-.n at AR, early AR and high BMI at AR, late AR and low BMI at AR, and 

late AR and high BMI at AR). The number of observed BMI values contributing to each plotted 

point is given in Table 8.17 and ranges between 77 and 100% in males and between 56 and 100% 
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in female '. 

At age 15 year for both male and females those with an early AR and high BM! at AR have 

the highe t median B~n and tho e with a late AR and low BMI at AR the lowest. Indeed, this 

i true from age 7 year onwards in the male and age 6 years onward in the females, whilst the 

remaining two ubgroup have imilar median B1II values through this period. 

Con. idering. initially. the pairs of subgroups with early AR, it can be een that in both males 

and female the difference between median BMI at each age remain relatively constant throughout 

the age range examined. The arne i true for the pairs of subgroups with late AR, meaning that 

th 're is little evidence of interaction between age and BMI at AR in either sex. 
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In Fig. .15 this compari on is made easier by the centring of each subgroup about its lIledian 
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Males (n = 111) 

Subgroup of age Age (years) 

and BM! at AR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Early & low (n = 22) 100 95 100 100 91 86 100 100 91 91 95 95 86 82 77 

Early & high (n = 32) 100 94 100 100 97 91 97 94 91 94 94 88 94 81 91 

Late & low (n = 33) 100 100 97 100 100 91 97 94 88 97 88 91 91 85 79 

Late & high (n = 24) 100 100 100 100 96 88 92 96 96 88 96 88 92 88 79 

t-:l Females (n = 150) 0 
c.n 

Subgroup of age Age (years) 

and BM! at AR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Early & low (n = 34) 100 97 97 94 85 88 100 100 97 100 97 97 94 91 65 

Early & high (n = 41) 100 98 95 98 100 98 100 95 90 98 85 95 90 90 63 

Late & low (n = 41) 98 98 98 100 93 88 93 95 98 88 85 93 93 95 71 

Late & high (n = 34) 100 100 100 100 100 91 100 97 94 100 91 97 91 91 56 

Table 8.17: Percentage of individuals with observed body mass index (BMI) values at each age in each subgroup of age and body mass index at adiposity rebound 

(AR) in the original data, by sex. 



age and BMI at AR. After the median age at AR in each subgroup (0 on the x-axis), there is 

relatively little variability in the shape of the median trajectories ill each subgroup, particularly 

in the females. However, some ordering does remain in both sexes, with those with an early AR 

and/or high BMI at AR generally having a higher median increase in BMI at a given time since 

AR. 

One feature of the plot is that the trajectories often lie in pairs, with the two subgroups with 

an early AR having similar median BMI increases at a given time since AR and those with a late 

AR doing likewise. This suggests that, conditional on age at AR, BMI at AR has relatively little 

impact on later BM!. 

Before the median age at AR in each subgroup there is some variability in the trajectory shapes, 

particularly in the males. Again, the trajectories lie largely in pairs with both early AR subgroups 

showing a more rapid decline in BMI prior to AR. 

Fig. 8.16 is a plot of the correlations between age at AR and BMI through childhood and 

between BMI at AR and BMI through childhood. The dotted vertical line corresponds to the sex­

specific median age at AR. The percentage of individuals with observed BMI values contributing 

to each plotted point is given in Table 8.18 and ranges between 82 and 100% in males and between 

64 and 99% in females. 

In both males and females the correlation between BMI at AR and BMI through childhood 

increases from around 0.6 at age 1 year to a peak of over 0.9 just prior to the median age at AR. 

The correlation then decreases with age until it reaches a plateau of around 0.6 from age 12 years 

onwards in males and around 0.7 from age 10 years onwards in females. Whilst clearly it would be 

expected that the BMI around the age of AR is highly correlated with the BMI at AR, the high 

levels of correlation remaining several years after AR illustrate a high level of BMI tracking. 

The correlation between age at AR and BMI through childhood is, however, a little more dif­

ficult to interpret. In both sexes the correlation is close to zero through infancy, indicating that 

BMI at this age is not predictive of age at AR. A year or so before the median age at AR cor­

relation begins to increase in magnitude. In females the correlation is nearly -0.5 at the median 

age at AR (5.5 years), though continues increasing in magnitude to around -0.6 at age 8 years. 

The correlation then gradually decreases in magnitude across the remain age range, though is still 

around -0.5 at age 15 years. In males the correlation is about -0.25 at the median age at AR 

(5.7 years), with a maximum magnitude of around -0.6 not reached until age 13 years (although 

magnitude increases little from age 7 years onwards). That the highest degree of correlation in 

females corresponds approximately to the age when the latest ARs occur seems reasonable as it is 

only at this age that all individuals are at a similar juncture of their BMI trajectory. For the peak 

correlation in the males to occur several years after the latest ARs is, however, somewhat surpris­

ing although, as has been noted, the level of correlation remains relatively constant for some while 

before this. Once again, the stable levels of correlation seen throughout adolescence are indicative 

of strong BMI tracking. 
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Fig. .17 i a plot of the correlations between age at AR and BMI through childhood and 

betw n B~II at AR alld BMI through childhood in the three subgroups defined by the tertiles of 

age at AR ( arly. middle and late AR) as in Fig. .11. The dotted vertical lines correspond to the 

s x- 'pecific TIl dian ag at AR ill each ubgroup. The percentage of individuals who contribute to 

'ach plott xl point is th ame as for Fig. .11, as given in Table 8.15. 

Con 'idering first th correlations between BMI at AR and BMI through childhood, it can be 

s n that ill both sexe an earlier AR corresponds to an earlier peak in correlation. As correlation 

wru shown to peak around the age of AR in the dataset as a whole in Fig. 8.16, this is somewhat 

xrected. \Vhal i les' so. however, i that, particularly in the males, towards the end of the age 
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Sex 
Age (years) 

2 3 4 5 6 7 8 9 10 11 12 1 :~ 14 15 

Males (n = 111) 100 97 99 100 96 89 96 95 91 93 93 90 91 84 82 

Females (n = 150) 99 98 97 98 95 91 98 97 95 96 89 95 92 92 64 

Table 8.18: Percentage of individuals with observed body mass index (BMI) values at. each age in 

the original data, by sex. 

range examined it is the correlation for those with an early AR which is strongest when in this 

subgroup the time since AR is greatest. This is, perhaps, evidence of great.er tracking in the early 

AR subgroup. 

Considering now the correlations between age at AR and BMI through childhood, the patterns 

seen for males are similar to those seen for the dataset as a whole in Fig. 8.16 only the increase 

in the magnitude of correlation occurs at different times in each subgroup corresponding to the 

relevant age at AR. A similar pattern is largely evident in the females, apart from in the middle 

AR subgroup which, rather anomalously, has a negligible correlation across much of the age range. 

This is possibly explained by this subgroup being, as the remaining individuals once those at both 

extremes of the age at AR scale have been removed, a somewhat less homogeneous group. 

Fig. 8.18 is identical to Fig. 8.17 only with the correlation in each subgroup centred about 

the median age at AR in the subgroup, meaning the the shapes of the correlation curves can be 

examined separately from the displacement effects caused by the definition of the subgroups. 

It is clear that the correlations between BMI at AR and BMI through childhood peak at around 

the median age at AR in each subgroup (0 on the x-axis). After AR there is little variability in 

the correlation in females, but in males those with an early AR retain a comparatively higher level 

of correlation for a given time after AR. Prior to AR, those with a later AR appear to have a 

higher level of correlation between BMI at a given time before AR and BMI at AR, particularly 

in females. 

In the males, the increases in magnitude of the correlation between age at AR and BMI in 

each subgroup are seen to occur at very similar times relative to the age at AR, as was suggested 

by Fig. 8.17. From about 2 years after the AR onwards there is little variability in the level of 

correlation in the subgroups. In females, the same features are displayed by the early and late AR 

subgroups. but those with a middle AR remain somewhat anomalous. 
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8.9 Are dimensions of the adiposity rebound associated with 

late-adolescent obesity? 

Thl' graphical exploration of the AR in Section 8.8 suggests that subjects with either an earlier 

AR. a higher Bl\lI at AR. or both. are likely to have higher BMI at or before age 15 years t.han the 

othpr individuals in the dataset. These observations may lead to the hypothesis that an earlier AR. 

a higher BI\II at AR. or both. can be considered more generally as risk factors for later obesity. 

This hypothesis is examined in this section, where the association between the AR and both 

latp-adolpscent Bl\lI and %BF is assessed. The estimated age and BMI at AR for each subject 

can be related to BM! and %BF at examination through regression modelling. In Section 8.9.1 

age and Bl\lI at AR and BM! and %BF at examination are categorised then used in logistic 

regression models. and in Section 8.9.2 the original continuous variables are used in linear regression 

lllodl'ls. Section 8.9.3 then draws together results from both sets of analyses to present some overall 

conclusions. 

8.9.1 Categorical analysis 

Both the explanatory variables (age and BMI at AR) and the outcome variables (BMI and %BF 

at examination) can be reduced from continuous variables to categorical variables. Whilst clearly 

this rl'sults in a loss of information, it also allows exploratory models with intuitively interpretable 

paral1lpters to be fitted and is the logical progression from the subgroup plots in Section 8.8. The 

categorisation of the variables are first detailed then the fitting of models of BM! and %BF at 

I'xall1ination on age and BMI at AR examined. The results are presented separately using the 

original data only (Section 8.9.1.1) and using the imputed datasets (Section 8.9.1.2), then the two 

Sl'ts of rl'stIlts compared (Section 8.9.l.3). 

8.9.1.1 Using the original data only 

Defining the categories of age at AR Subjects are split into sex-specific tertiles of age at 

AR in the same manner as for Fig. 8.11 and Fig. 8.17. An 'early AR' corresponds to an age less 

than 5.2·t .\'Pars in males and 4.96 years in females, with a 'late AR' being an age greater than 6.30 

~'pars in males and 5.87 years in females. A 'middle AR' corresponds to the ages between these 

values. 

Table 8.19 summarises the distribution of BMI at examination by age at AR category for males 

and females separately. There is a clear trend in both males and females that as age at AR category 

mows from early to late both the mean and median BM! at examination are reduced. Also of note 

is the greater variability in BM! at examination corresponding to an earlier age at AR category, 

possibl~' due to the inclusion in the earlier AR categories of some individuals with unusually large 

B~II at examination values. 
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Age at AR Males Females 

category n Mean Median SD n Mean Median SD 

Early 36 21.6 21.6 2.9 50 22.7 21.8 3.5 

Middle 38 20.8 20.8 2.3 50 21.2 21.1 2.3 

Late 37 19.4 19.4 1.3 50 19.8 19.8 1.7 

Table 8.19: Distribution of body mass index (BMI) at examination in the original data, by category of age at. 

adiposity rebound (AR) and sex. 

An (,quivalent tabulation of %BF by category of age at AR (Table 8.20) shows a similar pattern, 

with earlier AR leading, on average, to greater %BF in both males and females. Again, there is 

greater variability in %BF for those with an earlier AR. 

Age at AR Males Females 

category n Mean Median SD n Mean Median SD 

Early 36 16.6 15.9 6.4 49 31.4 30.3 6.5 

r-.fiddle 37 14.7 14.3 5.8 47 29.1 29.1 6.0 

Late 36 12.2 12.4 4.1 50 26.8 27.1 5.1 

Table 8.20: Distribution of percentage body fat (%BF) at examination in the original data, by category of age at 

adiposity rebound (AR) and sex. 

Defining the categories of BM! at AR Subjects are also split by sex into tertiles of BM1 at 

AR in the same manner as for Fig. 8.13. A 'low BMI at AR' corresponds to a BMI of less than 

1·1.8:1 kg/m2 for males and 14.56 kg/m2 for females with a 'high BMI at AR' being a BMI greater 

than 15.60 kg/m2 in males and 15.53 kg/m2 in females. A 'medium BMI at AR' corresponds to a 

B~II between these values. 

Table 8.21 summarises the distribution of BM1 at examination by BM1 at AR category for 

lIlale~ and females separately. There is a clear trend in both males and females with BMI at AR 

category moving from low to high leading to both the mean and median BMI at examination being 

increased. Again there appears to be a corresponding trend in SD for BMI at examination with a 

higher Bl\lI at AR category leading to increased SD, though this is far more marked in females. 

Table 8.22 is the equivalent tabulation for %BF showing, again, both increased %BF and in­

creased variability in %BF amongst those with a higher BMI at AR. 

A cross-tabulation of the categories of age and BMI at AR, as shown in Table 8.23, illustrates 

the r{'lationship between the two categorical variables, though this does seem to vary between 
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B;\1I at AR Males Females 

category n Mean Median SD n Mean Median SD 

Low 37 19.3 18.8 2.0 50 19.3 19.3 1.5 

~ledium 37 20.6 19.9 2.0 50 21.1 21.2 2,0 

High 37 21.9 21.6 2.6 50 23.3 22.5 3,2 

Table 8.21: Distribution of body mass index (BMI) at examination in the original data, by category of body mass 

index at adiposity rebound (AR) and sex. 

B~n at AR Males Females 

category n Mean Median SD n Mean Median SD 

Low 36 12.8 12.6 4.2 49 26.5 27.0 4,9 

~ledium 36 13.9 13.7 5.8 48 29.2 29.0 6,0 

High 37 16.9 16.8 6.3 49 31.6 30.7 6,5 

Table 8.22: Distribution of percentage body fat (%BF) at examination in the original data, by category of body 

mass index (8MI) at adiposity rebound (AR) and sex, 

mal('s and females. In males, an early AR corresponds to a predominantly high BMI at AR and a 

middle age at AR to a low BMI at AR, with an even distribution of BMI at AR categories for a 

late AR. In females, an early AR also corresponds to a greater proportion of high BMI at AR, as 

does a middle age at AR, though a late AR is more associated with a low BMI at AR. 

Defining the categories of BMI at examination The widely-used international standards 

for childhood overweight and obesity of Cole et al [60] are used to define the categories of BMI at 

examination, The BMI cut-off values vary with age - for example at age 17 years 'overweight' 

corresponds to a BMI of between 24.46 and 29.41 kg/m2 in males and between 24.70 and 29,69 

kg/m 2 in females. with 'obesity' defined as a BMI greater than 29.41 and 29.69 kg/m 2 in males and 

females. respectively, This results in 19 (12.0%) males and 17 (7.5%) females being classified as 

'owrweight' and 2 (1.3%) males and 5 (2.2%) females being classified as 'obese' at examination. As 

these categories are effectively adjusted for age it is not necessary to adjust for age at examination 

in any models with categorical BMI at examination as the outcome. 

Cross-tabulation of categories of overweight at examination and age at AR, as in Table 8.24, 

illustrates how the distribution of subjects between overweight at examination categories differs by 

agr at AR category. There are clear trends, with 25% of males with an early AR being overweight 

at examination but none of those with a late AR being so. Similarly, 16% of females with an 

early AR are overweight at examination with 6% obese, compared to only 2% overweight and none 

obese among those with a late AR. The distribution of overweight categories for those with no AR 

icirntified is also shown and is enlightening, with the distributions clearly not dissimilar to those 
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BMI Age at AR category 

at AR Males Females 

category Early Middle Late Early Middle Late 

8 16 13 13 14 23 
Low 

22.2% 42.1% 35.1% 26.0% 28.0% 46.0% 

13 12 12 15 16 19 
i\ledium 

36.1% 31.6% 32.4% 30.0% 32.0% 38.0% 

15 10 12 22 20 8 
High 

41.7% 26.3% 32.4% 44.0% 40.0% 16.0% 

Table 8.23: Cross-tabulation of categories of age and body mass index (BMI) at adiposity rebound (AR) in the 

oriRinal data. by sex. The top number in each case is the frequency and the bottom number is the corresponding 

column pl'rn·ntaRl'. 

for individuals with identified AR (perhaps with the exception of the two obese males) suggesting 

that t llPsp an' not wholly disparate groups of subjects. 

Tab1l' 8.25 examines the relationship between categories of BMI at AR and BMI at examina­

tion. It can he seen that of the males with low BMI at AR only 5% go on to be overweight at 

pxamination. whereas of those with high BMI at AR 22% do so. A similar pattern is evident in 

t lw fpmalps wit h nobody progressing to overweight or obesity following a low BMI at AR yet 18% 

tH'in~ O\'prwpight and 6% obese following high BMI at AR. Again, the distributions among those 

suiJjl'cts with no idl'ntified AR appear to be similar to those in the rest of the dataset. 

Defining the categories of %BF at examination %BF at examination is also cat.egorised 

using I'xisting cut-off values, these developed by McCarthy et at [175]. Again, the cut-off values 

differ wit h age so that. for example, at age 17 years 'overfat' is defined as having a %BF of between 

20.\ and 239 in mall'S and between 30.4 and 34.4 in females. A %BF above the upper ends of 

thl'sP intl'rvals is defined as 'ohese' in each case. Categorisation results in 17 (10.8%) males being 

da...,si!iec! a_" overfat and 15 (9.6%) as obese. The corresponding figures for females are 41 (18.5%) 

alldlO ( I S()~f). For %BF at examination, unlike BMI, there are also several subject.s (2 males and 

!j fplila lp!, ) wit h Ilnohsl'f\'e<i values. 'Vhilst these prevalences, particularly among the females, do 

Sl'PIIJ a little high. it should be noted that the reference data was taken from more affluent areas 

ill all effort to obtain lower obesity rates. Additionally, the reference data were derived from data 

lI~ing a different hod~' C"Omposition analysis system from the SWEDES data. Whilst there are thus 

potf'lItial cross-calihration issues, the lise of these existing cut-offs remains more appealing than 

t Ilf' ,,It('rtlat in' of splitting t he data into arbitrary quantiles. As these categories are effectively 

ildjll~ted for ag(' it will not be n('cessary to adjust for age at examination in any models with 
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Males 

Overweight at AR identified AR 

examination Age at AR category 
Total 

not Total 

category Early Middle Late identified 

27 34 37 98 40 138 
Normal 

75.0% 89.5% 100.0% 88.3% 83.3% 86.8% 

9 4 0 13 6 19 
Overweight 

25.0% 10.5% 0.0% 11.7% 12.5% 12.0% 

0 0 0 0 2 2 
Obese 

0.0% 0.0% 0.0% 0.0% 4.2% 1.3% 

Total 36 38 37 111 48 159 

Females 

Overweight at AR identified AR 

examination Age at AR category not Total 

Total 

category Early Middle Late identified 

39 47 49 135 70 205 
Normal 

78.0% 94.0% 98.0% 90.0% 90.9% 90.3% 

8 3 1 12 5 17 
Overweight 

16.0% 6.0% 2.0% 8.0% 6.5% 7.5% 

3 0 0 3 2 5 
Obese 

6.0% 0.0% 0.0% 2.0% 2.6% 2.2% 

Total 50 50 50 150 77 227 

Table 8.24: Cross-tabulation of categories of overweight at examination and age at adiposity rebound (AR) in the 

original data. by sex. The top number in each case is the frequency and the bottom number is the corresponding 

column percent age. 
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Males 

Overweight at AR identified AR 

examination BMI at AR category not Total 
Total 

category Low Medium High identified 

35 34 29 
Normal 

98 40 138 

94.6% 91.9% 78.4% 88.3% 83.3% 86.8% 

2 3 8 13 6 19 
Overweight 

5.4% 8.1% 21.6% 11.7% 12.5% 12.0% 

0 0 0 0 2 2 
Obese 

0.0% 0.0% 0.0% 0.0% 4.2% 1.3% 

Total 37 37 37 111 48 159 

Females 

Overweight at AR identified AR 

examination BMI at AR category 
Total 

not Total 

category Low Medium High identified 

50 47 38 135 70 205 
Normal 

100.0% 94.0% 76.0% 90.0% 90.9% 90.3% 

0 3 9 12 5 17 
Overweight 

0.0% 6.0% 18.0% 8.0% 6.5% 7.5% 

0 0 3 3 2 5 
Obese 

0.0% 0.0% 6.0% 2.0% 2.6% 2.2% 

Total 50 50 50 150 77 227 

Table 8.25: Cross-tabulation of categories of overweight at examination and age at adiposity rebound (AR) in the 

original data. by sex. The top number in each case is the frequency and the bottom number is the corresponding 

column percentage. 
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categorical %BF at examination as the outcome. 

Cross-tabulation of categories of over fat at examination and age at AR, as in Table 8.26, illus­

trates how the distribution of subjects between over fat at examination categories differs by age at 

AR category. Similarly to the overweight at examination categories, there are greater proportions 

of overfat and obese subjects in the earlier AR categories: 17% of men with early AR are overfat 

and 11% obese compared to only 3% overfat and none obese for those with late AR. Likewise, 

following an early AR 16% of females go on to become over fat and 35% obese, compared to 18% 

overfat and 4% obese after a late AR. The inclusion of a column for subjects with no identified 

AR shows that the distribution between overfat categories in these individuals is not dissimilar 

to those with identified ARs in females. Males with no AR identified, however, show a greater 

premlence of obesity than even those with an early AR. 

Table 8.27 is an equivalent table to examine the relationship between categories of BMI at 

AR and %BF at examination. Of the males with low BMI at AR only 6% go on to be over fat 

with none obese at examination, whereas of those with high BMI at AR 14% become overfat 

and U% obese. A similar pattern is evident in the females with 14% overweight and 4% obese 

following a low BMI at AR compared to 18% overweight and 37% obese following high BMI at 

AR. The distribution of females with no identified AR between categories of overfat is similar to 

the overall distribution among those with AR identified. Again, however, the prevalence of obe­

sity amongst males with no AR identified is greater than even amongst those with high BMI at AR. 

Logistic regression models Because of the scarcity of subjects within the obese category when 

considering overweight at examination, the overweight and obese categories are combined into 

one, which for simplicity will be referred to as 'overweight' and opposed to 'overweight or obese'. 

However. as can be inferred from Table 8.24, this leaves one age at AR category among the males 

(late AR) with no corresponding cases of overweight at examination. The presence of a zero 

cell count is problematic when fitting logistic regression models, with one solution to collapse the 

categories of the variable so as to eliminate it [131 J. Thus, in this instance, late AR can be combined 

with middle AR so that the resulting category (,middle-late AR') has non-zero cases of overweight. 

Whilst the zero cell count for late AR only arises in males, to collapse the categories in this way 

amongst. the males only would result in non-comparable male and females models, thus the same 

process is applied to the females. From Table 8.25 it can be seen that a similar issue exists for 

females with low BMI at AR. The solution is again the collapsing of this category into those with 

medium BM! at AR for both males and females to form a 'low-medium BMI at AR' category. 

The over fat and obese categories are also combined to form a single 'overfat' category. Unlike for 

overweight there are both males and females who, following any given age or BMI at AR category, 

proceed to overfat at examination. This means that the problems caused by zero cell counts 
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Males 

Overfat at AR identified AR 

examination Age at AR category 
Total 

not Total 

category Early Middle Late identified 

26 31 35 92 33 125 
Normal 

72.2% 83.8% 97.2% 84.4% 68.8% 79.6% 

6 4 1 11 6 17 
Overfat 

16.7% 10.8% 2.8% 10.1% 12.5% 10.8% 

4 2 0 6 9 15 
Obese 

11.1% 5.4% 0.0% 5.5% 18.8% 9.6% 

Total 36 37 36 109 48 157 

Females 

Overfat at AR identified AR 

examination Age at AR category not Total 

Total 
category Early Middle Late identified 

24 30 39 93 48 141 
Normal 

49.0% 63.8% 78.0% 63.7% 63.2% 63.5% 

8 7 9 24 17 41 
Over fat 

16.3% 14.9% 18.0% 16.4% 22.4% 18.5% 

17 10 2 29 11 40 
Obese 

34.7% 21.3% 4.0% 19.9% 14.5% 18.0% 

Total 49 47 50 146 76 222 

Table 8.26: Cross-tabulation of categories of overfat at examination and age at adiposity rebound (AR) in the 

original data, by sex. The top number in each case is the frequency and the bottom number is the corresponding 

column percentage. 
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Males 

Overfat at AR identified AR 

examination 8MI at AR category 
Total 

not Total 

category Low Medium High identified 

34 31 27 92 33 125 
Normal 

94.4% 86.1% 73.0% 84.4% 68.8% 79.6% 

2 4 5 11 6 17 
Overweight 

5.6% 11.1% 13.5% 10.1% 12.5% 10.8% 

0 1 5 6 9 15 
Obese 

0.0% 2.8% 13.5% 5.5% 18.8% 9.6% 

Total 36 36 37 109 48 157 

Females 

Overfat at AR identified AR 

examination 8MI at AR category not Total 

Total 

category Low Medium High identified 

40 31 22 93 48 141 
Normal 

81.6% 64.6% 44.9% 63.7% 63.2% 63.5% 

7 8 9 24 17 41 
Overweight 

14.3% 16.7% 18.4% 16.4% 22.4% 18.5% 

2 9 18 29 11 40 
Obese 

4.1% 18.8% 36.7% 19.9% 14.5% 18.0% 

Total 49 48 49 146 76 222 

Table 8.27: Cross-tabulation of categories of overfat at examination and age at adiposity rebound (AR) in the 

original data, by sex. The top number in each case is the frequency and the bottom number is the corresponding 

column percentage. 
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do not occur here so there is no necessity to collapse any of the explanatory variable categories 

together. However, to allow for comparability between the overweight and overfat models the 

same combination of categories ('middle-late AR' and 'low-medium BMI at AR') is imposed in the 

models for overfat. 

The following logistic regression models treat middle-late AR and low-medium BMI at AR as 

reference categories. 

Table 8.28 details the estimated odds ratios (ORs) obtained when fitting the logistic regression 

models for overweight and overfat at examination on age and BMI at AR separately. The addition 

or removal of variables from the model can be tested via the likelihood ratio test (LRT) [116]. The 

LRT provides no evidence of effect modification of any of the relationships by sex (P=0.88 for the 

sex-age at AR interaction and P=0.28 for the sex-BMI at AR interaction in the models for BMI at 

examination. with corresponding P-values of 0.60 and 0.97 in the models for overfat), so common 

effect estimates for males and females are presented. 

Outcome Explanatory variable n OR 95% CI P-value 

Age at AR 

Early vs. middle-late 6.35 2.66, 15.14 <0.001 
261 

Sex 

Overweight at examination Female vs. male 0.81 0.36, 1.84 0.61 

BMI at AR 

High vs. low-medium 
261 

6.20 2.60, 14.78 <0.001 

Sex 

Female vs. male 0.82 0.36, 1.87 0.65 

Age at AR 

Early vs. middle-late 2.86 1.58,5.17 0.001 
255 

Sex 

Over fat at examination Female vs. male 3.25 1. 72, 6.13 <0.001 

BMI at AR 

High vs. low-medium 3.38 1.86, 6.14 <0.001 
255 

Sex 

Female vs. male 3.36 1.77,6.38 <0.001 

Table 8.28: Estimated odds ratios (OR), 95% confidence intervals (el) and P-values for the logistic regression 

models for overweight and overfat at examination fitted separately on age and body mass index (8M!) at adiposity 

rebound (AR) in the original data. 

An early AR is estimated to lead to over 6 times the odds of being overweight at examination 

and nearly 3 times of the odds of being overfat when compared to a middle-late AR. A high. as 
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opposed to low-medium, BMI at AR is associated with an estimated 6-fold increase in the odds of 

overweight at examination and over 3 times the odds of overfat. All four of these relationships are 

highly statistically significant. 

In the fitted models for overweight at examination there is no real evidence of either males or 

females having greater odds of overweight for a given age or BMI at AR. In the overfat. models, 

however. females have 3 times of the odds of overfat when controlling for either age or BMI at AR. 

This is probably largely due to the much higher proportion of females who are classified as overfat. 

Table 8.29 details the estimated ORs from the logistic regression models for overweight and 

overfat at examination fitted jointly on age and BMI at AR. 

Outcome Explanatory variable n OR 95% CI P-value 

Age at AR 

Early vs. middle-late 1.56 0.36, 6.81 0.55 

BMI at AR 

Overweight at examination High vs. low-medium 261 1.53 0.35, 6.64 0.57 

Age & BMI at AR 

Interaction 8.67 1.19, 63.4 0.03 

Sex 

Female vs. male 0.75 0.31, l.83 0.34 

Age at AR 

Early vs. middle-late 2.54 1.38, 4,68 0.003 

Over fat at examination BMI at AR 255 

High vs. low-medium 3.06 1.66, 5.64 <0,001 

Sex 

Female vs, male 3.48 1.81, 6,71 <0.001 

Table 8,29: Estimated odds ratios (OR), 95% confidence intervals (eI) and P-values for the logistic regression 

models for overweight and overfat at examination fitted jointly on age and body mass index (13M!) at adiposity 

rebound (AR) in the original data. 

In the fitted model for overweight at examination there is evidence of an interaction between 

age and BMI at AR (P=0.03) so this is included in the model. There is, however, no evidence 

of any sex-explanatory variable interactions (P=0,85 for sex-age at AR, P=0.44 for sex-BMI at 

AR and P=O,92 for sex-age at AR-BMI at AR - each interaction tested separately) so these 

parameters are not included, 

The fitted model for BMI at examination can be interpreted as follows: 

• Among subjects with a low-medium BMI at AR the estimated OR associated with an early 

as opposed to middle-late AR is l.56, 
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• Among subjects with a middle-late AR the estimated OR associated with a high as opposed 

to low-medium BMI at AR is 1.53. 

• Among subjects with a high BMI at AR the estimated OR associated with an early as 

opposed to middle-late AR is 13.53. 

• Among subjects with an early AR the estimated OR associated with a high as opposed to 

low-medium BMI at AR is 13.27. 

Clearly the effect of either explanatory variable is highly dependent of the value taken by the 

other explanatory variable, evidence of significant mutual effect modification. Also of note is t.he 

similarity in the magnitudes of the effects of age and BMI at AR. 

In the fitted model for overweight at examination there is little evidence of a difference in the 

estimated odds of overweight at examination between males and females. 

Evidence for an age at AR-BMI at AR interaction in the fitted logistic regression model for 

overfat at examination is limited (P=O.13) so in the interests of parsimony the parameter is ex­

duded from the model. Again, there is also no evidence of effect modification by sex of either of 

the explanatory variables (P=O.55 for the sex-age at AR interaction and P=O.95 for the sex-Bl\lI 

at AR interaction). It can be seen from the fitted model that, for a given BMl at AR, an early 

AR is estimated to lead to 2.5 times the odds of overfat at examination in both male, and females. 

For a given age at AR a high BMI at AR is associated with a 3-fold increase in the odds of overfat. 

Finally. when controlling for both age and BMI at AR females are expected to have 3.5 times the 

odds of over fat when compared to males. 

A comparison of the estimated ORs in Table 8.28 with their equivalent ORs in Table 8.29 

can enable a crude assessment of the confounding of the relationships by the dimension of AR 

location which is present in the latter model but not the former. For example, if a relationship is 

found between one dimension of AR and an outcome at examination in the model containing only 

that dimension of AR as an explanatory variable, but in the model containing both dimensions of 

AR the magnitude of this relationship is diminished, then it could be suggested that the second 

dimension of AR is confounding the relationship between the first dimension of AR and the outcome 

at examination. 

Although the estimated associations in the fitted models for overfat at examination do show 

some degree of attenuation (2.86 vs. 2.54 for age at AR and 3.38 VB. 3.06 for BMI at AR) the 

differences are small, suggesting that there is little confounding. That both explanatory variable 

parameters remain highly statistically significant in the model fitted jointly on them is evidence of 

the independent effects on over fat at examination of both age and BMI at AR. 

Comparison of the fitted models for overweight at examination is somewhat more difficult due 

to the introduction of the interaction term in the latter model. However, a comparison of the 

estimated crude OR for an early AR of 6.35 in Table 8.28 with the strata-specific estimated ORs 

of 1.56 for a low-medium BM! at AR and 13.53 for a high BM! at AR illustrates the extent of the 
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interaction between the explanatory variables. A comparison of the estimated crude OR of 6.20 

for a high B~n at AR with estimated ORs of 1.53 for subjects with a middle-late AR and 13.27 

for t hose with an early AR shows a similar degree of effect modification. 

8.9.1.2 Using the imputed datasets 

Defining the categories of age at AR Subjects in the imputed datasets are split by sex into 

approximate tertiles of age at AR using the same cut-points as are used for subjects in the original 

datas('t in Section 8.9.1.1. This categorisation results in, across the 100 imputed datasets, a mean 

of 35.2% of males being classified as early AR, 34.0% as middle AR and 30.8% as late AR. The 

corresponding figures for females are 33.8% early AR, 34.7% middle AR and 31.5% late AR. This 

signifirs. particularly among the males, a shift towards greater a proportion of individuals exhibit­

ing an early AR than in the original data. 

Tablr 8.30 summarises the distribution of BMI at examination by age at AR category for males 

and females separately across the imputations. These values are obtained using Rubin's rules as 

describ('d in Sections 5.2.4 and 8.3.2, as is the case for all the results in this section. The sum­

mary' statistics are calculated as described in Sections 5.2.4 and 8.3.2. Due to the slightly skewed 

nature of the BMI at examination distribution the mean median is the preferred measure of the 

distributional 'average'. In both sexes there is a clear trend for mean median BMI at examination 

to reduce as age at AR category moves from early to late, though with much greater variability 

associatrd with earlier AR. 

Males Females 

Agr at AR ~Iean Overall Mean Mean Overall Mean 
SD SD 

category n mean median n mean median 

Early 49.6 22.3 21.9 3.2 67.7 22.6 22.0 3.5 

Middle 47.9 20.8 20.5 2.4 69.5 21.4 21.3 2.2 

Late 43.4 19.5 19.4 1.5 63.1 19.9 19.8 l.9 

Table 8.30: Distribution of body mass index (BMI) at examination in the 100 imputed datasets, by category of 

age at adiposity rebound (AR) and sex. 

An equivalent tabulation of %BF by category of age at AR (see Table 8.31) shows a similar 

patt('rn. with earlier AR leading, on average, to greater %BF in both males and females. Again, 

therr is greater variability in %BF for those with an earlier AR. 

Defining the categories of BMI at AR As with age at AR, the same cut-offs as previously 

defined by the original data in Section 8.9.1.1 are used to categorise the subjects in the imputed 

datasets. This results in a mean of 33.3% of males classified as low BMI at AR, 32.7% as medium 

224 



Males Females 

Age at AR Mean Overall Mean Mean Overall Mean 
SD SD 

category n mean median n mean median 

Early 49.6 17.9 16.6 7.7 67.7 31.3 30.4 6.6 

i\liddle 47.9 15.2 14.3 6.2 69.5 29.2 28.8 6.3 

Late 43.4 12.8 13.0 4.5 63.1 26.7 27.0 5.0 

Table 8.31: Distribution of percentage body fat (%BF) at examination in the 100 imputed dataset.s, by category 

of age at adiposity rebound (AR) and sex. 

and 34.0% as high. The corresponding figures for females are 33.8%, 33.2% and 33.0%. 

Table 8.32 summarises the distribution of BMI at examination by BMI at AR category for 

males and females separately. In both sexes a low BMI at AR is seen to correspond to It lower BMI 

at examination and a high BMI at AR to a higher BMI at examination. There is also a pattern of 

increasing variability with increasing BMI at AR category, most noticeably among the females. 

Males Females 

BMI at AR t>.Iean Overall Mean Mean Overall Mean 
SD SD 

category n mean median n mean median 

Low 46.9 19.6 19.1 2.1 67.7 19.5 19.5 1.6 

l\[edium 46.0 20.8 20.3 2.2 66.5 21.1 21.1 2.1 

High 47.9 22.3 21.8 3.1 66.1 23.4 22.7 3.2 

Table 8.32: Distribution of body mass index (BMI) at examination in the 100 imputed dataset.s, by category of 

body mass index at adiposity rebound (AR) and sex. 

Table 8.33 is t.he equivalent tabulation for %BF showing similar trends for both increased %BF 

and increased variability in %BF amongst those with a higher BMI at AR. 

Males Females 

BMI at AR Mean Overall Mean Mean Overall Mean 
SD SD 

category n mean median n mean median 

Low 46.9 13.7 13.1 5.4 67.7 26.7 27.1 4.8 

l\ledium 46.0 15.0 13.9 6.6 66.5 28.9 28.5 6.2 

High 47.9 17.5 16.9 7.3 66.1 31.7 30.9 6.7 

Table 8.33: Distribution of percentage body fat (%BF) at examination in the 100 imputed datascts, by category 

of body mass index (BM!) at adiposity rebound (AR) and sex. 
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Defining the categories of BMI at examination BMI at examination is again categorised 

using the international standards of Cole et al [60], as for the original data in Section 8.9.1.l. As 

B~II at examination is completely observed, and thus has no values imputed as part of the MI 

procedure, the prevalences of overweight and obese are the same in each imputed dataset and the 

same as for the original data. 

Defining the categories of %BF at examination As in the analysis of the original dat.a in 

Section 8.9.1.1. %BF at examination is categorised according to the existing cut-offs of McCarthy et 

al [175]. In the original data there are a small number of unobserved %BF values so, unlike BMI at 

examination. overfat is affected by the MI procedure. As a result of different values being imputed 

into different datasets it is possible for the prevalence of overfat and obese to vary between the 100 

imputed datasets. Between 17 and 18 males (10.7-11.3%) are classified as overfat and between 15 

and 16 (9.4-10.1%) as obese in each imputation dataset. The corresponding figures for females are 

·11-44 (18.1-19.4%) and 40-44 (17.6-19.4%). 

Logistic regression models In the analysis of the imputed datasets, assessing the extent of 

interactions involving either or both dimensions of the AR in the analysis models is not as straight­

forward as when dealing with the original data. As the AR locations are derived from what are 

often imputed data (i.e. estimation of AR location occurs after imputation) it is impossible to in­

elude in the imputation model any interactions between either dimension of the AR and any other 

variable (or, indeed, between the two dimensions of the AR). Generally, for a variable imput.ed 

under a no-interactions imputation model, if interactions are present then the MI estimates of them 

will be biased towards the null. Thus under normal circumstances the imputation model should 

reasonably preserve any features of the dataset which will be the subject of future analyses [123]. 

In this instance, however, it is impossible to do so, meaning that the potential biasing towards 

the null of the estimated interaction terms must instead simply be acknowledged. This is likely to 

lead to significance tests for the inclusion of such interaction terms underestimating their impor­

tance. As it is therefore impossible to accurately assess the evidence for the inclusion of interaction 

terms involving the AR when considering the imputed datasets, one possible approach is to include 

interaction terms in the analysis model if and only if they are deemed necessary when analysing 

the original data only (Le. if and only if they are included in the analysis models in Section 8.9.1.1). 

Table 8.34 details the estimated ORs from the logistic regression models for overweight and 

overfat at examination fitted separately on age and BMI at AR. Similarly to the analysis using the 

original data only, there is little evidence of sex-explanatory variable interactions in either model 

(P=0.95 for the sex-age at AR and P=O.29 for the sex-BivIl at AR interaction in the model for 

overweight at examination, with equivalent P-values of 0.41 and 0.88 in the model for overfat at 

examination) so these parameters are not included in the models. 

An early AR is estimated to lead to nearly 6 times the odds of overweight at examination and 

an almost 3-fold increase the in odds of overfat when compared to a middle-late AR in both males 
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Outcome 
Explanatory n per 

OR 95% CI P-valuc 
variable imputation 

Age at AR 

Early vs. middle-late 5.88 2.52, 13.71 <0.001 
331-351 

Sex 

Overweight at examination Female vs. male 0.65 0.32, 1.34 0.25 

BMI at AR 

High vs. low-medium 5.48 2.41, 12.46 <0.001 
331-351 

Sex 

Female vs. male 0.65 0.32, 1.33 0.24 

Age at AR 

Early vs. middle-late 2.88 1.63, 5.08 <0.001 
331-351 

Sex 

Overfat at examination Female vs. male 2.42 1.42, 4.13 0.001 

BMI at AR 

High vs. low-medium 2.98 1. 75, 5.10 <0.001 
331-351 

Sex 

Female vs. male 2.42 1.42,4.12 0.001 

Table 8.34: Estimated odds ratios (OR), 95% confidence intervals (eI) and P-values for the logistic regression 

models for overweight at examination fitted separately on age and body mass index (EMI) at adiposity rebound 

(AR) in the 100 imputed datasets. 
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and females. From the fitted models a high, as opposed to low-medium, BMI at examination can 

be expected to increase the odds of overweight by 5.5 times and treble the odds of overfat. All 

four of these relationships are highly statistically significant (p<O.OOI). There is littlp evidence of 

sex affecting the odds of overweight at examination for a given age or B~n at AR. but the odds of 

over fat in females are estimated to be about 2.5 times those in males. 

The estimated ORs from the logistic regression models for overweight and overfat at examina­

tion fitted jointly on age and B~I1 at AR are presented in Table 8.35. In neither modpl is therf' 

strong evidence of an age at AR-BMI at AR interaction to justify the inclusion of an interaction pa­

rameter (p=O.20 in the model for overweight at examination and P=O.23 in the model for overfat) 

although, as previously discussed, these P-values are likely to be biased away from significance. As 

there is reasonably strong evidence (P=O.03) of an age at AR-BMI at AR interactioll in the model 

with Bl\lI at examination as outcome when analysing the original data only, this interaction term 

is included here. There is also little evidence of any sex-explanatory variable interactions (P=0.87 

for the sex-age at AR interaction and and P=0.30 for the sex-BI\U at AR interaction in t.he model 

for overweight at examinat.ion. wit.h equivalent P-values of 0.40 and 0.81 in the oycrfat model). 

These interactions are not included in the analysis model as t.hey are not deen1Pd necessary in thp 

equivalent. original data model. 

Explanatory n per 
95% CI P-value Outcome OR 

variable imputation 

Age at AR 

Early vs. middle-late 2.49 0.64, 9.78 0.19 

BMI at AR 

Overweight at examination High vs. low-medium 331-351 2.22 0.55, 8.97 0.26 

Age & BMI at AR 

Interaction 3.37 0.52, 21.7 0.20 

Sex 

Female vs. male 0.62 0.29, 1.35 0.23 

Age at AR 

Early vs. middle-late 2.56 1.43, 4.60 0.002 

Overfat at examination BMI at AR 331-351 

High vs. low-medium 2.67 1.54, 4.62 <0.001 

Sex 

Female vs. male 2.55 1.47, 4.42 0.001 

Table 8.35: Estimated odds ratios (OR). 95% confidence intervals (eI) and P-values from the logistic regression 

models for overweight at examination fitted joint.ly on age and body mass index (13M!) at adiposity rebound (AH) 

in the 100 imputed datasets. 
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The fitted model for BMI at examination can be interpreted as follows: 

• Among subjects with a low-medium Br-.n at AR the estimated OR associated with an early 

as opposed to middle-late AR is 2.49. 

• Among subjects with a middle-late AR the estimated OR associated with a high as opposed 

to low-medium Br-.n at AR is 2.22. 

• Among subjects with a high B~n at AR the estimated OR associated with an early as 

opposed to middle-late AR is 8.39. 

• Among subjects with an early AR the estimated OR associated with a high as opposed to 

low-medium Br-.n at AR is 7.48. 

When controlling for bot h age and Br-.n at AR there is litt Ie evidence for sex altering the odds 

of overweight at examination. 

From the fitted model for %BF at examination it can be seen that for a given BMI at AR an 

early AR is estimated to be associated with 2.5 times the odds of overfat when compared to a 

middle-late AR. Similarly. when controlling for age at AR a high rather than low-medium Br-.n at 

AR il; estimated to increase the odds of overfat by about 2.5 times. Both of these relationships are 

highly statistically significant (P:SO.002). When controlling for both age and Br-.n at AR females 

are estimated to have 2.5 times the odds of overfat when compared to males. 

A crude assessment of the confounding of the relat.ionships in Table 8.34 by the dimension of 

AR location which is not present in each model is facilitated by a comparison of the estimat.ed 

OR:; in Table 8.34 with their equivalent ORs in the models of Table 8.35. 

In the models for overfat at examination the ORB for both age at AR (2.88 vs. 2.56) and BMI 

at AR (2.98 vs. 2.67) are attenuated a little. providing evidence that each association is somewhat. 

confounded by the other dimension. However. as both ORs remain highly statistically significant 

in the models fitted jointly on t.he explanatory variables it is clear that both explanatory variables 

are independently associated with being overfat. 

Direct comparison of the fitted models for overweight at examination is not possible as the 

model fitted jointly on age and BMI at AR also includes an age at AR-BMI at AR interaction 

term. 

8.9.1.3 Comparison of results using the original data only and results using the 

imputed datasets 

A comparison of the fitted logistic models using the original data (Tables 8.28 and 8.29) and th(' 

imput('d datasets (Tableii 8.34 and 8.35) allows differences between the two analytical approaches 

to be examined. 

From the models fitted separately on age and BMI at AR (Tables 8.28 and 8.34) it can be iiCeI! 

that the estimated ORs for overweight associated with bot.h an early AR (6.35 VS. 5.88) and a high 
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B!\n at AR (6.20 vs. 5.48) are reduced somewhat under the MI approach. \Vhilst the estimated 

OR for overfat associated with a high BMI at AR (3.38 vs. 2.98) is also reduced to some extent, 

that for an early AR (2.86 vs. 2.88) remains stable. 

Comparing the model for overweight at examination fitted jointly on age and BI\lI at AR in 

Tables 8.29 and 8.35 is complicated slightly by the inclusion of the interaction term in both models. 

Estimated coefficients corresponding to age and B!\n at AR are both seen to increase markedly 

when considering the imputed datasets (1.56 vs. 2.49 and 1.53 vs. 2.22, respectively). whilst the 

estimated interaction is attenuated dramatically (8.67 vs. 3.37). However, as has been detailed 

previously. the inability to include interaction terms involving the AR in the imputation model is 

likely to lead to an attenuation in the estimated interaction when considering the imputed datasets. 

This. in turn. is likf'ly to lead to increased estimated age and BMI at AR coefficients, which may 

well explain t he observed differences. 

The model for overfat shows a reduced association with BMI at AR for a given age at AR (3.06 

vs. 2.67). though little change in the estimated OR for age at AR when cont.rolling for BI\II at AR 

(3.54 vs. 3.56). 

The reasons behind the reduced ORs under the 1\11 approach are discussed in Section 8.11. 

Whilst the !'stimat!'d ORs in the fitted models may be reduced under the MI approach it IS 

import.ant to r!'cognise that their associat!'d CIs remain relatively wide and largely overlapping 

with those estimated for the corresponding ORs in the models using the original data only. Also, 

as all the estimated ORs remain highly statistically significant under the 1\11 approach the evidence 

of the associations is little diminished by th!' use of 1\11. 

8.9.2 Continuous analysis 

Use of both th!' !'xplanatory variables (age and BMI at AR) and the outcome variables (BMI 

and %BF at !'xamination) as continuous as opposed to categorical variables retains the maximum 

amount of information. I\lultiple linear regression provides a framework for assessing the associ­

ation between the two dimensions of the AR and later adiposity. Use of age- and sex-adjusted 

categoristaions of the m!'asures of lat!'-adolescent adiposity in Section 8.9.1 effectively controlled 

for the differing age at examination. \Vhen using the continuous variables, however, this controlling 

must be made more explicit by inclusion of age at examination in the regression models. 

The results are presented separately using the original data only (Section 8.9.2.1) and using 

the imputed datasets (Section 8.9.2.2), then t.he two sets of results compared (Section 8.9.2.3). 

8.9.2.1 Using the original data only 

Linear regression models of BMI and %BF at examination on age and BI\II at. AR are fitted using 

the original data. During adolescence both of the outcome variables are age-dependent and are not 

measured at the same ag!' in every subject, thus age at examination is included in every regression 

model to adjust for any potential confounding. Both age and BMI at AR are centred about their 

mean value to aid with model interpretation. 

230 



Table 8.36 details the linear regression models of BMI and %BF at examination fitted sepa­

rately on age and B~II at AR. As there is little evidence of any interaction between sex and each 

explanatory variable (P=0.38 for the sex-age at AR interaction and P=0.43 for the sex-B~n at 

AR interaction in the models for BMI at examination. with corresponding P-values of 0.79 and 

0.58 in the models for %BF at examination). combined-sex models with no interaction parameters 

are presented. 

Outcome Explanatory variable n Coefficient 95% CI P-value 

Age at AR (years) -0.97 -1.21. -0.73 <0.001 
261 

Female vs. male 0.29 -0.31, 0.89 0.34 
BMI at exam. (kg/m2) 

B~n at AR (kgjm2 ) 1.52 1.30. 1.74 <0.001 
261 

Female vs. male 0.85 0.34, 1.36 0.001 

Age at AR (years) -1.63 -2.19. -1.07 <0.001 
255 

Female vs. male 13.93 12.50. 15.36 <0.001 
%BF at examination 

m,n at AR (kgjm2 ) 1.96 1.37. 2.55 <0.001 
255 

Female vs. male 14.79 13.40. HU8 <0.001 

Table 8.36: Estimated coefficients. 95% confidence intervals (el) and P-values for the linear regression models of 

body mass index (Bt.II) and percentage body fat (%BF) at examination fitted separately on age and body mass 

index at adiposity rebound (AR) using the original data. t.lodels are adjusted for age at examination. 

Then' is ver:\, strong evidence that both age and Bl\lI at AR are associated with both B~lI 

and %BF at ('xaminatioll. A Olle year delay in AR is estimated to lead to. OIl average, a 0.97 

kgjm2 decrease in B~n and a 1.63% decrease in %BF at examination, whilst a 1 kgjm 2 increase 

in B~n at AR is estimated to lead to a 1.52 kgjm2 increase in BMI and a 1.96% increase in 

%BF. For a given Bl\H at AR females are expected to have a greater BMI and much greater %BF 

at examination than males. For a given age at AR females are expected to have greater %BF at 

examination. though there is no evidence of the same being true for BMI. This is perhaps explained 

by the distribution of age at AR being more sex-dependent than that of B~n at AR (see Table 

8.9) meaning that the effect of sex acts via the age at AR parameter. 

The results in Table 8.36 must be viewed with caution, however, due to the high correlation 

between age and Bl\n at AR. which has already been illustrated. This association means that. for 

example. the observed relationship between age at AR and Bl\lI at examination could be wholly. 

or at least partially. explained by confounding due to BMI at AR. 

Table 8.37 details the linear regression models for BI\II and %BF at examination fitted jointly 

on age and B~n at AR. Again there is little evidence of interaction between sex and any of t he other 

explanatory variables (P=0.64 with age at AR. P=0.66 with BMI at AR and P=0.81 with the age 

at AR-BMI at AR interaction in the model for BMI at examination, with corresponding P-values 

of 0.94.0.47 and 0.46 in the %BF model). thus combined-sex models with no sex interactions are 
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presented. However. there is strong evidence of an interaction between age and BMJ at AR in each 

model. making interpretation somewhat less trivial. 

Outcome Explanatory variable n Coefficient 95% CI P-value 

Age at AR (years) -0.59 -0.78, -0.39 <0.001 

8MI at exam. (kg/m2) 
8~1I at AR (kg/m2) 1.25 1.04, 1.47 <0.001 

Interaction between age 261 
-0.27 -0.43. -0.12 0.001 

and 8~1I at AR 

Female vs. male 0.52 0.05, 1.00 0.03 

Age at AR (~'ears) -1.16 -1. 71, -0.62 <0.001 

'/(BF at examination 
B~II at AR (kg/m2) 1.35 0.75, 1.95 <0.001 

Interaction between age 255 
-0.81 -1.24, -0.38 <0.001 

and 8r.1I at AR 

Female YS. male 14.05 12.71, 15.39 <0.001 

Table 8.37: Estimated coefficients. 95% confidence intervals (el) and P-values for the linear regression models of 

body mass index (£3~II) and percentage body fat (%£3F) at examination fitted jointly on age and body mass index 

at adiposity rebound (AR) using the original data. Models are adjusted for age at examination. 

To aid intf'fpretation it is beneficial to examine the fitted models more explicitly. For example. 

the model for Bl\1I at examination is 

BMIrxarn = - 0.59 (ageAR - mean(ageAR)) + 1.25 (BMIAR - mean(BMIAR)) 

- 0.27 (ageAR - mean(ageAR)) (Bl\I1AR - mean(BMIAR)) + 0.52 sex (8.1) 

+ constant 

where Bl\lIcxam is predicted BMI at examination. ageAR and Bl\UAR are age and Bl\n at AR. 

mean(ageAR) and mean(BMIAR ) are the mean age and BMI at AR across all subjects and sex is 

an indicator variable taking value 1 when female and 0 otherwise. It is possible to rewrite (8.1) in 

two ways to show more explicitly how changing each explanatory variable affects the outcome: 

Bl\lIcxarn = - 0.59 (ageAR - mean(ageAR)) 

+ (1.25 - 0.27 (ageAR - mean(ageAR))) (Bl\IIAR - mean(Bl\IIAR)) (8.2) 

+ 0.52 sex + constant 

and 

BMIcxam = 1.25 (Bl\lIAR - mean(BMIAR)) 

+ (-0.59 - 0.27 (BMIAR - mean(Bl\lIAR))) (ageAR - mean(ageAR)) (8.3) 

+ 0.52 sex + constant 

From (8.2) it can be seen that for a given age at AR a 1 kg/m2 increase in Bl\lI at AR is 

estimatpd to incrpase Bl\n at examination by 1.25 - 0.27 (ageAR - mean(ageAR)) kg/m2. Thus 
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for an earlier AR the estimated increase in Br-.n at examination associated with an increase in 

Br-.n at AR is greater than for a later AR. Table 8.38 shows the estimated increase in Br-.n at 

examination for a 1 kg/m 2 increase in Br-.n at AR at different ages at AR corresponding to the 

range of observed yalues. The estimated increase is 3 times as great at age 3 years as it is at age 8 

years and. whilst the increase is highly statistically significant (P<0.001) at younger ages. at age 

8 years the evidence for an increase is somewhat lessened. 

Increase in Br-.n at examination (kg/m 2 ) 

Age at AR (years) Estimate 95% CI P-value 

3 1.94 1.54. 2.34 <0.001 

4 1.66 1.38. l.95 <0.001 

5 1.39 1.18, 1.60 <0.001 

6 1.12 0.88, 1.36 <0.001 

7 0.85 0.50, 1.19 <0.001 

8 0.58 0.10, 1.05 0.02 

Table 8.38: Estimates. 95% confidence intervals (eI) and P-values for the increase in body mass index (131\11) at 

examination (in kg/m2) for a 1 kg/m 2 increase in body mass index at adiposity rebound (AR) at. different age at. 

AR levels using the original data. 

Similarly. (8.3) shows that for a given Br-.n at AR a 1 year delay in AR is estimated to increase 

8MI at examination by -0.59 - 0.27 (BMIAR - mean(SMIAR» kg/m2 (or equivalently to decrease 

it by 0.59 + 0.27 (Br-.nAR - I1wan(Br-.II AR » kg/m2 ). This means that for a greater BMI at AR the 

estimated decrea..o;e in sr-.n at examination associated with a later AR is greater than for a lower 

sr-II at AR. Tablp 8.39 shows the estimated decrease in sr-.n at examination for a 1 year delay 

in AR at different Br-n at AR levels. The estimated decrease is negligible at t he lower end of the 

observed Br-.n at AR range but is almost 2 kg/m 2 at the upper end. 

Rewriting the fitted model for %BF in Table 8.37 in the same way results in the values presented 

in Tables 8.40 and 8.41. It can be seen from Table 8.40 that, whilst a 1 kg/m 2 increase in Br-.n at 

AR is estimated to increase %BF at examination by over 3% when AR occurs at 3 years. if AR 

occurs later t.hen there is an estimated decrease in %BF, albeit with a 95% CI which includes O. 

Table 8.41 illustrates a similarly interesting pattern, with a 1 year delay in AR associated with 

an estimated 5% decrease in %BF when corresponding to a BMI at AR of 20 kg/m2 , but associated 

with a slight inCT'ease in %BF when corresponding to a BMI at AR towards the lower end of t.he 

observed range. Again. however. t.here is little evidence that this estimate is t.ruly less than O. 

\Vhilst these estimated anomalous results are perhaps plausible they also seem somewhat un­

likely. and the associated levels of uncertainty surrounding them must be considered. It should also 

he borne in mind that the amount of data available for t.he fitting of t.hese models are relat.ively 

small and thus the models obtained could potentially be greatly altered by one or two outlying 

vallles. 
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Decrease in Bl\H at examination (kg/m2 ) 

BMI at AR (kg/m 2 ) Estimate 95% CI P-value 

13 0.00 -0.39,0.39 0.99 

14 0.27 0.00,0.54 0.05 

15 0.54 0.35,0.74 <0.001 

16 0.81 0.58, 1.04 <0.001 

17 1.09 0.75, 1.42 <0.001 

18 1.36 0.89, 1.83 <0.001 

19 1.63 1.02, 2.25 <0.001 

20 1.90 1.14. 2.66 <0.001 

Table 8.39: Estimates, 95% confidence intervals (CI) and P-values for the decrease in body mass index (BMI) at 

examination (in kg/m 2 ) for a 1 year delay in adiposity rebound (AR) at different body mass index at adiposity 

rebound levels using the original data. 

Increase in %BF at examination 

Age at AR (years) Estimate 95% CI P-value 

3 3.39 2.26,4.52 <0.001 

4 2.58 1.79.3.37 <0.001 

5 1.77 1.17. 2.36 <0.001 

6 0.95 0.28, 1.63 0.01 

7 0.14 -0.82, 1.01 0.78 

8 -0.67 -2.0l,0.66 0.32 

Table 8.40: Estimates, 95% confidence intervals (CI) and P-values for the increase in percentage body fat (%BF) 

at examination for a 1 kg/m 2 increase in body mass index (8MI) at adiposity rebound (AR) at different. age at 

adiposity rebound levels using the original data. 
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Decrease in %BF at examination 

B!\lI at AR (kg/m2 ) Estimate 95% CI P-value 

13 -0.61 -1.70.0.49 0.28 

14 0.21 -0.55,0.96 0.59 

15 1.02 0.47. 1.58 <0.001 

16 1.83 1.19, 2.48 <0.001 

17 2.65 1.70.3.60 <0.001 

18 3.46 2.13,4.79 <0.001 

19 4.27 2.55. 6.00 <0.001 

20 5.09 2.95. 7.23 <0.001 

Table 8.41: Estimatps. 95% confidence intervab (CI) and P-values for the decrease in percentage body fat (%BF) 

at examination for a 1 year delay in adiposity rebound (AR) at different body mass index (Bt-II) at adiposity 

rebound levels using the original data. 

The fitted models in Table 8.37 also estimate. for a given age and BMI at AR, much greater 

%BF at examination in females than males, though evidence of the same being true for BMI at 

exam is more limited. Again this is perhaps due to the effect of sex acting via the age at AR 

parameter. 

A comparison between the models fitted separately on age and BMI at AR (Table 8.36) and 

those fitting jointly on age and BI\II at AR (Table 8.37) is complicated by the interaction seen 

between the two explanatory variables. This means that the attenuation of an estimated coeffi­

cient between two comparable models cannot necessarily be ascribed to confollnding by the other 

dimension of the AR. It may be the case that some of the association seen in the simpler model 

is merely acting via the interaction instead. However. in both models in Table 8.37 there remains 

strong evidence of relationships between each dimension of AR and the outcome conditional on 

both the other dimension of the AR and the interaction between the two dimensions of AR. This 

suggests that both age and Bl\1I at AR are associated with both BMI and %BF at examination 

independently of each other and their interaction. 

8.9.2.2 Using the imputed datasets 

Linear regression models of BMI and %BF at examination on age and BMI at AR are fitted using 

the 100 imputed datasets. To maintain comparability with the models using the original data only, 

data from the imputed datasets are centred using the same values (the mean of the variable across 

aJl subjects in the original data). Age at examination is again included in each model to adjust for 

any potential confounding due to the relationship between age at examination and the outcome 

variables. 

As with the logistic regression models in Section 8.9.1.2 there is likely to be a lack of power 
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when testing for the inclusion of any interaction terms which include either or both dimensions 

of the AR due to the impossibility of including interaction terms in the imputation model. Thus 

these interaction terms will again be included if and only if doing so was deemed necessary when 

considering t he original data only in Section 8.9.2.1. 

Table 8.42 details the linear regression models of BMI and %BF at examination on age and 

B1\1I at AR separately. Similarly to the analysis of the original data only there is no evidence of 

dfeet modification of these relationships by sex (P=0.97 for BMI at examination on age at AR 

and P=0.86 for B1\1I at examination on B1\lI at AR. with corresponding P-values of 0.59 and 0.87 

for the %BF model models). so models are presented for males and females combined with no sex 

interactions. 

Outcome 

BMI at exam. (kg/m2) 

%BF at examination 

Explanatory 

variable 

Age at AR (years) 

Female vs. male 

Female vs. male 

Age at AR (years) 

Female vs. male 

BM! at AR (kg/m2) 

Female vs. male 

n per 

imputation 

331-351 

331-351 

331-351 

331-351 

Coefl'. 

-1.00 

-0.09 

1.43 

0.64 

-1.67 

13.13 

1.82 

13.96 

95% CI P-value 

-1.24. -0.75 <0.001 

-0.48. 0.67 0.74 

1.19, 1.67 <0.001 

0.14. 1.15 0.01 

-2.28, -1.06 <0.001 

11.73, 14.53 <0.001 

1.21, 2.43 <0.001 

12.59, 15.34 <0.001 

Table 8.42: Estimated coefficients (coeff.). 95% confidence intervals (eI) and P-values for the linear regression 

models of body mass index (l3~tI) and percentage body fat (%I3F) at examination fitted separately on age and body 

mass index at adiposity rebound (AR) using the 100 imputed datasets. I\10dels are adjusted for age at examination. 

All four fitted models show highly significant relationships between the explanatory variable 

and the outcome. with age at AR inversely and BMI at AR directly related to both Bl\II and 

%BF at examination. A 1 year delay in AR is estimated to decrease BMI at examination by 1.00 

kg/m2 and '7oBF at examination by 1.67% for both males and females. A 1 kg/m 2 increase in 

BM! at examination leads to an expected increase of 1.43 kg/m2 and l.82% at examination. For a 

given age or Bl\II at AR females are expected to have a much greater %BF at examination. For a 

given Bl\lI at examination there is some evidence that females have a greater Bl\II at examination 

whilst t.here is no evidence that females have greater B1\l1 at examination conditional on age at AR. 

Table 8.43 details the linear regression models of BMI and %BF at examinat.ion fitted jointly 

on age and Bl\1! at AR. There is no evidence of sex-explanatory variable interactions either when 

considering the imputed datasets (P=0.58 for the sex-age at AR interaction. P=0.71 for the sex­

B1\lI at AR interaction and P=0.81 for the sex-age at AR-BMI at AR interaction in the mudd with 

B1\II at examination as outcome. with corresponding P-values of 0.58. 0.93 and 0.90 in t.he %BF 

at examination model) or the original data only. so combined-sex models with 110 sex interactions 
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are presented. 

Outcome 
Explanatory n per 

Coeff. 95% CI P-value 
variable imputation 

Age at AR (years) ~0.62 ~0.85, ~0.40 <0.001 

B~II at exam. (kg/m2) 
Bl\1I at AR (kg/m2) 1.17 0.93, 1.40 <0.001 

Interaction between age 331-351 
~0.15 ~0.35, 0.05 0.15 

and Bl\!I at AR 

Female vs. male 0.36 ~0.12, 0.84 0.14 

Age at AR (years) ~l.22 ~ 1.85. ~0.58 <0.001 

%BF at examination 
Bl\1I at AR (kg/m 2

) l.23 0.59, l.86 <0.001 

Interaction between age 331-351 
~0.50 ~1.00. 0.00 0.05 

and Bl\1I at AR 

Female vs. male 13.36 11. 99, 14.73 <0.001 

Table 8.43: F_,timat.ed coefficients (coeff.), 95% confidence intervals (el) and P-values for the linear regression 

models of body mass ind .. x (B~II) and percentage body fat (%BF) at examination fitted jointly on age and body 

mass ind .. x at adiposity rebound (AR) using the 100 imputed datasets. l\lodels are adjusted for age at examination. 

In both models then> is some evidence of an age at AR-BMI at AR interaction, but in the BMI 

at examination model this is weak. However, as the evidence for both interaction terms is strong 

(P ::; 0.001) when considering the original data only. they are both retained in the model. As with 

the analysis using the original data only in Section 8.9.2.1. in order to assess the impact of this 

interaction it is easier to rewrite the model (a.~ in (8.2) and (8.3)) and tabulate some appropriate 

values. 

Table 8.44 shows the estimated incrpase in Br..n at examination for a 1 kg/m2 increase in BMI 

at AR for different ages at AR. This increase can he seen to be twice as great for an AR near the 

start of the observed range (3 years) a. ... for an AR towards the end (8 years). 

Agf' at Increase in Br..n at examination (kg/m2
) 

AR (years) Estimate 95% CI P-value 

3 1.54 1.00, 2.07 <0.001 

4 1.39 1.02, 1.75 <0.001 

5 1.24 0.99, 1.49 <0.001 

6 1.09 0.83, 1.36 <0.001 

7 0.95 0.55, 1.35 <0.001 

8 080 0.22. l.38 0.01 

Table 8.44: Estimates. 95% confidence intervals (eI) and P-values for the increase in body mass index (B~II) at. 

examination (in kg/m 2 ) for a 1 kg/m 2 increase in body mass index at. adiposity rebound (AR) at different age at 

adipo~ity rebound levels using the 100 imputed datasets. 
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Table 8.45 shows the estimated decrease in BMI at examination for a 1 year delay in AR at 

different Br-.n at AR levels. The decrease in BMI at examination is over 4 times as great for a BMI 

at AR near the top end of the range of observed values (20 kg/m2 ) as for a B!\n at AR towards the 

bottom (13 kg/m2). However. although the decrease is highly statistically significant (P<O.OOl) 

towards the middle of the range of observed B!\n at AR values. at either end of this range tlw 

('vidence for it differing from 0 is reduced. 

B~II at Decrease in B!\n at examination (kg/m2) 

AR (kg/m2 ) Estimate 95% CI P-value 

13 0.30 -0.17.0.78 0.21 

14 0.45 0.14.0.76 0.005 

15 0.60 0.37,0.82 <0.001 

16 0.74 0.45. 1.04 <0.001 

17 0.89 0.44. 1.34 <0.001 

18 l.04 0.41, 1.67 0.001 

19 l.18 0.36, 2.01 0.005 

20 l.33 0.31. 2.35 0.01 

Table 8.45: Estimates. 950/0, confidence intervals (CI) and P-values for the decrease in body mass index (13MI) at 

examination (in kg/m 2 ) for a I year delay in adiposity rebound (AR) at different body mass index at adiposit.y 

rebound levels using the 100 imputed dataset~. 

Table 8.46 is the equivalent table corresponding to the model with %BF as outcome. It can 

be seen that. although a 1 kg/m 2 increase in BMI at AR is estimated to correspond to around a 

2.5% increase in B!\n when AR occurs at a young age, when AR is towards the end of the range 

of obs('rved va Ita's the estimated increase in %BF is negligible. 

Age at Increase in %BF at examination 

AR (years) Estimate 95% CI P-value 

3 2.47 1.17.3.77 <0.001 

4 1.98 1.08, 2.87 <0.001 

5 l.48 0.84, 2.12 <0.001 

6 0.98 0.26. 1.70 om 
7 0.48 -0.58. 1.54 0.37 

8 -0.02 -1.51,1.48 0.98 

Table 8.46: E.~timates. 95% confidence intervals (CI) and P-values for the increase in percentage body fat (%13F) 

at examination for a I kg/m 2 increase in body mass index (131\11) at. adiposity rebound (AR) at. different age at 

adiposity rebound le,'pls using the 100 imputed datasets. 

A similar pattern is observed in Table 8,47. with a 1 year delay in AR estimated to decrease 
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%BF by over 3% when Br-.n at AR is 20 kg/m 2 • but when Br-.n at AR is 13 kg/m2 there is virtually 

no decrease in %BF. Again. the estimated decrease in %BF at examination is highly statistically 

significant (P<O.OOl) when B~II at AR is towards the centre of the range of observed values. but 

the wider CIs at the more extreme B~n at AR values mean evidence of any decrease at all is 

markedly reduced. 

B~n at Decrease in %BF at examination 

AR (kg/m 2 ) Estimate 95% CI P-value 

13 0.13 -1.08. 1.35 0.83 

14 0.63 -0.20. 1.46 0.14 

15 1.13 0.50. 1.76 0.001 

16 1.63 0.85,2.41 <0.001 

17 2.12 0.98.3.27 <0.001 

18 2.62 1.04, 4.21 0.001 

19 3.12 1.07. 5.18 0.003 

20 3.62 1.08.6.15 0.01 

Table 8.47: Estimates. 95% confidence intervals (el) and P-values for the decrease in percent.age body fat (%8F) 

at examination for a 1 year delay in adiposity rebound (AR) at different body mass index (81\11) at adiposity 

rebound levels lIsing the 100 imputed dataset.s. 

The fitted model for B~n at examination in Table 8.43 also provides some evidence of greater 

BMI at examination in females for a given age and BMI at AR. The %BF at examination model, 

on the other hand. estimates a large and highly significant increase in %BF for females when com­

pared to males. 

A direct comparison of the models fitted separately (Table 8.42) and jointly (Table 8.43) on age 

and BMI at AR is again hampered by the interaction terms in the latter models. It can be seen 

from the highly statistically significant age and BMI at AR parameters in Table 8.43, however, that 

both dimensions of the AR remain strongly associated with both BMI and %BF at examination 

even when conditioning on the other dimension of AR and any potential interaction. 

8.9.2.3 Comparison of results using the original data only and results using the 

imputed datasets 

Comparison of the models Ilsing the 100 imputed datasets in Section 8.9.2.2 to those using the 

original data only in Section 8.9.2.1 allows an examination of how utilisation of the mUltiple 

imputation methodology impacts on the results obtained. 

Comparing the models fitted separately on age and BMI at AR using the imputed datasets 

(Table 8.42) to those using the original data only (Table 8.36) shows the estimated models to be 

largely similar. The effects of Bl\fI at AR on both Bl\lI and %BF at examination are slightly 
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attenuated under multiple imputation, whilst the age at AR coefficients in both models remain 

almost identical. The effect of sex in each model is also attenuated somewhat. In the models for 

%BF at examination the estimated coefficients using the original data only are so highly significant 

that this attenuation has little impact. In the models for Br..U at examination, however, this means 

that in the age at AR model using the imputed datasets there is no evidence at all for a sex effect 

and in the Br..n at AR model the evidence for a sex effect is markedly weakened. The reasons 

behind the attenuated coefficients under the MI approach are discussed in Section 8.11. 

The estimated models for B:\U and %BF at examination fitted jointly on age and Br.-n at 

AR in Tables 8.37 and 8.43 show ver)' similar patterns of coefficient attenuation for the age and 

B~!I at AR coefficients to the models fitted separately on the explanatory variables, namely slight 

attenuation of the BMI at AR coefficients and stable age at AR coefficients. 

The meaningful difference between the two approaches, however, is in the attenuated age at 

AR-Br-.n at AR interaction coefficients when analysing the imputed datasets. However. this can 

probably be explained by the imputation model lacking the equivalent interaction, as explained 

previously. The overall effect of this reduced interaction on the models is best investigated by com­

parison of the estimated increases or decreases in the outcome variables for different combinations 

of the explanatory variables. These are detailed in Tables 8.38, 8.39, 8.40, 8.41, 8.44, 8.45, 8.46 

and 8.47, though a plot of the equivalent values using the original data only and using the imputed 

data.sets on t he same axes is more informative. 

Fig. 8.19 plots the estimated increases in Br.-II (upper plot) and %BF (lower plot) at examination 

associated with a 1 kg/m 2 increase in Br.-II at AR for different ages at AR (see Tables 8.38, 8.39, 

8.46 and 8.47). It can be seen that both relationships in the models using the imputed datasets are 

'flatter' due to the smaller estimated interaction, meaning that the estimated increase in BMI or 

%BF at examination associated with increased BMI at AR is less dependent on age at AR. When 

considering %BF at examination the implications of this are somewhat more noticeable -- in the 

fitted model using the original data only an increase in BMI at AR corresponding to a late AR is 

estimated to lead to a somewhat implausible decrease in %BF, but under the fitted model using 

the imputed datasets this is not the case, with increasing BMI at AR at a late AR merely seen 

to have little effect on %BF. However, the 95% CIs around this age are fairly wide under both 

approaches. 

Fig. 8.20 shows the equivalent plots for the estimated decreases in the outcome variables as­

sociated with a 1 year delay in AR for different values of BMI at AR (corresponding to Tables 

8.40. 8.41, 8.46 and 8.47). Once again use of the multiple imputation procedure results in a flat­

tening of both relationships, meaning that the estimated decrease in BMI or %BF at examination 

a.'isociated with a delayed in AR is less dependent on BMI at AR. The lower plot shows a delayed 

AR corresponding to a low BMI at AR estimated to lead to increased %BF at examination in the 

fitted model llsing the original data only - but again this anomaly disappears in the model using 

the imputed datasets. 

The effect of sex in the fitted models for Bl\1I and %BF at examination fitted jointly on age and 
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Fig. .19: Estimated increases in body mass index (BMI) and percentage body fat (%BF) at examination associated 

with a 1 kg/m2 incrc&c in body mass index at adiposity rebound (AR) for differcnt ages at adiposity rebound using 

the original data only or the 100 imputed datasets. 
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BivlI at AR in Tables 8.37 and 8.43 is also attenuated somewhat in the models using the imputed 

datasets. In the model for BMI at examination this means that there is no longer compelling 

evidence for the necessity of a sex parameter in the model. 

8.9.3 Conclusions 

It is clear from both the categorical analysis in Section 8.9.1 and the continuous analysis in Section 

8.9.2 that age and Bl\II at AR are strongly and independently associated with both BMI and %BF 

at examination. This means that either an earlier AR, a higher BMI at AR or both increases 

the likelihood of high late-adolescent adiposity. This relationship does not appear to be modified 

according to the sex of the individual. 

In both the categorical and continuous analyses the results obtained using the imputed datasets 

generally differ relatively little from those using the original data only. However, as interactions 

involving either or both dimensions of AR cannot be included in the imputation modeL these 

interactions cannot be accurately explored when using the imputed datasets. This is discussed 

further in Section 8.11. As neither set of results is thus likely to perfectly describe the true 

relationships. it is informative to consider both. 

Both versions of the categorical analysis suggests that either an early AR or a high BMI at AR 

will lead to an increased risk of late-adolescent overweight, but it is when both an early AR and a 

high BI\U at AR are experienced that the risk increases massively. 

The increased information afforded by the use of the estimated dimensions of AR, as opposed 

to categorised versions, in the continuous analysis allows the associations to be more closely ex­

amined. For an AR at age 3 years a 1 kg/m2 increase in BMI at AR is estimated to increase 

late-adolescent BMI by 1.5-1.9 kg/m 2 and %BF by 2.5-3.4% (depending on whether the original 

data or the imputed data are used). When corresponding to an age at AR of 8 years, however, the 

estimated increases are reduced to 0.6-0.8 kg/m2 and a 0.0-0.7% increase in %BF. Similarly, a 1 

year delay in AR is estimated to decrease late-adolescent BMI by 0.0-0.3 kg/m2 and may slightly 

decrease %BF or increase it by up to 0.6% when corresponding to BMI at AR of 13 kg/m2, but 

for a BMI at AR of 20 kg/m2 the same delay in AR can be expected to decrease BMI by 1.3--1.9 

kg/m 2 and %BF by 3.6-5.1 %. 

These conclusions must be considered in light of the methodologies utilised in the analyses and 

the constraints of the data itself. However, as these issues are common to all analyses undertaken, 

this discussion is deferred until Section 8.11. In particular, as the majority of estimated ORs in 

Section 8.9.1 and estimated regression coefficients in Section 8.9.2 are attenuated when using the 

MI approach relative to an analysis of the original data only, it is important to consider whether 

using the original data only may result in an over-estimation of the associations or whether using 

the imputed datasets may result in under-estimation. 
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8.10 Is the adiposity rebound a critical period for late­

adolescent obesity? 

In Section 8.9 age and BMI at AR were shown to be significantly and independently associated 

with adolescent adiposity. What is not clear is whether there is anything 'special' about the AR. 

It is, by definition. an indicator of the level of BMI at the point in childhood when BMI stops 

decreasing and begins increasing once more (i.e. when BMI velocity is zero). However, if this is all 

that the AR is then there is little merit in using it as a predictor for later adiposity in preference 

to the value and velocity of BMI at any similar age in childhood. The issue here is really whether 

the AR can be considered a critical period, defined by Dietz [74J as 'a developmental stage in which 

physiologic alterations increase the later prevalence of obesity'. 

The fitting of splines in the current dataset affords the opportunity for a closer examination of 

this issue. From the fitted splines it is possible to derive estimates for the BMI and BMI velocity 

at any given age. By including in the same linear regression model for adolescent adiposity both 

the age and BI.,lI at AR and the BMI and BMI velocity at a given age in childhood it can be 

assessed whether, conditional on the BMI and BMI velocity at that age, knowledge of the AR 

provides any further information for the prediction of adolescent adiposity. If the AR is a critical 

period for adolescent adiposity then it should give additional information even when the BMI and 

BMI velocity included in the model correspond to post-AR ages. If, however, the AR is merely 

equivalent to BMI centile crossing at that age then this will only be the case when the BMI and 

BMI velocity correspond to pre-AR ages. 

The results are presented separately using the original data only (Section 8.10.1) and using 

the imputed datasets (Section 8.10.2)' then the two sets of results compared in Section 8.10.3. In 

each instance male and female results are presented separately as initial investigations highlighted 

sex-specific effects at some ages. Section 8.10.4 draws together the findings to present some overall 

conclusions. 

8.10.1 Using the original data only 

BMI and BMI velocity values at ages 4, 5, 6, 7 and 8 years are derived from the previously 

fitted subject-specific splines and incorporated into different models. 'Modell' in each instance 

is a linear regression of the outcome (either BMI or %BF at examination) on the BMI and BMI 

velocity at each age in turn. 'Model 2' has the addition of the age and BMI at AR so can be used 

to assess whether knowledge of the location of the AR adds any further information given the prior 

knowledge of the BMI and BMI velocity at that age. 

In all models only data from those subjects with identified ARs are used. Whilst this reduces 

the effective sample size somewhat, it ensures that those individuals with poorly fitted splines, 

either due to a lack of data or the available data displaying an unlikely growth trajectory, are not 

included in the analysis. Whilst BMI at examination is fully observed, %BF is not, meaning that 

in the models with %BF as outcome some subjects must also be excluded for t.his reason. As a 
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result the sample sizes differ between the models. 

BMI at examination Table 8.48 details the regression models for BMI at examination in the 

males. At all five ages at which Modell is fitted there is no evidence of an interaction between 

B1\1I and BMI velocity (P>O.l at all ages), thus an interaction term is not included in t.he models 

presented. When fitting Model 2 there is again little evidence of a BMI-BMI velocity interaction 

at any age, although there is limited evidence of an interaction between age and BMI at AR at 

age 6 years. However, in the interests of model comparability at each ag·e Model 2 is fitted without 

interaction terms. 

In Model 1 it can be seen that at all ages both BMI and BMI velocity are, conditional on 

each other, positively associated with BMl at examination. The coefficients for BMI are highly 

significant at all ages, whereas for BMl velocity this is only true at ages 6 and 7 years, with only 

weak evidence of any association at all at age 8 years. Given that the median age at AR in males 

was found to be 5.7 years (see Table 8.9 in Section 8.7.1), the BMI velocity between age 5 and 7 

years will be indicative of whether or not AR has already been passed, thus this peak in coefficient 

significance may indicate the importance of the timing of the AR on later BMl. 

The effect of the introduction of the age and BMI at AR in Model 2 is very much dependent 

on the age at which the BMl and BMl velocity values arc considered. At ages 4 and 5 years 

(prior to the median AR) the age and BMl at AR coefficients are highly significant, reducing the 

BMI and B1\lI velocity coefficients to non-significance. Given that the variables corresponding to 

the location of the AR are temporally closer to the outcome and contain similar information it is 

unsurprising that they exert a greater influence. At age 6 years, however, whilst the BMI at AR 

coefficient remains significant, BMI velocity, rather than age at AR, is now highly significantly 

associated with BMI at examination. This is perhaps explained by the age under consideration 

being later than the median age at AR, though this would also lead to the expectatioll of BMI at 

age 6 exerting greater influence than BMI at AR, which is not the case. At ages 7 and 8 years, 

beyond the age at which AR occurs in most males, it is BMI and BMI velocity at that age, as 

opposed to age and BMI at AR, which have the greater effect on BMI at examination. 

Table 8.49 details the equivalent models amongst the females. Again, there is a lack of evidence 

to support the inclusion of BMI-BMI velocity interactions at any ages in Model 1 and BMI-BMI 

velocity and age at AR-BMI at AR interactions at any ages in Model 2. 

In Model 1 BMI is positively and highly significantly associated with BMI at examination at 

every age. BMl velocity is also exhibits a positive association, though the coefficient is only highly 

significant until age 6 years, with little evidence of any relationship after that age. This earlier 

non-significance of the BMI velocity coefficient in females when compared to males is perhaps 

attributable to the earlier AR (median 5.5 years) identified in females (see Table 8.9 in Section 

8.7.1). 

In Model 2 at age 4 years the AR variables have significant associations with BMI at examina-
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Modell Model 2 
Explanatory variable 

Coefl'. 95% C1 P-value Coeff. 95% C1 P-vallle 

BMf age 4 years 1.04 0.62, 1.47 <0.001 -0.01 -1.22, 1.20 0.98 

BM1 velocity age 4 years 1.03 -0.27,2.32 0.12 -0.82 -2.10, 0.46 0.21 

BMI at AR 1.25 0.01, 2.50 0.05 

Age at AR -0.68 -1.11, -0.24 0.003 

BMI age 5 years 0.98 0.57, 1.38 <0.001 -0.61 -1.92, 0.71 0.37 

BMI velocity age 5 years 1.52 0.38,2.66 0.01 -0.30 -1.73, 1.12 0.67 

BMI at AR 1.86 0.46, 3.26 0.01 

Age at AR -0.59 -1.03, -0.14 0.01 

BMI age 6 years 0.97 0.65, 1.28 <0.001 -0.06 -1.11, 1.00 0.92 

BM1 velocity age 6 years 2.22 1.29, 3.15 <0.001 2.19 0.93, 3.45 0.001 

BM1 at AR 1.22 0.01, 2.42 0.05 

Age at AR -0.11 -0.52, 0.30 0.59 

BMI age 7 years 1.12 0.84, 1.39 <0.001 0.81 -0.07, 1.69 0.07 

BM1 velocity age 7 years 1.31 0.51, 2.12 0.002 1.41 0.44, 2.38 0.01 

BMf at AR 0.35 -0.67, 1.37 0.50 

Age at AR -0.11 -0.48, 0.27 0.57 

BMf age 8 years 1.11 0.86, 1.36 <0.001 1.00 0.36, 1.65 0.003 

BMI velocity age 8 years 0.66 -0.23, 1.55 0.14 0.72 -0.33, 1.76 0.18 

BMI at AR 0.08 -0.68, 0.85 0.83 

Age at AR -0.12 -0.48, 0.24 0.52 

Table 8.48: Estimated coefficients (coeff.), 95% confidence intervals (eI) and P-values for the linear regression 

models of body mass index (8MI) at examination (kgjm2 ) on body mass index (kg/m2) and body mass index 

velocity (kg/m2/year) at a given age, and age (years) and body mass index (kg/m2) at adiposity rebound (AR) in 

males using the original data. Models are adjusted for age at examination. 111 individuals in each model. 
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Explanatory variable 
Modell Model 2 

Coeff. 95% CI P-value Coeff. 95% CI P-value 

BMI age 4 years l.35 1.05, 16.4 <0.001 -0.07 -1.12, 0.98 0.90 

BMI velocity age 4 years l.44 0.52, 2.36 0.002 0.15 -0.80, 1.10 0.76 

BMI at AR 1.45 0.38, 2.51 0.01 

Age at AR -0.55 -0.92, -0.79 0.003 

BMI age 5 years 1.33 1.08, 1.59 <0.001 -0.17 -1.02, 0.69 0.70 

BMI velocity age 5 years 1.77 0.92, 2.63 <0.001 1.97 0.62, 3.32 om 
BMI at AR 1.59 0.70, 2.48 0.001 

Age at AR -0.11 -0.52, 0.31 0.62 

BMI age 6 years 1.29 1.07, 1.50 <0.001 0.82 0.20, 1.44 om 
BMI velocity age 6 years 1.37 0.70,2.04 <0.001 1.73 0.90, 2.56 <0.001 

BMI at AR 0.57 -0.08, 1.23 0.09 

Age at AR 0.08 -0.27, 0.43 0.66 

BMI age 7 years 1.31 1.11,1.51 <0.001 1.05 0.49, 1.61 <0.001 

BMI velocity age 7 years 0.06 -0.64,0.76 0.87 0.39 -0.48, 1.26 0.38 

BMI at AR 0.34 -0.26, 0.95 0.26 

Age at AR 0.02 -0.32, 0.35 0.91 

BMI age 8 years 1.16 0.99, 1.33 <0.001 0.77 0.38, 1.15 <0.001 

BMI velocity age 8 years 0.09 -0.68,0.86 0.81 0.65 -0.20, 1.50 0.13 

BMI at AR 0.63 0.18, 1.08 0.01 

Age at AR -0.03 -0.35, 0.30 0.88 

Table 8.49: Estimated coefficients (coeff.) , 95% confidence intervals (eI) and P-values for the linear regression 

models of body mass index (8MI) at examination (kg/m2 ) on body mass index (kg/m2) and body mass index 

velocity (kg/m2/year) at a given age, and age (years) and body mass index (kg/m2) at adiposity rebound (AR) for 

females using the original data. Models are adjusted for age at examination. 150 individuals in each model. 
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tion whereas there is no evidence of associations with BMT and BMT velocity. At age 5 years it is 

the BMT velocity and the BMT at AR are the only significant parameters. This is the same pattern 

as was identified in the males at age 6 (one year later), with this difference again perhaps due to the 

generally earlier AR in females. At age 6 years BMT and BMT velocity are more strongly associated 

with the outcome than the AR variables. At both ages 7 and 8 years BMT is highly significantly 

associated with BMT at examination but BMT velocity is non-significant. One slightly anomalous 

result is the return to significance of the BMT at AR coefficient at age 8 years in addition to the 

BMT variable at that age which would be expected to be carrying similar, though more recent, 

information. 

From the trends observed in these models it is evident that for ages before the occurrence of 

AR in most individuals the location of the AR is more strongly associated with later BMI. When 

considering ages when AR has already been passed in the majority the opposite is true, with the 

BMI and BMT velocity at that age taking greater significance than the AR. 

%BF at examination Table 8.50 and Table 8.51 show the corresponding models for %BF at 

examination in males and females respectively. When considering %BF as outcome there is no 

evidence of an interaction bet.ween BMI and BMI velocity at any age in Modell (P>0.2 at all ages 

for males and P>0.3 at all ages for females). There is also no evidence for a BMT-BMT velocity 

interaction in Model 2 (P>0.3 at all ages for males and P>0.4 at all ages for females), although 

there is some evidence of an interaction between age and BMT at AR at several ages. Again, 

however, to provide models which remain comparable with others these potential interactions are 

ignored. 

From Model 1 in Table 8.50 it can be seen that BMI is positively and significantly related to 

%BF at all ages in males. The relationship with BMT velocity is also positive when significant, 

though this only occurs at ages 5 and 6 years. These results are very similar to those obtained in 

the models for BMT at examination. 

Model 2 shows that %BF at examination is most strongly associated with age at AR at each age, 

with the relationship being highly significant at ages 4 and 5 years but only borderline-significant 

at later ages. This means that at, for example, age 8 years, even for given BMT and BMT velocity 

values at that age the location of the AR provides a significant amount of additional information. 

The pattern exhibit.ed in the %BF at examination models for males is very different. to that in the 

BMT models. Whilst %BF and BMT do inherently differ in what they are measuring, with %BF 

a more direct measure of adiposity and BMT a somewhat. weaker proxy, these differences perhaps 

remain surprising. 

Table 8.51 details models 1 and 2 for %BF at examination in females. Modell, similarly to 

in males, shows %BF to be generally positively related to both BM! and BMT velocity at all ages 

considered. This association is highly significant for BM! at each age though only significant for 
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Explanatory variable 
Modell Model 2 

Coeff. 95% CI P-value Coeff. 95% CI P-value 

BMI age 4 years 1.61 0.52, 2.69 0.004 1.29 -2.01, 4.59 0.44 

BMI velocity age 4 years 2.44 -0.85, 5.73 0.15 -0.69 -4.17, 2.80 0.70 

BMI at AR 0.57 -2.83, 3.96 0.74 

Age at AR -1.82 -3.01, -0.64 0.003 

BMI age 5 years 1.52 0.47, 2.56 0.01 0.97 -2.63, 4.57 0.59 

BMI velocity age 5 years 3.46 0.51, 6.40 0.02 -0.60 -4.74, 3.27 0.76 

BMI at AR 0.84 -2.97, 4.65 0.66 

Age at AR -1.64 -2.84, -0.43 0.01 

BMI age 6 years 1.66 0.76, 2.55 <0.001 0.89 -2.11, 3.90 0.56 

BMI velocity age 6 years 3.50 0.85, 6.15 0.01 1.59 -1.99, 5.18 0.38 

BMI at AR 0.77 -2.66, 4.21 0.66 

Age at AR -0.98 -2.14, 0.19 0.10 

BMI age 7 years 1.97 1.15, 2.79 <0.001 1.48 -1.10, 4.07 0.26 

BMI velocity age 7 years 0.81 -1.60, 3.21 0.51 -0.01 -2.87, 2.86 0.99 

BMI at AR 0.18 -2.82, 3.19 0.90 

Age at AR -0.96 -2.06, 0.13 0.08 

BMI age 8 years 1.89 1.11, 2.66 <0.001 0.88 -1.07, 2.82 0.38 

BMI velocity age 8 years -0.65 -3.38,2.08 0.64 -0.09 -3.25, 3.08 0.96 

BMI at AR 0.83 -1.47, 3.14 0.47 

Age at AR -1.05 -2.14, 0.03 0.06 

Table 8.50: Estimated coefficients (coeff.), 95% confidence intervals (el) and P-values for the linear regression 

models of percentage body fat (%BF) at examination on body mass index (BMI) (kg/m2 ) and body mass index 

velocity (kg/m2/year) at a given age, and age (years) and body mass index (kg/m2 ) at adiposity rebound (AR) for 

males using the original data. Models are adjusted for age at examination. 109 individuals in each model. 
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BMI velocity up to age 6 years. 

Modell Model 2 
Explanatory variable 

Coeff. 95% CI P-value Coeff. 95% CI P-value 

BMI age 4 years 1.48 0.70,2.25 <0.001 0.44 -2.59,3.47 0.78 

BMI velocity age 4 years 3.02 0.61,5.44 0.02 1.24 -1.50,3.98 0.37 

BMI at AR 1.02 -2.06,4.10 0.51 

Age at AR -0.94 -1.99,0.11 0.08 

BMI age 5 years 1.50 0.80, 2.21 <0.001 0.38 -2.11,2.87 0.76 

BMI velocity age 5 years 4.10 1.71,6.50 0.001 4.72 0.76,8.69 0.02 

BMI at AR 1.21 -1.38,3.81 0.36 

Age at AR 0.12 -1.09, 1.33 0.85 

BMI age 6 years 1.63 0.98,2.28 <0.001 2.52 0.63, 1.41 0.01 

BMI velocity age 6 years 2.45 0.42, 4.47 0.02 2.40 -0.13,4.93 0.06 

BMI at AR -0.98 -2.96, 1.01 0.33 

Age at AR 0.25 -0.80, 1.31 0.63 

BMI age 7 years 1.71 1.11,2.32 <0.001 2.57 0.85, 4.28 0.004 

BMI velocity age 7 years 0.34 -1.81. 2.50 0.75 -0.53 -3.18, 2.13 0.70 

BMI at AR -1.04 -2.88,0.80 0.27 

Age at AR 0.15 -0.87, 1.16 0.78 

BMI age 8 years 1.44 0.94, 1.94 <0.001 1.32 0.13, 2.51 0.03 

BMI velocity age 8 years 1.70 -0.59,4.00 0.14 1.87 -0.74, 4.48 0.16 

BMI at AR 0.19 -1.20, 1.58 0.79 

Age at AR -0.02 -1.01,0.97 0.97 

Table 8.51: Estimated coefficients (coefL), 95% confidence intervals (CI) and P-values for the linear regression 

models of percentage body fat (%BF) at examination on body mass index (BM!) (kg/m2) and body mass index 

velocity (kg/m2/year) at a given age, and age (years) and body mass index (kg/m2
) at adiposity rebound (AR) for 

females using the original data. Models are adjusted for age at examination. 150 individuals in each model. 

The addition of age and BMI at AR in Model 2 of Table 8.51 gives results quite different to 

those for the males. At age 4 years %BF at examination is more strongly associated with the 

location of the AR, in particular the age at AR, though this is only borderline-significant. From 

age 5 years onwards %BF appears to be more influenced by the BMI and BMI velocity at that age 

than the location of the AR though in differing ways: at age 5 years BMI velocity has the great.er 

effect, at age 6 years both BMI and BMI velocity, and from age 7 years onwards just BM!. 

Unlike the models for BMI at examination, those for %BF do not unify across the sexes to 

provide an over arching pattern so readily. For both males and females the overall significance 
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of coefficients is less, making trends less discernible, though this is perhaps to be expected given 

that in this case the explanatory variables are not merely earlier measurements of the outcome 

variable. In females the pattern is similar to that with BMI at examination as the outcome with , 
whichever of the variables in the model were observed closest to the outcome exerting the greater 

influence. For the males, however, the location of, and in particular the age at, AR W~B shown to 

be of significance at all ages. Whilst the sample size is relatively smail, that this pattern continues 

at all ages until age 8 years lends some gravitas to the observation. This could indicate that %BF 

in males may indeed have a more complex relationship with the AR than the reduction of AR to 

merely the relative level and rate of change of BMI at that age allows. 

8.10.2 Using the imputed datasets 

BMI and BMI velocity values at ages 4, 5, 6, 7 and 8 years are derived from the previously fitted 

subject-specific splines in each of the 100 imputed datasets in the same manner as for the original 

data in Section 8.10.1. Again, these values are incorporated into two different models, with 'Model 

l' being a regression of the outcome (either BMI or %BF at examination) on the BMI and BMI 

velocity at each age in turn and 'Model 2' having the addition of the age and BMI at AR. The 

comparison of the estimated coefficients in these models then facilitates the assessment of whether 

knowledge of the location of the AR adds any further information given the prior knowledge of the 

BMI and BMI velocity at that age. 

In all models only data from those subjects with identified ARs are used, providing a mechanism 

to ensure that only those individuals with well-defined splines contribute to the analysis. Although 

this reduces the effective sample size somewhat, the effect is not as marked as in the analysis using 

the original data as the 1\11 procedure allows a greater proportion of splines to be fitted and thus AR 

to be identified. However, as the number of identified ARs differs between each imputed dataset 

so does the number of subjects contributing to each model: between 134 and 146 in those models 

for males and between 193 and 207 in those for females. 

As discussed previously when using logistic (Section 8.9.1.2) or linear (Section 8.9.2.2) regression 

models to assess whether dimensions of the adiposity rebound are associated with late-adolescent 

obesity, the manner in which the AR location is estimated after imputation takes place means that 

no interactions involving either or both dimensions of the AR can be included in the imputation 

model. This is also t.rue for interact.ions involving BMI and/or BMI velocity values derived from the 

fitted splines. If t.hese interaction terms are then included in the analysis model using the imputed 

data, their estimated values will be biased towards the null [123]. This also means that P-values 

for significance tests for the inclusion of interaction terms in the analysis model are likely to be 

overestimated. As a result, these significance test are not conducted here. Instead, interaction 

terms are included if and only if they are deemed necessary in the equivalent model using the 

original data. Thus, as no interaction terms are included in any of the models in Section 8.10.1, 

none will be included here. 
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BMI at examination Table 8.52 details the regression models for BMI at examination in the 

males. In Modell it can be seen that at all ages both BMI and BMI velocity are, conditional on 

each other, positively associated with BMI at examination. Whilst the coefficients for BMI are 

highly significant (P<O.OOl) at all ages, those for BMI velocity peak in significance at ages 5 and 

6 years, though the association remains significant across the range of ages. Given that the 'mean 

median' age at AR in males was found to be 5.7 years (see Table 8.12 in Section 8.7.2), the BMI 

velocity at ages 5 and 6 years will be indicative of whether or not AR has already been passed, 

thus this peak in coefficient significance may indicate the importance of the timing of the AR on 

later BM!. 

Modell Model 2 
Explanatory variable 

Coefi. 95% CI P-value Coeff. 95% CI P-value 

BMI age 4 years 0.96 0.51, 1.41 <0.001 0.30 -1.06, 1.66 0.67 

BMI velocity age 4 years 1.92 0.56, 3.27 0.01 0.10 -l.34, 1.55 0.89 

BMI at AR 0.85 -0.59, 2.28 0.25 

Age at AR -0.81 -1.33, -0.29 0.002 

BMI age 5 years 0.95 0.54, 1.36 <0.001 0.36 -l.03, 1.75 0.62 

BMI velocity age 5 years 2.11 0.96, 3.25 <0.001 0.60 -1.01, 2.21 0.46 

BMI at AR 0.74 -0.77, 2.25 0.34 

Age at AR -0.65 -1.19, -0.11 0.02 

BMI age 6 years 1.04 0.72, 1.37 <0.001 0.77 -0.28, 1.81 0.15 

BMI velocity age 6 years 2.37 1.36, 3.37 <0.001 2.21 0.72, 3.70 0.004 

BMI at AR 0.32 -0.91, 1.54 0.61 

Age at AR -0.11 -0.61, 0.38 0.65 

BMI age 7 years 1.15 0.87, 1.43 <0.001 1.19 0.34, 2.05 0.01 

BMI velocity age 7 years 1.40 0.48, 2.31 0.003 1.23 0.11, 2.35 0.03 

BMI at AR -0.11 -1.12, 0.91 0.84 

Age at AR -0.10 -0.53, 0.32 0.63 

BMI age 8 years 1.02 0.78, 1.27 <0.001 0.93 0.28, 1.57 0.005 

BMI velocity age 8 years 1.71 0.67,2.75 0.001 1.73 0.51, 2.96 0.01 

BMI at AR 0.05 -0.74, 0.84 0.91 

Age at AR -0.15 -0.54, 0.24 0.45 

Table 8.52: Estimated coefficients (coeff.), 95% confidence intervals (eI) and P-values for the linear regression 

models of body mass index (BMI) at examination (kg/m2 ) on body mass index (kg/m2 ) and body mass index 

velocity (kg/m2 /year) at a given age, and age (years) and body mass index (kg/m2) at adiposity rebound (AR) for 

males using the 100 imputed datasets. Models are adjusted for age at examination. 

The effect of the introduction of the age and BMI at AR in Model 2 is very much dependent on 
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the age at which the 8MI and 8MI velocity values are considered. At ages 4 and 5 years (prior to 

the mean median age at AR) the introduction of the AR parameters means that the 8MI and B~n 

velocity coefficients are no longer significant, but that the age at AR coefficients are significantly 

inversely associated with later 8r-.n. At age 6 years, however, it is the BMI velocity rather than 

the age at AR which has the greater association with later 8MI, possibly due to the age under 

consideration now being greater than the mean median age at AR. At ages 7 and 8 years, beyond 

the age at which AR occurs in most males, it is both 8MI and 8MI velocity at that age which 

have the greater association with 8MI at examination. 

Table 8.53 details the equivalent models amongst the females. In Model 1 8MI, for a given 

8MI velocity, is positively and highly significantly associated with 8MI at examination at every 

age. BMI velocity is also exhibits a positive association (conditional on the BMI), though the 

coefficient is only significant until age 6 years, after which there is little evidence for the relationship. 

This earlier non-significance of the 8MI velocity coefficient in females when compared to males is 

perhaps attributable to the earlier AR (mean median 5.4 years) identified in females (see Table 

8.12 in Section 8.7.2). 

In Model 2 at age 4 years age at AR only has a significant association with BMI at examination 

(conditional on the other three variables) meaning that the introduction of the AR variables has 

removed the effect of the BMI and BMI velocity at that age. At age 5 years it is the 8MI, as 

opposed to age, at AR that is the most significant variable. From age 6 years onwards (i.e. after the 

mean median age at AR), the BMI and 8MI velocity variables become more strongly associated 

with the outcome than the AR variables - a pattern very similar to that exhibited in the males. 

At age 6 years the association with BMI velocity is highly significant, whereas with 8MI itself it 

is borderline significant. At ages 7 and 8 years it is 8MI only that has a significant effect. The 

non-significance of BMI velocity after age 6 years can perhaps be explained because at age 6 years 

many females are still to exhibit AR, thus 8MI velocity is an important indicator of whether AR 

has been passed or not. At older ages very few females will still be pre-AR, making an evaluation 

of 8MI velocity somewhat redundant. 

From the trends observed in these models it is evident that for ages before the occurrence of 

AR in most individuals the location of the AR is more strongly associated with later 8MI. When 

considering ages when AR has already been passed in the majority the opposite is true, with the 

8MI and BMI velocity at that age (in particular the BMI itself) taking greater significance than the 

AR. This indicates that later BMI is most strongly associated with whichever measures occurred 

more recently. 

%BF at examination Table 8.54 and Table 8.55 show the corresponding models for %BF at 

examination in males and females respectively. From Model 1 in Table 8.54 it can be seen that 

BMI is positively associated with %BF at all ages in males, conditional on BMI velocity, though 
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Explanatory variable 
Modell Model 2 

Coeff. 95% CI P-value Coeff. 95% CI P-value 

BMI age 4 years l.25 0.95, 1.56 <0.001 0.40 -0.62, l.42 0.44 

BMI velocity age 4 years l.28 0.34, 2.21 0.01 -0.09 -1.13, 0.94 0.86 

BMI at AR 0.87 -0.19, l.93 0.11 

Age at AR -0.64 -1.01, -0.27 0.001 

BMI age 5 years 1.22 0.93, 1.50 <0.001 0.26 -0.73, l.26 0.60 

BMI velocity age 5 years 1.37 0.42,2.32 0.005 0.98 -0.50, 2.46 0.19 

BMI at AR 1.00 -0.03, 2.03 0.06 

Age at AR -0.31 -0.77, 0.15 0.19 

BMI age 6 years 1.13 0.87, 1.39 <0.001 0.71 -0.09, 1.52 0.08 

BMI velocity age 6 years 1.35 0.52,2.19 0.002 1.65 0.55, 2.74 0.003 

BMI at AR 0.52 -0.32, 1.36 0.22 

Age at AR 0.04 -0.37, 0.44 0.86 

BMI age 7 years 1.14 0.90, 1.38 <0.001 0.87 0.17, 1.58 0.02 

BMI velocity age 7 years 0.36 -0.49, l.21 0.40 0.67 -0.39, 1.73 0.22 

BMI at AR 0.36 -0.38, 1.10 0.34 

Age at AR 0.00 -0.38, 0.38 0.99 

BMI age 8 years 1.04 0.85, 1.24 <0.001 0.75 0.28, 1.22 0.002 

BMI velocity age 8 years 0.33 -0.54, 1.20 0.46 0.76 -0.23, 1.75 0.13 

BMI at AR 0.49 -0.04, 1.02 0.53 

Age at AR -0.01 -0.38, 0.35 0.94 

Table 8.53: Estimated coefficients (coef!.), 95% confidence intervals (el) and P-values for the linear regression 

models of body mass index (BM!) at examination (kg/m2) on body mass index (kg/m2 ) and body mass index 

velocity (kg/m2/year) at a given age, and age (years) and body mass index (kgjm 2 ) at adiposity rebound (AR) for 

females using the 100 imputed datasets. Models are adjusted for age at examination. 
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this relationship is only significant from age 6 years onwards. The association with BMI velocity is 

also positive, though this relationship is only of any real significance at ages 5 and 6 years, around 

the period when the majority of males exhibit the AR. These results follow a similar trend to those 

obtained in the models for BMI at examination, albeit with relatively less significance. 

Explanatory variable 
Model 1 Model 2 

Coeff. 95% CI P-value Coeff. 95% CI P-value 

BMI age 4 years 1.08 -0.15, 2.31 0.08 0.39 -3.62, 4.41 0.35 

BM! velocity age 4 years 3.31 -0.46,7.07 0.09 0.03 -4.19, 4.26 0.85 

BMI at AR 0.99 -3.21, 5.20 0.64 

Age at AR -1.71 -3.23, -0.19 0.03 

BMI age 5 years 1.07 -0.09,2.23 0.07 1.00 -3.09, 5.09 0.63 

BMI velocity age 5 years 4.92 1.56, 8.28 0.004 2.22 -2.44, 6.87 0.63 

BMI at AR 0.19 -4.19, 4.58 0.93 

Age at AR -1.24 -2.81, 0.34 0.12 

BMI age 6 years 1.48 0.50, 2.47 0.003 2.11 -1.00, 5.22 0.18 

BMI velocity age 6 years 4.41 1.29, 7.52 0.01 2.87 -1.82, 7.56 0.23 

BMI at AR -0.91 -4.58, 2.76 0.63 

Age at AR -0.65 -2.18, 0.88 0.41 

BMI age 7 years 1.79 0.91, 2.68 <0.001 2.50 -0.14, 5.15 0.06 

BMI velocity age 7 years 1.85 -1.13, 4.82 0.22 0.38 -3.28, 4.03 0.84 

BMI at AR -1.28 -4.48, 1.92 0.43 

Age at AR -0.66 -2.02, 0.69 0.33 

BM! age 8 years 1.43 0.63,2.24 0.001 1.07 -1.03, 3.16 0.32 

BMI velocity age 8 years 3.49 0.02, 6.96 0.05 3.42 -0.59, 7.43 0.09 

BMI at AR 0.04 -2.54, 2.62 0.97 

Age at AR -0.80 -2.09, 0.50 0.23 

Table 8.54: Estimated coefficients (coeff.), 95% confidence intervals (el) and P-values for t.he linear regression 

models of percentage body fat (%BF) at examination on body mass index (BMI) (kg/m2) and body mass index 

velocity (kg/m2 /year) at a given age, and age (years) and body mass index (kg/m2) at adiposity rebound (AR) for 

males using the 100 imputed datasets. Models are adjusted for age at examination. 

Model 2 shows that %BF at examination is most strongly associated with age at AR, condi­

tional on the other three variables, at age 4 and 5 years. At age 6 years there is little association 

between %BF at examination and any of the four variables. This lack of association may be ex­

plained because, as this is the age closest to the mean median age at AR, the two pairs of variables 

effectively contain the same information in many cases (i.e. for the many males with AR around 

age 6 years, BMI at age 6 and BMI at AR will be similar and BMI velocity at age 6 years will 

be indicative, and thus highly correlated with, age at AR). At ages 7 and 8 years, BMI and BMI 
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velocity at that age become more important than the location of the AR. The pattern exhibited 

in the %BF at examination models for males is, whilst somewhat more diluted, similar to that in 

the Bl\II models. with the location of the AR seemingly more important prior to the mean median 

age at AR and the BMI and BMI velocity at a given age having greater significance at later ages. 

Table 8.55 det.ails models 1 and 2 for %BF at examination in females. Modell shows %BF to 

be uniformly highly significantly associated with BMI, for a given BMI velocity, though t.here is 

only evidence of an associated with BMI velocity (condit.ional on BMI) up t.o age 6 years. This 

pattern is identical to that observed for the corresponding BMI at examination models in Table 

8.53. 

Modell 
Explanatory variable 

Model 2 

Coeff. 95% CI P-value Coeff. 95% CI P-value 

Bl\lI age 4 years 1.32 0.56.2.07 0.001 -0.24 -2.70,2.23 0.85 

Bl\fI velocity age 4 years 2.88 0.63, 5.12 0.01 0.90 -1.69, 3.49 0.50 

BMI at AR 1.62 -0.88, 4.11 0.21 

Age at AR -0.84 -1.80,0.12 0.08 

BMI age 5 years 1.32 0.62,2.02 <0.001 0.11 -2.13, 2.35 0.92 

BMI velocity age 5 years 3.86 1.46, 6.25 0.002 4.08 0.57,7.60 0.02 

BMI at AR 1.31 -1.00, 3.62 0.27 

Age at AR -0.05 -1.14, 1.05 0.94 

BMI age 6 years 1.45 0.81, 2.08 <0.001 1.87 -0.03, 3.78 0.05 

BMI velocity age 6 years 2.54 0.46,4.63 0.02 2.44 -0.18, 5.05 0.07 

BMI at AR -0.19 -2.51, 1.54 0.64 

Age at AR 0.07 -0.97, 1.12 0.89 

BMI age 7 years 1.59 1.01,2.17 <0.001 2.06 0.37,3.76 0.02 

BMI velocity age 7 years 0.23 -1.92, 2.38 0.83 -0.39 -3.07,2.29 0.78 

Bl\fI at AR -0.67 -2.52, 1.19 0.48 

Age at AR -0.07 -1.09,0.95 0.89 

BMI age 8 years 1.37 0.90, 1.84 <0.001 1.15 -0.02,2.32 0.05 

BMI velocity age 8 years 1.10 -1.16,3.35 0.34 1.30 -1.28, 3.88 0.32 

BMI at AR 0.24 -1.16, 1.64 0.73 

Age at AR -0.19 -1.20,0.82 0.71 

Table 8.55: Estimated coefficients (coeff.), 95% confidence intervals (el) and P-values for the linear regression 

models of percentage body fat (%l3F) at examination on body mass index (8Ml) (kg/m2) and body mass index 

velocity (kg/m2/year) at a given age, and age (years) and body mass index (kg/m2) at adiposity rebound (AR) for 

females using the 100 imputed datasets. Models are adjusted for age at. examination. 
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The addition of age and BMI at AR in Model 2 of Table 8.55 gives results not. dissimilar t.o 

those for the males. At age 4 years %BF at examinat.ion is more strongly associated wit.h the 

location of the AR, in particular the age at AR. From age 5 years onwards %BF appears to 1)(> 

more influenced by the BMI and BMI velocity at that age than the location of the AR t.hough 

in differing ways. At age 5 and 6 years BMI velocity is quite strongly associated with latc %f3F, 

though the magnitude of this relationship declines as the proport.ion of subjects having passed AR 

increases. From age 6 years onwards it is BMI itself which has the greater influence. That. the 

location of the AR appears to lose its influence on later %BF at an earlier age in fenlll.lcs relative 

to males is again likely due to the generally earlier ARs exhibited in females. 

As for the models concerning BMI at examination, there are common trends evident across the 

male and female models for %BF at examination. For both sexes, at ages prior to AR in most 

subjects (ages 4 and 5 years in males and age 4 years in females) it is the location of the AR, 

and more specifically the age at AR, which has greatest influence on later %8F. At ages when 

most subjects have already exhibited AR (age 7 years and onwards in males and age 6 years and 

onwards in females) the BMI and 8MI velocity at that age have the stronger association. At the 

ages closest to the mean median age at AR in each sex (age 6 years in males and age 5 yean; in 

females) the models may not necessarily behave quite as expected due to the information in the 

pairs of variables being so similar, as previously noted. 

8.10.3 Comparison of results using the original data only and results 

using the imputed datasets 

A comparison of the results obtained using the imputed datasets in Section 8.10.2 with those 

obtained using the original data only in Section 8.10.1 can be informative as t.o t.he effect.s of t.he 

implementation of the MI procedure as part of the analysis. 

The models for 8MI at examination in males, presented in Table 8.48 and Table 8.52, show 

differing effects of the MI analysis. In Model 1 both the values and significance levels of t.he 

8MI parameters remain similar, whilst the estimated coefficients for 8MI velocity are uniformly 

increased, in many cases leading to greater levels of significance. In Model 2 many of the coefficients 

change value t.o greater or lesser degrees, but when a coefficient is non-significant under t.he original 

data analysis it may well be indicative of instability in its estimation, meaning that a. relatively 

small change in value in the MI analysis should not be over-interpreted. Thus the main effect of 

interest is the att.enuation of the 8MI at AR coefficient at ages 4 to 6 years, meaning that there is 

no longer evidence of an association with this parameter in these models under the MI analysis. 

The equivalent models for females in Table 8.49 and Table 8.53 show a noticeable attenuation 

in the BMI coefficients in Modell when analysing the imputed datasets. BMI velocity coefficients 

in model 1 are attenuated at younger ages whilst increased at older ages. In Model 2 the age 

at AR coefficients show an amplification at younger ages wit.h 8MI at AR coefficient.s not.iceably 

attenuated at most ages leading to reduced statistical significance. In particular, this removes the 
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somewhat anomalous result of BMI at AR having a significant association with lat('r BMI even 

when BMI and BMI velocity at age 8 years are known. Also of note is the attenuation of t.he 11MI 

velocity coefficient at age 5 years, reducing evidence of an association between this and BMI at 

examination. 

In Modell for %BF at examination in males (Table 8.54 and Table 8.50), the BMI coefficient.s 

are uniformly attenuated across the age range when considering the imputed datasets, resulting 

in reduced statistical significance, particularly at younger ages. The 8MI velocity coefficients, Oil 

the other hand, are all increased, often considerably, leading to greater significance. Of note ill 

the corresponding Model 2 are the increases in both value and significance of the coefficients fur 

BMI at age 7 years and 8MI velocity at age 8 years. There is a uniform attenuation of the age at 

AR coefficients across all ages, leading to this variable becoming non-significant in several models 

where it was previously significant, notably those at older ages where the initial result may not 

have been expected. 

The %BF models for females detailed in Table 8.51 and Table 8.55 show, in Modell, a uniform 

attenuation of the BMI coefficients for the multiply imputed data, whilst those for 8MI velocity 

are attenuated at younger ages and increased at older ages. In Model 2 the 8M! coefficient.s are 

attenuated somewhat at older ages, with a corresponding decrease in significance. 

8.10.4 Conclusions 

Results obtained using the original data only and using the imputed datasets are generally relatively 

similar. From the trends observed in the models for BMI at examination it is evident that for ages 

before the occurrence of the AR in most individuals the location of the AR is more strongly 

associated with adolescent BM!. When considering ages when the AR has already been passed 

in the majority the opposite is true, with the BMI and 8MI velocity at that age taking greater 

significance than the dimensions of the AR. These patterns appear equally strong in males and 

females. 

In the equivalent models for %BF at examination the results are similar though the associations 

somewhat less strong, especially amongst the males. This is, however, to be expected given that in 

this case the explanatory variables are not merely earlier measurements of the out.come variable. 

When the age being considered is either a long time before or after t.he expected age at AR 

it seems logical that. the whichever event is the more temporally proximal to adolescence has thr 

stronger association with adolescent adiposity, due to the widely acknowledged high levels of 8MI 

and adiposity tracking through childhood. When the age at which BMI and 8MI velocity are 

estimated is close to the age at AR in the majority of individuals, however, this is not so obviolls. 

The fact that age and 8MI at AR appear t.o be no bet.ter predict.ors of adolescent adiposity 

than BMI and BMI velocity at a similar age implies t.hat there is lit.tle extra information contained 

within these dimensions. Considering more explicitly the information gained from t.he t.wo different. 

cases is informative as to why this may be happening. 

In case 1, the age (say ad and BMI (say bd at AR are known. This is effectively t.he same as 
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knowing that at age al BMI is bi and BMI velocity (say rt) iH 0 as, by definition, BMI wlocity a.t 

AR must be O. In case 2, the BMI (say b2 ) and BMI velocity (say (2) for a given agp (say (/,2) arc 

known. Thus at age a2 it is known that the BMI is b2 and the BMI velocity is (:2. 

It can be seen that in each case the three elements of information are the same. In bot.h cases 

knowledge of the BMI (b i or b2) at that age (al or a2) may be considered loosely equivalent., and 

the BMI velocities (CI or C2) are also related. Whilst in case 1 it is known that AR OCCllfS at agp 

aI, much of this information is available in case 2 as if C2 is negative then it. must. be the casp that 

a2 is prior to the AR. Similarly, if Cz is positive then a2 is later than the AR. Also, the clospr C2 

is to 0 the closer a2 is to the age at AR. 

By examining the information available in each case it is perhaps no surprise t.hat. the AR is 

found to be no better a predictor of later adiposity that BMI and BM! velocity at a similar age. 

Whilst the logic followed here is perhaps restricted to cases where BMI neatly decreases to reach 

a single minimum value before immediately increasing once more, as this type of BM! trajectory 

is highly prevalent the implications are more widely applicable. 

Thus, whilst the age and BMI at AR have been shown to be associated with adolescent adi­

posity in Section 8.9, it would appear that this relationship is more statistical than physiological. 

Perhaps the AR is therefore not 'a developmental stage in which physiologic alterations increase 

the later prevalence of obesity' [74], making its labelling as a critical period somewhat debatable. 

As a result of this, concentration of interventions to prevent obesity at or around the period of the 

AR are likely to be no more beneficial than similar interventions at other periods in childhood. 

The question of the AR as a critical period has also been addressed by Cole [91] using an 

argument based on BMI centiles (BMI relative to others of the same sex and age) and centile 

crossing. Cole asserts that BMI centile and the rate of BMI centile crossing determines t.he age at 

AR for an individual. As a high BMI centile and/or upwards centile crossing around the period of 

AR are associated both with an early AR and with later high adiposity, early AR is often observed 

ct.'> a risk factor for later high adiposity. As these associations apply at all ages, not just at AR, it 

is posited by Cole that AR cannot be considered as a critical period for later adiposity. 

When BMI and BMI velocity are considered at a given age and for each sex separat.ely, as in 

the present analysis, there is a close relationship to BMI centile and rate of centile crosHing. Whilst 

obviously on a different scale, the relative positions for BMI between individuals of the same age 

and sex will be the same as their relative BMI centile positions. Thus if one individual has a 

greater BMI than another they will also have a higher BMI centile. Similarly, for a giVC'll BMI 

(at a given age and for a given sex) the relative positions for BMI velocity will be t.he same as 

the relative rates of BMI centile crossing. Thus if one individual has a greater BMI velocity t.han 

another they will also exhibit the greater upwards (or lesser downwards) centile crossing. 

In this way, when included as explanatory variables in a regression model, the effect of I3MI 

and BMI velocity would be expected to be similar to that of BMI centile and the rate of centile 

crossing. Therefore, it is no surprise that the obtained results closely resemble what would be 
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predicted by the line of argument of Cole. 

These conclusions must be considered in light of the methodologies utilised in t.llf' analyses and 

the constraints of the data itself. However, as these issues are common to all analyses undert.aken. 

this discussion is developed in a separate section. 

8.11 Discussion 

Whilst the analyses undertaken in this chapter each have their own conclusions, thew are Illany 

features which are common to all of them, including missing data, the MI proced1ll'e, spline-fitting 

and issues surrounding the data themselves, which are discussed here. 

8.11.1 Diagrammatic overview of the analysis 

The complex multi-stage nature of the present analysis means that subjects can be lost at a variety 

of different points. Some are lost before any analysis begins (see Section 8.2), some because they 

have insufficient data points for subject specific splines to be fitted (see Section 8.6) and some 

because AR cannot be estimated from their fitted spline, (see Section 8.7). This at.t.rition is not 

always easy to follow, especially as it differs between analysis using the original data only and 

analysis using the imputed datasets. Fig. 8.21 summarises this information diagrammatically in 

an attempt to aid understanding of the various stages in the analysis. It is identical to Fig. 8.1 in 

Section 8.3.3 but with the addition of the number of subjects which are lost or retained at each 

stage. 

8.11.2 Missing data 

This application of MI is novel because imputation does not result in every individual within t.he 

dataset contributing to the final analyses, as would often be the case elsewhere. This is because 

of the two stage process in action here - whilst the imputation of childhood BMI values (stage 

1) does mean that in each imputed dataset every child will, effectively, have all 10 BMI values 

present, the subsequent spline-fitting (stage 2) does not guarantee that every child will have an 

estimated AR, aHowing them to contribute to any subsequent analyses. Thus it is important. 

that at both these stages the role of missing data is examined. Any discussion of missing data 

is complicated further by the 95 subjects out of the initial 481 in the SWEDES data.sct that are 

excluded from the analysis at an early stage (see Section 8.2) for having no observed childhood 

BMI values whatsoever. These different levels of missing data and t.he implications of each are 

discussed here in more detail in the order in which they occur in the analyses. 

Excluded subjects 

Of the 481 subjects in the SWEDES dataset 95 have no observed BMI values (i.e. no concurrent 

observed height and weight values) whatsoever between age 1 and 10 years. When using the 
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original data only these individuals would clearly have no fitted-splines and thus no e;;t.imated 

AR, so would contribute nothing to any analyses. In each imputed dataset the;;e 1-iubjects would 

necessitate their entire BMI trajectory to be imputed. As they would only have a small number 

of observed variables, and in particular no observed BMI values between age 1 and 10 years, to 

contribute information to the imputation model to do so would likely lead to unreliably imputed 

BMI trajectories. As a result these 95 subjects are excluded from the analysis at the very beginning, 

leaving 386 eligible subjects. 

For this exclusion not to bias any results obtained on the reduced dataset, it is impcratiw that 

the excluded subset of individuals are no more than a random sample from the initial SWEDES 

dataset - or, to use the language of Rubin (see Section 5.2.1), that they are 'missing completely 

at random' (MCAR). Whilst it cannot be fully demonstrated that data are MCAR, a crude way 

to assess this is to compare the distributions of other more fully observed variables in the excluded 

subjects with those in the remaining 386 subjects. This is done in Section 8.2 for a variety of 

variables at birth and at examination and the conclusion reached that the distributions of virtually 

all variables are very similar in the two subgroups. Whilst it is not possible to fully demonstrate 

the missing data mechanism, these observations are indicative of the excluded subjects being 

MCAR, meaning that their exclusion should not bias the results obtained using the remaining 386 

individuals in the dataset. 

Unobserved childhood BMI 

As detailed in Section 8.4, between ages 1 and 6 years around 25-30% of BMI values are missing 

from the dataset, with this figure reduced to 5-10% for ages 7 to 10 years. Approximately 60% 

are subjects are seen to have all 10 BMI value observed, with 75% having at least 6 non-missing 

values. 

Analysis using the original data only In terms of the potential introduction of bias into 

the analysis it is not the missingness of the BMI values themselves which is of importance, but 

rather the missingness of the estimated AR locations (and the estimated BMI and BMI velocities 

in Section 8.10) which are derived from the fitted splines. However, as splines are only fitted 

to those individuals with at least 6 observed BMI values, and as the likelihood of a successfully 

fitted spline (and thus successfully derived growth features) is increased with a higher proportion 

of observed values, these two issues are clearly intertwined. Whilst differences between subgroups 

of the subjects with differing proportions of observed BMI values are investigated in Section 8.4, 

the actual missingness of the derived explanatory variables is examined here. 

Analysis using the imputed datasets Clearly when conducting analysis using the 100 im­

puted datasets analogous concerns over unobserved childhood BMI do not exist as in each imputed 

dataset all 10 BMI values will be present, either because they are observed in the original dataset 

or because they are 'filled in' during the imputation procedure. Whilst this means that splines 

can be fitted to every individual, the above issues regarding the potential introduction of bias into 
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the analysis as a result of the nature of the missingness of the derived growth features are still of 

concern. Again, these are discussed below. 

The missingness of the childhood BMI values is, however, of significance when c()llsi(h~r('d ill 

relation to the MI procedure itself. As seen in Section 5.2.4, one of the key assumpt.ions underlying 

the validity of MI is that the data to be imputed must be 'missing at random' (MAR) [120). This 

means that given the observed data the probability of an unobserved BMI value being missing 

cannot be dependent on the unobserved BMI value itself or any other unobserved covariat.es. 

Whilst it is conceivably plausible that, for example, those individuals with greater BMI at a given 

age try to avoid having their measurements taken, it is not possible to directly test thb. It should 

be recalled, however, that the missing BMI values for many of those individuals with few observed 

values correspond exactly to those years covered by their health care centre joufllals (i.e. befoI'(' 

age 7 years) (see Section 8.4). That all data from these journals are missing suggests that linkage 

to the journals was not possible. If missingness is due to an administrative issue then it is unlikely 

to be related to the BMI values themselves meaning that data in these cases arc MAR. 

Nevertheless it remains important to investigate the nature of the missingness more thoroughly, 

for example by examining the distributions of more fully observed variables between those subjects 

with observed BMI and those with unobserved BMI at each age between 1 and 10 years. In SectiolJ 

8.4 this is looked at somewhat more crudely by separating subjects into categories dependent 

on their proportion of observed BMI measurements through childhood, rather than examining 

missingness at each age in turn .. In females all of the variables are seen to be similarly distributed 

regardless of the number of BMI values observed, whereas in males some trends are observed. 

At birth, those with 5 or fewer observed values appear to be heavier than those with 6 or more 

and at examination this same group still have, on average, greater weight, and also greater BMI, 

waist and hip circumferences, and %BF. These differences are evidence that subject.s wit.h higher 

proportions of missing childhood BMI values may not be merely a random sample of t.he dat.aset. 

as a whole, implying that the missingness is not MCAR. It. is not possible, however, to distinguish 

whether the missing data are MAR or NMAR. 

One recommended approach in order to make the MAR assumption more plausible is to make 

the number of predictors in the imputation model as large as possible [126), and this advice is 

followed in the present application (see Section 8.3.2). 

No estimated adiposity rebound 

Whether using the original data only, with missing childhood BMI values for many subject.s, or the 

imputed datasets, with every childhood BMI value present, the spline fitting procedure does not. 

guarantee that. the estimated location of the AR can be obtained. Where this is not possible, these 

individuals do not cont.ribute to any subsequent analyses. For the logistic and linear regression 

models used in the analyses to provide unbiased results it is necessary for these non-contributing 

subjects to be MCAR, although the potential extent of any bias is reduced as the proportion of 

non-contributors decreases. As the estimated BMI and BMI velocity at given ages in Sect.ion 8.10 
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are only calculated in those individuals from whom the spline fitting resulted in it sllccessfully 

identified AR, these derived explanatory variables arc subject to similar missingness. 

Analysis using the original data only When using the original data only it. is possihlp t.o 

estimate AR location in 261 (68%) of subjects, meaning that a sizeable proportion of individuals 

are unable to contribute to the analyses which follow. In Section 8.7.1 individuals with an ideIltified 

AR are seen to differ in some respects from those with AR not identified (Table 8.10). In particular, 

males with an identified AR appear to have lower weight at birth and lower weight., 13MI, waist 

and hip circumferences, and %BF at examination. Females display a similar difference for weight. 

at birth, though those with an identified AR appear similar to those without in terms of the 

measurements at examination. These differences, particularly among the males, may indicatp 

underlying differences in the two groups of subjects. It is then implicit that those individuals ill 

whom AR location estimation is not possible, and thus non-contributors to the analyses, arc not 

MCAR but are potentially, as their missingness appears to be related to some of the observed 

variables, MAR. If the missing data mechanism is indeed MAR then this would invalidate the 

MCAR assumption necessary for the logistic regression to provide unbiased estimat.es when based 

on complete subset. 

The comparison of subjects with no identified AR, either due to having insufficient childhood 

BMI data to have a spline fitted or the AR not being identifiable from the fitted spline, with those 

with an identified AR is used as a crude assessment of whether those subjects who are excluded 

from the analysis can be considered as MCAR. A related issue is whether those subjects wit.h 

sufficient childhood BMI data to have a fitted spline yet no identified AR differ from those with 

an identified AR. In particular, when comparing these two subgroups in terms of late-adolescent 

adiposity this is really assessing whether the unidentifiability of the AR can be itself considered 

as a risk factor for later obesity. Indeed, as has been previously discllssed, the reason for the AR 

not being identifiable in some individuals is because their BMI trajectory continues to increase 

throughout childhood, which may be thought likely to result in higher adiposity. 

This can be assessed by fitting linear regression models for the measures of late-adolescent. 

adiposity on an indicator variable which signifies whether or not the AR can be identified. However, 

the data must be restricted to the subset for whom an AR could potent.ially have been ident.ified 

(i.e. those with at least 6 childhood BMI observations). As both BMI and %BF at. examinat.ion 

are age-dependent and are not measured at the same age in every subject, age at examination is 

included in each regression model to adjust for any potential confounding. 

Table 8.56 details the fitted models. As there is no evidence of an interaction with sex when 

considering either BMI (P=O.91) or %BF (P=O.18) at examination, the models are fitted for both 

males and females together. Clearly there is no evidence of either increased expected late-adolescent. 

BMI or increased expected late-adolescent %BF as a result of the unidentifiabiJity of the AR. 

Thus, whilst those subjects who are excluded from the analysis clue to having no identified AR 

may appear to differ in terms of late-adolescent adiposity from those with an ident.ified AR, the 
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Outcome Explanatory variable n Coeff. 95% CI P-valuC' 

Unidentified AR -0.10 -1.12, 0.91 0.85 

BMI at exam. (kg/m2 ) Sex 293 

Female vs. male 0.65 0.00, 1.29 0.05 

Unidentified AR -0.17 -2.43, 2.08 0.88 

%BF at examination Sex 293 

Female vs. male 14.23 12.79, 15.68 <0.001 

Table 8.56: Estimated coefficients (coeff.), 95% confidence intervals (el) and Wald test P-values for the linear 

regression models of body mass index (BMl) and percentage body fat (%BF) at examination fitted on identifiability 

of the adiposity rebound (AR) using the original data. Models are adjusted for age at examination. 

same is not true when considered conditionally on having sufficient data for a spline to be fitted. 

Analysis using the imputed datasets The use of MI allows estimation of the derived ex­

planatory variables for a greater proportion of individuals, though the exact figure differs between 

331 (86%) and 351 (91%) depending on the imputed dataset. Obtaining estimated AR for in­

dividuals for whom this is not possible using the original data only, and thus allowing them to 

contribute to the analysis, has several implications. Changes in the constituent members of the 

sample under analysis may affect both the regression coefficient estimates and the viability of the 

MCAR assumption underlying both linear and logistic regression. The increased proportion of 

subjects who are able to contribute to the analyses mean that, should the MCAR assumption be 

similarly violated in both cases, the bias in the results obtained using MI should be less. Finally, 

the increased sample size should increase the precision with which the parameters in t.he analysis 

models can be estimated (within each imputed dataset at least). 

In each analysis there is generally attenuation in the parameter estimates when using the 

imput.ed datasets compared to when using the original data only. This is possibly suggestive of 

differences in the relative characteristics of the subsets of subjects who contribut.e to the analysis 

in each case. This is investigated further in Section 8.7.2 where the distributions of a variety 

of variables are compared between those with a successfully identified AR and those without a 

successfully identified AR in the imputed datasets (Table 8.13). The differences between these two 

subgroups of individuals are generally reduced from those seen when considering the original data 

(Table 8.10), especially for the key outcome variables of BMI and %BF in males. However, these 

figures for the imputed datasets should be viewed with some caution due to the small sample sizes 

involved. The greater similarities between the two subgroups is suggestive of those who are not 

contributing to the analyses being MCAR, meaning that bias is potentially reduced in t.he analysis 

using MI. 

The greater precision achieved using MI is clear from the narrower confidence intervals for 

coefficient estimates generally observed. As these overall measures of precision include betwC'en-
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as well as within-imputation variability, precision within each imputed dataset must certainly be 

increased. 

As with the analyses using the original data, it is interesting to consider whether th£' uniden­

tifiability of the AR is itself a risk factor for later obesity. This can again be assessed by fitting 

regression models for BMI and %BF at examination on an indicator variable for AR identification. 

Now, however, as every subject has a fitted spline, and thus could potentially have an identified 

AR, there is no need to place a restriction on the data used. 

The resultant fitted models are presented in Table 8.57. It is not possible to accurately assess 

the interactions between AR being unidentified and sex, but as there is no evidence of these 

when using the original data only they are not included here either. Again, there is no evidence 

whatsoever of a relationship between AR identifiability and later adiposity. In fact, the similarity 

between the results using the original data (Table 8.56) and using the imputed datasets are quite 

remarkable, especially given that the former involves only a subset of the data used in the latter. 

Outcome Explanatory variable n Coeff. 95% CI P-value 

Unidentified AR -0.07 -1.19, 1.05 0.90 

BMI at exam. (kg/m2 ) Sex 386 

Female vs. male 0.48 -0.11, 1.07 0.11 

Unidentified AR -0.18 -2.62, 2.26 0.88 

%BF at examination Sex 
386 

Female vs. male 13.55 12.21, 14.88 <0.001 

Table 8.57: Estimated coefficients (caef!'.), 95% confidence intervals (eI) and Wald test. P-values for the linear 

regression models of body mass index (BMI) and percentage body fat (%BF) at examination fitted on identifiability 

of the adiposity rebound (AR) using the 100 imputed datasets. Models are adjust.ed for age at examination. 

There is some variability in the number of subjects who have a successfully identified AR in 

each of the 100 imputed datasets. From Table 8.11 in Section 8.7.2 it can be seen that this figure 

varies between 86 and 91 %. Thus there are clearly some individuals with a successfully identified 

AR in some, but not all, of the imputed datasets. Table 8.14 shows that the majority of subjects 

either have a successfully identified AR in none (6% of the total) or all (61% of the total) of the 

imputed datasets. However, this does mean that there is still a significant proportion (33%) of 

individuals who contribute in only some of the imputations (although it should be noted that 

two-thirds of this remaining 33% contribute in at least 81 % of the imputed datasets). The reasons 

behind this and the ensuing implications should be considered. 

As the only element of the analysis which changes between the imputed datasets is the imputed 

values themselves, it must be variability in the imputed values which causes the AR to be identifi­

able in some imputed datasets, but not in others. It should be remembered that some individuals 

have large proportions of missing childhood BMI data, meaning that many values are imputed. 

When this is the case, even with high quality imputations, there will be considerable variability 

266 



in the final BMI trajectories resulting from the imputed values. Thus it is no surprise that the 

identifiability of the AR also varies across imputations. 

As subjects with no identified AR do not contribute to analyses with one or both dimensions 

of the AR as explanatory variables, individuals with identified ARs in some, but lIot all, of the 

imputed datasets make a down-weighted contribution to the final result when compared to those 

with a successfully identified AR in each and every imputation. If the proportion of imputed 

datasets in which an individual has a successfully identified AR can be thought to correspond to 

the probability of them actually having an AR given the observed data (prior to imputation), then 

the fact that they also contribute to the final results with the same probability appears reasonable. 

Conclusions 

These observations suggest that the analyses using the original data may be more susceptible to 

bias, so that the slightly attenuated coefficients often found when analysing the imputed datasets 

may be closer to the true relationships. Thus, if it is believed that the imputation model preserves 

every aspect of the structure of the data, it could be suggested that the coefficients found when 

analysing the imputed datasets should be the preferred values. 

However, as has already been discussed, interactions involving either or both dimensions of the 

AR cannot be included in the imputation model, meaning that these interactions then cannot be 

reliably assessed in the analysis models. This issue is a direct result of the multi-stage nature of 

the analysis and would not occur in a simpler implementation of MI. For example, if the analysis 

models only included explanatory variables which were themselves in the original dataset then 

any interactions between these variables could be included in the imputation model, making the 

interaction terms in the analysis models fully assessable. This is a clear disadvantage of the l\U 

approach in this application. Indeed, it should also be considered that there may be further 

associations which are not fully captured by the imputation model. 

So, whilst the use of MI is likely to reduce bias by increasing the proportion of subjects who 

can contribute to analyses, there may also be problems due to the introduction of bias through 

(often unavoidable) deficiencies in the imputation model. As a resuit, is it perhaps wise to present 

results from both approaches. As the two sets of results generally differ relatively little, this does 

not seem like an unreasonable solution. 

It should also be remembered that even though using MI does increase the proportion of 

individuals in the dataset contributing to the analyses, there are still subjects who do not. Thus 

the same considerations regarding underlying differences between those with successfully derived 

explanatory variables (and thus contributing to the analysis) and those without (and thus not) 

must be borne in mind. 

Fig 8.22 summarises the above details regarding the proportion of subjects who contribute to 

the analyses when using either the original data only or the imputed datasets. The denominator 

used in the calculation of the percentages is the 386 subjects in the SWEDES dataset with at least 

one childhood BMI measurement. It can be seen that when using the original data 67.6% of these 
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subject contribute to the analyses. Under:t\lI only 61.4% of individuals contribute within all 100 

of the imputed dataset . though 94.0% contribute at least once. 

I~ - Fewer than 6 observed BMI values - no spline fitted 

Spline fitted but no AR identified 

AR successfully identified 

AR identified in none of imputed datasets 

_ AR identified in 1-50% of imputed datasets 

AR identified in 51-80% of imputed datasets 

AR identified in 81-99% of imputed datasets 

_ AR identified in 100% of imputed data sets 

Fig. 8.22: Proportions of subjects contributing to tbe analysis when using eith r the original data only or the 

imputed datascts. Values are percentages of the 386 subjects in the Stockholm Weight Developm nt Study dataset 

with at least one childhood body mass index measurement. BMT is body mass index and AR is adiposity rebound. 

8.11.3 Spline fitting 

Data requirements As d tailed in Section .3.1, for a spline to be fitted for an individual th y 

are r quired to have at least 6 BMI measurements between age 1 and 10 years with at least 2 

of th se being at age 6 years or younger and at least 2 being at age 6 years or older. Whilst 

these stipulations do not affect the spline-fitting procedure when u ing th imput d datas t a 

each individual will have all 10 BM! values present, wh n using the original data only the effective 

sample ize i reduced. Rela..'Cation of these requirements would m an that splines are fitted to 
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more subjects, but as the number of data points required for a spline to be fitted is reduced so is 

the likelihood of the resulting spline allowing reliable estimation of the location of the AR. Thus 

there is a trade-off which is largely subjective. As experimentation using the data suggests t.hat 

the reliability of the estimat.ed ARs would be potentially compromised by even a slight. moderation 

of the data requirements, for example by requiring only 5 data points, it is perhaps unwise to do 

so (results not shown). 

Selection of the smoothing parameters Selection of t.he smoot.hing parameters is informed 

by the use of a stratified random subsample of individuals taken from subgroups wit.h different. 

numbers of observed BMI values (i.e. 6, 7, ... ). Each subject is fitted with splines using different 

smoothing parameters then an overall strategy devised for deciding upon the smoothing parameter 

to use for any given individual. In the present application a rule is created 50 that the EDF of the 

spline is a function of the number of observed BMI values for that individual. 

The resulting strategy allows the subject-specific splines to be fit quickly and ea.~ily as it elim­

inates the need for the smoothing parameters to be dec"ided on a 5ubject-by-subject basis. Whilst. 

the fitted subject-specific splines obtained when using this general st.rategy all appear t.o be good 

fits to the data, without manipulation of the smoothing parameters on an individual level there 

remains the possibility that an improved fit could be achieved. Were time not a constraint t.hen 

this would be an improved approach to the spline-fitting, but when dealing with large datasets, as 

is effectively the case when using the imputed datasets, this is not an option. Given t.he generally 

well-fitting curves obtained, especially when considering their intended use (i.e. reliable estimation 

of the AR), the strategy used does seem to be a good compromise. 

Estimation of the adiposity rebound location Although all io BMI values bet.ween age 1 

and 10 years are used in the spline-fitting procedure (when present), the estimated AR is only 

searched for between age 2 and 9 years. Whilst there could potentially be ARs outside of t.his 

range which remain unidentified due to this constraint being imposed, the number of individuals 

is likely to be negligible as the range of ages encompasses those over which the AR has generally 

been identified in previous studies. An attempt to locate ARs for ages outside of this interval 

could be made, but as the extremes of the range over which the spline is fitt.ed are approached the 

estimated ARs will become less reliable. As for the data requirements above, there is a subjective 

trade-off to be considered. 

8.11.4 Multiple imputation 

Imputed variables As described in Section 8.3.2, the missing childhood BMI values affecting 

many individuals, as well as the %BF at examination values which are missing in only a handful of 

subjects, are imputed. All height and weight variables throughout childhood as well as many vari­

ables measured at examination are included in the imputation model. Furt.her mat.ernal variables 

relating to body size and socioeconomic status are also included. Although additional variables 
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are available in the SWEDES dataset they do not meet the criteria for inclusion in the imputation 

modeL namely that they are potentially related to either the variable of interest itself or its pattcm 

of missingness. Thus, although further variables could be included in the imputation model they 

would be expected to have little effect on the imputed values. Additionally, as discussed previously, 

whilst there is interest in interactions involving one or both dimensions of the AR. it is not possihle 

to include these in the imputation model. 

Imputation specifications Markov chain Monte Carlo (MCMC) is used to generate 100 im­

puted datasets. Whilst this number of imputations is more than is widely advised a.~ necessary 

the extra time and effort to create and maintain so many imputed datasets is minimal. With the 

large number of variables with missing data and the occasionally high proportions of missing data 

for a given variable encountered in the current application there seems little point having too few 

imputations and risking the adverse effects this could have on the results. 

A single chain is used for all imputations with 200 initial burn-in iterations before the first 

imputation and 100 iterations between each subsequent imputation. Whilst these specifications 

could be modified, as the corresponding time-series and autocorrelation plots of parameters from 

iterations provide evidence of appropriate convergence of the MCMC process this would not appear 

to be necessary. 

8.11.5 The Stockholm Weight Development Study 

The SWEDES dataset provides a healthy contemporary birth cohort in which to investigate the 

relationships between AR. and adolescent adiposity. There are, however, several issues and con­

straints associated with the dataset which require some discussion. 

Data quality The standard of data collection in the SWEDES is generally very high, particularly 

so for the examinations when subjects were approximately 17 years old. As all the data were 

collected prospectively there is decreased risk of recall bias or unreliable measurements [78]. Whilst 

missing anthropometric data in a study of this kind is largely expected, the apparent problems 

with linking to health care centre journals for some subjects, as seen in Section 8.4, are somewhat 

unfortunate. 

Sample size The already relatively small sample size of the SWEDES dat.aset. (481 subjects) is 

reduced furt.her by t.he exclusion of individuals with no observed BMI values between age 1 and 

10 years. Whilst the small sample size may affect the precision of the estimated relationships, 

the power afforded by it is still sufficient to ident.ify several important associations. However, 

replication of these analyses on larger dat.asets would be insightful as t.o the robustness of these 

associations. 

Representativeness and generalisability It is important to examine whether these results are 

generalisable beyond the members of the dataset. This can be considered on two levels: the reprc-
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sentativeness of the members of SWEDES within the Swedish population and the gcncralisability 

from a Swedish dataset to subjects outside of Sweden. 

Subjects were drawn from a population-based sample of the offspring of women who gave birth 

in 1984 or 1985 in Stockholm in a manner which has been seen to reasonably representative of the 

population in the Stockholm area [96]. It has been previously reported [94] that the prevall'llce of 

obesity at examination in the dataset is similar to that reported in Swedish adolescents H.nd young 

adults generally but that BM! in is slightly lower in the males and higher in the females than in 

the Swedish reference datasets. However, the minimal differences were adjudged to indicate that 

body composition in the dataset is fairly representative of adolescent Swedes. 

The conclusions reached here using data from Sweden, a developed European country, are likely 

to be able to be extrapolated relatively safely to similar populations. From the beginning of the 

1980s to 2005 the percentage of obese people Sweden doubled from 5% to 10%, with prevalence 

increasing most among young women, non-manual workers and those who live outside of urban 

areas [176]. These are similar trends to those seen in many European countries, although the 

prevalence of obesity is not as high as that estimated in the UK [177). 

The ages at which examinations occur (mean age 16.8±0.4 years) are sufficiently late so that 

BMI and %BF are approaching their stable adult levels [60, 175]. This means that, although the 

results obtaining in the analysis are concerned with measures of adiposity in late adolescence, the 

degree of extrapolation required to extend the conclusions through to adulthood is not particularly 

great. 
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Part III 

General approaches 
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As stated before, this thesis focuses on relating childhood growth, in the form of repeated ob­

servations of an anthropometric variable for each child, to a later health outcome. An important 

distinction with regards to the analytical approaches which may be utilised in this scenario is he­

tween balanced and unbalanced childhood growth data. In Chapt.er 9 modelling strategics for IISC 

with unbalanced childhood growth data are explored, developed and implemented. 

Unbalanced growth data, as defined in Section 5.l.2.1, are data which occur when there is no 

int.ention to observe the anthropometric variable at a common set of ages for each subject. When 

data are unbalanced many of the approaches detailed in Part II for use with balanced growt.h data 

cannot be used. 

\Vith unbalanced growth data, data are not 'missing' in the same sense as with balanced data 

as at no given time point for any individual are data 'expected'. Thus none of the approaches for 

handling missing data which can be used with balanced data are appropriate for use with unbal­

anced data. However, lack of data over a given time period for an individual is still problematic 

in unbalanced data, so. methods for dealing with this are still required. This issue is referred to as 

data 'sparsity' rather than missingness. 

It is not possible to use a single-stage analysis approach, for example a linear regression of a 

later health outcome on a childhood growth variable observed at several ages, with unbalanced 

data as this requires common ages at which the growth variable is observed. One solution to this 

is to interpolate between the observed measurements and estimate values at common times points 

so that the single-stage analysis methods can still be used. This involves fitting a g1'011Jth model 

to the data, the simplest of which (linear interpolation) is effectively a piecewise linear model. 

However, this is clearly biologically implausible. Thus further more realistic growth models should 

be considered. 

These concerns lead logically to the formulation of a two-stage analysis approach, as introduced 

in Section 5.4. In the first stage growth data for each individual is modelled. From the fitted 

models for each individual growth parameters can be derived. Whilst these parameters could 

include an estimate of the variable at a given age, as outlined above, others, such as growth 

velocity or acceleration at a given age, or the age at which maximum or minimum growth velocity 

or acceleration occurs, may also be of interest. These growth parameters can then be related 

to a later health outcome using similar methods to those when pursuing a single-stage analysis 

approach. 

In Chapter 9. the unbalanced BMI growth data in the Uppsala Family Study (UFS) are mod­

elled using penalised regression splines with random coefficients in a mixed model framework. From 

the fitted models, estimates of the location of the adiposity peak (AP) in infancy are derived for 

each subject. These derived growth features are then related to later BMI z-score Ilsing mixed 

models to take into account the structure of the dataset. 

Whilst unbalanced data mean that many approaches for balanced data cannot be used, any 

approaches which are appropriate for unbalanced data can also be used for balanced data. Thus 
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the approaches described in this part of the thesis are 'general approaches' rather than 'approaches 

for unbalanced data'. 
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Chapter 9 

Examining the relationship 

between the adiposity peak during 

infancy and later obesity in the 

Uppsala Family Study 

9.1 Introduction 

Whilst the adiposity rebound (AR) has been shown both here (see Chapter 8) and elsewhere (see 

Section 2.3.3) to be associated with later adiposity levels, other features of the BM! growth curve 

have been less well examined in this context. The AR, as a turning point, is a readily identifiable 

part of the typical BM! growth curve. So, however, is the BM! maximum usually reached between 

approximately age 6 months and 1 year, here referred to as the 'adiposity peak' (AP) during 

infancy. Fig. 9.1 shows a typical BMI growth curve with both the AR and AP identified. Unlike 

the AR, little research has been conducted into possible relationships between the timing of the 

AP and later adiposity. 

Whilst the AP is here defined in terms of the BM! curve, as the AR generally is, a similar 

peak is also present during infancy for other measures of adiposity. For example, both triceps and 

subscapular skinfold thicknesses are seen to increase after birth before peaking, generally between 

age 6 months and 1 year [1781· 

The aim of the present analysis is to investigate the relationship between the timing of and 

BM! at the AP and BM! z-score in later childhood and adolescence in the Uppsala Family Study 

(UFS), described in Section 4.2. The analysis can be considered as a two stage process. First, 

infant BM! data are used to construct subject-specific BMI growth curves from which the AP can 

be identified. Then assessment is made of the relationship between later BMI z-score, calculated 

from BM! measured at physical examinations when the subjects were between 5 and 13 years old, 
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Fig. 9.1: A typical body mass index (8MI) growth curve through childhood with the adiposity peak (AP) and 

adiposity rebound (AR) identified. 

and the derived AP locations (in term of both age and B II at AP). The subject-specific BM1 

growth curve are fitted using penali 'ed regression plines with random coefficients in a mixed 

model framework, l\1ultilevelmodelling techniques are used to relate later BM1 z-score to age and 

BM1 at AP in order to incorporate the familial structure of the dataset. 

9.2 Subjects 

A g neral introduction to the Upp ala Family Study is provided in Section 4.2. The most relevant 

detaib for the present analY ' i are that the dataset includes 602 pairs of siblings from Uppsala, 

wed n, born between 19 7 and 1995, Only sibling both in the top or bottom quarter of the 

birthweight distribution (,concordant high birthweighL' (CRB) or ' oncordant low birthweight' 

(CLB)) or with a bex-adju ted difference in birthweight of 0.4 kg or more ('di cordant birthweighL' 

(DB)) were included. Children' postnatal growth data, including erial measurements of height 

and weight weI' obtained from health records, kept by Child Health Centre and schools, All 

children had a pity ical examination between May 2000 and ovember 2001 when they were aged 

5 13 year, at which everal measurements , including height and weight, were recorded, From 

thee B:\lI and age- and sex-adju ted BM1 z-scores are calculated, 

Preliminary exploratory analy 'e (not included here) estimate the AP to occur at an age of 

between 6 month and 1 year in the majority of individual '. To ensure that the AP i identified 

for as many ubject a ' po ible in the UFS, a rather broad definition of the AP as 'the (main) 

B~II maximum between birth and age 2 year " is employed here, Whilst BM1 maxima beyond age 

2 year do not qualify as the AP under thi definition, data up to age 3 years are included '0 that 

e 'timatiol1 of parameter ' i not conducted too clo 'e to th boundaries of the interval over which 

the CUl've is fitted. B1\11 valu ' at birth are, however, excluded as the 'e are often thought to be 

unreliable. 
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Once BMI observations at birth and at ages greater than 3 years are excluded, 1164 of the 

initial 1204 individuals (96.7%) have at least one remaining BMI observation. Whilst t.he mixed 

model structure of the analysis could deal with those individuals with no data points whatsoever 

by assigning them the relevant fixed effects as t.heir fit.t.ed curve t.his is somewhat IlnH.ppeH.ling. AH 

a result, the 40 subjects with no BMI observations are excluded f1'Om the rest of t.he analysiH. 

It is important when excluding subjects from an analysis in t.his manner t.o inve!it.igat.e the 

existence of any underlying differences between those subjects who arc excluded and those who 

remain which could possibly jeopardise the validity of any results obtained. If the excluded sllbjects 

are no more than a random sample from the overall dataset (or 'missing completely at. random' 

(MCAR), see Section 5.2.1) then results obtained on the remaining subjects should be unbiased. 

Table 9.1 and Table 9.2 help to assess this, the former by displaying the number and percentage 

of subjects in various subgroups who are included in the analysis and the latter by comparing t.he 

distributions of several continuous variables between those who are included in the analysis and 

those who are excluded. From Table 9.1 it can be seen that very similar percentages of males 

and females are excluded from the analysis, implying that missingness is not related to sex. The 

percentage of excluded subjects is also similar in older and younger siblings and in the three 

birthweight groups. 

Variable Level 
Number (%) of 

subjects included 

Male 598 (96.5%) 
Sex 

Female 566 (96.9%) 

Older 581 (96.5%) 
Sibling type 

Younger 583 (96.8%) 

CLB 260 (94.9%) 

Birthweight group CRB 267 (97.5%) 

DB 637 (97.1%) 

Table 9.1: Number and percentage (%) of subjects with at least one body mass index observation bet.ween birth 

and age 3 years. CLB is concordant low birthweight, CHB is concordant high birthweight and DB is discordant 

birthweight. 

In Table 9.2 the distributions are presented separately for males and females as these largely 

anthropometric variables would not necessarily be expected to take similar values ill the two sexes. 

It can be seen that both weight and length at birth differ little between included and excluded 

subjects for males and females. Age at physical examination appears somewhat older in excluded 

males. Whilst the use of BMI z-score rather than an age-dependent variable reduces the conse­

quence of this with regards to assessment of the association of interest, the difference in ages may 

indicate that a certain subset of individuals is being lost from the analysis. Of more not.e are the 
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observed differences in BMI z-score at physical examination, being higher in excluded lIlales and 

lower in excluded females. However, care must be taken not to over-int.erpret. t.hese re~'ilIlt.s givPIl 

the small numbers of excluded subjects in both sexes. 

Males (n = 620) 

Variable 
Included (n = 598) Excluded (n = 22) 

Mean Median SD Mean Median SD 

At birth 

Weight (kg) 3.74 3.73 0.60 3.71 3.41 0.72 

Length (cm) 51.7 51 2.2 52.3 5l.5 2.5 

At physical examination 

Age (years) 10.0 10.1 1.7 11.5 11.8 1.5 

BMI z-score 0.26 0.12 l.20 0.58 0.26 1.15 

Females (n = 584) 

Included (n = 566) Excluded (n = 18) 
Variable 

Mean Median SD Mean Median SD 

At birth 

Weight (kg) 3.65 3.71 0.56 3.55 3.38 0.54 

Length (cm) 50.9 51 2.2 50.8 50 2.3 

At physical examination 

Age (years) 10.1 10.2 1.8 10.4 10.6 1.2 

BMl z-score 0.36 0.30 1.09 -0.11 -0.20 0.91 

Table 9.2: Distributions of variables at birth and at physical examination for subjects with/without at least. one 

body mass index (8M!) observation bet.ween birth and age 3 years, by sex. 

The number of BMI observations for each subject varies greatly between the remaining 116-1 

individuals. Whilst one subject has only one BMI observation, 96% have at least 7 and one has 

as many as 30. The distribution of the number of BMI observations for each subject is shown in 

Fig. 9.2. 

The distribution of ages at which these BMI observations occur is far from uniform between 

birth and age 3 years, as illustrated in Fig. 9.3. It can be seen that over 50% of the data point 

are for ages less than 6 months and that data are markedly more sparse for ages greater than 

approximately l.5 years. 

The outcome in the present analysis is the sex- and age-adjusted BMI z-score, calculated from 

the BMI measurement taken for each subject at their physical examination. Physical examinations 
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Fig. 9.2: Distribution of number of childhood body mass index (BMI) observations for the 1164 subjects with at 

least one body mass index observation. Total number of childhood body mass index observations is 15,296. 
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Fig. 9.3: Distribution of age at childhood body mass index observations for the 1164 subjects with at least one 

body mass index ob ervation. Total number of childhood body mass index observations is 15,296. 
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were carried out over an 1 month period which, coupled with til fact that subjects ar from 

ibling pair, mean that phy ical examination were carried out aero s a wide range of ages, as 

hown in Fig. 9.4. orne individuals were as young as 5.5 y ars and some as old as 13. years at 

examination, though the majority, some 7 %, are mor evenly distributed between about .5 and 

13 year . Whil t having a age-dependent outcome variable measur d over such a wide range of ages 

would often be problematic, the calculation of sex- and age-adjust d BMI z-scorcs should remove 

the age-dependent nature of the variable. Is ues regarding the interpretability of the variable do 

till exist however as a BMI z- core of, ay, +1 at age 6 years may not be considered equivalent to 

a BMI z-score of +1 at age 13 years. 

o~---'--------.---------.--------.---------r 
6 8 10 12 14 

Age at physical examination (years) 

Fig. 9.4: Distribution of age at physical examination for the 1164 subjects with at least one body mass index 

observation. 

9.3 Methods 

9.3.1 Body rna s index growth curve modelling 

P relim inary considerat ions 

Acknowledged difference in childhood BMI growth between male and females [6 J mean that 

different underlying growth trajeeLories should b used for each ex. However, in the cas of the 

UF , analy i i further complicated by the study design which results in a preponderance of 

individual with either high or low birthweight and relatively few in between. This can be clearly 

cen in Fig. 9.5, which how the distributions of birthweighl for males and females. The reason 

b hind the bimodal di tribution. is illustrated in Fig. 9.6 which hows th same di tributions but 

stratified by the birthweight group. As with ex, different growth patterns would be exp eLed 

for individual with different birthweight. As the subject in this case form largely disparate 

group for birthweight it may well be unwi e to fit the ame underlying growth trajectory for all 

individual , even within the arne ex. One approach to overcome this is to fit different ullderlying 
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growth trajectorie for each birthweight group, so that a greater degree of homogeneity i . achieved. 

Thu ix different model are fitted, corre ponding to CLB males, CHB males, DB males, CLB 

female , CHB females and DB females. 

Male Female 

O~.----r----'----'----r ~~--,----, ____ .-__ -. 
234 5 6 2 3 4 6 

;1 
-!J ~ : 
Q) N 

a. ~ 

o 

Birthweight (kg) 

Fig. 9.5: Distributions of birthweight, by sex. 

Male. Concordant low Female, Concordant tow 

Male. Concordant high Female, Concordant high 

Male, Discordant Female, Discordant 

~1 ~2" ----.----.----5"----.6 2 4 
Birthweight (kg) 

Fig. 9.6: Distributions of birthweight stratified by sibling group, by sex. 

The ubgroup of the dataset for which these models are fitted arc summarised in Table 9.3. 

Within each subgroup at least 94% of the subjects have one or more BMI observations over the 

age range of interest and this equates to a mean of between 12 and 14 data points per individual. 

Penalised regression spline models 

Subject-specific B11l growth curves are fitted using penali ed regression splines with random coef­

ficients , a introduced in Section 5.4.1.5. Cubic penalised regression pline models, with both cubic 

fixed effects and cubic random effects, are u ed to model the BMI growth curve. The cubic nature 
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Subgroup Birthweight Number (%) of Mean Illllllber of data 
Sex 

model group subjects included points per sllbject 

Modell Male CLB 139 (93.9%) 13.9 

Model 2 Male CRB 122 (96.1%) 12.0 

l\fodel3 Mal~ DB 337 (97.7%) 13.2 

Model 4 Female CLB 121 (96.0%) 13.2 

Model 5 Female CRB 145 (98.6%) 13.0 

Model 6 Female DB 300 (96.5%) 13.2 

Table 9.3: Summary of subjects included in each subgroup model. CLB is concordant low birthweight, eHB is 

concordant high birthweight and DB is discordant birthweight. 

of the models should ensure a good fit to the data is possible and will also result in continllous 

first derivatives. As the aim of the modelling is to identify turning points in the growth curves this 

second point is vital. 

The models are fitted on log(BMI) rather than BMI itself to flatten the maxima and cnconrage 

a better fit. Let YiJ denote the log(BMI) of subject i, i = 1, ... ,m, at age Xij, j = 1, ... ,ni. Let 

K}, ...• KK be a set of distinct knots in the range of Xij and let 

X+ = max(O, x) 

as in (5.35) in Section 5.4.1.5. Then each model is of the form 

K 

Yij ={3o + {3}Xij + {32 XTj + {33X~j + L Uk(Xij - Kd! 
k=! 

K 

+ aiD + ail Xi) + ai2 X;j + ai3 X7j + L Vik(Xij - Kk)! + Eij 
k=} 

(!J.l ) 

where Uk '" N(O, cr~), (aiO, ail, ai2, ai3f '" N(O, ~), Vik '" N(O, cr~) and Eij '" N (0, cr;), which is a 

simple extension of model (5.49) in Section 5.4.1.5. Letting 
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Z= 

Zm 0 0 

where 

with 

Xm 0 0 

o 
o 

u= 

V rrt 

XT! ) 
: ' 

xTn 1 

and Ci = 

o 
(blockdiagonal ~) 1 < i < m 

o 

the model can be written in matrix notation as 

y=X,8+Zu+e, 

which is the general linear mixed model representation given in (5.24). 

Knot selection 

and e = ( e! ) 

em 

(9.2) 

A simple method for choosing K, the number of knots, which usually works well in scatterplot. 

smoothing [134] is 

K = min (~ x number of unique Xij' 35) . (9.3) 
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In the present dataset the number of unique Xij in each of t.he six models ranges from 532 to 756, all 

of which give K = 35. However, as subject-specific curves are required rather than ju:->t a Slllooth 

of all the data with no regard paid to the structure, this is likely to be a vast overestimate for K. 

If. instead. models were fitted for each subject using only the data available for that subject then 

each model would be a smooth of a mean of 13.1 data points (see Table 9.3). Using (9.3) again, 

this would give K = 3. Therefore a sensible choice for K would appear to be somewhere bCtWCPll 

3 and 35. Thus, somewhat arbitrarily, K is fixed at 12 which should provide a sufficient level 

of flexibility for the curve, especially given the relatively high degree (cubic), whilst avoiding the 

computational complications that a large number of knots would entail. This is a similar number 

of knots to t hat used for the fitting of subject-specific penalised regression splines with random 

coefficients elsewhere [179]. Other values for K slightly greater than or less than 12 were also 

examined. but were found to make little difference to the fit of the spline models. 

A simple approach to selecting the knot locations, 1\:1, ... , I\:K, which has also been used else-

where [134. 179] is 

Kk = (_k_) th sample quantile of the unique Xij' 
K + 1 

This approach is utilised in the present analysis, giving knots which lie on the (f:J) th, ... , ( H r h 

centiles of the unique Xij. 

Whilst the number of knots (K = 12) is the same in all six models, as the knots locations 

are defined by the ages at which childhood BMI is observed (which are not common amongst the 

six subgroups) the knot locations are allowed to differ between the models. However, the knot 

locations are seen to be very similar across all six models. 

The data points and knot locations for the CLB males are plotted in Fig. 9.7. The knot locations 

are clearly much closer together in the regions of the plot where there is a greater density of data 

points. 

The cubic spline basis with knot locations as defined above is 

(9.4) 

and is plotted in Fig. 9.8 for the CLB males model. Every subject-specific curve can be obtained 

as a linear combination of these basis functions. 

The knot locations and resulting bases for the other five models only differ through minor 

relocations of the knots so are omitted for brevity. 

PopUlation average curves 

The population average curves in each model are formed from the elements which do not vary 

between individuals. Thus, with reference to (9.1), the population average curve for a given model 

can be seen to be 
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Fig. 9.7: Data points and knots locations for concordant low birthweight males. 
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Fig. 9.8: Cubic spline basis for concordant low birthweight males. 
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12 

f30 + f31 X + f32X2 + f33 X3 + L Uk(X - ,q,)~. 
1.0=1 

The population average curves for each model are plotted separately for males (Fig. 9.9) and females 

(Fig. 9.10) to aid clarity. The curves for males are as would perhaps be expected wit.h t.lw CLB 

subgroup having a lower trajectory right across the range of ages examined, t.he CIII3 subgroup 

having a higher trajectory and the DB subgroup (which is a complete mix of birthweights) being 

between the two. The observed trend in females is very similar, although in this case the trajectory 

of the DB subgroup much more closely mimics that of the CRB subgroup. It can be seen that for 

both males and females the ages at the maxima of the population average curves differ between 

the birthweight groups which gives some justification to the fitting of separate fixed effects for each 

subgroup. 
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Fig. 9.9: Population average curves for males .. 

Subject-specific deviations 

The subject-specific deviations from the population average curve in each model are the elements 

which vary between individuals in the model. For subject i they are given by 

12 

aiO + ailx + ai2 x2 + ai3x
3 + L Vi/.,,(x - "'k)~' 

k=1 

The subject-specific deviations for the CLB males only are plotted in Fig. 9.11. The curves 

demonstrate a reasonable amount of between-subject variation, with a maximum deviation from 

the population average curve of around ±O.2. The high levels of curvature in several of the subjects 

also justifies the inclusion of a cubic term to model the deviation from the population average curve. 
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Fig. 9.10: Population average curves for females. 
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Fig. 9.11: Estimated subject-specific deviations for concordant low birthweight males. 
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Corresponding plots for the other sex and sibling group combinations are omitted her!' as tiI('Y 

are largely similar. 

Fitted growth curves 

The combination of the population average curves and subject-specific deviations frolll t.1H'nJ giv!'s 

the overall fitted subject-specific 10g(BMI) curves. These are presented in Fig. 9.12 and Fig. 9.13 for 

several individuals selected in a stratified random manner. In each figure, the t.op row corresponds 

to the CLB model. the middle row to the CHB model and the bottom row t.o the DB mooel. 

Within each row, the left hand plot is for a randomly selected subject within the first quilltil!' 

of number of observed childhood BMI values, the middle plot is for a randomly selected subject. 

within the third quintile of number of observed childhood BMI values and the right hand plot 

is for a randomly selected subject within the fifth quintile of number of observed childhood BMI 

values. The collection of plots should then provide examples for each subgroup model when data 

are sparse and when data are plentiful. Population average curves (dashed lines) are also proviof'd 

for referencE'. It can be seen that whilst the subject-specific curves all take the same genE'ral shape 

as the population average curves, the inclusion of the subject-specific deviations allow the subject­

specific curves to, on the whole, provide excellent fits to the data. For individuals where data are 

more sparse, greater emphasis will be placed on the population average curve and in this way the 

fitted curves for these individuals will draw information from others. From just this small sample 

of individuals a variety of different subject-specific curve shapes are evident: the majority with 

obvious maxima, some with flatter sections and others which appear monotone increasing. 

Residuals 

The residual Cij is the difference between the fitted subject-specific curve and the observed data 

point for individual i at age Xij' The residuals for the CLB males are plotted against age in 

Fig. 9.14. Whilst the residuals appear to have greater variability at younger ages this lllay be 

largely caused by the many more observations at these ages (see Fig 9.3), so given exactly the 

same variability more extreme values would be expected to be observed. However, as no subject.s 

would be expected to have their AP within the first few months after birth, even if this is indicative 

of a slightly worse fit, the implications on the present analyses to follow are minimal. More encour­

agingly, there are no obvious systematic trends in this or the equivalent residual plots obtained for 

the other male and female subgroups. 

Corresponding plots for the other sex and birthweight group combinations are again omitt.ed 

due to their similarities with the plot shown. 

Location of the adiposity peak 

As the AP is a turning point in the BMI curve (and hence in the log(BMf) curve), one obvious 

approach to identifying the estimated location of the AP is by taking the first derivative (with 
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Fig. 9.12: Estimated population average curves (dashed lines) and fitted subject-specific curves (solid lines) for 

nine males. The top row corresponds to the concordant low birthweight model, t.he middle row t.o t.he concordant. 

high birthweight model and the bottom row to the discordant birt.hweight model. Within each row t.he left. ha"d 

plot is for a randomly selected subject within the first quintile of number of observed childhood body mass index 

(BMI) values, the middle plot is for a randomly selected subject. within the t.hird quint.ile of number of observed 

childhood body mass index values and the right hand plot is for a randomly selected subject. wit.hin t.he fift.h qllint.ilc 

of number of observed childhood body mass index values. 
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Fig. 9.13: Estimated population average curves (dashed lines) and fitted subject-specific curves (solid lines) for 

nine females. The top row corresponds to the concordant low birthweight model, t.he middle row to the concordant. 

high birthweight model and the bottom row to the discordant birthweight model. Wit.hin each row the left hand 

plot is for a randomly selected subject within the first. quint.ile of number of observed childhood body maHS ind{'x 

(BMI) values, the middle plot is for a randomly selected subject within the third quint.ile of number of observed 

childhood body mass index values and the right hand plot is for a randomly selected subject. wit.hin the fift.h quint.ilc 

of number of observed childhood body mass index values. 
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Fig. 9.14: Residuals for concordant low birthweight males. 
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respect to age) of the fitted curve and investigating at what point this crosses frolll positivity to 

negativity. 

The first derivative of the fitted cubic penalised regression spline for an individual can 1)(' easily 

evaluated using the estimated fixed and random parameters. Let Yi be the fitt.('d ctll"ve for slIiJj<'ct 

i, 

where KI .. ·., K12 are the knot locations and (Jo, ... ,(J3, '11,1,'" ,'11,12, aiO,.'· ,iii3 ami 1111, ... ,1\12 

are estimates of the previously defined model parameters. Then iX, the first derivative of the fitted 

curve with respect to age for subject i, is 

12 12 

y: = (Jl + 2(J2 X + 3(J3 X2 + L 3Uk(X - Kk)! + ail + 2ai2X + 3ai3X2 + L 3Vidx - K..J~. (9.5) 
k=l k=1 

Evaluation of the first derivative can again be achieved using the general linear mixed model 

representation given in (9.2). To ensure that the first derivative is evaluated acro:,;s thE' required 

range of ages it is perhaps preferable to u:,;e instead of the ob:,;erved ages, Xi], artificially assigned 

ages, Xl, I = 1, ... , p, occurring at regular intervals between birth and age 2 years, for example 

(0.01,0.02, ... ,2.00). As the ages at evaluation are common to all :,;ubjects the matrix notation 

now simplifies slightly so that for subject i 

(9.6) 

where 

( 3(x, - .,)! 3(Xl - K12)~ 0 1 2Xl 3xi 3(Xl - Kl)~ 3(:1:1 - K12l~ 

) z' = 

3(xp - Ktl~ 3(xp - KI2)~ 0 1 2xp 3x 2 3(xp - Kl)~ 3(xl' - Kd~ r 

and 
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lli = 

Here Y~l denotes the first derivative of the fitted 10g(BMI) curve for subject i, i = 1, ... ,111, at age 

Xl, 1= 1, ... ,p. 

The evaluation of the first derivative of the fitted cubic penalised regression spline for a givell 

individual, i, is used to identify the estimated location of the AP by finding an age:1:" where :0:" > () 

but Y~q+ 1 < O. This signifies that there is a maximum in the fitted 10g(BMI) cmve for slIbject. i ill 

the interval (xq,xq+d, so Xq is used as an estimate for the age at AP if W;ql < W;'l-fll and .7:'111 is 

used otherwise. This value is then substituted into (9.1) and a corresponding estimat.e for BMI at 

AP obtained. 

Whilst this simple approach to identifying the AP works well for most individuals, in sOllie 

cases issues such as local non-AP maxima and multiple maxima mean that further crit('ria lIe('c\ 

to be included. Local non-AP maxima are of no interest in the present context so t.o avoid t.heir 

det.ection a condition is included which states that for any 'true' AP t.he first derivat.ive of the 

log(BMI) curve must be positive 3 months beforehand and negative 3 mont.hs afterwards. This 

is found to be an effective preventative measure, though brings with it. the implicat.ion t.hat. 110 

maxima can be found either prior to age 3 months or after age 1.75 years. However, as 110 subjects 

would be expected to have their AP outside of this range of ages then this should not calIse any 

problems. This more stringent criterion for maxima coupled with t.he reduced range of ages over 

which the AP is sought also reduces the number of mUltiple lIIaxima exhibited. In the Ilegligihle 

number of subjects where this is still an issue the problem is resolved by simply taking the first. 

maximum to be the AP. The thinking behind this is that if two maxima exist between the ages of 

3 months and 1. 75 years then the first is far more likely to be within the expected range of ages 

at AP (age 6 months to 1 year) and thus more likely to be the true AP. 

Fig. 9.15 illustrates the above described procedure for a randomly selected subject. The right 

hand plot shows the first derivative of the fixed effects (dashed line) and the first derivative of t.he 

SUbject-specific curve (solid line). The vertical line indicates the age at which the procedure locat.es 

the change from positivity to negativity of the first derivative of the subject-specific C\l\'VC. The left 

hand plot shows the fixed effects of the fitted model (dashed line) and the fitted subject.-sprcific 

curve (solid line). The vertical line passes through the age at which the change in sign of the 
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first derivative is detected and thus also through the maximum in the fitted subj('ct.-spf'cific curv('. 

The horizontal line passes through the value of the subJ'ect-specI'fic (~llrVC Wlll'cll' I I I IS ca ell at('( to 

correspond to this age. 
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Fig. 9.15: Location of the adiposity peak for a randomly selected subject. Dashed lines represent t.he populat.ion 

average curve (left hand plot) or the first derivative of the population average curve (right hand plot) for the 

subgroup to which this subject belongs. Solid lines represent the fitt.ed subject-specific curve (left hand plot) or t.he 

first derivative of the fitted subject-specific curve (right hand plot) for this individual. BMI is body mass index. 

Similar plots are created for each subject in the dataset though, given the relatively large sample 

size, only a random sample of these can be visually checked. 

Software 

The mixed model representation of the penalised regression spline model, as shown in Section 

5.4.1.5, means that model fitting can be easily implemented in standard statistical software. Thus 

the fitting of the BMI growth curve models is carried out using the lme procedure in R [155), which 

is a generic function for fitting linear mixed models. 

9.3.2 Relating adiposity peak location to later body mass index z-score 

Mixed model 

In many situations an assessment of whether the AP is associated with later adiposity could 

be made by employing an ordinary least squares (OLS) regression of BMI z-score at. physical 

examination on either age at AP, BMI at AP or both. OLS regression, however, assumes that each 

response is independent which, due to the inclusion of sibling pairs in the UFS, is unlikely t.o be 
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true in the present analysis. One approach to overcome this issllc is t.o lise tlIl1lt.ilpV!'1 (also known 

as random effect, hierarchical or mixed) modelling, as describcd in mor!' det.ail in S('ct.ioll !'i.:l.:3. 

Taking as an example the model for BMI z-score at physical examinat.ioll Oil app at. A P. it. 

seems reasonable that some families generally have higher BMI z-scOrPS at. physical pxalllillat.ioll 

than others, regardless of age at AP. This would necessitate the inclusion in thc model of family­

specific random intercepts. It could also be envisaged that in somc families t.he relat.ionship hl't.w(,(,11 

age at AP and BMI z-score at physical examination differs to that in other families. For cxamplf', in 

one family the sibling with the later AP may have a greater BMI z-score than th('ir sibling, whNPas 

in another family the sibling with the later AP may have a lower BMI z-score. Incorporating this 

into the model requires family-specific random slopes. 

Continuing with the same example, let BMIzij and ageAPij be the BMI z-scorc at physical 

examination and age at AP for sibling i = 1,2 in family j = 1, ... ,602. Let sex,,) be lUI illdicator 

variable taking value 1 if the subject is female and 0 otherwise, and CLBij and CIIB,) be indicator 

variables taking value 1 if the birthweight group of the subject is, respectively, CLB or ClIB and 

o otherwise, meaning that those who are DB are taken as the reference group. Then tllf' randolll 

intercepts and slopes model can be written as 

(9.7) 

where 

/30j = /30 + UOj and /31j = /30 + Ulj, 

with (uo)' Ulj f '" N(O, :E), where :E is an unstructured 2 x 2 covariance matrix, and eij rv N(O, 0';). 

Here UOj and UOj' are independent of each other for j # j', Ulj and 'Ul), are independellt of each 

other for j # j', e'j and ei')' are independent of each other unless i = i' and j = j', and uo) and 

Ulj are independent of eij for aJl j. However UOj and Ulj may be correlated. 

In (9.7) /30,.'" /34 are the fixed effects and the average relationship is given by lio + !i)agcAP + 
/32sex+,B3CLB'j+,B4CHBij. The random intercepts, Uo·), . .. , UO.602, and random slopes, U).), ... ,11)·602, 

correspond to family-specific differences from the average relationship. The level 1 1'(;8idllaL~, ri}, 

are the vertical distance between the observed BMI z-score at physical examination, B /II/ z;)' and 

the corresponding fitted value, ,130) + ,BljageAPij + ,B2seXij + ,B3 CLB ij + /34CIIBij . 

Further models for BMI z-score at physical examination on BMI at AP and for 8MI Z-Hcore on 

both age and BMI at AP differ little from the above. The inclusion of additional covariates ami 

interaction terms results in further fixed effects, but in each model the only random terms are the 

intercepts and slopes. 

Software 

The mixed models used to relate AP location to later BMI z-score are fitted lIsing restricted 

maximum likelihood (REML) under the xtmixed procedure in Stata [147]. 
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9.4 Results 

9.4.1 Estimated age and body mass index at adiposity peak 

Table 9.4 summarises the distributions of age and BMI at AP, along with the nllllll)!'r and pl'ITPnt­

age of subjects with identified AP, by sex and birthweight group. The percentage of subjects with 

a successfully identified AP is generally high, although some differences between t.he birthwf'ight 

groups are evident, with CLB subjects having the highest percentage of ident.ifif'u AP and elm 

subject.s the lowest in both males and females. 

The AP appears to occur slightly later in CHB males and in CLB females than in t.hf' nt.hpr 

birthweight groups, although the differences are not great so this should not be overinterpret.pd. 

Overall, both mean and median age at AP are slightly higher in females, a feature which b bonlP 

out by a simple t-test (ignoring the sibling pairs) providing a P-value of <0.001. The median 

age at AP is generally seen to be somewhat lower than the mean, suggesting a slightly skpweci 

distribution. 

Average BMI at AP is seen to be highest in CHB subjects and lowest in CLB subjects in hoth 

sexes, corresponding to the population average curves seen in Fig. 9.9 and Fig. 9.10. Generally, 

BMI at AP appears greater in males, which is again confirmed by a highly statistically significant 

(p<O.OOl) t-test. Mean and median are very similar in each group indicating a more symmetric 

distribution. 

Sex 
Birthweight Number (%) of subjects Age at AP (years) BMI at AP (kg/m 2

) 

group with identified AP Mean Median SO Mean Median SO 

CLB 126 (90.6%) 0.72 0.65 0.16 17.7 17.6 1.3 

CHB 102 (83.6%) 0.79 0.78 0.13 18.5 18.3 1.4 
Males 

DB 291 (86.4%) 0.72 0.67 0.17 18.1 18.1 1.3 

Total 519 (86.8%) 0.73 0.69 0.16 18.1 18.0 1.t1 

CLB 118 (97.5%) 0.87 0.88 0.13 17.1 17.0 1.2 

CHB 
Females 

121 (83.4%) 0.76 0.70 0.20 17.9 17.!.l U 

DB 272 (90.7%) 0.79 0.75 0.17 17.9 17.7 1.2 

Total 511 (90.3%) 0.80 0.76 0.17 17.7 17.7 1.3 

Table 9.4: Distributions of age and body mass index (BMI) at adiposity peak (AP), by sex and birthweight. 

group. CLB is concordant low birthweight, CHB is concordant high birthweight and DB is discordant. birt.hweight.. 

Percentage of subjects with identified adiposity peak is calculated as a percentage of those included in each slIbgroup 

model (see Table 9.3). 

Fig. 9.16 shows both the univariate and bivariate distributions of age and BMI at AP for males 

and females separately. Whilst BMI at AP appears to be normally distributed in both sexes, age 

at AP exhibits some positive skew. There is also, particularly amongst the males, some evidence of 
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bimodality. Plotting B 11 at AP against age at AP provid . litile evid nee of correlation between 

the two variable. Thi i reflected in the calculat d correlation co ffici nts shown in Table 9.5. 

using log-transformed age at AP due to the sk w. of 0.12 for males ane! 0.05 for f males overall. 

tratilication by birthweight group. however, hows some degree of heterogen ity b tw n the cor­

relation coefficients, especially among t the males. with eRB subject showing a high r degree of 

correlation. Although as ociations are generally weak. these results do suggest that older ages at 

AP are more likely to correspond to a higher BMI at AP. 
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Fig. 9.16: Univariate and bivariate distributions of age and body mass index (BMI) at adiposity peak (AP) . by 

ex, for the 1030 subjects with a successfully identified adiposity peak. 

Fig. 9.17 show scatterplots of BMI ~-score at physical examination against age and Bl\.Il at 

AP for male and female separately. There appears to be little correlation betw en age at AP 

and later Bl\lI ~- core, with calculated correlation coefficients of 0.05 and 0.10 for males and fe-
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Sex 
Birthweight Age at AP Age at AP BMI at AP 

group BMI at AP BMI7,-score BMI 7,-SCOfC 

CLB -0.02 0.08 0.45 

CRB 0.28 0.08 0.41 
Males 

DB 0.09 -0.02 0.40 

Overall 0.12 0.05 0.43 

CLB 0.06 0.23 0.34 

CRB 0.16 0.21 D.34 
Females 

DB 0.12 0.09 0.38 

Overall D.05 0.10 0.39 

Table 9.5: Pairwise correlation coefficients between (log transformed) age at adiposity peak (AP), hody tnaHs index 

(BM!) at adiposity peak and body mass index z-score at physical examination, stratified hy sex and birt.Ioweight 

group, for the 1030 subjects with a successfully identified adiposity peak. 

males respectively in Table 9.5. Again, however, correlation coefficients strat.ified by hirthweight 

group exhibit some heterogeneity with subjects from the two concordant birthweight groups having 

greater correlation, especially amongst the females. Fig. 9.17 also shows a clear positive relationship 

between BMI at AP and BMI z-score in both sexes, with a correlation of 0.43 in males and 0.39 in 

females. This association appears similarly strong across all the birthweight groups within each sex. 

Similarly to the exclusion of subjects from the analysis due to data requirements in Section 

9.2, it is important to assess whether there are any underlying differences between subjects with 

successfully identified estimated AP who remain in the analysis and those where this is not possible. 

It has already been seen in Table 9.4 that there are somewhat higher percentages of males and 

subjects wit.h CRB for whom an estimated AP could not be identified, although the diffcrcnces 

are relatively small. It may be the case that these subgroups have marginally different underlying 

BMI growth curve shapes which lend themselves a little less readily to identification of the AP, for 

example by having a less pronounced maximum. Indeed, this would be justification for the IlSC of 

separate models for the different subgroups. 

Table 9.6 compares the distributions of several variables in those with and those without an 

identified estimated AP. It can be seen that both males and females with no identified AP generally 

have greater weight and length at birth. As the main reason for subjects not. having an identified 

AP is that their BMI observations continue to increase over the first two years of life, t.his l1lay 

indicate that this type of growth trajectory is more prevalent in those who are larger at hirth. The 

age at physical examination, on the other hand, appears similarly distributed in those wit.h and 

without identified AP, although males with no identified AP generally have a higher BMI z-score. 

This makes sense when coupled with the above observation that males with no identified AP arc 

also larger at birth as tracking through childhood dictates that subjects who are larger at. birth 
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Fig. 9.17: Body mass index (B~II) z-score at examination against age and body mass index at adiposity peak 

(AP), by ex, fOT the 1030 subjects with a successfully identified adiposity peak. 
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are also likely to be larger at later ages. Also, 8.., noted above, thes(' suh.jPct:-; ar(' ilion' lik!'ly to 

have BMI observations which continue to increase through the first two years of life, which lIlay 

well be likely to lead to higher later BMI than a trajectory which shows a mark('d deCrPHS(' ov('r 

this period. 

Variable 

At birth 

Weight (kg) 

Length (cm) 

At physical examination 

Age (years) 

BMI z-score 

Variable 

At birth 

Weight (kg) 

Lengt.h (cm) 

At physical examination 

Age (years) 

BMI z-score 

Males (n = 598) 

AP identified (n = 519) AP not identified (n = 79) 

Mean Median SD Mean Median SD 

3.71 3.7 0.59 3.90 4 0.63 

51.6 51 2.2 52.2 52 2.0 

10.0 10.1 1.7 9.9 9.8 1.7 

0.23 0.09 1.19 0.49 0.25 l.22 

Females (n = 566) 

AP identified (n = 511) AP not identified (n = 55) 

Mean Median 

3.62 3.63 

50.8 51 

10.1 10.2 

0.36 0.30 

SD 

0.55 

2.2 

1.7 

1.09 

Mean Median 

3.95 4.05 

5l.6 52 

9.8 

0.38 

9.9 

0.40 

SD 

0.56 

2.1 

1.9 

l.()9 

Table 9.6: Distributions of variables at birth and at physical examination for subjects with/without /l ~ucces~fully 

identified estimated adiposity peak (AP), by sex. BM! is body mass index. 

\Vhilst the reasonably similar percentages in Table 9.4 give little indication of s('x or birt.hwpight 

group being associated with the missingness mechanism, the differences in the distributions in Table 

9.6, particularly at birth, are of more concern. These suggest that the subjects arc possibly not. 

MCAR. meaning that any results obtained are not necessarily extrapolatable t.o the dataset ill 

general. 

To prevent false conclusions being drawn, it could thus be claimed necessary to include the 

caveat that results are 'conditional on an AP being identifiable'. Hence it may be prudent to more 

formally investigate whether the unidentifiability of the AP is itself a 'risk factor' for higher adi­

posity in later childhood. If, as has been observed, many of those without a successfully identified 

AP have a BMI trajectory which continues to increase through infancy, perhaps this subgroup 
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would be expected to have relatively higher BMI at later ages. 

This can be assessed by fitting a mixed model similar to those for evaluating t.hf' ext.l'nt. of t.1H' 

association between the AP and later adiposity, as described in Sect.ion g.3.2. Now t.ll(' ('xpostln' 

of interest is not one or both dimensions of the AP, but whether or not t.he AP is ident.ified at 

all. For sibling i, i = 1,2, in family j, j = 1, ... ,602, let BMIzi) be t.he BMI z-sco['(' at. physical 

examination, SeXij be an indicator variable for sex, and CLB i } and CHBij be indicat.or variahlps 

for CLB and CRB, as in (9.7). Now let AP UJij be an indicator variable taking valul' 1 if t.h!' AP 

cannot be successfully identified ('unidentified' (UI)) and 0 otherwise. Then a suitable randolll 

intercepts and slopes model can be expressed by 

(!l.S) 

where 

/30j = /30 + UOj and /31j = r,o + U1j, 

with (UOj, U1j)T "-' N(O, :E), where :E is an unstructured 2x 2 covariance matrix, and eij "-' NCO, a;). 

The dependencies and independencies between the parameters remain as detailed in Section 9.3.2. 

Table 9.7 details the estimated fixed effects when (9.8) is fitted using REML. There is no 

evidence of an interaction between either sex (P=0.22) or birthweight group (P=0.50 for CLB 

subjects and P=0.65 for CRB subjects) and the identifiability of the AP, so the model includes 

both sexes and all three birthweight groups. 

Explanatory variable Coefficient 

Unidentified AP 

Sex 

Female vs. male 

Birthweight group 

CLB vs. DB 

CRB vs. DB 

0.11 

0.08 

-0.24 

0.32 

95% CI 

-0.09, 0.31 

-0.04, 0.20 

-0.44, -0.05 

0.13, 0.51 

P-value 

0.28 

0.18 

0.01 

0.001 

Table 9.7: Estimated fixed effects, 95% confidence intervals (CI) and Wald t.est P-values for the random intercept.' 

and slopes model of body mass index z-score at physical examination fitted on identifiability of t.he adiposity 

peak (AP), adjusted for sex and birthweight group. Model is fitted on all 1164 subjects. CLl3 is concordant. low 

birthweight, CHl3 is concordant high birthweight and Dl3 is discordant birthweight. 

It can be seen from Table 9.7 that for a given sex and birthweight group, whilst there is it slightly 

greater expected BMI z-score at physical examination in those subjects with no identified AP, t.his 

relationship is far from statistically significant. Thus it would appear that unidentifiability of the 

AP does not lead to an increased propensity for higher BMI in later childhood. This indicates 

that, conditional on the observed covariates (sex and birthweight group), there is no relationship 

between data missingness (whether or not the AP can be identified) and the outcome. 
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9.4.2 Are dimensions of the adiposity peak associated with later adipos­

ity? 

Mixed models of the form (9.7) are used to relate the age and/or BMI at AP to BMT ;/'-scOJ'P 

at physical examination. All models are fitted using REML but use of ML was found t.o make 

negligible difference to the fitted models (results not shown). 

Table 9.8 and Table 9.9 detail the estimated fixed effects for t.he random intercepts lllod!'ls of 

BMI z-score at physical examination fitted separately on age and BMI at AP. In nPitlwi' llI()(kl is 

there much evidence of an interaction between sex and the dimension of the AP (P=O.07 ill til(' 

model for age at AP and P=0.36 in the model for BMI at AP), thus in both ca.ses comhined-sex 

adjusted models are used. 

From Table 9.8 it can be seen that for a given sex and birthweight gTOUp a delayed age at AP 

is estimated to be associated with a positive and statistically significant increases ill BMI ;/,-score 

at examination. Conditional on age at AP and birthweight group there is no estimated difference 

in BMI z-score at examination between males and females, whilst for a given age at AP and sex 

CLB subjects are estimated to have a reduced BMI z-score at examination and CnB :i1Ibject.s all 

increased BMI z-score when compared to DB subjects. 

Explanatory variable Coefficient 

Age at AP (yean;) 

Sex 

Female vs. male 

Birthweight group 

CLB vs. DB 

CHB vs. DB 

0.64 

0.06 

-0.26 

0.31 

95% CI 

0.21, 1.04 

-0.07, 0.19 

-0.46, -0.06 

0.10, 0.51 

P-value 

0.002 

0.39 

0.01 

0.003 

Table 9.8: Estimated fixed effects, 95% confidence intervals (CI) and Wald test P-values for the random intercepts 

and slopes model of body mass index z-score at physical examination fitted on age at adiposit.y peak (AP), adjusted 

for sex and birthweight group. Model is fitted on the 1030 subjects with a successfully ident.ified adiposity peak. 

CL£3 is concordant low birthweight, CH£3 is concordant high birthweight and DB is discordant. birt.hweight.. 

Table 9.9 shows that after adjustment for sex and birthweight group an increased BM! at AP 

is also estimated to be associated with a positive and highly statistically significant increases in 

BMI z-score at physical examination. Conditional on BMI at AP and birthweight group, [('males 

are estimated to have a significantly higher BMI z-score at examination than males. Whilst ClIB 

subjects are estimated to have a higher BMI z-score than DB subjects for a given BMI at AP and 

sex, there is no evidence of a difference between DB and CLB subjects. 

Table 9.10 details the estimated fixed effects for the random intercepts model of 13MI ;/'-scorp 

at examination fitted jointly on age and BMI at AP. There is a borderline statistically significant 

(P=O.03) interaction between age and BMI at AP. As the inclusion of this interaction is dehatable, 
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Explanatory variable Coefficient 95% CI P-valuf' 

BMI at AP (kg/m2) 0.35 0.30,0.40 <0.001 

Sex 

Female vs. male 0.25 0.13, 0.37 <0.001 

Birthweight group 

CLB vs. DB -0.03 -0.22,0.15 0.74 

CRB vs. DB 0.24 0.06, 0.43 0.n1 

Table 9.9: Estimated fixed effects, 95% confidence intervals (CI) and Wald test P-values for t.he random int.ern'pt.s 

and slopes model of body mass index z-score at physical examination fitted on body mass index at acliposit.y pmlk 

(AP), adjusted for sex and birthweight group. Model is fitted on the 1030 subject.s with a successfully ident.ified 

adiposity peak. CLB is concordant low birthweight, CHB is concordant high birthweight and DB is discordant. 

birthweight. 

Table 9.10 includes two different versions of the model: 'Modell' does not include this interaction 

term whereas 'Model 2' does. Both models presented are combined-sex models as there is little 

evidence of any interactions between the dimensions of AP and sex. In Modell, P=O.07 for the 

addition of a sex-age at AP interaction term and P=0.39 for an interaction between sex and 13MI 

at AP. In Model 2, P=O.13 for the addition of a sex-age at AP interaction term, P=0.66 for a 

sex-BMI at AP interaction, and P=0.20 for an interaction between sex, age at AP and 8MI at AP. 

Model 1 shows evidence of associations between both age and BMI at AP and 13MI 7,-score 

at physical examination, even after mutual adjustment and adjustment for sex and birthweight 

group, although the evidence for the BMI at AP association is markedly stronger. This suggests 

that the association with age at AP seen in Table 9.8 is not merely an artifact of t.he correlation 

between age and BMI at AP (i.e. is not just due to confounding). In this model, for given agp 

and BMI at AP and birthweight group, females are expected to have a higher 8MI 7,-score at 

examination. Similarly adjusting for all other explanatory variables, CRB subjects tend to have 

a higher BMI z-score than DB subjects, though there is no evidence for a difference between DB 

and CLB subjects. 

Due to the inclusion of an interaction term in Model 2 both age and BMI at AP are ceJ1tred 

about their mean values (0.767 years and 17.90 kg/m2, respectively). The presence of the intcr­

action term makes interpretation somewhat more difficult, though this can be aided by examining 

the fixed effects of the fitted model more explicitly: 

BMIz = 0.38 (ageAP - 0.767) + 0.34 (BMIAP - 17.90) 

- 0.30 (ageAP - 0.767) (BMIAP - 17.90) 

+ 0.22 sex - 0.06 CLB + 0.25 CRB + constant 

(9.9) 

where BMIz , ageAP' BMIAP , sex, CLB and CRB are as defined in (9.7). It is possible to rewrite 

(9.9) in two ways to show more easily how changing each explanatory variable of interest affects 
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Model Explanatory variable Coefficient 95% CI P-vahlP 

Age at AP (years) 0.42 0.06, 0.79 0.02 

BMI at AP (kg/m2) 0.34 0.29, 0.39 <0.001 

Sex 
Modell Female vs. male 0.22 0.10, 0.34 <0.001 

Birthweight group 

CLB vs. DB -0.05 -0.23, 0.11 0.61 

CRB vs. DB 0.24 0.05, 0.43 0.01 

Age at AP (years) 0.38 0.01, 0.75 0.05 

BMI at AP (kg/m2) 0.34 0.30, 0.39 <0.001 

Interaction between age and BMI at AP -0.30 -0.57, -0.03 0.03 

Model 2 Sex 

Female vs. male 0.22 0.10, 0.34 <0.001 

Birthweight group 

CLB vs. DB -0.06 -0.25, 0.13 0.52 

CRB vs. DB 0.25 0.06, 0.44 O.oI 

Table 9.10: Estimated fixed effects, 95% confidence intervals (CI) and Wald t.est. P-values for t.he random int.ercept.s 

and slopes models of body mass index (BMI) z-score at physical examination fitted jointly on age and hody IllIL"" 

index at adiposity peak (AP), adjusted for sex and birthweight group. Model is fit.t.ed on the lOaO subje('t" with a 

successfully identified adiposity peak. CLB is concordant low birthweight, CBB is concordant. high bil'thw"ight. and 

DB is discordant birthweight. Age and body mass index at adiposity peak are centred about their mean values in 

Model 2. 
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the outcome: 

and 

Bl\lIz = 0.38 (ageAP - 0.7(7) + (0.34 - 0.30 (ageAP - 0.7(7)) (BMIAP -. 17.DO) 

+ 0.22 sex - 0.06 CLB + 0.25 CHB + constant 

BMIz = 0.34 (BMIAP - 17.90) + (0.38 - 0.30 (BMIAP - 17.90)) (ageAP - 0.7(7) 

+ 0.22 sex - 0.06 CLB + 0.25 CHB + constant 

(!l.IO) 

(9.11 ) 

From (9.l0) it can be seen that for a given age at AP (and sex and birthweight grotlp) it 1 

kg/m2 increase in BMl at AP is estimated to increase BMI z-score at physical !'Xftmillftt.ioll by 

0.34 - 0.30 (ageAP - 0.767). Thus for an earlier AP the estimated increase in 8Ml z-scor!' at 

examination associated with an increase in BMI at AP is greater than for a later AP. Similarly, 

(9.11) shows that for a given BMI at AP (and sex and birthweight group) a 1 year delay in AP is 

estimated to increase BMI z-score at examination by 0.38 - 0.30 (BMIAP - 17.90), meaning that. 

for a lower BMI at AP the estimated increase in BMI z-score at examination associated with a 

later AP is greater than for a higher BMI at AP. 

Fig. 9.18 plots the estimated increases in BM1 z-score at examination for a 1 year delay ill age 

at AP (upper plot) or a 1 kg/m2 increase in BMI at AP (lower plot) along with t.he estimat.ed 

95% CI for each across the ranges of values encountered. It can be seen from the upper plot that 

a delayed AP is estimated to be positively associated with increased BMI z-score at examination 

when BMI at AP is less than about 19.5 kg/m2, although this relationship is only statistically 

significant (at the 5% level) when BMI at AP is less than approximately 18 kg/m2. The lower 

plot, on the other hand, shows increased BMI at AP to be estimated to be positively ancl statis­

tically significantly associated with BMI z-score at examination across virtually th!' entire rangt' 

of observed ages at AP. Indeed, when the AP occurs at an age towards the younger end of this 

spectrum the relationship is highly statistically significant. 

One way to compare Modell and Model 2 in Table 9.10 is to plot predicted BMl z-score values 

from each model for different combinations of explanatory variables. As there are five explanatory 

variables, this involves effectively plotting in six dimensions. However, by considering the different 

combinations of levels of the indicator variables separately and plotting the predicted values a.s 

contours on a plane, plotting becomes possible. Fig. 9.19 and Fig. 9.20 show the contom plots for 

DB males for Modell and Model 2, respectively. 

As Modell does not include an interaction term between age and BMI at AP t.he contom lines 

in Fig. 9.19 are parallel. The region of highest predicted BMl z-score at physical examination is 

seen to correspond to a late AP and a high BMI at AP, although it is clear from the plot that. it. is 

8MI as opposed to age at AP which is exerting the greater influence. The lowest predictpd 8MI 

z-scores correspond to early AP and a low BMI at AP. 

304 



Estimated increase in 8MI z-score per 1 year delay in age at AP 

Q) 
Vl 
(1) 
~~ 
u 

.S; 

..... ..... 
..... 

..... ..... 

"0 -- __ 
Q) 

ro 

..... 
..... ..... 

..... 
"- ..... 

"-

---

..... .... 

---
E a -t-----------=~---..:::::::,,-......:::--------
~ , 
W "-,,-

~ 

I 

N 
I 

Q)", 
Vl • 
(1) 

~ 
u 

.S; 
"ON 
Q) . 

ro 
. ~ 
iii 
w~ 

"-
"-

"­
"­

"- ..... 
..... 

"- ..... 
..... 

..... 
..... 

..... 

14 16 18 20 22 
8MI at AP (kglm"2) 

Estimated increase in 8MI z-score per 1 kg/m"2 increase in 8MI at AP 

..... ..... 
..... ..... 

..... 
"- ..... 

------ -----

"-
"-

"-
"­ ..... 

"- ..... 
..... 

"­ ..... 
..... 

..... 
..... 

..... 
"-

"- ..... 

a 4----------------------------------------------..... ~--------..... 
..... ..... 

..... 

. 5 1 1.5 
Age at AP (years) 

Fig. 9.18: Estimated increases in body mass index (BMI) z-score at physical examination for a 1 year delay in age 

at adiposity peak (AP) (upper plot) or a 1 kg/m 2 increase in body mass index at adiposity peak (lower plot) whilst 

the other dimension of adiposity peak and sex are held constant . Solid lines ar estimated incr ases <tnd dashed 

Iioes are their 95% confidence intervals. 
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In Fig. 9.20, the interaction term means that the observed pattern of prf'dict.l'd Bl\1l ;\-sco('(' 

at physical examination is more complex. The region of highest predicted nMI z-scorf' now cor­

responds to an early AP and a high BMI at AP, and the lowest predicted BMI Z-.'iCO('(' to ('arly 

AP and a low BMI at AP. For a lower BMI at AP increasing age at AP (i.f'. tracill~ horizontally 

across the plot) leads to an increase in BMI z-score, whilst for a highf'r BMI at AP this rf'Sltits in 

a slight decrease in BMI z-score. This corresponds precisely to the pattern f'xhihite<i ill the IIpp!'r 

plot of Fig. 9.18. In contrast to this, regardless of the age at AP increasing nMI at. AP (i.f'. t.racing 

vertically up the plot) will always lead to an increase in BMI z-score. Again, this rf'fi<o<:t.s what i!-i 

seen in t.he lower plot of Fig. 9.18. 

Although equivalent contour plots for the various combinations of levels of sex, CLB and CIIn 

could be produced, they would add little to the interpretation. This is because in bot.h Modell 

and Model 2 in Table 9.10 these variables only enter the model as indicator variables. As H. re~il1lt., 

the predicted BMI z-score at physical examination corresponding to a given pair of age and nMI 

at AP values will only differ from that under the male DB model by the addition of one or more 

constants. The contour plots would then have an identical shape to those in Fig. 9.19 and Fig. 9.20 

but with predicted BMI z-score at physical examination increasing or decreasing by a constant. 

value across the entire plot. This would manifest itself as a slight change in colour scheme for the 

contour plot. 

For example, the predicted BMI z-scores for DB females in Modell would be higher than those 

plotted for DB males in Fig. 9.19 due to the estimated 'Female vs. male' coefficient of 0.22 in 

Table 9.10. Predicted BMI z-score would thus be increased by 0.22 across the entire plot - . t.he 

plot would have an identical shape, but with the colours shifted towards the purple (i.e. positive) 

end of the spectrum. 

Thus, whilst it is clear from both Modell and Model 2 that, generally, It higher nMI at AP 

tends to lead to a higher BMI z-score later in life and that, in particular, a low BMI at AP coupled 

with an early AP is likely to lead to a much reduced BMI z-score, the role of age at AP when nl\H 

at AP is relatively high is more debatable. 

9.5 Discussion 

9.5.1 Conclusions 

The initial peak in BMI at around the age of 6 months to 1 year (the AP) has been shown to be It 

readily identifiable feature of the growth curve in the vast majority of subjects encountered llsing 

penalised regression splines with random coefficients. 

Both age and BMI at AP have been found to be positively associated with later BMI z-score ill 

this dataset. Whilst higher BMI at AP tends to result in relatively higher BMI in later childhood 

regardless of age at AP, the relationship with age at AP appears to be somewhat more comp!px. 

It is the first time that these associations have been reported. 

The positive relationship generally seen between the timing of the AP and later BMI is in the 
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Fig. 9.19: Contour plot for predicted body mass index (BMI) z-score at physical examination from Mod I 1 for 

different combinations of age and body mass index at adiposity peak (AP) in discordant birthweight males. 
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Fig. 9.20: Contour plot for predicted body mass index (BMI) z-score at physical examination from Model 2 for 

different combinations of age and body mass index at adiposity peak (AP) in discordant birthweight males. 
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opposite direction to that between the timing of the adiposity rebound (AR) and lat.(·1' Ol\fl. This 

means that higher later BMI is associated with both those who arc [(:88 well dClll'iO]lfr/ IlI'01\nd 

the age of the AP (i.e. those having a late AP) and those who arc mOTe well d(,lIdo]l('(/ around 

the age at the AR (i.e. those having an early AR), which is perhaps snrprisin~. This lpads to 

further questions regarding the relationships between these two features of the BMI growth ('mY(' 

and later BMI. For example, is it the same individuals who have hoth lat.er AP and mrli('1' A R, 

leading to increased later BMI? Age at AP and age at AR arc both llIcasuf('S of liPvdoplII('nt. at. 

that point, with regards to the BMI growth curve at least, and thus an inverse relationship 1H't.wppn 

them would seem unlikely. Are there then separate disparate subgroups who haY<' I:ifhn it lntcr 

AP aT an earlier AR and then proceed to increased later BMI'! To answer t.hcs(' quest.iolls it is 

essential to have a dataset in which both the AP and the AR can be identified for cach individllal. 

Unfortunately the current dataset does not afford the opportunity for this as SOIll(, individllals ollly 

have data up to age 5 years and even for those with data beyond this age measurcl1lcnts I>(,COllll' 

sparse and hence not conducive to reliable AR estimation. This is an area where furt.her resmrch 

could provide valuable insights into BMI development through childhood. 

Whilst no previous studies have investigated the effect of the locat.ion of the AP on latpr 

adiposity, several examine the related exposure of general infant obesity. Conclusions arc lIIixeo, 

however, with some finding that there is little evidence that infant obesity is predict.ive of lat.el' 

obesity [76] and others suggesting that infant obesity correlates strongly with adult ohesity [57]. 

The associations found in the present analysis may indicate that the AP is a meaningflll fpatIl1'(' 

of the infant BMI trajectory for prediction of later BM!. This may suggest that infancy nerds to 

be considered as a 'critical period' for later obesity in the same manner in which the period arollnd 

the AR often is [74, 180]. 

As with the AR, a key question is whether the location of the AP a causal factor latpr adiposity 

itself or whether both the location of the AP and later adiposity are both merely ('xrH'pssions of 

some genetic predisposition. If it is causal, then is there any way in which it can be lIIanipulated? 

Whilst the level of BMI for an infant, and thus their BMI at AP, could plausibly be manipulated 

by changes in dietary intake, it remains unclear whether this would have any effect on the timing of 

the AP. Also, the imposition of dietary limitations on infants may be considered Illldel';irahle. This 

is clearly an area where further research could provide important insights into the relationships 

between infant growth and later adiposity. 

9.5.2 Missing data 

Subjects are missing from the present analysis for two rea."lons, either they have no data points 

over the relevant ages so are excluded at an early stage, or it. is not possible to derivp a location 

for the AP from their fitt.ed BMI growth curve. 

308 



Excluded subjects 

Whilst growth data for most subjects are available for much older ages, only thos!' data frolll, 

but not including, birth to age 3 years are utilised in the presC'nt study. As til(' AP wOllld lI()t 

be expected to occur after age two years these data criteria see III appropriatl' iI .... any Illaxima 

should occur sufficiently within the interval to be identifiable without the inclusion of dat.a at old('r 

ages which would only serve to complicate the curve fitting proccdUl'e. Tlwrp al'<" howpvPr, n 

small number of subjects (3.3%) having no BMI observations whatsoever over this period. TII('sP 

subjects are omitted completely from the analysis. Whilst they could remain in the analysis t.hl'Y 

would contribute little, having assigned as their fitted BMI growth CUl'Y(' t.he fixed <'freds frolll t.hl' 

relevant model. As the proportion of the dataset they make up is relatively sll\all t/H'ir olllission 

seeIlls a reasonable choice. 

However, for any results obtained in the analysis to not be biased by their omission it is 

important that they are effectively just a random subset of the data, or that they are 'missing 

completely at random' (MCAR, see Section 5.2.1). In Section 9.2 t.he dist.ribution of sPv('fal 

variables are compared between those subjects with no ob1:ierved BMI values who arc excluded and 

those who remain. The distributions appear relatively 1:iimilar, though due t.o the small nUllllH'rs 

of excluded individuals it is important not to over-interpret any differences. It can be conciudl'd 

that there is little evidence of the excluded subjects not being MCAR. 

Subjects with no identified AP 

Whilst an estimated AP is identified in the vast majority of individuals considered, t.here arc still 

many for which this is not. the case. Identification of these individuals and analysis of their data 

points and fitted subject-specific curves shows that the curves generally fit the observed values well 

and that their observed values really do not provide any evidence of an AP, usually I)(,Cflllse !3I\H 

appears to continue increasing throughout infancy. In the present analysis those sllbj<'ct.s with lin 

identifiable AP are merely excluded. 

Again, to obtain unbiased results it is important for these excluded subjects to be MCAR. III 

Section 9.4.1 it is seen that there are small differences in the percentages of subjects for whom 

an AP can be identified in the different subgroup models (Table 9.4) and that subjects wit.h 110 

identified AP differ a little from the other subjects (Table 9.6). However, a more formal assessment. 

(Table 9.7) concludes that there is no evidence of a relationship between AP identifiability and 

BMI z-score at physical examination. This suggests that those subjects with 110 identified AP who 

are excluded from the analysis do not differ significantly in terms of later 13MI frolll t.hosr who <If(' 

included. 
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9.5.3 Body mass index growth curve modelling 

Penalised regression spline model 

The use of penalised regression spline models with random coefficients to model nr-.Il growt.h 

is very effective. This approach, as opposed to other spline approaches, has t.ll(' attract.iv('(]('SS 

of being a relatively straightforward extension of linear regression moddling. The mixpd modI'! 

representation means that model fitting can be easily implemented in st.andard st.at.ist.ical SOft.WIlt'('. 

The equivalence between a penalised smoother and the optimal predict.or in a mixpd (llodpl, as 

shown in Section 5.4.l.5, results in a unified approach to model estimat.ion. The cubic populat.ioll 

average curves and cubic subject-specific deviations from these allow sufficient flexibilit.y to mod!'] 

a variety of different curve shapes and ensure that the derivative of each Hubject-specific CI\I'V<' is 

smooth and continuous, which is important when looking for turning points. 

The subject-specific curves generally fit the data very well. For those individuals with few nr-.n 
observations overall, or with regions with few observations, this is still true. The approach allows 

a reasonable curve to be fitted by 'borrowing' information from the ot.her subject.s and fittill!!; it 

subject-specific curve closer to the relevant population average curve. 

However, there are always likely to be some individuals whose observed values lie on It suffi­

ciently differently shaped trajectory from other subjects, and hence from the population average 

curve, so that their fitted curve does not fit their observed values as well as would be hOIWd. In 

the present analysis these cases are very few and their presence must be considered as a tradc­

off against the benefits of having a common underlying BMI trajectory in those individuals with 

sparse BMI data where fitting a truly subject-specific curve (i.e. using only the data poillts fol' 

that individual) would be problematic. 

Improvements to the model 

Six separate BMI growth models are fitted on the six subgroups defined by subjeets' sex and 

birthweight group (CLB, CRB and DB). Whilst there is no evidence of this resulting in poorly 

fitting curves. it would be preferable to include all subjects in the same model with indicator 

variables for sex and birthweight grouP. similar to those used in (9.7) for relating AP location to 

later BMI z-score. 

Let sexi be an indicator variable taking value 1 if subject i is female and 0 otherwise and CLB, 

and CRBi he indicator variables taking value 1 if the birthweight group of subject. i is, I'e;;ppct.iveiy. 

CLB or CHB and 0 otherwise. Then, if the effects of sex and birthweight group call he aSSllllll'c\ 

to be additive, (9.1) becomes 
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K 

Yij == (30 + fhx;j + /i2X;j + (3a X rJ + 2:: Uk (.7:ij ~ .... :,J! 
k=1 

+ sexi (110 + j11:Cij + 112XL + 113X~j + trA:(.I:i) ~ .... :d~) 
A:=I 

+ CLB i (po + PI X,) + P2 X 7) + P3J;~j + ~ 8..(.1:,/ ~ Kd~ ) 

+ CHB i (wa +WIXi.1 +W2xt +w:l:r7J + f,t..(:r ,] - Kd~) 
k=1 

K 

+ a.a + ailXij + ai2.7:;j + ai:IX~j + L vzdxzJ ~ I\'k)~ + ei} 

k=1 

where Uk ....., N(O,a~), (aio,aij,ai2,ai3)T '" N(O,:E), Vik '" N(O,a;) and eij rv N(O,a;) as }wfnr!'. 

Thus, for example, the fitted curve for a DB male would be 

K 

Yij = (30 + (3IXiJ + (32 X ;j + (3:lX;j + L UA:(Xij ~ Kk)~ 
k=1 

whilst the fitted curve for a CHB female would be 

K 

Yij = {Ja + (31Xij + (32X~j + (33 X ;j + L Uk(Xij - ""·d~ 
A:=! 

K 

+ /.Lo + /.LIXij + /.L2X;j + 113 X7j + L rd·?:,] - Iq.)~ 
k=! 

K 

+ Wo + W1Xij + w2Xt + W3 X7j + L tdxiJ - I\'k)~ 
k=1 

K 

+ aia + ailXij + ai2 X 7j + ai3 X{i + L ViA' (Xij - Kd~ + e;j. 

k=l 

Although this all-inclusive model is appealing in theory, the practicalities of fitting it in 11 

dataset with even as many subjects and data points as the UFS may be' troubiesollle. III t!J!' 

present analysis, each of the six subgroup models takes approximately three hours to fit. FittiJl~ a 

model on the entirety of the dataset with a greater number of parameters needing to 1)(' e'stimateci 

could therefore be expected to take a significantly longer amount of tillie, and perhaps 1'\'['11 1)(' 

beyond the capabilities of the computing power available. 

In addition to the unification of the subgroup models into one overall model, further variahles 

could be added to try and improve model fit. For example, as is acknowledged elsewherf', it lllily he 

expected that a given subject is likely to have a BMI growth curve morc similar to t.hat of hiH/lwr 

sibling than to that of another subject to whom they arc not related. This expectatioll cOllld iJ(' 

incorporated into the model by the introduction of one or more terms relating to an identifier for 

'family'. 

311 



9.5.4 The Uppsala Family Study dataset 

Features of the dataset 

The structure of the UFS is a somewhat unusual, both in terms of being made up only of sihlill!-\ 

pairs and, perhaps more importantly, the nature by which sibling pairs are splec\.ed for incl1lsion 

based on their birthweights relative to each other. Both of thcse issues are dealt. wit.h 1"I'lat.iwly 

satisfactorily in (9.7). 

Allowing family-specific random effects acknowledges that subjects arc likely to be n\Ol"(' similar 

to their sibling than to other members of the dataset to whom they are not !"rlat.eci. vVIH'n 

considering the relationship between one or both dimensions of the AP and BMI /',-sco!"e at. physical 

examination, random intercepts allow for overall family-specific differences in TlMI /',-SCOJ"('. whilst. 

random slopes allow for family-specific differences in the relationship between the diIl1('nsion(s) of 

the AP and BMI z-score. This modelling approach would appear both appropriate and sufficient. 

to deal with the structure of the dataset. 

As birthweight is known to affect growth trajectories [45), the selection procecillfe of t.ilt' st.udy 

design may affect both the location of the AP and the later BMI z-score of an individual H.'i well 

as, potentially, the relationship between the two. The issue of birthweight, or, at least, birthweight. 

group, is handled in (9.7) through the inclusion of indicator variables which allow additive cffcet.;; 

of different birthweight groups to be estimated and adjusted for. This approach appears to he 

adequate. l\lodels including continuous birthweight instead of indicator variables for birt.hweight 

group were also fitted but the estimated coefficients changed little and the conclusions would he 

identical (results not shown). 

A further unusual feature of the UFS is that the physical examinations, at which the outcome 

in the present analysis was observed, occur across a wide range of ages (see Fig. 9.4). However, t.his 

should not cloud the conclusions reached here to any great extent. Tracking of TlMI t.hroughout 

childhood is widely acknowledged [156] so that whether BMI /',-score is at age 5 years or ag£' 13 

years it is not just a valid measure of BMI relative to others of the sam£' sex at that precbe age, but 

also highly indicative of relative BMI over a much wider range of ages. Whilst it lIIay be preferabl(' 

to be able to state that the AP is associated with 'BMI at age x', an outcollle of t.his nature is not. 

available in the present dataset. 

Representativeness and generalisabiliy 

It is important to examine whether the conclusions reached within the UFS can be extrapolat.!'d 

beyond the members of the dataset itself. Aside from the issues arising from the unusual selectioll 

approach based on birt.hweight, as outlined above, the representativeness of the Ilwrnbel"s of the 

UFS within the Swedish population and the generalisability from a Swedish dataset to subjects 

outside of Sweden must also be considered. 

The sampling frame from which the final UFS subjects are drawn is that of all families wit.h at 

least t.wo consecutive singleton children delivered at term and within 36 months of each ot.her at 
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the Uppsala Academic Hospital between 1987 and 1995. It is thus a contemporary. h('fllthy Sl\.tJIpIP. 

which is likely to be representative of the wider Uppsala population. However, as part.i('ipat.ioll 

rates were not particularly high [101], subjects in the UFS could potentially not hf' [,f'pn'scntat.ivp 

of this larger population. That the data are Swedish, being a developed European cOllntry, nwans 

that if the conclusions can be assumed to be representative of Sweden then they can he extmpolatcd 

relatively safely to similar populations. 

Thus it is envisaged that whilst there are some issues which could plausihly redllce the gCIl­

eralisability of the results obtained, it is likely that they would be replicated in further datasets. 

Attempts to do so could prove valuable in improving understanding of 8MI development thl'Ollgh 

childhood. 

313 



Part IV 

·Discussion 

314 



Chapter 10 

Discussion 

This thesis explores, develops and implements modelling strategies for studying rdationships 1)('_ 

tween childhood growth and later health. The datasets used in t.he t.hesis are hril'fly Sllllllllarisprl 

in Section 10.1 before the main epidemiological findings and conclusions are discllssf'd in Section 

10.2 and the methodological considerations deatiIed in Sect.ion 10.3. Arf'as for flit lire work an' 

examined in Section 10.4. 

10.1 Datasets 

The two main datasets used in this thesis are the Stockholm Weight. Development St.lldy (SWEDES) 

and the Uppsala Family Study (UFS). Both datasets include longitudinal lllea.'';\IfeIllcllts of ('hild­

hood growth. as well as several measures of later health outcomes, and thus correspond to t.ll(' type' 

of data structure on which the thesis concentrates. The salient features of both SWEDES and t.hp 

UFS are briefly summarised below, although more detailed int.roduct.ions to ttl(' dnt.asds ('an \Jl' 

found in Chapter 4. 

Three of the British birth cohorts (the National Survey of Health and DpveioplIlt'nt (NSHO). 

the National Child Development Study (NCDS) and the British Cohort Study (BCS)) art' also lls('d 

in Chapter 6.2 to illustrate the standardardisation of childhood BMI data into age'- and st'x-s~)('cific 

z-scores. As their usage does not correspond to the main aims of the t\1('si8, these dat.mipts IUP not 

reviewed further here. 

Stockholm Weight Development Study 

SWEDES is a prospective longitudinal study of weight development in 481 childwn from Stockholm 

born over a 12 month period between 1984 and 1985. ComprdlCnsive growt.h datil from hirth until 

age 15 years are available and a variety of anthropometric, metabolic, psychological ilnd lifpstyl(' 

variables were observed at follow-up when the subjects were approximately 17 years old. 

Weight and length at birth were recorded from hospital records, and during infallcy. hdglJt 

and weight were measured as part of routine visits to a child welfarf' (,PlIt.re. MeaslIf!'lIIpnts w!'r!' 

taken three further times after birth during the first year (at 6, 9 and 12 months) and Itnlllially 
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thereafter until age 6 years. From age 7 years onwards annllal nwasurelllcnts of Iwip;ht. and w('ip;lit. 

were recorded in journals by the subjects' schools. As height and weight. nH'aSllJ'('III!'nts O(T1II' at 

common ages for each individual, balanced growth data are availahl<' in SWEDES. '1'1)(, 1'!'/.!,lIlal' 

concurrent measurements of height and weight throughout. childhood allow t.h!' calculation (If BJ\II 

and thus permit the detailed exploration of childhood BMI development for each individllal. 

Of the available variables measured at the late-adolescent follow-up, it is only t.hm;(' p('rt.ailJillf', 

to obesity that are utilised in this thesis. In particular, BMI is calculated frotll f1)(' ohs('rwd 

values of height and weight, and percentage body fat (%BF) is derived using llir-displac(,III('llt 

plethysmography. 

SWEDES thus provides balanced BMI growth data which can he related to flIP two III('aSIlI'('S 

of late-adolescent adiposity. In Chapter 7 this is accomplished directly using a single-stag!, 1tIIIllysis 

approach, whilst in Chapter 8 growth models are first fitted to the BMI growth dat.a and ('stiIlIHt.!'d 

locations of the adiposity rebound (AR) derived, which are then related to late-adolescPIlt. adiposit.y 

in a two-stage analysis approach. 

Uppsala Family Study 

The UFS also provides longitudinally measured childhood growth data and Ollt.COIIH' variahles 

observed at a later follow-up, but differs from SWEDES in several key area.s, including t.11(' owrall 

data structure and the unbalanced nature of the childhood growth data. 

The UFS is made up for 602 sibling pairs (1204 SUbjects) born within 36 months of ('ach otiwr 

in Uppsala, Sweden, between 1987 and 1995. The initial focus of th!' datas!'t was to study early 

and maternal effects on blood pressure and cardiovascular disea.se. To increase statistical dtieiPtH',Y 

only sibling pairs where both siblings had high birthweight, both had low birthwpip;ht, or when' 

there was a large difference in birthweight were included. 

Sampling was retrospective, so all childhood data were obtained via Iinlmge to ('xisting fe'cords: 

birth data from the mothers' obstetric records, and postnatal growth data, including sl'rial 1lI('!\­

surements of height and weight, from health records, kept by Child Healt.h Centres or at schools. 

The nature of this data collection means that the childhood growth dat.a are not. availllhlt, for 

common ages across the subjects, resulting in unbalanced data. However, the concllrrent. 1lIl'IlSIIf(,­

ments of height and weight again mean that BMI can be calculated, and, Il.'l growth data aw oftplI 

available on many occasions through childhood for each individual, detailed exploration of BMI 

development is again possible. 

Follow-up in the UFS occurred between May 2000 and November 2001 wlH'1l t.he slIbjpd.s WI'J'(' 

aged 5-13 years. At a physical examination several anthropomet.ric variables wert' ohsl'rwd, bllt 

again it is only the information regarding obesity (in this case BMI) which is used in the t1ll'sis. As 

physical examinations corresponded to a wide range of ages and as BMI is very llIuch llgp-depl'tHh'd 

over this range, using BMI itself as an outcome is unwise. Instead, BMI z-scores an' calculated 

using the Swedish population reference values [100J. 

As with SWEDES, the relationship of interest in the UFS is between childhood growt.h ill 

316 



BMI and later obesity. The numerous BMI observations for each suhject in infancy allow. via till' 

explicit modelling of BMI growth curves, the identification of the adiposity pf'ak (AP) in infancy. 

This is related to later BMI z-score using mixed models to account for the sihlin~ piliI' sl.l'1l<'llll'(' 

of the dataset in Chapter 9. 

10.2 Epidemiological conc1 us ions 

The main epidemiological conclusions in this thesis focus on how childhood growth, in particular 

the timing of features of the BMI growth curve, affects the development of obesity. TIlf' typical 

childhood BMI growth curve will increase from birth and reach a peak at around age !J nl<lIlt.hs 

before decreasing. At around age 6 years BMI generally begins increasing once more. Thlls thel'!' 

are ordinarily two turning points in the BMI curve, the maximum in infancy, here refl'rred to as 

the adiposity peak (AP), and the later minimum, generally referred to /l.'l the adiposity rebound 

(AR). Whilst there is an established literature regarding the relationship hetween the t.iming of 

the AR and later obesity, there is, to my knowledge, no corresponding literat.un~ for the AP. 

Thus, whilst some of the work in this thesis provides interesting new insights into the relationship 

between the AR and later obesity, it is the results regarding the AP which contribllte entirciy nowl 

epidemiological findings. 

Childhood BM! development and later obesity 

In Chapter 7 a naive multivariable regression analysis approach is used to study the relationship 

between childhood BMI development (annually observed BMI from age 1 to 10 years) and late­

adolescent adiposity (BMI and %BF at approximately age 17 years) in SWEDES. Whilst this 

approach has deficiencies due to missing data and collinearity, it does provide an initial f'xploratory 

analysis of this relationship. 

It is seen that increased BMI velocity at any age during childhood, for given Bl\lI velocitips at 

all other ages, will tend to lead to higher late-adolescent adiposity. This relationship is fOllnd to 

be strongest between age 1 and 2 years in both sexes, and age 4 to 7 years in females and age !i to 

8 years in males. These observations suggest that rapid BMI development relative to others of the 

same age in infancy and around the period of the AR are associated with higher later adiposity, 

indicating that these periods could potentially be considered as critical periods for til(' df'velopllJ('llt 

of obesity as suggested by Dietz [74, 180j. In particular, a BMI which increaHes rapidly rehttiw to 

your peers during the period around the AR, which is equivalent to an earlier AR relat.ive to your 

peers, is suggestive of an early AR being a risk factor for later obesity. 

The adiposity rebound and later obesity 

A more explicit investigation of the relationship between the AR and late-adolf'scellt adiposit.y 

(8MI and %BF) in SWEDES is carried out in Chapter 8 using more robust analytical approaches. 

The AR is seen to be a feature of the childhood BMI growth curve which can be idelltilif'd ill 
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the majority of subjects. It occurs, on average, between age 5 and fi years. aitholll!;h th('l'I' is 

large between-subject variability. The AR is found to occur slightly later in mail's than fl'lIIall's 

in SWEDES. This corresponds to the previous observation of the strongf'st rf'llItiollship bl'l.w('pn 

Bi\U velocity and late-adolescent adiposity being seen at a slightly later age in Iltal('s in Chaptpr 

7. The observed ages at AR and between-sex differences correspond well to previously pllhlished 

results [82. 85. 86. 172, 165), although there are also examples of females having lat('r An than 

males [84). 

When considering categorical age and BMI at AR, both dimensions of the AR an' s('('n to 

be strongly and independently associated with late-adolescent adiposity in SWEDES. Eith('r lUI 

earlier AR, a higher BMI at AR, or both, leads to a large increase in thc odds of lak-ado]l'sc('nt 

overweight (high BMI) and a smaller, though still sizeable, increase in thl' odds of ovcrfll! (high 

%BF). Whilst age and BMI at AR are seen to be negatively correlated, it is fOlllld that tllf' invprsf' 

relationship between age at AR and later adiposity cannot be explained by confollnding dill' to 

subjects with earlier AR having higher BMI at this age. 

When using continuous age and BMI at AR there is some evidence of an int('faction hl'twP{'n t 11(' 

two dimensions of the AR. Increased BMI at AR is estimated to increaRe late-adolescent adiposity 

more when it corresponds to an early AR than when it corresponds to a late AR. SillJilarly, It 

delayed AR is estimated to decrease late-adolescent adiposity more when it corresponds to It high 

BMI at AR than when it corresponds to a low BMI at AR. 

The adiposity rebound as a critical period for later obesity 

These findings imply that, regardless of the size of an individual, the timing of their AR is important 

in the development of later obesity. This leads to the suggestion that the period around the AR Illay 

he considered as a critical period for later obesity - 'a developmental stage in which physiologic 

alterations increase the later prevalence of obesity' [74J. 

This is investigated in Section 8.10, where age and BMI at AR are considered as explanatory 

variables for later adiposity in models alongside estimated BMI and 8MI velocity at diff'prPllt 

ages through childhood. At ages before the occurrence of the AR in most individuals, tlw two 

dimensions of the AR are seen to be more strongly associated with late-adolescent adiposity than 

BMI and BMI velocity at that age. At ages when the AR has already passed in t.he llIajority. 

the opposite is true, with BMI and BMI velocity taking greater significance. At ages near the 

average age at AR, there is often no discernible pattern. These observations are seen to be equillly 

strong in males and females and suggest that age and BMI at AR are no better predictors of later 

adiposity than BMI and BMI velocity at a similar age. This implies there is little extra information 

contained within these dimensions and suggests that the relationship between the AR and latl'r 

adiposity is more statistical than physiological. As a result, the AR canllot be considpn'd as 11 

critical period by the definition of Dietz [74]. 

Although there are complicated missing data issues (discussed in Section 8.11.2) in this analysis 

of the SWEDES dataset, the use of a principled missing data approach (multiple imputatioll (i\II)) 
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means that the the conclusions drawn should be sufficiently robust.. 

The adiposity peak and later obesity 

In Chapter 9 the initial peak in BMI around age 6 month to 1 ypar (the AP) is se!'11 t.o 1)(' II 1<'II<iiiy 

identifiable feature of the BMI growth curve in the vast majority of subjects in tIl(' Uppsala Family 

Study (UFS). Average age at AP is found to be marginally later in females, which is t.ll(' opposit.p 

to the difference usually seen for the AR. 

When considered separately, both age and BMI at AP are found to br stron!!,ly positiwly 

associated with BI\U z-score in later childhood. However, whilst higher BMI at AP Ipads to higlwr 

BMI in later childhood regardless of the age at AP, the relationship hetwepll agp Itt AP and lat!'r 

BMI conditional on BMI at AP is weaker and somewhat more complex. In particular, thl'rr' is 

some suggestion of an interaction between age and BMI at AP, meaning that, whilst an ('arly AP 

tends to lead to a lower BMI z-score in later childhood when it is coupled with a low BMI at AP. 

if BMI at AP is very high, an early AP may actually increase the expected BMI z-scor('. To Illy 

knowledge, it is the first time that these associations have been reported. 

The novel growth curve fitting approach used in identifying the AP in the tHliJj<'c\.S of tIl(' 

UFS results in even those individuals with few data being able to contribut(' to til!' analysis. 

Consequently the proportion of subjects who are unable to contribute to the analysis is low. 

meaning that the findings are relatively robust to the effects of missing data. IIow('v('r. it is not 

possible to identify the AP for some individuals. Whilst this is often because their observed 13MI 

continues to increase throughout infancy, these individuals are not found to have It si!!,nific:antly 

increased likelihood of high later BMI z-score. 

Whilst there is some debate over the importance of infant growth with respect to later olJ(>sity 

[57. 76]. these results show that there is a strong association with between size in infancy ilnd latcr 

adiposity, and that development by this stage also plays a role. The AP is found to 1)(, a lIIeaningful 

feature of the BMI curve for the prediction of later obesity. This suggests that, although til!' first 

year of life is already considered as a critical period for later obesity [74, 180], perhaps tlw AI' 

should be more explicitly investigated in this context. 

The adiposity peak and the adiposity rebound 

The positive association seen between the age at AP and later BMI in Chapter 9 is ill tllP opposite 

direction to that seen between the age at AR and later adiposity in Chapter 8 (and widely acknowl­

edged elsewhere). Thus higher later adiposity appears, somewhat paradoxically, to he associated 

with both those individuals who are less well developed around the period of AP (ill that. t.lw'y 

have a later AP) and those who are more well developed around the period of AR (in that t.lwy 

have an earlier AR). Whether or not it is the same individuals who have both a late AP and atl 

early AR before progressing to higher later adiposity is an interesting question, although on(' that 

is, unfortunately. beyond the scope of the datasets used in this thesis. Analysis of thes!' long-t('nll 

patterns of growth, however, must remain an important future aim. 
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Both the timing of, and BMI at, AP and AR are seen to be associated with latf'r adiposity. 

A positive relationship between BMI, as a proxy for adiposity, and another IJ\cnsllJ'(, of adiposity 

at any two ages can be explained through adiposity tracking, thus it is the associat.ions involving 

timing which are the more controversial. The statistical associations between age Ht AP and AR 

and later obesity appear robust, particularly for the AR given the existing lit.erature, hut it f('lIlaiIlS 

somewhat unclear whether these timings are truly causal factors for later obetiity. In<ippd, hoth 

the timing of one or both of these features of the BMI growth curve and the level of latl'r adiposity 

may simply be expressions of some genetic and/or environmental predisposition. Only if a chHngl' 

in the timing of the AP or AR can be shown to affect later adiposity within an inriilririual can til(' 

associations be though to be causal. This is discussed further in Section 10.4. 

10.3 Methodological considerations 

Naive multivariable analysis 

When studying relationships between childhood growth and later health, if the longitudinal child­

hood growth data are balanced then one simple approach is to directly use the nJPaSl1rl'lllents at 

some or all of the ages as explanatory variables in a regression analysis. 

However, as is seen in Chapter 7, this approach may be problematic. Firstly, when including 

many childhood measurements in a regression model may be difficult to interpret, especially if 

observations are close together in time, due to their respective conditioning. Further to this, 

measurements taken on the same individual at different ag'es are likely to be corrrlated, which 

can cause problems with collinearity. This may manifest itself as imprecise regression codfiei('nt. 

estimates, making interpretation difficult. Problems due to mUltiplicity and collinearity arP likely 

to increase if the ages included in the model are close together or numerous. 

A further difficulty is due to the use of a complete-case analysis approach to the handling 

of missing data. This means that any individual with missing data on one or lIlore variahlf's 

will not contribute to the analysis. Only if these excluded individuals arc missing cOlllpll'tl'!y 

at random (MCAR) will the results remain unbiased. The proportion of exclurled individuals 

generally increases with the number of explanatory variables (Le. ages) included ill t IH' lIIodd. 

Even if the amount of missing data at any given age is small, if sufficient variahles an' included 

then t.he cumulative effect can be sizable. 

Whilst interpretation of the estimated regression coefficients can be aided somewhat by plott.ing 

them against age to form a life course plot [130], which emphasises the dual natlln' of sizp and 

growth, the precision of the estimates may remain unsatisfactory. 

One approach to overcoming the problems due to collinearity is to reparameteriHP thp lIIodl'l 

so that childhood growth velocities (calculated from the observed growth dat.a) an' uSl'd ItH til(' 

explanatory variables. Velocities are generally far less susceptible to collinearity, allowing ilion' 

reliable regression coefficient estimation, although this will not reduce the probll'lI1s clue t.o llIi,o;sing 

data. Indeed, as a greater number of BMI observations are required to calculate the same nUllllwr 
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of BivII velocities, this approach may actually exacerbate the problems (hlP to missing dat.a. 

A potential alternative approach would be to only use a subset. of tlH' H{!;I'S at which th(, 1111. 

thropometric variable is observed. This would be likely to reduce collinearity Hnd also i llCT('IISP 

the proportion of subjects who can be included in the analysis, reoncill{!; prohlellis d1l(' to lIIissing 

data. However, the exclusion of variables may result in a loss of informat.ion. 

Thus a naive multivariable analysis involving childhood growth dat.a ohserved at III a II,)' ages is 

unlikely to be an optimal approach. In particular, for datasets with even mo(jpratl' anH)lInts of 

missing data over many variables this approach is not recommended. 

Multiple imputation 

When faced with balanced longitudinal growth data a more robust approach t.o till' halldlillg of 

missing data is through multiple imputation (MI). Under this approach ellch missing vahl<' i.~ 

replaced by a draw from the conditional distribution for the missing data {!;iven the ohs(,l'V<'d data 

to create multiple completed datasets. Each dataset is analysed separately lIsin{!; standard cOlllpkt I' 

data procedures, then the results combined. 

MI is utilised in the analysis of the relationship between the AR and later obesity in SWEDES 

(Chapter 8). However, this application of Ml is somewhat unusual as it does not result. in ('vpry 

individual within the dataset contributing to the final analysis, as would generally he t.he casp 

elsewhere. This is because of the three-stage analysis approach used. Firstly, mis::;ing valllls arC' 

imputed to create multiple completed datasets. Secondly, individual growth model::; an' fittpd to 

these completed datasets, and from these the location of the AR is est.imated for (,Hch slIl>jl'ct 

in each imputed dataset, where possible. Finally, the relationship between the AR and lafc'l' 

obesity is examined in each imputed dataset and the results combined in the standard Illitlln<'f. 

So, although in each imputed dataset each individual effectively has a full set. of 13MI vill\l{'s 

present. the subsequent growth curve fitting may not successfully identify an e::;tilllat.!'d AH. Tlws(' 

subject.s are then excluded from the remainder of the analysis - thus tl)(' 'missin{!;ll(,ss' of t.hl' AH 

is effectively handled via a complete-case approach within the Ml approach. 

Whilst the use of MI does not completely eradicate missing data fr01l1 the final analy::;is modpl, 

it st.ill increases the proportion of subjects who can contribute relative to t.he cqllival(,lIt analysis 

without the use of 1\11. Thus, if the subjects who are excluded from t.he analysis wh(,11 l\1I is Ilot w·;(,d 

cannot. be considered to be MCAR, the use of MI should reduce the extent of bias. IIowpvl'l', as 801111' 

subjects remain excluded from the analysis when using MI, if the missingness is not compll't.l'ly 

at random then there may remain residual bias. In particular, for individuals whos(' o!Js('rv('d 

BMI values increase throughout childhood and for whom no AR thus occurs, missingncss from tl)(' 

analysis is clearly dependent on the data and consequently canllot be considered MeAH. IIow('V('I', 

no relationship is found between AR unidentifiability and late-adolescent adiposit.y. indicat.ing that. 

t.hose subjects with no AR who are excluded from the analysis do not differ ::;ignific<lntly frolll t.h(' 

remainder with regards to the outcome variables. 

A further issue with Ml in this complex multi-stage setting i::; that int.eractions which involV<' 
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one or more of the derived growth features cannot be included in the imputatioll IlloC\!'1 hy virtuI' 

of these features not being derived until after imputation. This means that these illt('nt('tiolls th!'ll 

cannot be accurately assessed in the analyses. However, this situation is sOlllewhat ulluslwl Ilnd 

would not occur in a more standard MI analysis. 

As well as the variables for which imputed values are required, the imputation model ill Chapt.pr 

8 includes further variables which are not subject to missingness, and sOll1e of which an' !lot l'Vl'1I 

used in the later analysis models. The inclusion of these variables, which arc all hpli{'vpd to he 

related to either the missing variables or the missing data mechanism, should help providp 1I11hias{'d 

imputed values by making the MAR assumption more plausible [126]. 

A Markov chain Monte Carlo (MCMC) approach is used to create 100 imput.ed dlttasf'ts. Al­

though this is more than is generally advised as being necessary [120], this decisioll Wll.~ t.llk{,1I ill 

light of more recent research suggesting this to not always be the case [121]. Whilst iIlCH'Il.~illg t.lH' 

number of imputed datasets in this manner has a small cost in terms of computing tillie, t.his 11101'(' 

than made up for by the additional reassurance provided. 

A joint multivariate normal distribution is assumed. Although the majority of variahles 

included in the imputation model are continuous and can reasonably be assumed to follow It 

(marginally) normal distribution, perhaps after a transformation, some discrete or dichot.olllOus 

variables, for example sex, are included by necessity. However, as these variables ar!' all fully 

observed, the implausibility of the multivariate normality assumption is unlikely to be probklllat.ic 

[124]. 

In this particular application of MI, comparison of the results using the original data only 

and the results using MI shows only relatively minor differences. Certainly the conclusions drawlI 

would be very similar. However, without conducting an analysis using MI this comparison wOllld 

obviously be impossible. Thus, in the more general setting, it may be suggested that. when analysing 

any datasets which are subject to missingness, a repetition of the analysis using a 1\11 app!'oach 

can provide a useful tool. If the initial analysis is conducted on a complete-case basis, Hnll!'!' tilt' 

assumption of MCAR, then comparison to the results using MI, under the more relaxed assulllpt.ion 

of missing at random (MAR), allows an assessment of the extent to which results are robust to the 

missing data assumption. 

Growth modelling 

Growth modelling has been seen to be a useful method by which to sUlllmarise childhood growt.h 

data, and in particular to derive 'growth features' of interest for further analysis. Whell the growth 

data are balanced, the analysis of these derived growth features in relation to a lat!'r health out.collle 

provides an alternative approach to the simple inclusion of Home or all of til(' growt.h dat.a ill n 

multivariable regression model which, as previously discussed, may not be ideal dll!' to th!' eH'pct.s 

of collinearity and missing data. When the childhood growth data are not balanced, t.lw opt.io\l 

of llluitivariable regression modelling is not available, so growth modelling must often be lIsed hy 

necessity. 

322 



There are a vast array of both specifically developed growth models and mon' g<'llpral Inori­

elling approaches which have been used to describe growth in various anthropolIH't.ric dillH'nsioll 

over different ages. Some of these are reviewed briefly in Section 6.1. S('veral f'xist.ing growt.h 

models appear to provide good levels of fit to 'typical' growth in height and wl'ight, at. yotlng 

ages (Jenss-Bayley, Count A-curve, Berkey-Reed). There are also many existing Illodels which 

handle height from birth or infancy right through to final adult height (COllllt, Oo('k-Thissl'll. 

Preece-Baines. Karlberg, JPPS) which appear to fit adequately. Polynomials arC' oftC'n sllitabk 

for modelling growth over a short period of time, but are not recommended generally. ThC'y art' 

limited in the range of curves they can accommodate, cannot model data approaching aSYlllptot('s. 

for example height near maturity, and are also susceptible to 'edge effects', Fractional polynomi­

als (FPs) expand upon the range of curve shapes which conventional polynomials call providC' so 

that asymptotes and points of infection better dealt with, but also suffer from many of til{' SarlI(' 

deficiencies. 

All of these modelling approaches impose a pre-determined algebraic form on the growth curV(', 

In some instances, for example some of the well-specified multi-parameter mod('ls for height, this 

type of parametric approach may be perfectly suited to the specific application, How('V('r, in Il 

more general situation the types of curve afforded by a parametric approach are often found to 

be unduly restrictive. As a result, the scope of the thesis is angled towards nonpamlllctric growth 

modelling approaches, in particular the use of splines, which provide a greater ciegn'e of Hcxihility, 

In Chapter 8 individual cubic smoothing splines are fitted to BMI growth data in tIl(' SWEDES 

dataset. When data are subject to missingness or sparsity, as is the case with this application. 

the fitting of subject-specific smoothing splines may require certain restrictions to be imposed on 

the amount of data required in order to obtain reliable fitted curves, In particular, when t.IH' 

objective is the identification of a specific feature of the growth curve, a reasonable density of dat.a 

around the expected age of this growth feature should be ensured. However, whilst stronger data 

requirements should increase the likelihood of reliably fitted splines, this may also decrea.'ie the 

effective sample size. An assessment of this trade-off is one element of subjectivity which forms 

part of the model fitting process. 

A further example of potential subjectivity is in the choice of the smoothing paral1l<'fpr. This 

determines how closely the fitted smoothing spline will follow the detail of the data and. for 

individual splines fitted only to the data of single subjects, need not take t.he same value for Pilch 

individual. Indeed. allowing the smoothing parameter to vary across subjects permits th(' fitt('(l 

curves to be 'fine-tuned' for each individual to give a, in some sense, 'optimal' fit, However, thp 

level of SUbjectivity inherent in specifying 'optimal' subject-specific smoothing paramet('rs makes 

automation of this process difficult, and to manually adjust the smoothing param('tpr for Pilch 

subject would be very time consuming in a large dataset. In Chapter 8 a compromise approach h; 

used whereby a stratified random subsample of the dataset is extracted, and for tl\('s(' individuals 

smoothing splines fitted using manually selected smoothing parameters. From obsefvpd trends 
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within the subsample, rules are created so that for the remainder of the dataset til!' slIIoothing 

parameter for each individual is specified as a function of the number of data points to which till' 

curve is being fitted. Generally this approach is seen to work well. Whilst t.here will indubitahly 

be some cases where subject-specific fine-tuning of the smoothing parameter would improve thp fit 

of the curve somewhat, the benefits of the increased automatability of the process art' gn'at. Ilnd 

would be amplified further in larger datasets. 

The ability to 'fine-tune' the smoothing parameter also means that curves with differen! degr('('s 

of smoothing can potentially be fitted to the same data points in order to meet differing ohjectivps. 

Thus, for example, when fitting a smoothing spline to a given anthropometric variahle, it certain 

degree of smoothing may be considered 'optimal' for the estimation of a feature at. olle Itg!', whilst. 

a differently smoothed curve may be thought preferable for est.imating a different feature at It 

different age. This illustrates a further flexibility of the smoothing spline approach. 

However, this level of subjectivity in the degree of smoothing may not always be d!'si!"p<i. 

Although little attention is paid to them in this thesis, there do exist approaches, such a.s cross­

validation, which allow automated smoothing parameter selection. 

Once fitted, smoothing splines allow simple derivation of growth features. As smoothing splines 

are not restricted in the variables or age they can model, unlike many existing growth lIlodds, nH'Y 

can be used to model arbitrary anthropometric variables, affording great flexibility. 

The related approach of regression splines is utilised in Chapter 9. Here, the knot.s at. which 

the polynomial functions join, rather than being all the ages at which observations are made, It!"!' 

a smaller set of ages fixed in advance. Having common knot locations for each subject. allows the 

regression spline fitting to be incorporated into a mixed model framework. The resulting sellli­

parametric mixed model approach can be easily implemented in standard statistical software and 

is found to be very effective in the fitting of subject-specific growth curves. 

The equivalence between penalised smoothing and the optimal predictor in mixed modelling 

results in a unified approach to model estimation, but removes the previously discllssed ability t.o 

'fine-tune'smoothing. The best linear unbiased predictor (BLUP) approach to penalised regression 

spline fitting works well in the application of Chapter 9, but may not always provide an adequnh' 

level of smoothing for a given purpose. 

Allowing a cubic population-average curve with cubic subject-specific deviations provides suffi­

cient flexibility to model a wide range of curve shapes. Derivatives of both the popuillt.ion-Iwl'ragl' 

and subject-specific curves are easily calculated, and are themselves smooth continuous functions. 

The fitted subject-specific regression splines generally fit the data very well. This CVPll appears 

true for those subjects with sparse data, though obviously the goodness of fit in these inst.ances 

mllst mainly be judged by conjecture. For these individuals, the model fitting process 'borrows' 

information from other subjects, so that the resultant curves are more strongly inHucnced by t.lw 

population-average curve. 

However. there is always the possibility of encountering individuals whose observed vahH'.~ lip 
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on a significantly different trajectory to other subjects, and hence from th!' poplllatioll-HWntl!;(' 

curve. In these situations the fitted subject-specific regression splines may not fit. the dat.a qllit.(· so 

well. although in the application in Chapter 9 there is little evidence of this being the CHHP. Mon' 

generally the presence of this issue must be viewed in terms of a trade-off again:.;t the bendits 

of having a common underlying trajectory in those with few observations where fitting a trllly 

subject-specific curve would be problematic. 

Thus both smoothing and regression splines are seen to be useful tools for the fitting of individ­

ual curves to growth data. This accords with the previous assertion of polynomials being ad('qllat.e 

for modelling growth over short periods, as spline functions are effectively a series of 'polynomials 

modelling growth over short periods' joined together. 

It is difficult to directly compare the two spline methods utilised in the thesis 8.'l the applications 

in Chapters 8 and 9 differ in terms of the ages at which growth is examined, the objective of the 

curve fitting. and the data which are used. However, it would be very interesting to apply thf' 

Ml and cubic smoothing spline approach of Chapter 8 and the mixed model penalised regr('ssioll 

spline approach of Chapter 9 to the same data and compare the fitted curves. One advantage the 

regression spline approach has over the smoothing spline approach is that the latter l)('coll1es less 

practical as sample size increases as it uses all the observations as knots, whereas til(' former liSPS 

a fixed number of knots. 

10.4 Areas for future work 

There are many ways in which the work presented in this thesis could be further extended. 

As discussed previously, the naive multivariable analysis in Chapter 7 encounters problems due 

to collinearity between the childhood growth measurements at different ages and til(' complet.p-case 

analysis approach resulting in the exclusion of many subjects. In particular, if thm;r. individuals 

are not I\[CAR then bias may be introduced. 

One simple approach to counter the issue of excluded subjects would be to use 1\11 to imput(' 

the missing childhood growth data. Several completed datasets would be created, analysed indi­

vidually, then the results combined, as has been described previously. The Ml procedure cOllld 1)(' 

conducted in a similar manner to that in Chapter 8. 

Using i\H would allow every subject to contribute to the analysis, so the reduced precision 

would be overcome. The main assumption for a MI analysis to provide unbiased results is for 

the missing observations to be MAR. As this is a weaker assumption than that requirt'd for the 

complete-case analysis to provide unbiased results, its validity is more likely. 

A comparison of the results using MI to those reported in Chapter 7 would be illllstmtiv(' 

as to the effect the missing data had on the original results. However, if the analysis model is 

parameterised in terms of childhood BMI (as opposed to BMI velocity) then it is likely that til!' 
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previously acknowledged presence of collinearity would remain. Thus it lIIay IlP IlIon' infol'llllltiw 

to examine the model reparameterised in terms of BMI velocity. 

A variety of models which have been developed to describe growth are briefly described ill 

Section 6.1. \Vhilst. these models are not used in the later applications in the thesis which involvp 

the modelling of growth, they remain in widespread use elsewhere. Thus a more dC'taill'ci Illld 

formal comparison of the different growth models may be propitious. 

This would necessitate a much larger sample of subjects to whom the various growth ctll'ves 

would be fitted. The sample would need to include subjects with a wide variety of Ctll'V(' shllpf's. 

As a first stage, an attempt could be made to assess and categorise the curve shapes of individuals. 

then a stratified random sample could be taken based on this categorisation. 

The goodness of fit of each growth curve for each individual could then be a.'isessed more formally 

using the deviance of the model. For nested models, significance tests can be used to eXClmiIlI' til!' 

importance of the extra parameter(s). Otherwise, the trade-off between reduced deviance and til(' 

extra degrees of freedom in models can be assessed using the Akaike Information Criterioll (AIC) 

or the Bayesian Information Criterion (BlC) to examine whether the extra complexity call Iw 

justified. 

However, goodness of fit is not the only criterion for assessment of a model, and an oiJjf'ctivf' 

comparison considering only this could be misleading. More formal approaches to the comparison 

of ease of fitting, data requirements, the interpretability of parameters, and the automatability of 

the procedure should also be considered. 

Previously published studies, for example those of Berkey [30] (Jenss-Bayley and Count A­

curve). Berkey and Reed [34] (Jenss-Bayley and Berkey-Reed), Jolicoeur et al !151] (Preece-Baines 

and JPPS) and Ledford and Cole [152] (Preece-Baines and JPPS), have formally compared selected 

models to each other. However, as far as I am aware, there are no published formal comparisons 

between so many of the available growth models. 

The main epidemiological findings of the thesis involve the relationships between the AP, thf' 

AR and later obesity. Whilst broadly similar findings regarding the AR have previously Iwcn 

published elsewhere [82, 83, 84, 85, 86, 87, 88, 165, 172], there appear to be no equivalent studip~ 

concerning the AP. As there is thus no means of comparison for the re~ults found in t.itl' t.hesis, 

it is imperative that further analyses of the relationship between t.he AP and lat.f'r obesit.y aI'(' 

conducted in order to examine t.he robustness of the association. These studies should idpally 

consider individuals from across a range of geographical locations. 

Further to this is interest in the relationship between the AP and the AR, and how intpract.ioll 

between the two may affect. later obesity. Due to restrictions in the data, thi~ cannot. be propl'r1y 

examined in the thesis. To do this would require a dataset where both the AP and the AR can be 

identified for each individual, as well as one or more measures of later obesity. The relat.ive t.imings 

of these two features of the BMI growth curve could then be investigat.ed. Of particular interest is 
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the previously described observation of both subjects with a later AP and subjects wit.h all {'arlil'r 

AR being the most likely to exhibit later obesity when the two growth featuH's arC' cOllsidp(,pd 

separately. Use of a dataset in which both the AP and the AR are identifipd within til(' :.mll1(, 

subject would allow an assessment of whether or not it is the same individuals wit.h both n la.tI'T 

AP and an earlier AR. Further research of this nature concerning the AP could providp valua.blp 

insight into BMI development through childhood. 

Whilst relationships have been seen between the AP, the AR and later obesity, the t.ransfpral 

of these findings into int.erventions to reduce obesity remains difficult. In particular, it. remains 

unclear whether it is possible to manipulate the timing of either the AP or the AR. Additionally, 

assuming this manipulation is possible, it is unclear whether the, say, artificially delayC'd An would 

lead to a reduced risk of later obesity in the same manner in which a naturally occurring AR at. 

that age would. 

It is acknowledged that adiposity within an individual can be manipulated somewhat by al­

terations in their energy balance [181]' through either the consumption of fewer calories, tllP ex­

penditure of a greater number of calories, or both. However, research specifically int.o factors 

affecting the timing of the AR [90J found no association between any of the measllwd did.ary 

variables (protein, fat, carbohydrates and energy) and timing of the AR. Instead, parental obC'sity 

was found to be an associated with an earlier AR, which perhaps lends itself less favourably to usC' 

as an intervention. To my knowledge there is no corresponding research into factors affecting the 

timing of the AP, so further research is thus required regarding factors affecting t.he t.iming of bot.h 

feat.ures of the BI\U growth curve. Of particular interest with regards to the timing of t.he AP is 

the developmental stage of the infant. It is plausible that the decrease in adiposity seen following 

the AP may be influenced by the progression to a more mobile developmental stage. 

If an intervention was found which was believed to have the potential to manipulate tllf' t.iming 

of the AP or the AR, as the timings of both features naturally differ between subjects it would 

be impossible to assess on an individual level the effect of the intervention on the timing. TIlf' 

ideal approach to examining this would be via a randomised controlled trial, where subjPcts arp 

randomised to having their AP or AR either artificially accelerated, delayed or neit.hpr. This would 

likely necpssit.ate near-continuous monitoring of BMI and, for example, appropriat.e' modificat.ion 

of the energy balance for each individual. Timing of the growth feature being considered could 

then be compared across intervention groups to assess the short-term effect of the intervpntion, and 

a measure of later obesity could be compared across intervention groups to assess t.he long-term 

effect. Whilst this approach could be fruitful, whether such a precise manipulation of t.hp growt.h 

trajectory is possible remains debatable. 

Even if this level of manipulation is possible, it may be considered undesirable. Int('["vpntions 

whereby children are encouraged to eat more healthily or to exercise more arc comlllonplac(' and 

widely accepted, but one in which the aim is explicitly to alter the trajectory of growth, even if 

it is only using the same tools of reduced calorific intake and enhanced calorific expenditure, lllay 
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seem somewhat less palatable. In particular, the potential to manipulate growth in infancy around 

the period of the AP should be considered only with the utmost caution. 

10.5 Concluding comments 

The scenario considered in this thesis, of relating childhood growth to a later health ontcome, 

can be seen as just one example of relating longitudinal data to some distal outcome. Further 

examples of this include relating systolic blood pressure profiles to risk of myocardial infarction, 

or occupational exposures over a working lifetime to risk of various lung conditiolls. This setting 

need not even be confined to health, and similar scenarios could be envisaged across a range of 

alternative subject areas. For example, it may be wished to examine the relationship between 

repeated measures of educational attainment though childhood and adult income. 

The same issues of balanced or unbalanced data structure, collinearity between measurements, 

and missing or sparse data would be present in these applications. As the statistical approaches 

used throughout this thesis are not health-specific, there is no reason that this work cannot be used 

to inform the approach to analysis in alternative settings. In particular, when growth curves are 

fitted in Chapters 8 and 9, using individual cubic smoothing splines and cubic penalised regression 

splines within a mixed model framework respectively, the decision to use nonparametric modelling 

approaches makes the overall analysis approach far more generalisable. Clearly, models which have 

been developed specifically to describe the growth of some human dimension over some period of 

childhood, such as those discussed in Section 6.1, are unlikely to be suitable in this more general 

setting. As splines can be used to model arbitrary variables they provide a reasonable solution to 

many such problems. 
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Appendix: Statistical methods for 

constructing gestational 

age-related reference intervals and 

centile charts for fetal size 

There follows a statistical opinion article written with Tim Cole for Ultrasound in Obstetrics and 

Gynecology entitled 'Statistical methods for constructing gestational age-related reference intervals 

and centile charts for fetal size' [3]. 

329 



Ultrasound Obslel Cyneco/ 2007; 29: 6-13 

Puhlished (mime in Wiley InterScience (www.intersCience.wile)..com). 001: 1O.1002/L1og.3911 

Statistical Opinion 

Statistical methods for constructing gestational age-related reference intervals and centile 
charts for fetal size 

INTRODUCTION 

Many fetal size variables, for example head mea­
surements, abdominal measurements and femur length, 
Increase over the course of gestation. Reference intervals 
(Rls) and centile charts provide a means of assessing 
these measurements, at a given gestational age (GA) or 
across a range of GAs, respectively, and arc tools of great 
importance in clinical medicine. 

Rls (sometimes, misleadingly, called 'normal ranges') 
represent the interval between a pair of symmetrically 
placed extreme centiles (such as the 5th and 95 th for a 
90% interval) of a size variable, denoted y, at a given GA. 
Centile charts plot the values of y corresponding to one 
or more RIs against the relevant GA over a range of GAs. 
In the field of fetal size, values which lie outside the RI 
are regarded as extreme and may indicate the presence 
of a disorder such as intrauterine growth restriction I 
or macrosomia2• More informative, however, than this 
forced dichotomy is the calculation of a value's centile 
position, or Z-score, relative to the reference population, 
estimated from knowledge of the distribution of y at 
a given GA. For a given observation, the proximity of 
the centile position to 0% or 100% (alternatively the 
magnitude and sign of the Z-score) is then a measure 
of huw extreme the observation is cumpared to the 
reference data at that GA. A centile position above 50% 
(equivalently a positive Z-score) signifies a measurement 
greater than average for that GA, and a centile position 
below 50% (or a negative Z-score) one less than average. 

While recent years have seen the publication of a 
variety of strategies for the construction of Rls, incorrect 
methods have still been used for fetal measurements of 
all kinds I. The choice of suita ble methodology in this 
field is especiallv crucial as inaccurate centiles may lead to 
false conclusions regarding the development of the fetus, 
resulting in su boptimal clinical care. 

In an article in this issue of the Journal, Sherer et al. 3 

construct centile charts of the axial cerebellar hemisphere 
circumference (CHC) and area (CHA) through gestation 
using one such method, based upon regression modelling 
of both the mean and the standard deviation (SD) across 
GA, as detailed by Altman and Chitty4 and Royston and 
Wright 1. 

Ir is the aim of the present article to further examine the 
statistical approach used by Sherer et aP, while taking 
a mure general look at the problem of constructing GA­
related Rls and considering alternative approaches to this 
problem. Techniques for longitudinal data, where each 
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subject contributes repeated observations, as opposed 
to cross-sectional data, where they contribute only one, 
require a different approach and arc not considered here. 
Further information on this area can he found in, for 
example, Royston and AltmanS and Royston". 

While many of the techniques explored here could 
be, and indeed have been, used in the context of 
anthropometric measurements, the focus here is on 
applications in the field of fetal size. 

THE GENERAL PROBLEM 

Prior to the statistical analysis, many Rls and charts for 
fetal size are already flawed by weaknesses in study design. 
As with any study, the choice of an appropriate sample 
is of great importance. While some published studies 
use routinely collected data, resulting in the inclusiun 
of multiple observations on some fetuses, Altman and 
Chi tty4 note that these fetuses are likdy to be those with 
clinical indications, introducing bias to the sample. They 
advocate collecting data specifically for the purpose of 
developing the RI, with each fetus being included only 
once. Within this framework it is important to have 
as un selected a sample as possible because reference 
data should relate to 'normal' fetuses. Altman and 
Chittl suggest that it is reasonable to exclude fetuses 
subsequently found to have a congenital abnormality, 
though they recommend the inclusion of neonatal deaths 
and fetuses large or small for dates at birth where this is 
not the case. Maternal conditions which could affect fetal 
growth are also deemed reasonable exclusion Criteria. 

While imprecise estimates of the RI will be obt'lined 
when the sample size of the dataset is too small!, it is 
not easy to accurately specify appropriate sample sizes. 
In particular, when interest is focused on the extreme 
centiles, as is often the case, several hundred observations 
may be necessary to obtain estimates at an appropriate 
level of precision. 

There are a variety of available statistical approaches 
for the calculation of Rls, the most important of which are 
to be reviewed presently. The method needs to produce 
reference centiles which change smoothly with GA and 
provide a good fit to the data. While clearly these 
requirements are essential, it is also preferable, for the 
sake of general usability and accessibility, to maintain as 
simple a statistical model as possible. Accordingly, the 
choice of approach must strike a balance between these 
conditions. It is also desirable that tools arc available for 
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(alculating the relevant (entile positions and Z-scores for 
any further measurements, which again should be as user­
friendly as possible in their application. Not only is the 
calculation of Z-scores useful on an observation-specific 
level, it has also been shown to be instrumental in the 
assessment of chart comparison 7 and quality controls. 

predicted value) should be (akulated and plotted against 
GA to show if and how variability changes with GA 4. 

Previously, modeling of the variability was not often 
considered, even though in the field of fetal size SD 
almost always changes with GA9. While other methods 
have he en proposed 10, the approach most frequently used 
is that of Altman 9. It follows - from the assumption that 
the varia hie under (onsideration is normally distrihuted at 
all GAs - that the residuals from the mean model should 
also be normally distributed. This in turn means that 
the absolute residuals (residuals with the sign removed) 
have a half normal distribution. As the mean of a half 
standard normal distrihution is VOl;!), the mean of the 
absolute residuals multiplied by v(rr/2) is an estimate of 
the SD of the residuals. Hence if the SD is not reasonably 
constant over GA, predicted values from a regression of 
the absolute residuals on age multiplied by v(rr/2l will 
give age-specific estimates of the SD of the residuals, and 
hence of y. 

MEAN AND SD MODEL 

The statIStical approach followed by Sherer et al.J , here 
referred to as the 'mean and SD model', is one which 
has been found to be sufficiently general to cope with 
a wide range of fetal measurements available from 
ultrasound scanning 1. Generally, under the assumption 
that at each GA the measurement of interest has a 
Gaussian (or normal) distribution with mean and SD 
that vary smoothly with GA, the centile curve at a given 
GA may be calculated by: 

ccntilcGA == meanCA + K x SDGA (1) 

where meanGA and SDCA are, respectively, the mean 
and SD at the required GA, and K is the desired 
normal equivalent deviate (NED). The NED takes a value 
corresponding to the propurtion of the standard normal 
distribution (with mean of 0 and SD of 1) lying to the 
left of it. For example, the 50th centile (with a proportion 
of 0.5 of the standard normal distribution to the left of 
it) has an NED of 0, while the determination of a 90% 
reference range (i.e. the 5th and 95th centile curves) would 
require K = ±1.645. 

The 'mean and SD model' approach aims to find 
functions that adequately represent how the mean and 
SD change with GA, allowing any desired centile curve to 
be readily calculated by appropriate chOICe of K. 

Firstly the mean is modeled by fitting a polynomial 
(urVe to the raw data by means of least squares regression 
analysis. Royston and Wright recommend the initial use 
of a cubic polynomial (a + bt + cr- + dt3 , where, for 
Simplicity, GA is represented by t) 1. If the cubic coefficient, 
d, is not significantly different from zero (approximately 
if d is less than twice its SD), a quadratic polynomial 
(a + bt + ct2 ) should be fitted with the same assessment 
made of the quadratic coefficient, c. The process should 
be repeated until no further removal of terms is possible. 
While quadratic or cubic curves will often give a good fit 
to the data, Altman and Chitty4 suggest the linear-cubic 
model (a + bt + dt3) as a good alternative for fetal size 
data. It is advocated that the choice of curve be based not 
only on statistical significance, but also that the quality 
of fit to the data and esthetic appearance, especially at 
the extremes of GA, should be taken into account. Sherer 
et al. found a linear model (a + btl to be sufficient for the 
CHC curve and a quadratic polynomial to be suitable for 
CHAJ. 

Once a suitable mean model has been decided upon, 
attention can turn to the variability in the data. Residuals 
from the fitted mean model (observed value minus 
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An alternative formulation for Altman's approach 
favored by Royston and Wright!, and employed in thi.~ 
instance by Sherer et al. J , is to produce 'scaled absolute 
residuals' (SARs) by multiplying the absolute residuals 
by v(rr/2l. The SARs arc then regressed on GA, the 
predicted values from which again estimate the SD of the 
residuals. 

Under either formulation, if the absolute residuals, 
he they s(aled or unsealed, show no trend with (;A, 
the SD is estimated as the SD of the unsealed original 
residuals (observed value minus predicted value). If there 
is a trend, polynomial regression is needed to estimate 
an appropriate curve in the same way as for the mean. 
Altman suggests that it is unlikely that a curve more 
complex than quadratic is required for a satisfactory fit 
to the SD~. Superimposing ± l.645 x SD on the residual 
plot is useful to see how well the SD has been modeled, as 
approximately 90% of the observed residuals should fall 
within these limits. Sherer et aJ.3 found the CHC SARs to 
be suitably represented by a linear relationship with GA, 
while those for CHA required a cubic polynomial. 

As the regression analysis to estimate the mean should 
really take into account any increase in SD with GA, at 
this juncture the mean model can be refitted using the 
reciprocal of the square of the estimated SD as weights. 
However, Altman and Chitty report that the effect of 
refitting is almost always rather smal14• 

A useful tool in assessing model fit arc Z-scorcs (also 
known as SD scores), defined as: 

Z == observed y value - meanCA 
SDCA 

where meanCA and SDCA are, respectively, the mean and 
SD given by the model for the GA at which the observation 
is made. Hence Z-scores represent the ohserved values 
expressed on a standard normal scale (with a mean of 0 
and SD of 1), with the mean and SD adjusted for GA. 

Altman and Chitty4 recommend three methods of 
evaluation for the goodness of fit, all of which Sherer 

Ultras()lInd Obstet Gynew12007; 29: 6-13. 



R 

et al. 3 appear ro have carried out. These methods will he 
illustrated using data on fetal hlparietal diameter (BPD). A 
suhset of 850 of the 19647 fetuses analyzed hy Salomon 
et al. 11 were fitted with a 'mean and SD model' in the 
standard manner, as outlined ahove, resulting In a cuhic 
mean model and a linear SD model. Firstly, a plot of the 
Z-scores against GA should be checked for the existence of 
any patterns. The Z-scores should be randomly scattered 
about zero at all GAs, with any deviation from this 
indicating that the mean curve may require modification. 
This is shown in Figure 1 for the example dataset, with 
the BPD Z-scores appearing to adhere to this stipulation. 

Secondly. a normal plot (essentially a scatterplot of 
the actual data values plotted against the 'ideal' values 
from a normal distribution) can be used to check 
that the Z-scores have a close to normal distrihution. 
This is signified hy a roughly straight line hut can he 
confirmed more formally using the Shapiro-Wilk W test 
ur Shapiro-Francia W' test. Figure 2 shows that in the 
example dataset the BPD Z-scores do have a close to 

normal distribution and this is corroborated by both the 
Shaplro-Wilk Wand Shapiro-Francia W' tests having P 
uf 0.998. 
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Figure 1 Plot of calclliated Z-scores against gestational age in the 
example dataset. 
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Figure 2 Normal plot of calculated Z-scores in the example dataset. 
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Figure 3 Histogram of calculated Z-scores In the example dataset 
with overlaId standard normal distributIOn. 

Finally, the appropriate proportion of observations 
should fall between and outside fitted centiles, for example 
appruximately 90% of Z-scures shuuld lie between 
Z = -1.645 and Z = + 1.645. Deviation from this mav 
imply that a higher-urder polynumial curve fur the SD is 
needed. fur the example dataset, lines currespundin~ to a 
BPD Z-score of ± 1.645 have been plotted on Figure 1. A 
brief examination suggests that approximately 90% of the 
data lie hetween the lines, with calculations confirming 
that 4.9% of the data lie below Z = -1.645 and 4.2% 
abuve Z = +1.645 (compared to an expected 5% for 
each). It is unlikely that the values will both be exactly 
5%, so figures such as these indicate an adequate level 
of fit. 

This aspect of the data can be further examined in a 
plut such as in Fi~ure 3, a histugram of the Z-scorcs with 
an overlaid standard normal distribution. If the model 
fits well then the histogram should match up with the 
standard normal distribution, meaning that the expected 
and observed centiles lie at the same values. Given the 
sample size of the dataset, the histogram for the BPD data 
shows a close to standard normal distribution, indicating 
an adequate model fit. 

Once a satisfactory model has been determined, the 
centile curves for the desired reference interval may be 
calculated by substituting the expressions for the mean 
and SD into equation (1). The Z-score for any new 
individual may be calculated using equation (2) and its 
centile obtained using the inverse normal distribution. 
Finally, the calculated centiles should be superimposed 
on the scatter diagram of ubserved values against GA to 

ensure a suitable fit. 
Besides the study currently under consideratiun, this 

approach to the construction of Rls has been widely 
used in the field of fetal measurements. Altman illustrated 
his absolute residual approach by developing reference 
centiles of fetal foot length9 • Chitty et al. constructed 
new charts for fetal head circumference, BPD and other 
head dimensions 12, fetal abdominal circumference and 
area '3, and fetal femur length 14. Royston and Wright' 
estimated RIs for fetal head circumference (using the same 
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data as Chitty et aIY), hemoglohin concentration and 
kidney volume. Salomon et al. constructed new reference 
charts and equations for fetal hiparietal diameter, 
head circumference, abdominal circumference and femur 
length ll . 

Extensions to the mean and SO model 

Several extensions to the basic 'mean and SD model' 
approach described above have been posited as ways 
to improve the performance of the method. The use of 
logarithmic transformations and fractional polynomials 
is described below. 

Meall alld SD model with logarithmic trallsformatioll 

Many size measurements tend to follow a skewed normal 
distribution at a given GA, usually a positive skew where 
the right tail of the distribution is longer than the left. 
While thiS clearly conflicts with the assumption that at 
each GA the data come from a population with a normal 
distrihution, it can often he overcome hy the application 
of a logarithmic transformation. This same solution will 
also increase the ease with which a model can he fitted 
if the SD of the original measurements increases rapidly 
with GA. 

Royston suggests initially attempting to fit the mean 
model to the original measurements 10. If the residuals 
from this model show a positive skew then a logarithmic 
transformation should be performed on the original 
values, y, and the model refitted on log(y). If residuals 
from the refitted model are once again skewed, it is 
then recommended to try using a modified logarithmic 
transformation of the form log(y + C), where C is positive 
If the new residuals are negatively skewed, and negative 
otherwise. A polynomial model of the same degree as 
the optima I model for log(y) is then repeatedly fitted, 
with the value of C varied until the highest (i.e. least 
Significant) P-value for the normality test of the residuals 
IS reached. Often a value of C will be found that makes 
the distribution of residuals satisfactorily normal. 

Once acceptable residuals from the mean model have 
been obtained, the rest of the 'mean and SD model' fitting 
procedure is continued as before. However, it is important 
to back-transform the curves once the model has been 
finalized using the antilog (exponential if a natural 
10gamhmK transformation was used), also remembering 
to subtract C for a modified logarithmic transformation. 
While this simple procedure can easily cope with the 
problem of skewed data, Altman and Chitty report that 
very few fetal size measurements require transformation4• 
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GA with any evidence of skew being removed. The fitting 
of a 'mean and SD model' to this transformed data should 
now be relatively more simple. 

The modification of the 'mean and SD model' 
by the addinon of a logarithmic transformation is 
somewhat less common than the unmodified version 
in the fetal size literature. Royston used a modified 
logarithmic transformation in an example concerning 
fetal triglycerides 10. After fitting an initial quadratic mean 
model, positive skew was identified in the residuals. 
A logarithmic transformation was performed on the 
original values and a quadratic mean model fitted on 
log(y). However, this introduced negative skewness, so a 
modified logarithmic transformation was utilized. Wright 
and Royston, in an example regarding fetal abdominal 
circumference, also used a logarithmic transformation 16. 

Mean and SD model using fractional polynomials 

The effect of the logarithmic transformation is 
illustrated here using data on hirth weight in 58940 
neonates as analyzed hy Salomon et a1. 15 • Figure 4, a 
scatterplot of birth weight against GA at hirth, shows a 
marked increase in variability with GA and also suggests a 
slight positive skew to the data at a given GA. [n Figure 5 
the birth weights have undergone a natural logarithmic 
transformation, resulting in a more constant variance over 

Fractional polynomials (FPs), formalized by Royston 
and Altman 17, extend the range of models afiorded by 
conventional polynomials by allowing parameters to also 
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take fractional powers. Whilst a conventional polynomial 
IS of the form 

a + bt + cr- + dt3 + .... 

FPs a re defined as 

where PI, Pz, Pl . ... are chosen from a predetermined 
set, usually taken to ne 1-2, -1, -0.5,0,0.5,1,2,3). 
Here a value of - 1 represents the inverse of 1 and O.S the 
square root of I. By convention the power 0 is defined 
to he log(t). If one or more power(s) in the model is/are 
duplicated then the model will mclude 'repeated powers', 
whereby the second term is multiplied by log(t). As an 
example, an FP of degree 3 witb powers (0, 2, 2) (i.e. 
/'1 = 0, /'2 = 2 and /11 = 2) is of the form 

a + b log(l) + et2 + dr-Iog(t). 

Estimation of the best fitting FP for a given dataset 
involves both a svstematic search for the best power 
or combination ~f powers from the permitted set, 
and estimation of the associated parameter coefficients. 
This selection process includes fitting a model for each 
combination of powers in the permitted set. This means, 
for example, that fitting a fractional polynomial of degree 
2 (i.e. of the form a + htP' + etP') using the standard set 
detailed above would involve fitting a different model for 
each of the 36 permissible combinations of powers. From 
these models the one with the lowest residual standard 

deviation is chosen to be optimal. 
FPs give at least as good a fit to data as a conventional 

polynomial of corresponding degree and often offer a 
better fit than conventional polynomials of higher degree. 
Royston and Wright recommend the use of FPs for 
modeling the mean or SO curve if a quartic or quintic 
polynomial is required for an adequate fit to the data I. 

Over recent years the use of FPs in the construction 
of RIs has become more popular. Kurmanavicius et al. 18 

([eated ranges for BPO, occipitofrontal diameter, head 
Circumference and cephalic index using this method, 
although in each case, bar the cephalic index SD, 
the best fitting fractional polynomial was found to 
be a conventional polynomial. Kurmanavicius et al. 19 

also modeled mean abdominal diameter, abdominal 
circumference and femur length using FPs, with only 
femur length SO taking a fractional model. Size charts for 
fetal bones (radius, ulna, humerus, tibia, fibula, femur and 
foot) were presented by Chitty and Altman after fitting 
FPs, with all but one mean model, though none of the SO 

models, taking fractiona I form 2D • 

AL TERNATIVE METHODS 

BeSides the 'mean and SO model', Wright and Royston 16 

report the other most widely applied statistical approaches 
for estimating GA-specific reference intervals In practice 
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to be those of smoothed crude centiles21 and LMSn-14, 
as detailed below. 

Cencile curves based on direct centile estimates 

For a sufficiently large dataset (several hundred obser­
vations at each week of gestation, acwrding to Altman 
and Chitty4), one intuitive approach is to calculate empir­
ical estimates for each desired centile at a given GA. 
While the curves produced by joining these values will 
be rough, even for large sample sizes, smoother curVes 
can he ohtained by considering 'windows' of GAs instead 
of each GA separately. Here, increasmg window size wIiI 
increase smoothness, though information can easily be 
lost through oversmoothing l6 . 

A more formalized version of this approach, with a 
second stage involving centile smoothing hased on the 
technique of Cleveland25 , IS presented by Healy et a/.ll . 

This approach makes no assumption about the nature 
of the distrihution of measurements at a given GA hut 
takes advantage of the knowledge that both the cemiles 
themselves and the intervals between cemiles at a fixed 
GA should hehave smoothly. 

In the first stage, ohservations arc ordered hy GA and 
the first k, where k usua lIy represents 5-10% of the 
total data, selected. Initial empirical centlle estimates 
at the required values, for example 5%, 10%, 25%, 
50%, 75%, 90% and 9S%, arc calculated from these 
k measurements hy sorting and counting, and then 
plotted against the median GA of the k ohservations. 
This 'window' of k ohservations is then moved on to 
encompass measurements 2 to k + 1, then 3 to k + 2, 
etc., with the same estimation procedure repeated on each 
occasion, until all ohservations have heen included. 

The initial centile estimates will be irregular, so the 
second stage smoothes them to provide more usable centile 
curves. It is first assumed that each centile curve can he 
approximated by a polynomial of degree I', so that yo, the 
smoothed value of the ith centile, is given by 

where t again represents GA. Now consider the 
proportion corresponding to the ith centile (for example 
0.5 for the 50,h centile) and define z, as its NEO, similarly 
to previously. 

The coefficients a for a fixed j are then modeled as a 
polynomial in z" so that 

(4) 

where the degree q, of the polynomial may differ from 
one value of j to another. This restricts the distance 
between centiles and prevents the resulting curves from 
crossing. Combining equations (3) and (4) gives a linear 
model for the centile values which can be fitted by least 
squares regression. It follows that for any observation 
a corresponding Z-score can be calculated hy solVing a 
polynomial equation, though the order of the polynomial 
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may realistically prohihlt this. Goodness of fit should he 
ludged by counting the points falling between adjacent 
centiles. This method was applied by Wright and Royston 
to measurements of fetal abdominal Circumference and 
provided an adequate fit l ". 

LMS 

The LMS method, introduced by Cole2223 and refined by 
Cole and Green24 , provides a general method for fitting 
smooth centile curves to reference data. It utilizes the 
power transformation family of Box and Cox16 to allow 
the skewness of the measurement distrihution, as well 
as the median and variability, to vary with age. These 
three features of the distributIOn arc summarized by the 
parameters A, J.l anJ 0, the initials of which (L, M and 
51 give rise to the name of the method. The original 
form 22 21 necessitated age to be split into groups - an 
arbitrary procedure whereby different groupings would 
produce different centile curves. ThiS subjective stage was 
removed hy Cole and Green24 through the addition of 
a non parametric aspect. Owing to the superiority of the 
later version, only this is detadeJ here. 

As previously asserted, many size measurements follow 
a skewed normal distribution. The use of a suitable power 
transformation, which stretches one tail of the distribution 
and shrinks the other, can remove this skewness and 
'normalize' the data. One such family of transformations, 
proposed by Box and COX26 , is used in the LMS method, 
with the optimal power at a given GA calculated from the 
data to completely remove skewness in the distribution. 
As skewness changes with GA, the calculated power also 

changes. 
Given a vanahle of interest y with median J.l and a power 

transformatIOn so that l (or log(y) if 1.= 0) is normally 
distrihuted, we consider the transformed variable 

x= 
{ 

(y - It)' - 1 
I: 

log (&) 
if A 1= 0 (Sa) 

if A = 0 (5b) 

based on the Box-Cox transformation16 • This transfor­
mation maps the median J.l of y to x = 0 and IS continuous 
at A = O. For A = 1 the 5D of x is the coefficient of vari­
ation (CV) of y, and this remains approximately true for 
all moderate values of 1.24 . The optimal value of A now 
mmimizes the SD of x. 

Denotmg the SD of x (and CV of y) by 0, the Z-score 
(or SD score) of x (and hence y) is given by: 

x 
Z =-

° 

I 
(Y - It)' - 1 

/0.,0 

log G) 
o 

if A 1= 0 (6a) 

if 1.= 0 (6h) 

and IS assumed to take a standard normal distribution. 
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Assume that the Jistrihution of y vanes with GA, t, .1nd 
that A, J.l and ° at t are read off smooth curves Vt), M(t) 
and S(I). Then 

I 
(M7nt" -1 

L(t)S(t) 
Z= 

log 

If Vt) 1= 0 (7a) 

if L(t) = 0 (7h) 

Rearranging equation (7) shows that centile 100" of y at 
t is given hy 

CIOOo(t) = {M(t)[l + L(t)S(t)Z<l)-dn 

M(t) exp(S(t)zu) 
if L(t) 1= 0 (8a) 

if L(t) = 0 (8b) 

where z" is the normal equivalent deviate of size (1. This 
shows that if L, M and S are smooth, then so are the 
centile curves. 

Cole and Green then introduce a penalized likelihood 
function, derived from equation (7), with three integrals 
providing roughness penalties for the curves L(t), M(t) 

and S(t)24. The extent of these penalties, and hence 
the smoothness of the curves, are controlled by three 
smoothing parameters, and these are the only parameters 
requiring specification in order to fit the model. However, 
'equivalent degrees of freedom' (EDFs), calculated for 
each fitted curve as a function of these smoothing 
parameters, give a more usable measure of the extent 
of the smoothing. 

The illustrative examples of Cole and Green24 , although 
not from the field of fetal measurements, show values 
of the L curve falling well below zero. This indicates 
the presence of considerably more skew that a log 
transformation would remove and the extent of variability 
of the L curves with age reinforces the notion that 
transformation using a single power for all ages is 
inappropriate. 

While examples of the application of the LMS method 
for fetal size do not abound, using the same fetal 
abdominal circumference data as Chitty et al. 13 , Wright 
and Royston 16 used this approach to fit centrle curves to 
good effect. 

DISCUSSION 

There are several viable methods available, of varying 
complexity, for constructing age-related Rls and centile 
charts. Ideally, methods should be understandable by 
cliniCians, and the results easy to use, even without 
a statistical computer package. It is desirable that any 
published method should provide the potential user with 
the means of calculating the corresponding Z-score and 
centile for a given measurement. The mere provision 
of a mean model or centile chart, regardless of the 
quality, is not really adequate. Any approach must also be 
sufficiently flexible to be applicable successfully to many 
sets of data. Unfortunately, none of the methods currently 
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availanle fulfills all these criteria, so it IS unlikely that any 
one would be approprIate In ali circumstances. 

In the simplest setting, if it is plausible that the 
observed measurements at each GA do indeed come 
from a pupulation wIth a nurmal distribution and, in 
addItion, the variance across the age range is constant, 
then the use of conventional polynomial regression may 
he ,ustlfied. However, the strict adherence to these 
assumptluns is unlikely, meaning that the model may nut 
produce sufficiently reliable reference intervals. Slightly 
more realistic IS the acknowledgment that variance is 
likcl)' to change over the age range. This feature can be 
Included by fitting the 'mean and SO model' as described 
prevIously, though again the assumption of an underlying 
normal distrihunon is not always tenable. This issue 
can often he dealt with by the addition of a (modified) 
lugarithmIC transfurmation priur to the model fitting to 
correct any skew Idistribution asymmetry). However, this 
approach stili suffers from the well-known lImitations 
of pulynumial curve shapes. This last hurdle can be 
overcome by the relaxation of the restrictions imposed 
on the powers of the polynomIal, allOWIng the use of FPs. 
As FPs give at least as guud a fit to data as a conventional 
polynomIal of corresponding degree, and as the fitting 
of FPs with most basic statistical software is relatively 
straightforward, there seems little reason not to adopt 
them as standard. 

All of these variatiuns on the 'mean and SO model' 
benefit from being relatively conceptually simple and easy 
to use, WIth the necessary technIques available in most 
basIC statistical packages. The resulting centile curves 
and Z-scores can be expressed as explicit formulae, 
meaning that the centile position of any individual is 
easIly obtainable. While the method as described here IS 
adequate fur most fetal measurements, there arc some 
cases that cannot be handled properly by this approach. 
It is important to emphaSIze the strong assumption that 
at t'lch GA the data come from a population with a 
normal distribution. While skewed data may sometimes 
be corrected by a log transformation, this is not always 
successful, with time-varying skewness especially difficult 
to accommodate. Even after transformation, kurtosis (a 
nun-nurmal distribution shape) may remain in the data, 
again in contravention of the assumption. Variables with 
a complex curve shape heyond those available from 
conventIOnal (ur even fractlunal) pulynomials may also 
require alternative techniques. 

Silllerw()od alld Cole 

unless a very haslc model has heen fitted. There IS also 
some vulnerability to outlying values affecting the derived 
centile values. We agree with the conclusion of Altman 
and Chitty that this IS not a suitahle method for the 
derivation of fetal size charts, except when other methods 
are unsuccessful4 • 

The LMS method with penalized likelihood 24 is 
extremely flexihle and widely applicahle 16 . It is usually 
easy to produce convincing centile curves, regardless 
of the complexiry of the curve shape, and time­
varying skewness is easily dealt with. It also has the 
appealing by-pruduct of the L, M and S curves which 
completely summarize the measurement's distribution 
over the age range and facilitate furrher Investigation 
into the underlying structure of the data. Penalized 
likelihood provides an elegant solution for ridding the 
earlier method of its arbitrary ca tegurization. with the 
smoothing of the three curves becoming an integral part of 
the likelihood maximization. Now the only arlmrarincss 
in the procedure is the choice of the three smoothing 
parameters. 

There are, however, some general problems with the 
smoothing approach. Where data arc mure spatse ncar 
the ends of the age range, 'edge effects' (spurious changes 
in the centiles) may be observed, though this can be 
avoided by truncating the data at each end. One major 
drawback of non-parametric estimators is the lack of a 
succinct formula with which to estimate further centile 
values. This means that centiles may only be displayed 
graphically or in tahular form. Finally, the assumption 
of normality following the Box-Cox transformatiun may 
be vlOlated by the presence of kurtosis, for which the 
transformation does not adjust, 

A more recently proposed generalization of the 
LMS approach, the LMSP method uf Rigby and 
Stasinopoulos27, uses the Box-Cox power exponential 
(BCPE) distribution to try to overcome the issue of 
kurtosis. A fourth parameter is introduced in the power 
transformation in order to account fur the observed 
kurtosis in the distribution, and centile estimation 
proceeds in a manner not dissimilar to that of the 
conventional LMS method. 

While for the first-time user application of the LMS 
method may appear a daunting task, the advent of 
speCIally designed programs such as the LMSChartmaker 
of Cole and Panu , as well as packages for the widely 
used general statistical programs, mean that with brief 
instruction thIS need not be the case. The method of producing centile curves based on 

empIrical centile estimates as described by Healy et al. 
makes no assumption anout the nature of the distribution 
of measurements at a fixed GA. which is an appealing 
feature21 . This approach provides a flexible way of 
constructIng centile curves that is capahle of handling 
manv patterns uf growth due to the lack of a pre-specified 
functional form. However, there are some drawbacks. 
Experience is needed to find the nest ways of choosing the 
values of the adjustable parameters involved. and clearly 
there is some degree of subjectivity here. The estimation 
of the centile values of further observations is not simple 

Wright and Royston advise that a 'simple formula' to 
allow estimation of centile position for an individual is 
extremely valuable l6 . If, when considering the statistical 
approach to follow in light of requirements specific to 
the data under analysis, this requirement is deemed to 
be essential, then this would exclude both the LMS 
method and any approach based on empirical centile 
estimates. Of the methods examined here, this leaves only 
the parametric approach of the 'mean and SO model'. So 
the choice of approach is rcally reduced to the trade-off 
between the simplicity, usability and accessibility of the 
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mferlor model provided oy the parametric approach, and 
the superior but less user-friendly model provided by the 
LMS method. 
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