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Chapter 1

Introduction

Many observational epidemiological studies are concerned with estimating the causal
effect of a treatment or exposure, hereafter referred to as the treatment. In addi-
tion to substantial philosophical controversy surrounding the subject of causality [-11]
there are also considerable methodological difficulties in estimating causal treatment
eflects from observational data. In a randomised study, the randomisation leads us to
expect, on average, that the treatment groups are comparable in all characteristics af-
fecting the outcome other than treatment status. This comparability allows unbiased
estimation of the causal treatment effect [37]. Conversely, in observational studies
there are usually systematic differences in the characteristics of subjects between
treatment groups. If these characteristics are related to the outcome then estimates

of the causal treatment effect will be biased — a problem which epidemiologists refer

to as confounding [110].

Despite the difhiculties associated with estimating causal treatment effects in the pres-
ence of confounding, observational studies continue to be used to investigate causal
epidemiological questions. This is because randomised trials are often unfeasible, due
to, for example, ethical, financial or practical reasons [10|. In these situations, we
must rely on observational studies to estimate the causal eflect of a treatment. It is

therefore important to be able to tackle causal questions in the presence of confound-

Ing.

Methods of dealing with confounding in observational studies can be split. rather
crudely, into two categories — design-based and model-based. The design-based
methods attempt to define classes of subjects within which subjects in difterent treat-
ment groups are comparable in all characteristics affecting the outcome other than
treatment status. Each class of subjects then mimics a randomised study, allowing

unbiased estimation of the causal treatment effect within that class. These methods
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crucially rely on our ability to define such classes. The model-based methods, on the
other hand, posit some causal relationship between treatment status, subject char-
acteristics and the outcome, and use this structure to estimate the causal treatment

effect. These methods produce unbiased estimates of causal treatment effects only

when the model is sufficiently true to life.

We now consider some types of design-based methods for dealing with confounding.
A method popular with epidemiologists is stratification on the observed confounding
variables, which includes standardization (25| and the Mantel-Haenszel methods [62].
Matching on the observed confounding variables is also a popular method [68|. The
matched pairs or strata, however, will only mimic a randomised study, in terms of
comparability of treatment groups within each matched pair or strata, when it is
possible to stratity exactly by each confounding variable. When the number of con-
founding variables is large this becomes unfeasible. As a solution to this problem,
propensity scores methods were proposed (84|. Provided that all confounding variables
are observed, stratifying or matching on the propensity score can produce unbiased
estimates of causal treatment effects. This, since the propensity score is a scalar vari-
able, is much easier than stratifying or matching simultaneously on many variables.
All these methods, however, share one important disadvantage: they cannot adjust
for confounding by unobserved variables. In order to overcome this problem, instru-
mental variables methods can be applied [64]. If a suitable ‘instrument’ can be found
— a variable that is correlated with treatment status but independent of all con-
founding variables — then both observed and unobserved confounding variables are

dealt with. However, it has been noted that it is often difficult to find an instrument

in epidemiological studies when the confounding is severe [64].

We briefly mention some model-based methods for dealing with confounding. In epi-
demiology, the most popular methods of this type are maximum likelihood regression
models [52]. It has been shown, however, that if the mathematical assumptions im-
plicit in these models are violated, regression can produce biased estimates of causal

treatment effects [88]. Structural equation models attempt to move beyond mod-

elling merely the association between treatment status, subject characteristics and
the outcome, by proposing a model for the within-subject causal relationship be-
tween treatment and outcome, specifying the way in which confounding variables
interrelate [31]. Again, the results are crucially dependent on the structural assump-

tions made. Directed acyclic graph (DAG) methods can alleviate this problem by



making the causal assumptions explicit, and can be used to check whether the ob-
served variables are sufficient and appropriate to control for [73]. However, DAGs do

not provide a means of testing the causal assumptions made.

Of all these methods for dealing with confounding in observational studies, this the-
sis focuses on propensity score methods. The reason for this choice is that since a
landmark paper introducing propensity scores in 1983 [84], their use in epidemiolog-
ical applications has increased greatly each year [102]. As we will see, however, it is
not clear how well propensity score methods perform in comparison with maximum
likelihood regression models, nor is there much guidance about which of the various
propensity score methods should be used. In this thesis, we focus on the method of
stratification on the propensity score. In particular, we consider the issue of making
inferences from the resulting estimator, which we call the stratified treatment eflect
estimator. The first aim of this thesis, therefore, is to ascertain the large-sample
properties of the stratified treatment effect estimator from a frequentist perspective
— consistency, the asymptotic sampling distribution, and the asymptotic varance.
The second aim is to investigate methods of constructing confidence intervals for the
stratified treatment effect estimator. These aims have a two-fold purpose: to facili-
tate the practical application of stratification on the propensity score, and to add to
the growing methodological literature about propensity score methods in order that

fair comparisons can be made between different propensity score methods and the

standard regression models.

The use of propensity score methods is motivated through a randomisation argument
in Chapter 2, where we show that unbiased estimates of causal treatment effects can
be obtained when confounding is present by adjusting for the Iﬁropensity score. \We
then describe four main propensity score methods in detail and apply them to an
artificial dataset. We review published comparisons of the various propensity score

methods, and attempt to draw links between them in order to more clearly understand

the relative merits of each.

In Chapter 3 we derive the large-sample properties of the stratified treatment effect

estimator. In particular, we ascertain conditions under which it is consistent and

asymptotically normally distributed. We calculate its asymptotic variance, assuming

that the propensity score is: (i) a known function of the observed covariates, and

(ii) estimated using a correctly specified logistic regression model. These variances
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are denoted by Vk[Bs] and VE[BS |, respectively, and are expressed in terms of four
variance components of which only the first has previously been derived. We then

discuss the source of error measured by each of these components.

We begin Chapter 4 by calculating the variance of the stratified treatment effect
estimator conditional on treatment status and the observed covariates. Assuming
that the propensity score is a known function of the observed covariates. we then
marginalise this conditional variance over the distribution of the treatment and ob-
served covariates, using first-order approximations, obtaining the variance calculated
previously, Vi[3*]. In this way, we see that Vi[3°] and V,.[3°] are asymptotic

marginal variances of the stratified treatment effect estimator.

In Chapter 5 we calculate the four variance components contained in Vi[3°] and
VB[BS] for a simple hypothetical dataset. We vary the example parameters one at

a time in order to see if the change in the four variance components accords with
our intuition gained through a discussion of the mathematical meaning of these four
variance components. We then proceed to investigate the convergence rate of the
two variance formulee, by comparing the calculated values of V| BS] and V,| ﬁs] with

empirical estimates of the same variances, obtained using various sample sizes.

In Chapter 6 we consider the estimation of the variances V| BS] and VE[BS] from a

sample dataset. We use kernel density estimation methods to estimate these variances.

We then use these variance estimators to construct confidence intervals for a simulated

dataset.

In Chapter 7, we apply the methods developed in this thesis to an observational
subset of data obtained from a randomised controlled trial of an exercise program

aimed at alleviating knee pain in the elderly. We use this dataset to investigate the

effect of a non-randomised exposure that was observed during the trial.

We end, in Chapter 8, by summarizing and discussing our results. Practical guidance
for epidemiologists arising from the work in this thesis and suggestions about when
the methods developed here should be used are given. Potential extensions of this

work and other promising avenues of research in this area are also discussed.



Chapter 2

Review of propensity score methods

In order to place the current research in context, we begin by reviewing the propensity
score literature. We first explain the theoretical justification for the use of propen-
sity score methods to estimate causal eftfects in the presence of confounding. We then
describe four propensity score methods: stratification on the prepensity score, match-
ing on the propensity score, covariate adjustment including the propensity score, and
weighting by the inverse of the propensity score. The advantages and disadvantages
of each method are briefly discussed and the extent of their use is reviewed, with

particular emphasis on epidemiological applications.

2.1 The use of propensity score methods to estimate causal effects

We begin by setting the scene. As usual in a frequentist setting, we assume repeated-
sampling from a near-infinite ! population indexed by fixed but unknown parameters.
We first consider a simple scenario, where the outcome, Y, is continuous and depends
on a binary treatment 2, Z, and a set of covariates, X = (X3, ..., X;m). We wish to
estimate the causal effect of the treatment, Z, on the outcome, Y, from a sample of

data, {Y;, Z;, X;} for ¢ = 1,...,n, drawn independently from the population.

In order to clearly define the ‘causal effect of the treatment’, we introduce the potential
outcomes framework, whose formalization is often attributed to Rubin [41], where,
for a particular subject, Y; denotes the outcome we would have seen had that subject
been treated (Z = 1) and Y, denotes the outcome we would have seen had that

subject not been treated (Z = 0). The observed outcome, Y, can be written as

Y=Y12+Y0(1—Z).

lWe will usually be dealing with finite populations but we assume that these are so large that

the correction is negligible.
2In observational epidemiological studies this will often be an exposure rather than a trecatment.
However, we refer to a ‘treatment’ throughout for consistency and brevity.



2.1 The use of propensity score methods to estimate causal effects ¥

We now define the causal treatment eflect using the potential outcomes notation.
For a particular subject, any causal quantity can be described as a contrast between
the two potential outcomes, Y] and Y;. In particular, we define the causal treatment
effect for an individual as Y; — Y}, the difference between the two outcomes thev could
potentially have experienced. We are interested in the average causal treatment effect

across the whole population. We call this the population average causal treatment
effect, denoted by 3, where,

Bo=E[Y1] -E[Ys]. (2.1)

Although we focus on the estimation of 3,, we sometimes discuss another causal

treatment effect — the population average causal treatment effect on the treated. We

denote this by B¢ where,
B:=EY1|Z=1]-E[Ys|Z =1] (2.2)

The two estimands 3¢ and (3, will be different when the causal treatment eftect tor
individual subjects, Y; —Yj, depends on covariates related to treatment status. Which
of these estimands we wish to estimate will depend on the question we wish to answer.
For example, if we wanted to evaluate the efficacy of a flu vaccine, we would probably
be interested in the effect it had on the weak and elderly — those who usually receive
it. We would be less interested in estimates of the effect of vaccinating the whole
population of Britain. In this case, 8% would be a more appropriate estimand than
B.. Conversely, suppose we were interested in estimating the effect of compulsory
school meals on the obesity levels of British schoolchildren. In this case, we would
want to know the effect of these healthier meals on the whole 'school population of
Britain, rather than on the sub-population of children who are already likely to eat
a healthy diet. The appropriate estimand here would be (,. Although both 3, and
Bt are discussed later in this chapter, we tocus primarily on the estimation of [,.

Before considering particular methods of using the propensity score to estimate [o,

two standard assumptions are made.

Assumption 2.1 The potential outcomes, covariates and treatment. (Ys, Y1.X, Z),
are independently and identically distributed for each subject. Specifically, the distri-
bution of the potential outcomes for one subject is independent of the treatment statis

of another subject, given the observed covariates.
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The second half of Assumption 2.1 has been called the Stable Unit Treatment Value
Assumption (SUTVA) [90|. A nice example of a violation of SUTVA is given by Little
and Rubin [57], which is as follows. Suppose you and I are in the same room, both
with headaches. Your taking aspirin will affect the state of my headache whether or
not I take aspirin since if you don’t take aspirin, your whinging will counteract any

alleviating effect of my aspirin!

Assumption 2.2 Treatment assignment and the potential outcomes are conditionally
independent, given the observed covariates, X. Mathematically, { Z L (Yo, Y1) }| X,

where L is used to denote conditional independence [21].

This assumption is frequently termed strongly ignorable treatment assignment (given
the observed covariates) [84|. It has also been called selection on observables [36].
and merely states that there are no unobserved confounders. In a randomised study,
we can expect this to be true even when no covariates are observed. In observational
studies, since there is no statistical test of this assumption we must use our knowledge

of the problem and the data collected in order to judge how plausible it is that all

confounders have been observed.

We now consider how, under Assumption 2.1, propensity score methods use Assump-

tion 2.2 to estimate causal treatment effects from a sample of data when confounding

1S present.

2.1.1 Adjusting for confounding using the observed covariates

We seek to estimate the population average causal treatment effect, 3,, from a sample

of data. A naive way to estimate this would be to take the difference in mean outcomes

of treated and untreated sampled subjects. This estimates
E[Yi|Z=1]-E[Ys|Z=0] (2.3)

In the absence of confounding, on average the treated and untreated groups are com-
parable in terms of all characteristics that affect the outcome, other than treatment
status. Then E[Y;|Z = 1] = E[Y1] and E[Y|Z = 0] = E{Y,]. Therefore, it
there is no confounding, as in a randomised study, the difference in mean outcomes

of treated and untreated sampled subjects is an unbiased estimate of [,.
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In observational epidemiological data, confounding is invariably present. In this case,

(2.3) is not equal to 3,, so the difference in mean outcomes of treated and untreated

ey - g &

sampled subjects is a biased estimate of (3,. If, however, as in Assumption 2.2
treatment 1s strongly ignorable given the observed covariates, then of those sampled
subjects whose covariate values are X = X, on average the treated and untreated

groups are comparable 1n terms of all characteristics that affect the outcome, other

than treatment status. Therefore, the difference in mean outcomes of treated and

untreated sampled subjects whose observed covariate values are X = x estimates
EVi1|2=1,X=x]|-E|Y%|Z2=0,X=x] = E[Y]; Y| X =x].

In this way, an unbiased estimate of treatment effect can be obtained at each observed
value of the covariates. It follows that an unbiased estimate of .3, can be obtained by

averaging these estimates over the distribution of the observed covariates, since
Bo = E[YI] _E[YO] = EX[E[Yl -"Y()IX IX”

An analogous argument is now used to justify the use of propensity score methods to

estimate causal treatment effects when confounding is present.

2.1.2 Adjusting for confounding using the propensity score

The propensity score was popularized by Rosenbaum and Rubin [84] and is defined
as the conditional probability of receiving treatment given the observed covariates,

which we write as p(X) = P(Z = 1|X). This score is assumed to be bounded
away from zero and one, so each subject has a non-zero probability of being in ei-
ther treatment group. Rosenbaum and Rubin showed that the propensity score is a
‘balancing score’ — in other words, that at any value of the propensity score, the
population covariate distributions of treated and untreated subjects are the same, so
that { X L Z}|p(X). The key idea, for causal inference, is that if treatment assign-
ment is strongly ignorable given the observed covariates, then this balancing property

of the propensity score implies that treatment assignment 1s strongly ignorable given

the propensity score [84]. Mathematically.
{Z L (Yo,h)}HX = {Z L (Yo,h) }p(X).

If treatment is strongly ignorable given the propensity score, then of those sampled

subjects whose propensity score value is p(X) = p, on average the treated and un-
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treated groups are comparable in terms of all characteristics that affect outcome.
other than treatment status. So if Assumption 2.2 is satished. we have a pseudo-
randomised study at each value of the propensity score. Then the difference in mean
outcomes of treated and untreated sampled subjects who have a propensity score of

p(X) = p estimates
E[V1|Z=1,p(X)=p]-E[Y|Z2=0,p(X)=p] = E[Y1 -Y|p(X) =p]

In this way, an unbiased estimate of the treatment effect at each value of the propen-
sity score can be obtained by taking the difference in mean outcomes of treated and
untreated sampled subjects who have that value of the propensity score. It follows
that an unbiased estimate of 3, can be obtained by averaging these estimates over

the distribution of the propensity score, since
Bo = E[Y1]-E[Yy] = Eyx)[E[Y1 - Yo|p(X) =p]]

This randomisation-based argument justifies the use of propensity scores to estimate

causal treatment effects.

It is important to note that although we have described propensity score methods as
an attempt to recreate a randomised situation, there are two important differences

between randomised trials and propensity score methods. The first concerns Assump-

tion 2.2. Randomised trials will give an unbiased estimate of treatment eflect even
when no confounders are observed. Propensity score methods can only give unbiased
estimates of treatment effect when all confounders are observed. The second difter-
ence is the ‘large-sample’ aspect of propensity score methods [114]. In a randomised
study, although randomisation leads us to expect the treated ahd untreated groups
to be comparable in terms of all characteristics that affect the outcome, other than
treatment status, there may be imbalance due to ‘bad luck’. A large sample size de-
creases the chance of extreme imbalance. In the same way, under Assumption 2.2, we
expect the treated and untreated groups to be comparable in terms of all characteris-
tics that affect outcome, other than treatment status, at each value of the propensity
score. A large sample size at each value of the propensity score decreases the chance
of large imbalance. Zhao likens this to having a mini randomised study at each value

of the propensity score, with the quality of the overall estimate of causal treatment

effect depending on the quality of each of these mini randomised studies [114].
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Estimating the propensity score

The argument above shows that unbiased estimates of causal treatment effects can be
obtained by adjusting for the propensity score. Of course, in practice the propensity
score is invariably unknown and must be estimated from the data. Rosenbaum and
Rubin suggest estimating the propensity score from a discriminant analvsis or logistic
regression model [84]. The former assumes that the observed covariates follow a
multivariate normal distribution whereas the latter assumes they follow one of a
large number of exponential family distributions. Non-parametric estimators of the
propensity score have also been proposed [40|. In epidemiological applications, the

propensity score is typically estimated using a logistic regression model [111].

Since the implications of the estimation of the propensity score, in terms of the
bias and variance of the treatment effect estimator, depend to some extent on which
propensity score method is used, a discussion of these implications is left until the

various propensity score methods have been described (Section 2.3.2).

2.1.3 Comparison of randomisation and propensity score methods

From the preceding discussion we know that in theory, if all confounders are observed,
propensity score methods can produce unbiased estimates of causal treatment eftects.
The relevant question now, therefore, is whether or not they do so in real-life applica-

tions. We attempt to address this question by comparing treatment eftect estimates

from propensity score analyses with those from randomised trials since, as we have

seen, randomisation of treatment leads us to expect an unbiased estimate of treatment

eftect.

In practice, randomised trials may not completely eliminate bias due to problems

such as non-compliance, exclusion after randomisation and unblinding. Furthermore,
due to the inclusion criteria used in a trial, the treatment effect being estimated
by a randomised trial may not be the same as the treatment effect being estimated
by an observational study. Thus, a difference in treatment effect estimates between

randomised data and propensity score methods may not indicate that one is ‘wrong .

Despite these issues, well conducted randomised studies are often considered the
‘gold standard’ method of obtaining unbiased estimates of causal treatment effects.
Therefore, bearing in mind the above discussion, we now review studies that compare

estimates of treatment effect from randomised and observational data, where the

latter is analvsed using propensity score methods.
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In labour economics, estimates of the causal effect of a particular manpower training
program obtained from both randomised and observational data, where the latter
was analysed using a structural equations approach, were found to differ greatly [56]
26|, sparking a debate on the worth of observational evidence, and leading some
to conclude that randomised studies are the only reliable method of evaluation for
such programs |5|. Propensity score methods appeared to solve the problem when
an analysis of a subset of one of these observational datasets, using carefully applied
propensity score methods, produced similar results to the randomised studyv [23].
although doubt was cast on this finding when a re-analysis of the whole dataset
using propensity score methods gave dissimilar estimates to the randomised studyv
98]. The authors of the first propensity score analysis argue that since subjects were
excluded on the basis of lack of information with which to properly estimate the
propensity score this disparity in causal estimates is to be expected [22|. Further
work comparing randomised and observational estimates of causal eflects suggests
that propensity score methods tend to eliminate biases that are larger than average

although they cannot be relied on to consistently produce unbiased estimates of causal

effects |2, 67].

Returning to the epidemiological literature, we find a similar debate about the relative
merits of observational and randomised studies [9, 15, 48, 54, 66, 75]. Two studies
have addressed this issue by comparing results from a propensity score analysis of
observational data with randomised evidence concerning the same clinical question.
The first of these studies estimated the effects of statins in reducing all-cause mortality
after acute myocardial infarction, using a clinical dataset, producing eftect estimates
that were comparable with randomised evidence [4]. The second investigated the
causal relationship between tissue plasminogen activator on the all-cause mortality
of ischemic stroke patients, using observational data from a German stroke registry
55]. Several propensity score methods were applied to the dataset. producing a
wide range of estimates of causal treatment eftects, contrasting markedly with the
randomised evidence of no effect. After restricting the sample to subjects with a
non-negligible chance of receiving the treatment — an estimated propensity score of
more than 0.05 — the estimates of effect from all propensity score methods became
comparable with the randomised evidence. In this sub-sample of the dataset, subjects
were younger and healthier and therefore more similar to subjects who were included
in the randomised study. This suggests that the disparity in causal eftect estimates

obtained from randomised and observational data may be, to some extent, due to
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the lack of comparability in baseline characteristics of subjects included in the two
types of study. In order to test this hypothesis, Tannen ‘simulated a particular
randomised trial by selecting subjects from an observational dataset who satished the
trial’s inclusion criteria, were observed during the same time-frame, and who tollowed
a similar treatment regimen [106]. He found that this observational sub-sample,

when analysed by propensity score methods, gave estimates of causal treatment eftect

comparable with those obtained from the randomised trial.

Taking all the evidence into account, we conclude that a carefully conducted propen-
sity score analysis, performed on a rich and accurate observational dataset, can pro-
duce estimates of causal treatment effects with small enough bias to be practically
useful in real-life applications. With this conclusion, we proceed to look at four spe-
cific methods of using the propensity score to estimate causal treatment effects in the

presence of confounding.

2.2 Methods of analysis using the propensity score

We now describe four particular propensity score methods in detail: stratification
on the propensity score, matching on the propensity score, covariate adjustment 1n-
cluding the propensity score, and weighting by the inverse of the propensity score.
The treatment effect estimator obtained from each method is given for the simple
scenario set up in Section 2.1, and applied to an artificial example dataset, which

will be introduced shortly. We consider the bias and variance of each estimator and

discuss proposed methods of reducing both.

As before, the population average causal treatment eftect and the population aver-
age causal treatment effect on the treated are denoted by G, and (%, respectively.
The treatment effect estimators obtained from the four propensity score methods
are denoted by BS, 3™, BC and 3*, where the hat denotes an estimator and the su-
perscripts refer to ‘stratification’, ‘matching’, ‘covariate adjustment’ and ‘weighting’
respectively. The asymptotic expectation of these estimators — the ‘true’, or popu-
lation values, of the estimators — are denoted by 82, BT, B¢, BY, where the subscript

of ‘o’ denotes a fixed population parameter and, as before, the superscripts refer to

the analysis method used.
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2.2.1 A hypothetical dataset

In order to see more clearly the different approaches taken by the four propensity
score methods we apply each of them to an artificial example dataset, which we now
describe. Suppose the minister for education wished to know whether compulsory
after-school homework clubs would increase the educational achievement of British
schoolchildren. In order to investigate this question the minister might collect a sam-
ple of data from a school that already runs an after-school homework club, observing a
measure of educational achievement and any characteristics of the children that might
impact on both their educational achievement and their attendance at the homework
club. For simplicity, we assume that the only such characteristic is gender. Figure
2.1 shows an artificial dataset containing information on a sample of 20 children, 1n-
dependently selected from a particular school. The treatment — attendance at the
homework club — is binary. The outcome is a measure of educational achievement
and takes values of 1, 2 or 3. The only observed covariate, gender, is represented by
ficures wearing skirts and trousers, denoting girls and boys, respectively. We assume
that there is no sampling variability and so this sample exactly represents the whole
population. We also assume that the outcome contains no error and so gender and

treatment status exactly determine the outcome value. The effect of relaxing these

assumptions will be discussed in the following section.

In order to apply any of the four propensity score methods, we must make Assump-
tions 2.1 and 2.2 3. The first of these assumptions implies that the attendance of one
child at the homework club will not change the effect that attendance has for another
child. It is easy to think of possible violations of this assumptién. For example, if a
particularly badly-behaved child went to the club, he or she might disrupt everyone
else and thus the educational benefit of attending the homework club would be re-
duced for all the other children there. The second assumption is that there are no
unobserved confounders. A potential violation of this assumption is the unobserved
socio-economic status of the children, since children with lower socio-economic status
may be less likely to participate in after-school activities, and may also be likely to

have lower educational achievement. However, at present we assume that this is not

the case and that Assumptions 2.1 and 2.2 are satisfied.

3Note that these assumptions must also be made when a standard regression analysis is perfornicd.
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Figure 2.1: An artificial observational dataset, where each figure represents a boy or
girl. Euch child’s outcome is writien below their figure.
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The causal treatment eftects

Attendance at the homework club increases a boy’s outcome by two points, and
increases a girl’s outcome by one point. We have assumed that there is no sampling
variability and therefore the fraction of girls in the whole population is the same as

the fraction of girls in the sample, which is 60%. Then the true population average

causal treatment effect is

B, = 04x2 + 06x1 = 14.

We also assume that the fraction of treated subjects in the whole population who are
girls is the same as the fraction of treated subjects in the sample who are girls. Thus
we assume that 75% of British schoolchildren who attend an after-school homework
club are female. Then the population average causal treatment effect on the treated
1S

Bt = 025x2 + 0.75x1 = 1.25.

o

Since girls are more likely than boys to attend the homework club, and attendance at
the homework club has less effect on girls, the population average causal treatment

effect on the treated, 3¢, is smaller than the population average causal effect for the

whole population, [,.

The estimated propensity score

Since there are both treated and untreated subjects at each combination of covariate

values it is unnecessary to fit a model to estimate the propensity score. For each
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combination of covariate values we estimate the propensity score by the fraction of

subjects who are treated, giving

P(Treated | girl) = 1/2
P(Treated | boy) = 1/4.

Note that under the assumption of no sampling variability this estimated propensity

score 1s equal to the true propensity score.

2.2.2 Stratification on the propensity score

The use of stratification (or subclassification) on the observed covariates has a long
history in epidemiology {14|. Since stratification involves direct comparison of treated
and untreated groups that are thought to be comparable within each stratum, it 1s
both understandable and convincing for non-technical audiences (84|. Assumptions
about the mathematical form of the outcome, and how it depends on the covariates.
are not needed. When there are many covariates, however, a large number of strata
must be formed in order to create strata within which all observed covariates are the
same, often producing strata where all subjects have the same treatment status and
so preventing the necessary within-stratum comparisons. When stratifying on the

propensity score, since it is a scalar quantity, this problem 1is less likely to occur.

The arguments given in Section 2.1 show that exact adjustment for the propensity
score can produce unbiased estimates of causal treatment effects. T'he propensity

score, however, is often a continuous variable, in which case it is unfeasible to create
strata that are exactly homogenous in the propensity score. Zhao suggests making

the following assumption [114],

Assumption 2.3 Subjects with similar propensity scores have similar covariate d1s-
tributions. Mathematically, if we let P(A|B) refer to the conditional probability of

event A given event B, for two metrics d and a’, and two propensity scores, p; and

p;, this assumption can be staled as follows. Given § > 0, there 1s an € > 0 such that
d(pi,pj)<e = d(PX=z|pX)=m), P(X =z|p(X)= p;)) < 6. (2.4)

This assumption leads us towards creating strata that are only approximately ho-

mogenous in the propensity score.
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The stratified treatment effect estimator

A natural way to estimate the treatment effect would be to: (i) estimate the propen-
sity score, (ii) split the sample into K groups using quantiles of the estimated propen-
sity score, (iii) estimate the within-stratum treatment effects by taking the difference
In mean outcome between the treated and untreated subjects in each stratum. (iv)
calculate the weighted average of the within-stratum treatment effect estimates. where

the weight for a particular stratum is equal to the fraction of the sample within that

stratum.

Suppose we split the sample into K strata using quantiles of the estimated propensity
score, where the s'" stratum contains a fraction r, of the sample, and we let S =
(51, ..., Sk ) be a set of stratum indicators, where S;; is equal to one if subject 7 1s in
strata s and zero otherwise, for subjects i = 1,...,n, and strata s = 1,..., K. The

stratified treatment effect estimator, BS, can be written as

Application to the example dataset

We have already estimated the propensity score, finding that girls have an estimated
propensity score of 1/2 and boys have an estimated propensity score of 1/1. Fol-
lowing the procedure outlined above, we would create two strata — one for each
value of the propensity score. The two strata are shown in Figure 2.2. Given these
strata, the next step is to estimate the two within-stratum treatment eftects. The
difference in mean outcomes of treated and untreated boys is 2, and the difference in
mean outcomes of treated and untreated girls is 1. We then calculate the weighted
average of these within-stratum treatment effects. There are 12 girls in a sample of
20 children so we weight the girls’ treatment effect by 12/20 and the boys’ treatment
effect by 8/20. The stratified estimate of the effect of attendance at the homework

club on educational achievement is then,

A 8 12
= — 2 — x1=1.4.
b =20%“" 20

Comparing this estimate with the ‘true’ value of 3, we see that we have correctly

estimated the population average causal treatment eftect.
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Figure 2.2: The stratified analysis of the dataset shown in F wgure 2.1. In this erample.
stratifying on the eslimaled propensity score is equiralent to stratifying on gender.
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The bias and variance of the stratified estimator
The asymptotic expectation of 3°, taken over our near-infinite population with all

parameters fixed at their true values, is

K
)BS:'ZTS {E[YIZZI, Sso:__l]"E[Y'ZZOa Ssozl]}:

O
s=1

where now the stratum indicators, S,,, rather than reterring to membership of the
sample strata, refer to membership of the ‘true’ strata, i.e. the strata that are formed
by splitting the population distribution of the propensity score into K groups, with
the st" stratum containing a fraction ry of the whole population, for strata s =
1,..., K. Comparing 35 with 8, — the parameter we wish to estimate — we see that
stratification on the propensity score will only produce a consistent estimator of the

population average causal treatment effect if, for strata s = 1, K,

E[Yl l Sso — ]a
ElYy|Sso=1] (2.5)

E{Y|Z =1, Sp=1]
E[Y|Z =0, Ss =1]

|

We will have (2.5) if the covariate distributions within each population stratum are
the same in the treated and untreated groups. In other words, the treatment must
be strongly ignorable given the strata, so we must have { Z L (Yp.Y7) }|S, in which
case (3% is equal to the population average causal treatment eftect, §,. When the
propensity score is discrete we can create strata within which the propensity score is

exactly homogenous, as in the artificial example, and so (2.5) is true. It is also true
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when, for example, all the covariates associated with both treatment and outcome
are constant within each stratum but other variables associated only with treatment
are not constant within the stratum. In this situation, the strata would not be
homogenous in the propensity score but stratification on the propensity score would
still produce a consistent estimator of the population average causal treatment eftect.
Of course, this is not a common scenario, so we need to consider the case where
treatment is not strongly ignorable given the strata. Then appealing to Assumption

2.3 we have, for strata s=1,..., K,
E[Y1|Z: ]‘1 SSO] —E[Y()IZ:O, SSO] :J"IE[YI _YO‘Sso]a

and so
,83 ~ ]Es[E[Yl—Y()‘SH 5)80-

O

Therefore, by stratifying inexactly on the propensity score, we obtain a consistent
estimator of the population parameter 33, which is not exactly equal to the population
average causal treatment effect, §,. However, the similarity of the propensity score

within strata leads us to expect the two population estimands to be similar to one

another.

Cochran shows that stratification at the quintiles of a single covariate will typically
remove 90% of the bias due to that covariate when the covariate follows a number of
common distributions [14], a result that has been extended to the case of stratification
at the quintiles of the propensity score [85]. Cox discusses the problem of grouping
data into k groups on a continuous variable, and shows that equal-sized groups are
rarely optimal [16]. Equal sized strata are recommended for examples where the
distribution of the stratification variable is rectangular. We will see later that the
distribution of the propensity score is not usually rectangular. However, in practical
applications of stratification on the propensity score, 5 equal-sized strata are typically
used. We therefore adopt this choice of strata and ignore the problem of choosing the

strata boundaries in the remainder of this work, although the results derived can be

applied to any choice of strata boundaries.

In order to reduce the bias due to residual confounding within strata, Hullsiek and
Louis compared two different methods of choosing the boundaries of the strata using
simulation: choosing strata that balance the number of subjects and choosing strata

that balance the inverse variance of the stratum-specific estimates of treatment effect
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144]. The latter method was found to be superior in terms of bias. An alternative
approach to reducing the bias of the stratified estimator is to fit a regression model

within each strata, including important predictors of outcome [59].

Although it has been suggested that bootstrapping should be used to estimate the
standard error of the stratified treatment effect estimator {107], standard practice is

to ignore the estimation of the propensity score and use an average within-stratum

variance [59].

2.2.8 Matching on the propensity score

Matching on the observed covariates is an intuitive and transparent method of ad-
justing for confounding [115], which, like stratification, needs no assumptions about
the mathematical form of the outcome, or its relationship with the covariates. \When
the observed covariate information is high-dimensional, however, finding matches for
treated subjects is often impossible. Since the propensity score is a scalar variable,

the problem of finding appropriate matches is greatly reduced.

The arguments given in Section 2.1 show that exact adjustment tor the propensity
score can produce unbiased estimates of causal treatment effects. When continu-
ous covariates are included in the estimation of the propensity score, however, exact
matching on the propensity score may be impossible. Assumption 2.3 provides justifi-

cation for inexact matching, although this will introduce some bias into the estimator.

The matched treatment effect estimator

In order to estimate a causal treatment effect using matching on the propensity score
we might: (i) estimate the propensity score, (ii) for each treated subject, select a
single control subject who has the same, or almost the same, value of the estimated
propensity score, (iii) estimate the within-pair treatment effect by taking the dif-

ference in the two outcomes, (iv) calculate the average within-pair treatment eftect

estimate.

Suppose we manage to find appropriate matches for .V of the treated subjects, and
we let M = (M, ..., My) be a set of matched-pair indicators where A.,; 1s equal to

one if subject 7 belongs to matched pair m and zero otherwise, for subjectst = 1,....n
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Figure 2.3: The matched analysis of the dataset shown in Figure 2.1. In this ¢ rample.
malching on the estimated propensity score is equivalent to matching on gendcr.
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and m = 1,.., N. Then the matched treatment effect estimator is 3”‘, where

N n
Bm — _]]\.7 Z Z{}/z Zi My — Y, (1 o Zz) A'[-rm'}-

m=1 1=1

Application to the example dataset

We have already estimated the propensity score for the artificial example given 1n
Figure 2.1, finding that the girls have an estimated propensity score of 1/2 and the
boys have an estimated propensity score of 1/4. Given this estimated propensity score
we match each of the two treated boys to an untreated boy, and match each of the
six treated girls to an untreated girl, giving the matched pairs shown in Figure 2.3.
The two matched pairs of boys have a within-pair treatment effect of 2, and the
six matched pairs of girls have a within-pair treatment eftect of 1. Averaging these
within-pair treatment effects across the eight pairs gives the matched estimate of the

effect of attendance at the homework club on educational achievement,

Fat

M =-(2x2 4+ 6x1)=1205

1
8
Comparing this with the ‘true’ population average causal treatment effects, 3, and G5,

we see that we have correctly estimated the population average causal treatment ettect

on the treated. In this example, since the individual-level treatment effect depends

on the propensity score, 3, and (3 are different.
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In this analysis, from a sample of 20 children, only 16 (80%) were used. Since this is
an artificial situation with no error in the outcome, discarding some of the data does
not change the estimate. In more realistic applications there is error in the outcome.

iIn which case discarding data leads to an increase in the variance of the matched

estimator.

The bilas and variance of the matched estimator

As we might guess from the example above, the asymptotic expectation of 3™, taken

over the near-infinite population with all parameters fixed at their true values, 1S

equal to
B, = ENM|Z=1]-E[Y,|Z=1] = G

©

Matching on the propensity score produces a consistent estimator of the population
average causal treatment effect on the treated, 5;, which will be the same as the pop-
ulation average causal treatment effect, 3,, only when the individual-level treatment
effect is independent of the propensity score. As discussed previously, whether we
are more interested in estimating [, or ¢ will depend on the question we wish to

AIISWET.

If we were interested in estimating (3, but wished to use matching methods, we could
apply more complex matching methods that match with replacement for both treated

and control subjects and produce consistent estimators of (3, [1].

Inexact matching on the propensity score can introduce bias into the estimator i
Different metrics on which to match [86, 114] or better matching algorithms (83|
have been proposed to reduce this bias. Rubin and Thomas {93 found that regres-
sion adjustment on a sample matched on the propensity score was superior to either

regression adjustment or propensity score matching alone, in terms of bias.

Estimators obtained from matched analyses also tend to have large variances. since
the information contained in all unmatched subjects i1s discarded. This becomes
a problem when a substantial proportion of the sample cannot be matched. which
occurs frequently in epidemiological applications [102]. Solutions to this problem

include matching with a variable number of controls |70, 97| and more complex forms

of matching that use all the subjects [27, 36].
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A couple of studies have considered the issue of making inferences from a propen-
sity score matched treatment effect estimator. Theoretical properties of an estimator
matched on the propensity score, modified to estimate the population average causal
treatment eftect, were studied by Abadie and Imbens [1]. They showed that their
estimator is consistent and asymptotically normal, and derived an estimator for the
variance conditional on the observed covariates and treatment status. Hill and Reiter
38| investigated methods of constructing confidence intervals for the matched estima-
tor Bm using simulation studies, and found that bootstrap procedures were generallv

the most reliable.

2.2.4 Covariate adjustment including the propensity score

Covariate adjustment including the propensity score refers to the method of fitting
a regression model for the outcome, which is allowed to depend on treatment status
and propensity score, where usually the relationship between the outcome and the
propensity score 1s assumed to be linear. Maximum likelihood regression models are a
common method of adjustment for confounding in epidemiological studies, and have
certain attractive properties. In particular, if the fitted regression model is correctly
specified, the treatment effect estimator will be asymptotically unbiased [17, p.304].
Furthermore, as the sample size gets large, the variance of the treatment effect esti-
mator will approach the Cramer-Rao lower bound. These properties will hold when
using the covariate adjustment method. So, although this method does not appeal to
the randomisation argument given in Section 2.1, if the fitted regression model is cor-
rect then the resulting treatment effect estimator will be asymptotically unbiased and
will have the smallest possible variance. Rosenbaum and Rubin showed that when

the propensity score is a monotone function of the linear discriminant, regression on

the observed covariates i1s equivalent to regressing on the linear discriminant only —

a function of the propensity score [84].

The covariate-adjusted treatment effect estimator
If the true relationship between the outcome and the propensity score is linear, then
the treatment effect can be estimated by fitting a model where outcome depends lin-

early on the propensity score and treatment status. Denoting the unknown regression

coeflicients by (g, (1, and (¢, for the constant, the eflect of the propensity score, and
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the treatment effect, the model is

E(Y]=C+Gp(X)+8 2 (2.6)

Fitting the regression model estimates 3¢ by 3¢ which is the covarlate-adjusted treat-

ment effect estimator.

Application to the example dataset

We have already estimated the propensity score for the artificial example given in
Figure 2.1, finding that the girls have an estimated propensity score of 1/2 and the
boys have an estimated propensity score of 1/4. We fit model (2.6) replacing the
propensity score by the centred propensity score. This results in the same treatment
effect estimate as model (2.6) but we later fit a more complex-model which is more
easily interpretable using a centred propensity score. To calculate the centred propen-
sity score we subtract the sample mean of the estimated propensity score from each
child’s propensity score, giving boys a centred propensity score of —0.15 and girls
a centred propensity score of 0.1. Using least-squares to fit model (2.6) produces
the two dotted regression lines shown in Figure 2.4. This model assumes that the
treatment effect is constant for all values of the propensity score — in other words,
the same for both boys and girls — which is not true in this example. The model
estimates that the effect of attending the homework club on educational achievement
is 3¢ = 1.33. This is equal to neither the population average causal treatment effect
nor the population average causal treatment effect on the treated. Modifying model
(2.6) to allow the treatment effect to vary with the propensity score results in the
fitted regression lines shown in bold in Figure 2.4. This more complex model esti-
mates that the effect of attending the homework club on educational achievement is

B‘*’ = 1.4, the true population average causal treatment effect.

Since model (2.6) will only produce an unbiased estimator of §, when the assump-
tions of a linear relationship between propensity score and outcome and a constant
treatment effect are valid, we must consider carefully what these assumptions imply.
In this artificial example, a higher propensity score is linked with a lower treatment
effect. It would not be surprising to find, in an observational epidemiological study
that the physician tends to recommend a particular treatment only to those patients
he feels will benefit from the treatment. If this were the case, the treatment eftect

would increase with the propensity score, a violation of the model assumptions in
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Iigure 2.4: The covariate-adjusted analysis of the dataset shown in Figure 2.1, wher
the fulted regression line from model (2.6) is shown in dotlcd lincs, and the fittcd
regression line from model (2.6) with an added interaction of propensity score and
treatment 1s shown in bold.

- _ _

| Outcome

Centred 0.1

propensity score

-0.15

(2.6). Furthermore, in situations where the treatment effect varies with the propen-

sity score, there is no clinical reason why it should do so linearly across the distribution

of the propensity score, which is implied by the second, more complex model which

was htted in the example above.

When there is an interaction between the treatment effect and the propensity score

the population average causal treatment effect, §, and the population average causal

treatment effect on the treated, 3%, will be different. When this occurs the methods of

stratification on the propensity score and weighting by the inverse of the propensity
score will both, without further modification, produce consistent estimators of [3,.
Matching on the propensity score, again without further modification, will produce a

consistent estimator of 3. Only the covariate-adjusted method needs to be adapted

to produce a consistent estimator of treatment eflect.

The bias and variance of the covariate-adjusted estimator
If the linear model specified by (2.6) is correct, the error is independent of both

treatment status and the propensity score, and the treatment eftect is constant across

the propensity score, then the asymptotic expectation of this estimator, taken over
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our near-infinite population with all parameters fixed at their true values, is
ﬁg — ]E[Yl] —]E[l/o] — 80.

The use of propensity scores was motivated in Section 2.1 by a randomisation ar-
gument showing that if all confounders were observed adjustment for the propen-
sity score would produce an unbiased treatment effect estimator. This pseudo-
randomisation property of propensity score methods is often seen as their primary
advantage [93]. The covariate adjustment method, however, in making the added

assumptions implicit in fitting model (2.6), loses this advantage [4].

If, rather than the linear propensity score term in model (2.6), we included a cat-
egorical variable indicating the quintiles of the propensity score, then the resulting
estimator would approximate the stratihied estimator of treatment eftect obtained by
stratifying at the quintiles of the propensity score, with added assumptions about
independence of the error term and the constancy of the treatment eftect. Theretore,
it could be argued that a procedure which compared a regression model with outcome
depending linearly on treatment status and a categorical propensity score, to model
(2.6) and found that the latter fitted better, may result in a gain in precision from
using a continuous covariate as opposed to a categorical variable, with little loss in

bias in comparison with the stratified treatment effect estimator.

When the outcome surfaces are parallel — the treatment effect is constant across
the propensity score — covariate adjustment including the propensity score has been
found to reduce the bias of the treatment effect estimator {18]. Rosenbaum and Rubin
84] suggest allowing the treatment effect to vary with the propensity score in model
(2.6) as we did in the artificial example. Important predictive covariates can also

be added to model (2.6) in order to decrease the variance of the treatment eftect

estimator and to attempt to reduce bias [18].

9.2.5 Weighting by the inverse of the propensity score

The final propensity score method that we consider takes a different approach and
does not directly use the randomisation argument outlined in Section 2.1. The out-
comes of treated subjects are weighted by the inverse of the propensity score, p (X),

and the outcomes of untreated subjects are weighted by the inverse of (1 — p(X)).
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The resulting estimator is one of a larger class of estimators called inverse-probability-
weighted estimators. The theoretical properties of these estimators are discussed ex-
tensively by Robins, Rotnitzky and Zhao [80] in the context of missing data. These
methods can be directly applied to propensity scores by viewing whichever of the
pair (Yg, Y1) is not observed as a missing observation. The general idea in inverse
weighting is to create two ‘potential’ samples, that are intended to represent: (i) the
sample we would have observed if everyone was treated, and (ii) the sample we would

have observed if no-one was treated.

We reconstruct the ‘potential’ treated sample as follows. A subject with an estimated
propensity score of 20% has a one-in-five chance of receiving the treatment. There-
fore, for each treated sampled subject with an estimated propensity score of 20%, we
assume that four others exist who were not treated, so we create four replica subjects,
assigning these replicas the outcome of the initial treated sampled subject. Repeat-
ing this process for each value of the estimated propensity score, we reconstruct a
potential treated sample that has the same size — or, 1if the estimated propensity
score is continuous, approximately the same size — as the initial sample. Mathemat-

ically, this procedure is equivalent to weighting the outcome of each treated person

by 1/p (X).

The same process is then followed to create a potential untreated sample. For each
four untreated sampled subjects with an estimated propensity score of 20%, we assume
that one subject exists who was treated. Hence we create a single replica for each four
such untreated subjects, assigning the replica the mean outcome of the four subjects
he replicated. Repeating this process for each value of the estimated propensity
score, we reconstruct a potential untreated sample, using only the untreated sub jects

in the sample and the estimated propensity score. Mathematically, this procedure 1s

equivalent to weighting the outcome of each untreated person by 1/(1 — p(X)).

The mean outcomes of the potential treated and untreated samples are unbiased

estimators of the mean outcome of the whole population it everyone were treated or
everyone were untreated, respectively. Therefore, the difference in the mean outcomes

in these two potential samples is an unbiased estimator of the population average

causal treatment eftect.
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The inversely-weighted treatment effect estimator

The inversely-weighted treatment eftect estimator produced by the process described

above is
n Y; Z; n Y; (I“Zi)
G — Ziz1p(x) izt -p(X)
n Z; n (1-Z2;) °
21,:1 p(X;) Zi:l (1-p(X,))

The two sums 1n the denominator merely ensure that the weights for treated and

untreated subjects both sum to one.

Application to the example dataset

We previously estimated the propensity score for the example dataset, finding that
girls had an estimated propensity score of 1/2 and boys had an estimated propensityv
score of 1/4. We first construct a potential treated sample that is intended to represent
the sample we would see if everyone were treated. Since each treated girl has an
estimated probability of 1/2 of receiving treatment, we assume that for each ot these
treated girls in the sample, there is one untreated girl in the sample with the same
propensity score. Therefore, in our potential treated sample, a single replica of each ot
these treated girls is created, and allocated the same outcome as the treated girl, which
in this case is 3. Similarly, the two treated boys have a one-in-four chance of receiving
treatment. Therefore, we create three replicas of each treated boy. The potential
treated sample is shown in the top half of Figure 2.5. This potential treated sample
contains both the eight sampled children who were treated, depicted by unshaded
figures, and the twelve replicas of these treated subjects, depicted by shaded figures.

Similarly, the potential untreated sample was created from the untreated sampled

subjects, using the estimated propensity score.

The mean outcome in the potential treated sample is 3. The mean outcome in the

potential untreated sample is (12 x 2 + 8 x 1)/20 = 1.6. Therefore, the inverse-

weighting method gives an treatment effect estimator of B¥ = 1.4, which is equal to

the population average causal treatment effect 0.

The bias and variance of the inversely-weighted estimator

The asymptotic expectation of the estimator ,@w, taken over the near-infinite popula-

tion with all parameters fixed at their true values, 1s

Y = E(V1]-E|Yo] = Do

o
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Figure 2.5: The weighted analysis. Two ‘potential’ samples are created from the
initial sample. Each ‘potential” sample contains the initial treated or untreated subjects
(unshaded) and replicated subjects (shaded) whose addition is intended to create two
sampies which both have the same covariate structure as the whole sample.
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The variance of the estimator B"“, when the propensity score is known or consistently

2

estimated, has been calculated using M-estimation methods* by Lunceford and David-
lan [59|. For treated subjects who have a propensity score close to zero, or untreated
subjects who have a propensity score close to one, the weight can be extremely large,

producing an estimator with extremely large variance.

More complex inversely-weighted estimators have been proposed. Both Hirano and
Lunceford and Davidian give estimators that have the smallest possible variance of all
such semi-parametric inversely-weighted-probability estimators. Hirano’s estimator
has the advantage of only requiring modelling of the propensity score [40|. Lunceford
and Davidian’s version requires both the outcome and the propensity score to be
modelled [59]. However, their estimator is doubly robust: if either the model for
the propensity score or the model for the conditional mean of the outcome, given

treatment status and covariates, is wrong then the estimator will still be consistent,

although it may then have a larger variance.

1M-estimation methods, also called estimating equation methods, can be used to make asymptotic
inferences from an estimator without specifying the full probability distribution of the data. For
more details see Section 3.1.2 and references therein.
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Doubly robust methods are particularly attractive in that it is onlyv necessaryv to spec-

ity one of two models correctly, giving the analyst an extra layer of protection against
bias. Although doubly robust propensity score methods are a promising method of
analysis we do not pursue them any further here. This is because much is alreadyv
known about the theoretical properties of general doubly robust estimators and others
are researching their application within a propensity score context [59]. Furthermore,
as we will see (Section 2.3.3) epidemiologists appear to be reluctant to use the simpler
inverse-welghting propensity score methods, perhaps due to unfamiliaritv or a lack
of understanding. It seems likely, therefore, that it will take time for doubly robust
methods to become widely used in epidemiological studies. Since one of the aims
here is to provide practical guidance for epidemiologists, we have chosen to investi-
gate improved methods of inference for a currently used method rather than studying

a possibly superior but more complex and infrequently used method.

If we were interested in the population average causal treatment effect on the treated,

we could use weighting to estimate this by assigning treated subjects a weight ot one
and untreated subjects a weight of p (X)/(1 — p (X)) [595].

- 2.3 Comparison of propensity score methods

We have so far discussed the theoretical justification for propensity score methodology
and described the four main propensity score methods. An important question now 1s:
which of these methods should be used in applications? Are there situations in which
one method will be ‘better’ than the others? Whilst a comprehensive answer to these
questions is beyond the scope of this thesis, we attempt to show how the four methods
are inter-related and to use this knowledge to explain various well-known features of
the four estimators. We then consider the implications of estimating the propensity
score for each method. We review analyses that have compared the various methods,

and end with a few remarks about the comparative uptake of the four propensity

score methods in epidemiology.

9 8.1 Links between the propensity score methods

In the previous section, we applied each of the four propensity score methods to

an artificial example dataset. Inspection of the way in which these estimators was
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constructed should convince us that when the individual-level treatment effect is the
same for all values of the propensity score, there is no error in the outcome. and
the propensity score is discrete, then stratification and matching on the propensity
score, and weighting by the inverse of the propensity score all produce exactly the
same estimator. Covariate adjustment including the propensity score. when the fitted
regression model is correctly specified, will also give the same estimator. So in a very
basic situation, the four methods are essentially identical. We now consider what

happens when each ot the three simplifying conditions above is relaxed.

Non-uniform treatment effect

If the treatment effect is not the same for all values of the propensity score, then
the two estimands (3, and 8¢ will be different. Stratification on the propensity score,
weighting by the inverse of the propensity score and covariate adjustment including
the propensity score all estimate 3,, whilst matching on the propensity score estimates
Bt. In fact, each of these methods can be adapted to estimate either §, or 3, but

these more complex versions are not frequently used in applications.

Error in the outcome

In practice, treatment status and covariates do not uniquely determine the outcome.
This variation in outcome is due to, for example, random error, measurement er-
ror and unobserved non-confounding variables. We still assume that there are no
unobserved confounders but now allow the outcome to contain random error. For
all propensity score methods this leads to error in the estimator. However, the im-
plications of this error are more important for the matching and Inverse-weighting
approaches. Typically, when matching on the propensity score a large number of
subjects are unmatched and therefore discarded. When there 1s error in the outcome,
any information lost in discarding unmatched subjects will increase the variance of

the treatment effect estimator. It is possible that this increase may sometimes be

substantial.

When weighting by the inverse of the propensity score, error in the outcome means
that when some treated subjects have small propensity scores, or some untreated

subjects have large propensity scores, then the treatment effect estimator can have
extremely large variance. In order to understand why, let us return to the artificial
dataset shown in Figure 2.1. Suppose that the outcome of one of the two treated boys

was wrongly measured as 5, rather than 3. It we were to use this new measurement
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when reconstructing the potential treated sample, the three replicas of this bov would
also be assigned an outcome of 5. The potential untreated sample would remain the
same, resulting in a treatment effect estimate of By = 1.8, larger than the true
value, 5, = 1.4. In this case, a small measurement error created a small bias in the
estimator. In more extreme cases the effect of a small error is much more striking.
Suppose that the treated boy in question had a propensity score of 1/1000 rather
than 1/4. We would then create 999 replicas of him, rather than 3. The error in his
outcome would be replicated 999 times, possibly resulting in a substantial bias in the
treatment eflect estimate. Thus error in the outcome will have the largest effect for
subjects who are replicated many times. This will happen when either the subject
1s treated and has a very low propensity score, or the subject is untreated and has a

very high propensity score.

Continuous propensity score
When some covariates are continuous it is unfeasible to estimate the propensity score

at each different set of covariate values by the fraction of subjects with those covariate
values who are treated, as in the artificial example. Typically, in epidemiological

applications, a logistic regression model is used to estimate the propensity score [111].

A small amount of bias may be introduced into the matching estimator due to inexact

matching. In the same way, bias can introduced into the stratified estimator due to

the strata being non-homogenous in the propensity score. This is often referred to as

residual confounding [59].

The effect of a continuous propensity score on the weighting method 1s more com-
plicated. In the discrete case the propensity score is estimated by the fraction of
treated subjects at each combination of covariate values. Then, for example, for each
treated subject in the sample with an estimated propensity score of 1/3, there will
be two untreated subjects in the sample with an estimated propensity score of 1/3.
Therefore, when we reconstruct the two potential samples, each treated subject with
this propensity score is replicated twice, and each two untreated subjects with this
propensity score are replicated once. This ensures that each of the two potential sam-
ples being compared have exactly the same number of subjects with that estimated
propensity score. Therefore, we are comparing two ‘identical’ populations, in terms
of the distribution of the propensity score. Now suppose that the propensity score 1s

continuous. In this case, a treated subject with a propensity score of 1/3 is likely to be
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