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Abstract 

The Leishmania donovani complex comprises four described species: L. 

donovani, L. archibaldi, L. infantum and L. chagasi. L. chagasi is the only New World 

species and has been considered similar to L. infantum, although some authors insist 

on maintenance of its independent species status. L. donovani has at least two major 

epidemiological subgroups whose relationships are poorly understood. 

In this thesis, molecular biological techniques were used to investigate the 

taxonomy and phylogenetic relationships within the L. donovani complex, with 

isoenzyme analysis (lEA) as reference technique. Random amplification of 

polymorphic DNA (RAPD) was used to provide anonymous genetic markers which 

allowed overall comparisons of genomes. Selected target genes and intergenic 

regions were also amplified by the polymerase chain reaction (PCR), namely the 

major surface protease (msp or gp63), the mini-exon and the ribosomal internal 

transcribed spacer (ITS). PCR products of intergenic regions between msp genes 

(ITG/CS and ITG/L), mini-exon and ITS were analysed by restriction fragment length 

polymorphism (RFLP). Phylogenies generated from each of the methods were 

compared with that of I EA. 

L. infantum and L. chagasi were found to be synonymous, whilst L. donovani 

was found to be more polymorphic than L. infantum and a fourth possible species in 

the complex, L. archibald;, was not supported. Six genetic groups of strains were 

identified in the L. donovan; complex, based on all DNA based analyses, which 

agreed with lEA typing. Pooled data from RFLP and RAPD analyses generated 

robust phylogenies which were congruent with ITG/CS RFLP and msp DNA 

sequence based phylogenies, but not with lEA phylogenies. The evolutionary history 

of the L. donovan; complex is analysed in the light of the present results. The diverse 

typing methods were also evaluated and genetiC markers suggested, that are 

applicable to classification and typing of L. donovan; species and strains. 
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1. Introduction 

1.1. Leishmaniasis 

1.1.1. Characterization of leishmaniasis 

1.1.1.1. One name for a wide range of disease forms 

leishmaniasis is a disease which results from infection with parasites of the 

genus Leishmania, which are transmitted through the bite of sandflies, diptera (Fam 

Psichodidae) of the genus Phlebotomus in the Old World (OW) or Lutzomyia in the 

New World (NW). The disease has a tropical to sub-tropical distribution, which is 

mostly dependent on the distribution of the vectors. 

All continents, except Australasia and Antarctica, have endemic areas for 

leishmaniasis, which is mainly present in Southern Europe, North and Central Africa, 

the Near and Middle East, the East of China and Central and South America, in a 

total of 88 countries (http://www.who.inUinf-fs/en/fact116.html. leishmaniasis affects 

at least 12 million people, with 2 million estimated new cases each year 

(http://www.who.inUinf-fs/en/fact116.html). of which 1.5 million are new cases of 

cutaneous leishmaniasis (Cl) and 0.5 million are new cases of visceral leishmaniasis 

(Vl), but these figures are probably underestimated (Desjeux, 1992). The most 

affected areas are in developing countries or include impoverished populations. 

Three hundred and fifty million people are potentially at risk, especially in rural and 

poorly developed urban areas. Massive migrations to or from endemic areas (de Beer 

et a/., 1991; Mengesha and Abuhoy, 1978), often accompanied by famine, have been 

followed by epidemics but invasion of forest areas seems to be a further risk factor in 

tropical countries (Molyneux, 1998). 

Human leishmaniasis includes a variety of clinical presentations - visceral (Vl) 

or kala-azar, mucocutaneous (MCl), cutaneous (Cl), diffuse cutaneous (DCl) and 

post kala-azar dermal leishmaniasis (PKDl) - which usually correlates with the 

causative species (Table I). Visceral leishmaniasis is caused by the L. donovani 

complex (including L. infantum and L. chagasl). Leishmania donovani is also the 

aetiological agent of PKDL. Leishmania major and L. tropica cause Old World Cl 

whilst L. braziliensis complex parasites cause MCl and the L. mexicana complex 

causes American cutaneous leishmaniasis (ACl) and also DCL. 

The relationship between the parasite species and the type of leishmaniasis is 

not always straightforward. Leishmania donovani complex strains are known to cause 

Cl (Ben Ismail et a/., 1992; del Giudice et a/., 1998; Mebrahtu et a/., 1993; Oliveira 

Neto et a/., 1986a; Ponce et a/., 1991) or even MCl (Alvar et a/., 1990; el Hassan et 

al., 1995), and the diverse New World species cause several types of often 
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indistinguishable cutaneous - mucocutaneous leishmaniasis. Leishmania fropica has 

also been found to be agent of mucocutaneous lesions in the Old World (Mohammed 

and Wright, 1987; Morsy ef a/., 1995), although not as severe as in the NW, and to 

cause VL in American troops during the Gulf War in the Persian Gulf between 1990 

and 1991 (Hyams ef a/., 1995). Host susceptibility, probably dependent on genetic 

factors (8ryceson, 1996) and immune or nutritional status (Cert ef a/., 1987; Dye and 

Williams, 1993), seems to play an important role on development of disease. External 

factors, such as the inocula, the vector saliva and the parasite genotype, however, 

may also be important. 

Since treatment given to each patient is dependent on the parasite and on 

early diagnosis, it is important to identify the responsible agent correctly and quickly. 

It is also important to assess the type and intensity of the patient's immune response 

to try and predict the outcome of an initial infection. 

Table I - Leishmania species and disease forms 

Type of leishmaniasis Main species 

Visceral L. donovani complex 

Old World cutaneous L. major, L. fropica 

Mucocutaneous L. braziliensis complex 

American cutaneous L. mexicana complex 

Diffuse cutaneous 

Post kala-azar dermal 

L. mexicana complex 

L. donovani 

1.1.1.2. Clinical presentation 

Other species 

L. donovani complex 

L. fropica 

L. braziliensis complex 

Visceral leishmaniasis is the most serious form of leishmaniasis. The fatality 

rate for symptomatic cases is high without treatment (up to 90%) (Seaman ef a/., 

1996; Thakur, 1984), especially in impoverished populations with deficient nutrition. 

With treatment and in healthy populations VL is much less serious (al Jurayyan ef a/., 

1992; Evans ef a/., 1995; Jeronimo ef a/., 1994; Saxena ef a/., 1996), although there 

is significant morbidity (Siddig ef a/., 1990). The Leishmania infected macrophages 

concentrate in the liver, spleen bone marrow and lymph nodes, thus causing 

hepatomegaly, splenomegaly, anaemia and lymphadenopathy. VL is also 

characterised by intermittent fever and weight loss. There is depletion of cell­

mediated immunity but humoral response is very strong. The darker coloration of the 

skin in the Indian form of disease led to the Sanskrit name of kala-azar, for black 

fever. 
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Most CL cases are single, painless cutaneous lesions which are self-healing 

or easy to treat, although disfiguring. The appearance of the lesions may vary 

enormously, from dry to wet sores and from single to multiple lesions. All Leishmania 

species isolated from humans have been implicated as aetiologic agents of Cl, 

although those mainly responsible are L. major and L. tropica in the OW (Ashford and 

Bates, 1999) and L. mexicana, L. guyanensis and L. braziliensis complexes in the 

NW (Lainson and Shaw, 1999). Simple Cl can be the primary lesion before the 

development of MCl or DCL. 

Mucocutaneous leishmaniasis involves destruction of the mucocutaneous 

border and cartilage and can be fatal if the respiratory mucosa of the larynx and 

pharynx are affected. It is thought that parasites metastise to the facial cartilage and 

mucosa from primary infections. Proximity of the primary lesion to the face and high 

number of sandfly bites seem to correlate with development of MCL. The highly 

disfiguring and often debilitating lesions on the face, may lead to social stigmatisation 

of the patient. Diagnosis and identification of the parasite is not easy since isolation 

of parasites is not often achieved. Treatment is very difficult and lesions often require 

intense reconstructive surgery. 

Diffuse Cl results from skin restricted metastasis, usually by L. mexicana 

complex parasites in the NW (lainson and Shaw, 1999) and in the OW by L. 

aethiopica (Ashford and Bates, 1999), producing nodular lesions throughout the 

body. The condition is characterised by anergy of both cell-mediated and humoral 

immunity and is extremely resistant to therapy. In the Dominican Republic an 

unknown species of Leishmania was also found in DCl type lesions (lainson and 

Shaw, 1999). 

In L. donovani endemic areas some patients develop skin lesions, a condition 

known as PKDL (Ashford and Bates, 1999) because it usually follows therapeutic 

'cure' from VL (from before cure of Vl up to at least 10 years after). There are cases, 

however, without any previously known history of Vl, although sub-clinical infection 

might have been present. Clinical presentation is very variable, from alteration of 

pigmentation to cutaneous nodules, mainly in surfaces exposed to light, and the 

condition can become equivalent to DCL. 

1.1.1.3. History 

Although the aetiological agents of leishmaniasis only began to be identified 

at the beginning of the 20th century, the presence of the disease in the human 

population may be quite ancient. Pottery in the NW depicts faces with mutilations 

very similar to those seen today in MCl cases (Ashford and Bates, 1999), although 
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some authors argue that they may be ethnic mutilations (Jarry, 1999). Similarly, there 

are reports of afflictions similar to OW CL from 5000 years ago in what is now Iraq. In 

the 10
th 

century there is an indisputable description of CL by an Arab physician (Jarry, 

1999). The first description of VL is much more recent (1835), from Greece, and 

literature from the Indian continent did not describe any cases until 1872, when 

serious epidemics at the beginning of that century were reported (Jarry, 1999). 

Although visceral affliction is prone to being mistaken with malaria or plague, it is 

possible that Indian VL was a recent introduction from areas with low endemicity, 

such as Northeast Africa. 

1.1.1.4. Distribution 

Visceral leishmaniasis can be roughly divided into three epidemiological types. 

Human restricted VL in the Indian sub-continent is caused by L. donovani (s.s.); the 

canine zoonosis, which afflicts mainly children in the Mediterranean basin through the 

Asian interior to Meridional China and the Americas, including countries from Brazil to 

the United States of America (USA) caused by L. infantum and L. chagasi; and the 

form in North-eastern Africa, without an identified reservoir, caused by L. donovani 

(s.I.). 

Old World CL due only to L. major is present in North Africa and the borders 

with the South Sahara desert, due to either L. major or L. tropica from the Arabian 

peninsula to West of the Indian Continent, and due only to L. aethiopica in Ethiopia. 

In the New World (Lainson and Shaw, 1999), of the species of the L. 

mexicana complex; L. mexicana is present in the USA, Mexico, Belize, Guatemala, 

Honduras and Costa Rica, L. amazonensis in Bolivia, Brazil, Colombia, French 

Guyana and Paraguay. Of the species of the L. braziliensis complex, L. braziliensis is 

reportedly present in most Latin American countries except perhaps Argentina, 

although it may often have been inadequately identified, and L. peruviana is in 

Andean Peru and perhaps other Andean countries. Of the species in the L. 

guyanensis complex, L. guyanensis is present in Brazil, north of the Amazon, and the 

Guyanas but also in Equador, Venezuela and Peru, L. panamensis is present in 

Panama but also in Colombia, Equador, Venezuela, Costa Rica, Honduras and 

Nicaragua. 
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1.1.2. Visceral leishmaniasis epidemiology - The Portuguese example 

Leishmaniasis caused by L. infantum is considered sporadic in continental 

Portugal, with a number of endemic regions. Currently identified endemic regions are 

Vila Real (North), the Algarve, Greater Lisbon and Evora (Figure 1). The Algarve 

(Campino et al., 1995) and Evora (Semiao Santos et al., 1995) have only been fully 

recognised as endemic areas in the last five years. According to data from the 

Primary Health Care General Direction (Direcc;ao Geral dos Cuidados Primarios de 

Saude) in 1991, the annual incidence was of 8.3 / 100 000 inhabitants in the Alto 

Douro, 0.2 / 100 000 inhabitants in the Lisbon Metropolitan Region and 1.2 / 100 000 

inhabitants in the Algarve. 

125Km 

North 

Atlantic 

Figure 1 - Distribution of foci in Portugal 

Prevalence of Leishmania infection in dogs was found to be of 11.4% in Vila 

Real (Figure 2) (Abranches et al., 1992; Sampaio-Silva et al., 1993), with a maximum 

of 37.8% in a locality called Vale de Mendiz (Abranches et a/., 1992). In Greater 

Lisbon region, prevalence varied from 8.8% to 3.8 % in rural (Figure 3) and urban 

areas, respectively (Abranches et a/., 1987). A maximum prevalence of 10% was 

recorded in the Natural Park of Arrabida (Figure 3), where a sylvatic cycle was 

identified with the red fox Vulpes vulpes as reservoir (prevalence of 5.6%). In the 
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region of Lisbon the human prevalence correlated negatively with the canine 

prevalence. In the Algarve, an overall prevalence of 70/0 was found in the Louie county, 

with a maximum of 18.4% in the locality of Querenc;a (Figure 4). In the Evora district an 

overall canine seroprevalence of 3.9% was found with a maximum of 6.9% in the 

locality of Nossa Senhora dos Aflitos. 

Figure 2 - North of Portugal, Alto Douro - Alij6 - vegetation and landscape. 

Figure 3 - Arrabida - view of the Serra and adjacent rural areas 



A 

B 

Figure 4 - Algarve: Querenc;a. A - Village and surroundings. Vegetation and landscape 

in the 'barrocal': rural hilly area with high population density. B - Kennel: dogs roam 

freely or are restricted to unprotected kennels. 

Epidemiology of visceral leishmaniasis is poorly understood, and Portugal is 

not an exception. Four main foci have been identified, but only a few counties have 

been studied, and many regions may have been overlooked. In the focus of Alcacer do 

Sal (Figure 5) , in which no reservoir cases were found by Abranches et al. (1983), at 

least 10 cases of canine visceral leishmaniasis were reported later (Gal rito et al., 

1991; Vicente, 1990). Given that high incidence of canine leishmaniasis may not 

correlate with high incidence of human leishmaniasis (Abranches et al., 

1987), and 
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that not all seropositive dogs develop symptoms, the prevalence of Leishmania 

infection in regions not considered endemic may be high enough to maintain 

endemicity throughout the country (RiOUX et al. , 1972). Phlebotomine sandflies prefer 

areas with moderate temperatures (Alves Pires and Ribeiro, 1991), but are fairly 

tolerant to drought. A nation-wide epidemiological enquiry would be required in order 

to know the real situation of Portugal regarding leishmaniasis. Prevalence rates 

among stray dogs and sylvatic can ids are also unknown, and very difficult to study. It 

is thus not known if leishmaniasis is endemic in the entire territory or if there are true 

limited foci. It must be noted that in the studied foci there were high prevalence 

regions in the borders (Abranches et al., 1992; Campino et al., 1995; Sampaio-Silva et 

al., 1993; Semiao Santos et aI., 1995), which may indicate that each focus is larger 

than the studied area. Since effective field study of Leishmania infection in Portugal is 

so difficult, another way to assess whether the foci are limited or if there is a 

continuum across the country is to study the genetics of the parasites themselves. 

Figure 5 - Alcacer do Sal, a humid rice growing region with a history of malaria, which 

was eradicated by insecticide spraying, co-existing with more dry areas with Quercus 

sp. Previously described as an endemic focus, leishmaniasis was apparently 

eradicated following anti-malaria campaigns. The resilience of leishmaniasis could be 

explained by the higher resistance to drought by Phlebotomus or by re-introduction 

from nearby endemic areas, such as the Arrabida. 

Until recently, the only Leishmania zymodeme identified in Portugal had been 

MaN 1. In the last 20 years, however, two MaN 24 isolates were found infecting the 

sandfly vector in the endemic area of Vila Real and in an human immunodeficiency 

virus (HIV) co-infection case. A case of CL caused by MaN 29 was also found near 

the border with Spain in the Alentejo region of Portugal. It was suggested that it could 
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be due to importation of Spanish strains to the Portuguese territory. However, the 

Alentejo has not been studied, except for the municipality of Evora, although reports 

from the decades of 60 and 70 indicated high incidences. It is possible that there is a 

continuum with Spain with presence of more unusual zymodemes in border areas. An 

HIV patient was also found with L. donovani MON 18 (Campino ef al., 1994), 

probably a needle transmission case. There are unreported cases of unusual 

zymodemes or Leishmania like parasites found among HIV patients in Portugal; but 

to a lesser extent than in Spain. 

Typically a disease of young children in Portugal, VL is becoming more and 

more a disease of the immunologically compromised, as in other European and 

American countries. Most affected adults are co-infected with HIV, although other 

immunocompromised patients, notably transplant recipients, are also at risk. Most 

H IV / Leishmania co-infected individuals are men and drug users (Campino ef al., 

1997). As in other countries, parasites have also been found in unusual organs, such 

as the lungs, intestines and skin, which may be a consequence of Leishmania being 

allowed to spread uncontrolled. However, it may be that lesions are revealed by the 

intensive screening for opportunistic diseases done on acquired immunodeficiency 

syndrome (AIDS) patients. 

1.1.3. The hosts 

Although medically important parasites, most Leishmania do not have humans 

as their most important host. Some species, like L. arabica, L. furanica and L. gerbilli 

in the OW and L. arisfidesi, L. enrieftii, L. hertigi and L. deanei in the NW have not 

been found in and are probably non-pathogenic to humans. Parasites that cause CL 

can easily be spread from person to person by the sandfly vector, since parasites are 

present in healthy skin, whilst human transmission of VL is only certain in India. Most 

Leishmania species have rodents and even dogs as reservoirs. Excluding humans, 

the main reservoirs for OW leishmaniasis by L. major, L. infanfum and L. aefhiopica 

belong to orders Rodentia, Carnivora and Hyracoidea, respectively. In the NW, orders 

Rodentia, Carnivora, Xenarthra and Didelphimorphia include reservoir species of 

Leishmania. Primates other than humans have been found infected with L. shawi in 

the NW and L. major in the OW (Binhazim ef a/., 1987). 

The dog is considered the main reservoir of VL caused by L. infanfum and L. 

chagasi, although other canids have also been found infected (Dereure, 1999), like 

the red fox (Abranches ef a/., 1984; Rioux ef a/., 1968), the wolf (Dursonova ef a/., 

1965) and the jackal (Hervas ef a/., 1996). Leishmania infanfum has also been 

isolated from two Felidae (Ozon ef a/., 1998) and four Rodentia species, including 
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two Rattus spp (Gradoni et a/., 1983; Ibrahim et a/., 1992). In the NW, L. chagasi was 

found to have two opossum species (Didelphis spp.) (Travi et a/., 1994) and the fox 

Cerdocyon thous (Lainson et a/., 1990; Lainson et a/., 1969; Mello et al., 1989; 

Silveira et a/., 1982) as sylvatic reservoirs. 

In the case of zoonotic VL (in the Mediterranean basin and the NW), humans 

are considered as dead-end hosts, although person to person spread is not 

completely ruled out. Notably, only human hosts are known for Indian VL, where 

parasites are easily found in peripheral blood and occurrence of PKDL can support 

the existence of a long term human reservoir. Although PKDL also occurs in the foci 

of Northeast Africa, evidence for an exclusive human reservoir is weaker, except 

perhaps in epidemic situations, but no reservoir has been positively identified. 

Acquisition of VL by people visiting game reserves, implicates the existence of a 

probably old, still unidentified, sylvatic reservoir. Thus, transmission of L. donovani in 

Africa may be of a mixed type, with human to human transmission, namely in 

epidemic situations, together with a well established sylvatic reservoir, which does not 

develop leishmaniasis and is infective to sandflies. 

The large number of potential hosts of each Leishmania species complicates 

both evolutionary and epidemiological studies. Studies on co-evolution are hindered 

by the difficulty in identifying the most ancient reservoirs, whilst depletion or control of 

one reservoir may only switch the epicentre of the infection cycle to another host. 

1.1.4. Immunity 

In humans, self-healing cutaneous lesions are usually accompanied by 

positive delayed hypersensitivity skin reaction to leishmanin and low antibody 

production, whereas visceral leishmaniasis is usually accompanied by a surge in 

antibody production and the leishmanin skin test only becomes positive after cure 

(Ashford and Bates, 1999; Le Fichoux et a/., 1999). Diffuse cutaneous leishmaniasis, 

in which the immune response is hindered (Ashford and Bates, 1999), and the severe 

mucocutaneous leishmaniasis are much more difficult to treat (Lainson and Shaw, 

1999; Ashford and Bates, 1999). 

As Leishmania reach the skin of the mammalian host, as promastigotes, 

through the bite of a sandfly, they must face a series of defences by the immune 

system. Leishmania, however, can in part evade the immune system by parasitising 

macrophages. Promastigotes may differentiate extracellularly into amastigotes or 

may directly be phagocytosed by macrophages. Promastigotes efficiently activate 

complement and enter macrophages using complement receptor 3 (CR3) and other 

complement receptors (Mosser and Karp, 1999; Russell, 1995). Both 
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lipophosphoglycans and the protease glycoprotein 63 (GP63), abundant in 

Leishmania promastigote membranes, are known to bind CR3 directly and thus 

facilitate phagocytosis (Mosser and Karp, 1999). 

1.1.4.1. In the macrophage 

In the phagocytic vacuole, amastigotes are able not only to survive in the 

acidic environment, rich in lysosomal hydrolases, but transform it into a 

parasitophorous vacuole and avoid the macrophage antigen-presenting capabilities 

(Russell et al., 1992). Although the membrane of the parasitophorous vacuole is rich 

in major histocompatibility complex type II (MHC II) molecules, Leishmania can 

reduce antigen presentation by limiting the release of potential antigens to their 

flagellar pocket (Russell et al., 1992). However, both peptide and non-peptide 

antigens (such as Iipoglycans) can be presented to human T cells, in the latter case 

by cluster of differentiation 1 (CD1) molecules. 

In immature non-activated macrophages, amastigotes will proceed with 

division until they are released from the host cell to invade new macrophages. 

Mechanisms of immune evasion can vary according to the Leishmania species. 

Macrophages infected with L. donovani have lower levels of MHC II and co­

stimulatory molecules (such as 87) and thus a lower capacity to present antigen to T 

cells (Russell, 1995), whilst L. amazonensis escapes the immune system by 

generation of certain epitopes (Russell, 1995), and there is evidence that L. 

amazonensis also internalizes and degrades MHC II molecules (De Souza Leao et 

al., 1995). Furthermore, infected macrophages have a reduced ability to respond to 

activating cytokines, because of interference of the parasite with messenger 

cascades through modulation of protein kinase C (Russell, 1995). 

Macrophages are activated by interferon y (IFNy) to produce inducible nitric 

oxide synthase (iNOs) which will synthesise reactive nitrogen radicals toxic to 

Leishmania (Stenger et al., 1996). Nitrogen radicals such as nitric oxide (NO), 

however, seem to be able to control infection only in early stages of disease (Evans 

et al., 1996). A functional Fas pathway is also necessary for resolution of disease 

(Stenger et al., 1996). The cell surface Fas receptor mediates induction of apoptosis, 

via activation of caspases (cysteine proteases which cleave the carboxyl terminus of 

aspartate residues) and release of apoptogenic proteins (e.g., cytochrome c) from the 

intermembrane space of mitochondria to the cytOSOl, thus triggering degradative 

events (Wilson, 1998). During infection with L. major, macrophages up regulate 

surface expression of Fas in response to IFNy, thus causing apoptosis (Stenger et al., 
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1996). This reduction in the number of macrophages may limit the number of 

available host cells for parasite infection and also increase the ratio of CD4+ T helper 

1 (Th1) cells, producing IFNy, to infected macrophages. The efficiency of 

macrophage activation is thus increased (Stenger et al., 1996). However, disruption 

of interleukin (lL) 2, a necessary potentiator of Fas-mediated cell death, or IL 2 

receptor during infection may trigger autoimmune disease (Refaeli and Abbas, 1998). 

This mechanism might be involved in the development of the autoimmune type of 

mucosal disease due to L. braziliensis. 

1.1.4.2. Innate resistance 

The innate phase of host resistance is commanded by natural killer (NK) cells 

(Scharton Kersten and Sher, 1997), which can be activated upon Leishmania 

infection through both T-cell independent and dependent pathways (Scharton 

Kersten and Sher, 1997). Unlike T cells, NK cells respond very rapidly to stimuli and 

do not require priming (Stenger et al., 1996). NK cells produce IFNy and tumour 

necrosis factor a (TN Fa) which can inhibit the growth of pathogens in initial stages of 

infection, thus allowing the host to develop an efficient adaptive immune response 

(Stenger et al., 1996). Not only IFNy has a role in activating macrophages, as NK 

cells influence the pathway of differentiation of CD4+ cells, through C04, C040, 

C080 or C086 and respective ligands. 

1.1.4.3. T helper response 

Correct activation of macrophages, leading to strong cell mediated immunity, 

is dependent on a number of Th1 type response cytokines, such as IFNy and IL 12 

(Louis et al., 1998) from CD4+ cells, and usually leads to cure (Gaafar et al., 1995; 

Kurtzhals et al., 1994). Active disease is dependent on a Th2 type response, with 

production of IL4 and IL 10 (Cillari et al., 1995; Kurtzhals et al., 1994; Launois et al., 

1997; Reiner and Locksley, 1995); T-cells are depleted with consequent impaired 

lymphocyte and cytokine response to antigen stimulation. Th2 responses involve 

prominent humoral immunity with activation of antibody production (Kaye et al., 1995; 

Kemp et al., 1994). The outcome of infection has been shown to be dependent on 

the initial commitment of the immune system towards one of the response types 

(Louis et al., 1998; Murphy, 1998; Reiner and Locksley, 1995) in which case relative 

concentrations of Th1 and Th2 type cytokines are more important than absolute 

quantities of cytokines. This model is mainly based on murine studies, but similar 

polarisation of the immune response seems to control the response to Leishmania 
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infection in humans (Kemp et a/., 1994; Kurtzhals et a/., 1994). 

Development of a Th1 type response is dependent on a number of factors , 
inlcuding time after infection. IL 12 is critical but only in the initial stages of infection 

and may thus be useful as a vaccine adjuvant rather than as therapy (Scharton 

Kersten and Sher, 1997). IFNy can regulate the ability of T cells to respond to IL 12, 

but is not enough for Th1 development (Murphy, 1998). However, IFNy produced by 

specific MHC " restricted CD4+ T cells is important in regulating macrophage 

activation (Louis et a/., 1998) by activating iNOs and up-regulating surface Fas. 

Leishmania can specifically inhibit IL 12 production by infected macrophages in vitro 

and thus lead to the establishment of chronic patent infections (Carrera et a/., 1996) 

and may cause disseminated VL in humans by engaging Fey receptors on 

macrophages, which stimulate IL 10 production (Karp et al., 1993). 

IL4 is the main cytokine implicated in Th2 development, with the simultaneous 

loss of IL2 responsiveness (Murphy, 1998). Th2 cytokines deactivate macrophages 

and hamper the effect of IFNy; furthermore, tumour growth factor f3 (TGFP), IL 10 and 

IL 13 can interfere with induction of iNOs (Stenger et al., 1996). 

Resolution of infection may not mean freedom from infection. Inhibition of the 

nitric-oxide-dependent pathway can result in expansion of parasites that had been 

either quiescent or replicating slowly in resolved lesions of L. major in mice (Louis et 

a/., 1998). Furthermore, maintenance of delayed type hypersensitivity, or positivity to 

the Montenegro test, and the many cases of PKDL after resolution of leishmaniasis 

suggest non-sterile immunity. 

1.1.4.3. External factors regulating immunity 

Host resistance to infection appears to be controlled by several genes and 

may involve several mechanisms (Stenger et al., 1996), as described above. Despite 

the importance of the host response, external factors, such as species of Leishmania, 

dosage, number of inoculations and vector saliva, can influence the outcome of 

infection. 

Several studies have revealed that sandfly saliva may affect host susceptibility 

to Leishmania infection. Saliva components were shown to enhance lesion 

development by L. major (Belkaid et al., 1998; Hall and Titus, 1995; Mbow et a/., 

1998) and L. braziliensis (Donnelly et a/., 1998; Samuelson et al., 1991), and to affect 

the outcome of L. infantum infection (Warburg et a/., 1994). The saliva of sandflies is 

highly immunogenic (Ghosh and Mukhopadhyay, 1998) and previous exposure of the 

host to the saliva may reduce infectivity of Leishmania (Belkaid et a/., 1998), although 
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saliva was shown to decrease killing of intracellular parasites (Hall and Titus, 1995) 

and to exarcebate disease by L. major by decrease of Th1 cytokines and associated 

factors and enhancement of Th2 cytokine IL4 (Mbow et a/., 1998), the latter even in 

the absence of infection. The levels of a salivary component, maxadilan (Lerner and 

Shoemaker, 1992), were shown to correlate directly with erythemas caused by 

feeding sandflies and inversely with Leishmania proliferation in the skin (Warburg et 

a/., 1994). This effect could explain proliferation in the cutaneous lesions produced by 

L. chagasi infection in Costa Rica, where the population of L. longipalpis has a lower 

level of Maxadilan than Brazilian or Colombian sandflies (Warburg et a/., 1994). 

1.1.4.5. Vaccination 

There is some evidence that protection against leishmaniasis is possible; 

induced infection with L. major is still practised to protect against undesirable face 

lesions (Modabber, 1990) and there are a large number of asymptomatic leishmanin 

positive individuals in endemic areas (Marty et a/., 1992; Marty et a/., 1994; Nandy et 

a/., 1987; Shiddo et a/., 1995; Zijlstra et a/., 1994). Long-term protection seems to be 

associated with CD8+ producing IFNy (Gurunathan et a/., 1997; Pinelli et a/., 1994), a 

component overlooked in most vaccine development trials. (For types of vaccine and 

vaccination trials see 1.1.6. Control of VL) 

1.1.5. Diagnosis 

Clinical presentation of visceral leishmaniasis, especially at the onset, can be, 

and has been, confused with a number of other diseases, including malaria, liver 

diseases and immune disturbances (DeBeer et a/., 1991). Even the more 

conspicuous cutaneous forms of leishmaniasis can be mistaken for leprosy or other 

cutaneous diseases (Blum et a/., 1994; Chakrabarti et a/., 1997; Dhar et a/., 1995; 

Ramesh et a/., 1994). It is thus necessary to use specific diagnostic methods. The 

gold standard has been and still is microscopical identification of parasites from 

biopsies of infected tissue (Palma et a/., 1991). Specificity is 100%, but sensitivity is 

low and dependent on preparation and examination of slides. Diagnosis can also be 

made by isolation of parasites in culture or by sub-passage in a rodent. These 

methods increase sensitivity, but are demanding in terms of cost, time and 

manipulation. Serological methods allow indirect identification of infection (or 

exposure to infection) by measuring the amount of specific antibodies against 

Leishmania antigens. The most used serological techniques are direct agglutination 

tests (DAT) (el Harith et a/., 1989), immunofluorescence (IFAT) (Kien Truong et a/., 
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1969; Lupascu et al., 1970) and enzyme-linked immunosorbent assay (ELISA) 

(Hommel et al., 1978), although others are also available, such as Western blot (dos 

Santos et al., 1987; Jaffe et al., 1984), dot-ELISA (Pappas et al., 1983), latex 

agglutination test (Mayrink et al., 1972), immunodiffusion (Bray and Lainson, 1966; 

Rodriguez Cuartero and Nunez Carril, 1974), complement fixation (Chavez and 

Witremundo Torrealba, 1965) and counterimmunoelectrophoresis (Desowitz et al., 

1975). Serological methods are particularly useful in the diagnosis of visceral 

leishmaniasis, since the active phase of disease is characterised by increased 

humoral response which decreases with cure, but less for cutaneous forms of 

leishmaniasis with have a stronger cellular response. Specificity and sensitivity are 

not ideal, however, because of low antibody titres and cross-reactivities, and 

diagnosis is usually improved by combining two or three different methods, for 

example IFAT, ELISA and OAT (Cabral et al., 1998; Cuba et al., 1996; Kar, 1995; 

Millesimo et al., 1996; Semiao Santos et al., 1995). 

DNA based methods for detection of parasites, which have been developed to 

be 100% specific and can be very sensitive (Degrave et al., 1994; Weiss, 1995; 

Wilson, 1995), include detection by hybridisation, with DNA probes, of whole or 

restricted DNA on several types of blots, such as dot blots and Southern blots. The 

most promising are the polymerase chain reaction (PCR) and its derivatives (Degrave 

et al., 1994; Weiss, 1995; Wilson, 1995). In practice, DNA based diagnosis is not free 

from problems: lack of effective sensitivity, false positives, inhibition by host DNA or 

contaminants, sensitivity to contamination by amplicons, etc. PCR technology is 

recent and it has been difficult and expensive to apply in field conditions or in less 

developed countries, where leishmaniasis is a bigger problem. In conclusion, despite 

some advantages of molecular biological diagnostic methods, serological methods 

are still the best choice in most countries, although DNA based methods are 

becoming cheaper and easier to use. 

Optimal diagnosis of leishmaniasis should involve identification of the parasite 

species or even phenotype, because different parasites can cause identical disease 

forms and, conversely, the same species of parasites can cause different disease 

forms. The best treatment may vary according to parasite types (Berman, 1997; 

Chance, 1995; Davidson, 1998). In epidemiological surveys, it is not only essential to 

know how many people are infected but also with which parasite, in order to 

understand life cycles and develop better control measures. At present it is in this 

field that molecular methods are the most useful, since serological methods are 

inadequate and current methods of allozyme electrophoresis are time consuming and 

require large numbers of parasites. DNA based typing should be faster, more reliable 
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and provide characterisation of the parasites at different taxonomic levels, according 

to the needs of the epidemiologist or clinician. 

1.1.6. Control of visceral leishmaniasis 

A parasitic disease with complicated epidemiology such is leishmaniasis, is 

very difficult to eradicate (Wilson and Streit, 1996). Although apparent eliminations 

have been achieved, often through vector or reservoir control, re-introductions or 

resurgences are very common (see 1.1.2.). The best examples of successful 

eradications may have been in some areas of China (Bao et a/., 1994) and Iraq, but 

knowing the present situation is very difficult, especially in Iraq. Vl remains in some 

areas of China (Katakura et a/., 1998) and L. infantum has been found in sandflies in 

areas where only Cl had been reported (Guan et a/., 1994). Some L. infantum strains 

are known to cause Cl, but L. infantum may also cause Cl or inapparent infections 

in populations with better health conditions. 

Vector control using insecticides has been effective to some extent but it also 

damages the environment. Given the zoophylic and burrow breeding habits of 

sandflies, large areas should be sprayed, not only humid or habitational areas. large 

amounts of insecticide would thus be required, raising cost and contamination of 

human and natural environments. Resurgence of sandflies has occurred after major 

depletions in number, often after reported they were thought to have disappeared, 

following insecticide anti-malarial campaigns, probably because they are more 

resistant than Anopheles to dry environments, which are often spared spraying, and 

because PKDl patients may act as long term reservoirs (Thakur and Kumar, 1992; 

Wilson and Streit, 1996). In most cases resurgences were made worse when 

populations became immunologically naive, like in Bangladesh (Elias et a/., 1989) 

and India (Thakur and Kumar, 1992). There is also some evidence that sandflies may 

develop insecticide resistance (Bansal et a/., 1996; Kaul et a/., 1994; Mukhopadhyay 

et a/., 1996), thus requiring increasing amounts of or alternative insecticides. 

Reservoir control has been done by culling or treatment of sick or infected 

animals, mainly dogs. Treatment of human patients is mostly effective, as a control 

measure, against antroponotic Vl (as in India) together with the use of bednets to 

prevent spread to the vector. For zoonotic Vl, treatment of dogs is not recommended 

since it is largely ineffective and very expensive, and it is not an option in 

impoverished populations. Although identification and killing of infected dogs has 

been mostly applied to control Vl with success in some areas, such as China and 

Iraq, in most countries it is very difficult to achieve due to the logistics of catching 

stray dogs, identifying all infected dogs and convincing owners to sacrifice their dogs. 
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Culling infected dogs may not be effective because at least some dogs may be 

infective to the sandfly before the onset of clinical signs and a significant serological 

response (Molina et a/., 1994). Other reservoirs may be wild or semi-domestic 

animals. It is thus very difficult to identify all infective reservoir animals. Furthermore, 

in some areas the human reservoir may become more important as cases of HIV / 

Leishmania co-infection increase and create a human restricted cycle of 

leishmaniasis. 

Vaccination is the most sought for form of control, for it should be more cost 

effective and more efficient. Complete eradication may never be achieved, but 

maintenance of very low infection levels in resistant populations would be highly 

desirable and a realistic objective. Historically, live vaccination with L. major has been 

used with success to prevent disfiguring lesions, however, it is both impractical and 

dangerous, and vaccination with L. major does not cross protect against other 

Leishmania species. Indeed, there is very limited cross-protection between 

Leishmania species. Trial vaccination with killed whole parasites of L. infantum 

increased susceptibility of dogs in the field (Dunan et al., 1989). Second generation 

vaccines involve identification and isolation of antigens. Although many L. major 

antigens have been successful in the rodent model against cutaneous leishmaniasis, 

effective protection against L. infantum or L. donovani in the dog has proved elusive. 

Third generation vaccines include recombinant DNA, either in other organisms, such 

as BCG, Salmonella, etc. or as naked DNA in plasmids. Furthermore, vaccination 

against VL in the Mediterranean basin and the Americas would be most effective on 

the dogs, the reservoir. Currently, in Brazil there is a promising candidate whole 

vaccine which is being tested in phase III trials (Mayrink et al., 1996). 

Good vaccination strategies against leishmaniasis are difficult to develop. The 

mouse is a model preferred to the dog for technical and ethical reasons, but the two 

models are not fully compatible. Immunology of leishmaniasis is poorly understood 

and dependent on the parasite species and the host and vaccine candidates can only 

be identified by trial and error. A suitable antigen should elicit both cell mediated 

immunity and memory. In this respect, DNA immunisation could be the best option. 

An alternative could be to vaccinate against vector saliva (Ghosh and 

Mukhopadhyay, 1998), as sandflies fed with immunized serum or from previously 

exposed animals have a higher death rate and development of Leishmania in the 

vector is affected. 

The main risk factor for human leishmaniasis seems to be malnutrition and 

immune deficiencies. Hunger, as a consequence of poverty, may never be eradicated 

and malnutrition, either through poverty or fast food culture in rich countries, is 
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frequent. The number of immune deficient patients is increasing due to AIDS and 

transplant patients and more and more immunologically naive people migrate into 

leishmaniasis areas. 

It is very likely that neither eradication, nor even the perfect strategy for 

control of leishmaniasis will ever be achieved. Not only, in many cases, is the source 

of infection present in the wild, like in the Amazonian forest, but also in other cases 

the reservoir is becoming more and more domestic - the dog, or even the rat. Many 

reservoirs are not exclusive to one species of parasite and many parasites adapt to 

new hosts (as the dog) as the sandfly vector changes feeding habits. With this in 

view, the best strategy for control of leishmaniasis will probably be a combination of a 

number of methods, locally adapted to the parasites, vectors and reservoirs and 

economic and ecological characteristics of each focus, but in a global control 

strategy. 

A good summary of the present situation is presented by Wilson and Streit 

(1996): "Visceral leishmaniasis presents a serious problem in endemic regions that is 

difficult to treat or prevent. Several epidemiological problems make the disease 

particularly troublesome to manage. These include the facts that classic visceral 

leishmaniasis is fatal if untreated and there is not reliable access to medical care in 

many endemic regions. When available, treatment has associated toxicity and 

requires the use of intravenous medications with careful monitoring for toxicity, which 

are complex to administer in underdeveloped nations. There is an increasing 

incidence of the disease in HIV-infected individuals in southern Europe, in part 

because of the fact that eradication of the organism from infected persons using 

currently available drugs appears to be difficult if not impossible. Furthermore, chronic 

cutaneous forms of the disease allow humans and animals to maintain the organism 

long-term in a bodily site that is easily accessible to the sandfly vector. More effective 

and less toxic treatment modalities as well as a protective vaccine are badly needed 

to manage this disease." 

1.2. The parasite 

1.2.1. Characteristics and morphology 

Leishmania are eukaryotic single celled organisms, with a modified 

mitochondrion of which the genome (see 1.2.5.2.) is organised in a disk shaped 

dense structure called the kinetoplast which is located near the base of the flagellum. 

Parasites are found in two basic forms: the promastigote which is characterised 

morphologically by an elongated body of 5 to 20 ~m in length and 1 to 4 ~m width, 

and an anterior free flagellum of up to 20 ~m; and the round or oval amastigote, of 
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4~m in length and 2 ~m wide on average, with a very short, almost invisible, flagellum 

enclosed in the flagellar pocket (Antoine et al., 1999). A third form, the paramastigote 

(Lang et al., 1991) with only 5 to 6 ~m of length and a very short flagellum, has been 

described in the vector but the role in the life cycle is not known (Antoine et al., 1999). 

Leishmania are kinetoplastids, considered to be an ancient group descendent 

from primitive mitochondriate eukaryotes (Vickerman, 1994), although possessing 

most of their characteristic structures (Antoine et al., 1999). The flagellum arises from 

the eukaryotic basal body in the base of an anterior invagination of the cell 

membrane - the flagellar pocket - and has an eukaryotic axoneme (9+2) structure, 

although a paraxial rod of paracrystalline structure is also present which accompanies 

the axoneme along its entire length (Vickerman, 1974). The basal body has a 

companion second basal body, in a centriolar construction (Vickerman, 1974). The 

flagellum of trypanosomatids has the unique ability to form junctional complexes of 

the desmosome or hemidesmosome type with the outer membrane of its own cell or 

with other flagellates, or the substrate, notably the insect gut lining (AntOine et al., 

1999; Vickerman, 1974). The flagellar pocket is the only membrane portion capable 

of fusion and thus of endo or exocytosis (AntOine et al., 1999). The kinetoplast as 

seen by electron microscopy, is a network of circular DNA molecules (see 1.2.4.) 

which is localised in the interior of the single mitochondrion near the base of the 

flagellar pocket (Vickerman, 1974). The mitochondrion has a typical double 

membrane structure with cristae on the inner membrane and is often found forming a 

complex labyrinthic net with the endoplasmic reticulum (Vickerman, 1974). The Golgi 

apparatus is readily recognisable, with its multivesicular bodies at its distal ends. A 

pulsatile or contractile vacuole empties from this region into the flagellar pocket 

(Vickerman, 1974). Other eukaryotic organelles such as Iysosomes are present 

(Antoine et al., 1999), but also a typical kinetoplastid organelle, the glycosome, which 

is related to peroxisomes and glyoxysomes in high eukaryotes, with important 

metabolic functions (Antoine et al., 1999). Another peculiar organelle type is the 

acidocalcisome (Vercesi et al., 1994), also present in apicomplexan paraSites, which 

is very rich in cations (phosphates, Ca2+, Mg2+, Na+) (Docampo and Moreno, 1999; 

LeFurgey et al., 1990) and membrane pumps (Docampo et al., 1995; Vercesi et al., 

1994). Its function is unknown but this organelle may regulate the Leishmania internal 

pH (Docampo and Moreno, 1999), store Ca2+ for signalling infective stages (Lu et al., 

1997) or store energy (Docampo and Moreno, 1999; Scott et al., 1997). 

The Leishmania promastigote membrane is very rich in lipophosphoglycan 

and a glycosyl-phosphatidylinositol (GPI) linked metalloenzyme, glycoprotein 63 
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(GP63), also known as major surface protease (msp), promastigote surface protease 

or leishmanolysin (see 6.1.2.), both of which are very reduced or disappear in the 

amastigote phase (Antoine et al., 1999). These molecules play important roles in the 

life cycle of the parasite. Glycoinositol-phospholipids are present in both stages of the 

parasite and may have a structural role or protect from the low pH in the 

parasitophorous vacuole or hydrolases in either stage. Other membrane proteins 

include ATPases (Meade et al., 1989) and those in the polymorphic families of M-

2/PSA-2 (Murray and Spithill, 1991; Murray et al., 1989) and protein B (Flinn et al., 

1994; Pimenta et al., 1994). 

Cell division in Leishmania begins with replication of the flagellum (Antoine et 

al., 1999; Vickerman, 1974). The kinetoplast divides simultaneously with the 

mitochondrion and before the nucleus. Leishmania do not have classic mitosis 

because they lack visible chromosomal condensation, although they have stable 

chromosomes. The nucleus is enveloped in a microtubule net and elongates to divide 

in two (Vickerman, 1974). It is not clear whether the chromosomes are attached to 

microtubules or to the nuclear envelope (as in dinoflagellates). Meiosis is unknown as 

are any sexual stages, although fusion of parasites has been observed (lanotte and 

Rioux, 1990) and hybrids have been identified (Belli et al., 1994; Delgado et al., 

1997; Dujardin et al., 1995a; Kelly et al., 1991). 

1.2.2. Life cycle(s) 

Leishmania are intracellular parasites of macrophages in a wide range of 

mammalian hosts which are transmitted through the bite of insects of the genus 

Phlebotomus or genus Lutzomyia. Highly motile promastigotes accumulate in the 

foregut of the sandfly and are expelled during the insect's blood meal (Walters, 

1993). In the mammal, promastigotes are phagocytosed by macrophages (Ashford 

and Bates, 1999) or may differentiate into amastigotes (el Azzouni et al., 1998), 

which are then phagocytosed. Low pH or temperature increase (34-36°C) were 

shown to trigger amastigote-like differentiation (Bates, 1994; Pan et al., 1993). The 

phagocytic vacuole becomes a parasitophorous vacuole (Antoine et al., 1998), where 

amastigotes divide and eventually are released to infect other macrophages. Infected 

macrophages can remain in the skin where they are eventually eliminated (most CL) 

or amastigotes can be carried to internal organs (Vl) or to the mucosae (MCl) where 

they can remain until treatment or death of the host. 

Sandflies may ingest infected macrophages with a blood meal. The 

amastigotes are released and differentiate into procyclic promastigotes which are 
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short, actively dividing and have low motility, and attach to the gut epithelial cells 

(Killick Kendrick and Rioux, 1991). The insect often takes a sugar meal between two 

consecutive blood meals which enables differentiation (metacyclogenesis) into 

infective metacyclic promastigotes which are long, non-dividing, highly motile and 

migrate to the mouth parts to start the cycle again. 

The different morphological forms can not only be differentiated by shape and 

behaviour, but also by surface antigen composition (Moody, 1993). Promastigotes 

present a thick glycocalyx rich in GPI-anchored glycoconjugates, which can be 

divided into two classes: glycolipids and glycoproteins. The main glycolipid is a 

lipophosphoglycan, but there are also glycosylinositol phospholipids (see 1.2.1.). 

1.2.3. Evolutionary history of Leishmania 

1.2.3.1. The kinetoplastids 

Kinetoplastids are peculiar eukaryotes with characteristic features, such as a 

kinetoplast, RNA editing, a glycosome, a nucleus with polycistronic transcripts. The 

surface membrane, the cytoskeleton, the flagellar pocket are also characteristic in 

kinetoplastids. They differ from cilliates in that they combine functional diversity with 

morphological conservation (Vickerman, 1994). 

It is accepted that kinetoplastids are related to free living euglenoids, but 

opinions are divided as to the origin of parasitism (Vickerman, 1994). The group 

includes monogenetic as well as digenetic parasites and hosts include fishes, 

amphibians, mammals, reptiles and plants. Vectors are usually insects but leeches 

transmit fish trypanosomes. It is far from clear whether kinetoplastids evolved with 

insects and were accidentally transmitted to vertebrates, which became hosts, or first 

evolved with vertebrates and secondarily acquired transmission through insects. 

Evidence supports both hypotheses but knowledge of the biology of species non­

infective to man is poor. It is also highly likely that most kinetoplastid species have not 

been found yet, let alone studied, especially free living species and in marine animals 

and reptiles. In most phylogenetic trees of Kinetoplastida, parasitism either has arisen 

independently in different lineages (Vickerman, 1994), or has been lost in others. 

Kinetoplastids are metabolically very versatile and can use both amino acids 

and sugars, thus facilitating adaption to new hosts. Different life cycles and different 

hosts may mean that reconstruction of phylogenies based upon transmission data 

can become very difficult with different evolution rates and (or) absence of co­

evolution. 

Vectors and modes of transmission of the different groups are extremely 

divergent and, although kinetoplastids may infect insects, development of vectorial 
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capacity was probably acquired independently. Trypanosoma brucei and Leishmania 

are both transmitted by Diptera but by sub-orders Brachycera and Nematocera, 

respectively, and T. cruzi is transmitted by a different Order of insects (Hemiptera). 

The most important human parasites within the Kinetoplastida, other than 

Leishmania, are the trypanosomes, which seem to have had a common ancestor and 

may have differentiated into T. brucei and T. cruzi clades during the split between 

South America and Africa (Alvarez et a/., 1996; Stevens and Gibson, 1999; Wright et 

a/., 1999). However, a trypanosome 'aquatic clade' has also been identified, 

somewhat closer to the T. cruzi clade, in terms of genetic distance, and the 

evolutionary relationships with the other two clades are obscure. In the most 

comprehensive tree of the trypanosomatids obtained so far, a Leishmania / Crithidia / 

Endotrypanum clade was evidenced (Stevens and Gibson, 1999). Definition of 

relationships within this clade has been difficult and it is possible that the group 

suffered a rapid radiation, making true phylogenies difficult to detect. 

1.2.3.2. Leishmania 

The evolutionary history of Leishmania seems to be connected with that of 

strains classified as Endotrypanum, described as an intra-erythrocytic parasite (Shaw 

and Bird, 1969). Some Leishmania species (L. colombiensis, L. deanei, L. 

equatoriensis, L. herreri and L. hertigl) were found to be part of an Endotrypanum 

clade (Cupolillo et a/., 2000) and are not known to infect man, except L. colombiensis. 

A redefinition of the Leishmania genus was proposed recently, with division into an 

Euleishmania Section with true L. (Viannia) and L. (Leishmania) sub-genera and a 

Paraleishmania Section with L. colombiensis, L. deanei, L. equatoriensis, L. herreri, 

L. hertigi and current laboratory strains under the genus Endotrypanum (Cupolillo et 

a/., 2000). The Endotrypanum clade, which has only been found in the NW, was very 

close to the Euleishmania Section and the sub-genus Viannia, also only found in the 

NW, is usually close to the root of the Leishmania clade. Therefore, a NW origin for 

the Leishmania genus was proposed (Noyes, 1998b), although other alternatives, 

such as a Paleartic (Kerr, 2000) and an African origin (Momen and Cupolillo, 2000) 

have also been defended. 

OW Leishmania seem to have less genetiC diversity, on the whole, than NW 

Leishmania, which suggests that they may be of more recent origin. NW Leishmania 

could have reached the OW through Beringia during the Miocene, perhaps 

transported by infected critecid rodents which underwent a major radiation and 

migration at that time (Noyes, 1998b). The most likely ancestor of OW species is the 
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L. mexicana complex, which causes CL similar to that by L. major. Leishmania major 

like strains have been identified in the Americas, although their origin is dubious. 

Independently of their ultimate origin, most OW Leishmania species occur in 

Northeast Africa (Sudan, Kenya, Ethiopia) or the Near / Middle East, where they may 

have originated and from where they may have spread. These are regions where 

humans and later agriculture may have first developed. Some Chinese L. donovani 

and L. infantum are genetically divergent from those of other regions which could be 

a local phenomenon enhanced by genetic isolation and new ecological niches or 

those strains could be remnants from early OW colonists. 

Some of the most intringuing Leishmania are the blood parasites of reptiles 

which have been found exclusively in the OW. These parasites had been regarded 

as subgenus L. (Sauroleishmania) but were classified more recently in a different 

genus Sauroleishmania Ranque, 1973 (Killick-Kendrick et al., 1986). In contrast, 

phylogenetic analyses of Leishmania usually place the Sauroleishmania clade well 

within the genus Leishmania (Croan et al., 1997; Noyes et al., 1997), which provides 

an additional difficulty for the search of the origin of Leishmania. If Leishmania 

originated in the NW, then, how to explain the frequent branching of Sauroleishmania 

before the sub-genus Leishmania (including L. mexicana)? On the other hand, if 

Leishmania originated in the OW, how to explain the greater genetic diversity in the 

NW and the relationship with the NW specific Endotrypanum clade? Noyes (1998b) 

suggested that burrow sharing between Leishmania infected rodents and reptiles 

may have facilitated cross transmission by the sandfly co-inhabitants if the insects 

were not specific feeders. Parasites might even have been initially transmitted 

through direct blood contact, for example in fights, or by feeding on infected 

sandflies. Those parasites which successfully had infected lizards would undergo 

faster evolution than the mammalian relatives through different selection pressures in 

a very different host. The faster evolution would explain the early branching patterns 

obtained in some trees of the group by a long branch attraction effect, if they are 

relatively recent. There is some evidence that the genetic divergence rates of 

Sauroleishmania are higher than among other Leishmania (Croan et a/., 1997). 

Those parasites are transmitted by a different genus of sandflies, but the phylogeny 

of the vector is only poorly understood. It has been found that mammalian 

Leishmania can be infective to lizards (Noyes et al., 1997), thus supporting a close 

relationship between Leishmania and Sauroleishmania. Furthermore, lizard 

Leishmania were found to be capable of causing transient infections of mammals 

(and humans) (Adler, 1964, Belova, 1971, Manson-Bahr, 1961 cited in Noyes et al., 
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1997). If Sauroleishmania are closer to OW Leishmania, then the genus may be 

paraphyletic and Sauroleishmania need to be considered as a sub-genus of 

Leishmania again. 

Phylogenetic reconstruction of Leishmania is hampered by lack of knowledge 

of their ecology and also by their diverse range of hosts. Higher molecular diversity 

found in natural populations of a given Leishmania species was found to be related 

with the higher number of sandfly vector(s) and / or animal reservoir(s) involved in the 

transmission cycle of the parasites in a possible, although not strict, co-evolution 

phenomenon (Cupolillo et a/., 1998). Generation time is very difficult to determine as 

the life cycles in the natural reservoirs (when known) remain to be fully elucidated. All 

known Leishmania are transmitted by sandflies as far as it is known with infection 

restricted to the digestive system, although excretion with urine has been 

demonstrated (Sadlova and Volf, 1999). The importance of this finding is difficult to 

balance at the momment, although it suggests a possible alternative means of 

transmission (including vector to vector) without a blood feeding cycle. 

1.2.4. Current taxonomy of Leishmania 

The classification of Hausmann and Hulsmann (1996) includes Leishmania in 

the Empire Eukaryota, Kingdom Mastigota, Subkingdom Dimastigota, Superphylum 

Metakaryota, Phylum Euglenozoa, Subphylum Kinetoplastida, Class 

Trypanosomatidae, Genus Leishmania Ross, 1903. However, most researchers still 

use the classification by Levine et a/. (1980), particularly below and at the level of 

Order, which includes Leishmania in the Kingdom Protista Haeckel, 1866, Sub­

kingdom Protozoa (Goldfuss, 1817) Siebold, 1848, Phylum Sarcomastigophora 

Honigberg & Balamuth, 1963, Sub-phylum Mastigophora Diesing, 1866, Class 

Zoomastigophorae Calkins, 1909, Order Kinetoplastida (Honiberg, 1963) Vickerman, 

1976, Sub-order Trypanosomatina Kent, 1880, Family Trypanosomatidae (Doflein, 

1901) Grobben, 1905, Genus Leishmania Ross, 1903. 

The classification of protozoa is not consensual and variations in the relative 

categories of each group and the higher groups can vary among authors (Corliss, 

1998). The protozoa are a very difficult group to work with because of the lack of 

evident morphological structures and varied life styles. The long time elapsed since 

major divisions have occurred makes it difficult to use general molecular clocks 

because of the lack of homologies in many cases and the accumulation of mutations 

beyond an optimal resolution level. 

If higher levels of classification are difficult to establish, similarly, the species 
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genus Leishmania 

1---
sub-genus Leishmania Viannia 

1- --r ---, 
complex L. donovani L. tropica L. major L. aethiopica L. mexicana L. hertigi unassigned L. braziliensis L. guyanensis L. naiffi unassigned 

specles L. donovani L. tropica L. major L. aethiopica L. mexican a L. hertigi L. arabica L. braziliensis L. guyanensis L.naiffi L. lainsoni 
L. infantum L. amazonensis L. deanei L. turanica L. peruviana L. panamensis L. colombiensis 
(L. chagasi) L. venezuelensis L. gerbilli L. shawi L. equatoriensis 

L. enrietti L. forattini 
L. aristidesi 
L. garnhami 

possibly L. archibaldi L. killicki L. pifanoi 

Figure 6 - Summary classification of the Leishmania (Rioux et a/., 1990; Shaw, 1994; WHO, 1990). Many assignments are controversial and may 

vary according to different authors. 
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level is not any easier. The biological concept of species is impossible to apply to 

asexual organisms, since phylogenetic trees obtained from molecular data are 

probably often a collection of clonal lines. The clonal pattern can often be 

complicated by occasional hybridisation and reticulate evolutionary trees are very 

difficult to interpret if forced into dichotomous trees. 

There are a number of major branches within Leishmania, which have been 

classified as sub-genus, complexes of species, species, sub-species. The 

nomenclature is far from stable. Although these branches are easy to identify with a 

small number of strains per group, larger samples make trees much more difficult to 

interpret and it is often apparent how close the most ancient strains are to each other , 

even if they are from different 'species'. 

Other genera in the Trypanosomatidae are Crithidia, Leptomonas, 

Herpetomonas, B/astocrithidia, Trypanosoma, Phytomonas and Endotrypanum. The 

genus Sauro/eishmania has been established for Leishmania like parasites found in 

the blood of reptiles. Those parasites were initially classified as Leishmania sub­

genus Sauro/eishmania but were judged as sufficiently different to belong to a 

different genus. Molecular classifications, however, have placed some of the 

Sauro/eishmania species within the Leishmania group. A better understanding of the 

reptile Leishmania is not possible with the limited number of isolated strains. 

The genus Leishmania has been divided into two sub-genera, according to 

the development in the insect gut (Lainson and Shaw, 1987); the Viannia include a 

phase of division in the hindgut of the sandfly and the Leishmania are limited to the 

foregut and midgut. This rather arbitrary division has, however, been confirmed by 

molecular data. The Viannia subgenus is limited to the NW but the Leishmania sub­

genus is spread through the whole distribution of leishmaniasis. 

In an attempt to rationalise the complex classification of Leishmania species, 

they were assigned into complexes of species or strains which reflect monophyletic 

groups with similar epidemiology and clinical presentation (Fig. 6). A number of 

species remain unassigned. 

Traditionally, Leishmania have been differentiated by allozyme (isoenzyme) 

analysiS and different phenotypes sharing certain profiles are named zymodemes. 

The degree of genetiC diversity within each species varies enormously; some are 

extremely polymorphic and others are very conserved. This is a consequence of the 

traditional designation of species according to geographical distribution, clinical 

presentation, epidemiological characteristics. The limited number of enzymes chosen 

for analysis and the system used do not allow full exploration of the extent of diversity 

and enzyme based classifications are necessarily biased (see chapter 3). 
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1.2.5. Genetics of Leishmania 

Leishmania have two genomic pools: the nucleus and the kinetoplast, which 

corresponds loosely with the classical mitochondrial genome of higher eukaryotes. 

Viruses have been found and characterized in Leishmania, mostly in L. 

braziliensis and L. guyanensis and also one in L. major 5-ASKH (Widmer and Dooley, 

1995), but virus-like particles have been reported in L. hertigi (Molyneux, 1974). The 

Leishmania viruses have - 5280 base pairs (bp) double stranded RNA within a 

spherical capsid and seem to be close relatives of the yeast L-A/ScV virus. 

Phylogenies of Leishmania infected strains and respective viruses suggested a long 

association time between the two (Widmer and Dooley, 1995), but this hypothesis is 

difficult to reconcile with present hypotheses for Leishmania evolution. 

1.2.5.1. Nuclear genome 

The nuclear genome is arranged as linear chromosomes that do not undergo 

condensation. For this reason, study of the Leishmania chromosome organisation 

was not possible until pulse-field gradient gel electrophoresis (PFGE) was developed. 

This electrophoretic technique was applied initially to the smaller chromosomes of 

yeast and revolutionised kinetoplastid genetics. The direction of the electrical field 

during electrophoresis is changed at regular times thus allowing the separation of the 

full length chromosome-sized DNA. 

The Leishmania nuclear genome has a GC content of about 60% (Alvarez et 

al., 1994) and contains 36 chromosomes (Wincker et al., 1996), of between 200 and 

4000 kilo base pairs (kb) in length (Lighthall and Giannini, 1992). Leishmania seem to 

be mainly diploid (Bastien et al., 1992; Cruz et al., 1991), although some strains might 

be aneuploid because extensive size differences could be identified between some 

homologous chromosomes. There may be extensive size differences between 

homologous chromosome pairs of different species and karyotypes may be used to 

distinguish between some species. Because of the size variability of Leishmania 

chromosomes, they have to be identified by probe hybridisation and linkage studies 

(Wincker et al., 1997). The assignment of specific markers to chromosomes 

facilitates mapping of genes as part of the genome sequencing project. Telomeres 

have been identified, and are the origin of much of the chromosome size variability 

(Wincker et al., 1996), but centromeres have not been found. 

Genes are often present in tandem arrays, or as multiple copies; gene 

amplification was once thought of as being responsible for chromosome size 

polymorphisms. Genes, so far, lack introns and multicistronic transcription starts at a 
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single 5' promoter (Graham, 1995). Mature RNAs are generated by co-transcriptional 

capping, through trans-splicing (Graham, 1995; Nilsen, 1994). Small capped non­

polyadenylated RNAs, consist of a 5' exon (Nilsen, 1994) (the spliced leader or mini­

exon) and a 3' splice donor site, are produced and associate with each forming 

messenger RNA (mRNA). The spliced leader is linked to the 5' end of the transcribed 

region of the mRNA (Graham, 1995; Nilsen, 1994). This process caps the mature 

mRNA, and polyadenylation is thought to be functionally coupled to trans-splicing 

(Nilsen, 1994) during multicistronic transcript processing. 

1.2.5.2. Kinetoplast genome 

The kinetoplast genome is composed by a complex network of circular DNA. 

In the Kinetoplastida there are approximately 20-50 maxicircles of 20 to 40kb and 5 x 

10
3 

- 10
4 

minicircles (Simpson, 1987) of 0.5 to 2.9kb, making up to 90% of the mass 

of the kinetoplast (Shapiro and Englund, 1995). Maxicircles are the functional 

equivalent of mitochondrial DNA of other eukaryotes (Shapiro and Englund, 1995). 

They encode mitochondrial ribosomal RNA (rRNA) and proteins, most of them 

metabolic enzymes, and have a variable region within the replication unit. Minicircles 

have extremely variable sequences except for a region of 100 to 180 bp which 

contains the origin of replication, the rest of the sequence encodes guide RNAs 

(Shapiro and Englund, 1995). The organisation of the kinetoplast is complex with 

each minicircle linked to three neighbouring minicircles in a tight disk shaped network. 

Replication is done with the aid of two complexes of replication proteins which are 

located at opposite edges of the disk. Minicircles are freed from the centre of the disk 

and migrate to the edge where they are replicated and become attached to the disk 

once again. Maxicircles are encased in the disk and replicate attached to it. 

Otherwise, replication of both type of circles seems to be dependent on the same 

initiation sequence and probably involves the same enzyme mechanism. Replication 

of the kinetoplast network involves replication of the DNA to twice the initial number 

of molecules and remodelling of the minicircle distribution within the structure, 

followed by scission of the network and a second remodelling to create two separate 

and fully organised kinetoplasts. There seems to be a strong selective pressure to 

ensure that all classes of minicircles are transmitted to both daughter cells in most 

kinetoplastids. Minicircles have an important role in maxicircle gene expression and 

little variation is observed in restriction patterns after several culture subpassages of 

Crithidia fascicu/ata and Sauro/eishmania tarento/ae. Kinetoplast DNA uniqueness 

does not stop at the organisational level. Maxicircle transcripts undergo extensive 
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RNA editing, with addition or deletion of uridine residues at sites specified by guide 

RNAs synthesised from minicircles. 

1.2.5.3. Genes 

Leishmania have, as kinetoplastids, some characteristic genes which are not 

present in other eukaryotes, like trypanothione reductase (Keithly, 1989; Shames et 

al., 1986) and mini-exon (Comeau et al., 1986; De Lange et al., 1983; Nelson et al., 

1983). These are associated with unique metabolic and genetic functions, 

respectively. Other genes have particular organisations, like the large sub-unit (LSU) 

of the rRNA genes, which are present in several copies and separated by small 

spacers (Campbell et al., 1987; Spencer et al., 1987). 

Most conserved genes across eukaryotes are also present in Leishmania, 

including for glucose and amino acid metabolism, some of which have been used for 

isoenzyme analysis. Future phylogenetic analysis may also take advantage of these 

universal genes. 

1.2.5.4. Population genetics 

Leishmania population structure is thought and considered to be essentially 

clonal (Tibayrenc and Ayala, 1991). The main arguments are the presence of over­

represented identical phenotypes, linkage desequilibrium and absence of 

recombinant genotypes (Tibayrenc and Ayala, 1991; Tibayrenc et al., 1990). The first 

two arguments apply to all Leishmania species, but some hybrids have been found 

between L. major and L. arabica (Evans et al., 1987; Kelly et al., 1991), L. braziliensis 

and L. guyanensis (Delgado et al., 1997), L. braziliensis and L. peruviana (Dujardin et 

al., 1995a) and L. panamensis and L. braziliensis (Belli et al., 1994). In the isoenzyme 

characterization of L. donovani sensu lato (s.I.) by LeBlancq and Peters, (1986) a 

zymodeme (LON 50) is described which seems to be an ASA T hybrid between two 

otherwise identical zymodemes (LON 46 and 48). Hybrid formation seems to be more 

frequent in the Viannia subgenus, despite findings of mixed infections of other 

Leishmania species. Mixed L. mexicana / L. braziliensis infections were found in a 

sandfly (Barrios et al., 1994), and human patients (Hernandez Montes et al., 1998; 

Silveira et al., 1984), as well as L. braziliensis and L. donovani (Oliveira Neto et al., 

1986b), in this case in different organs. A mixed L. donovani / L. major infection was 

also identified in a human patient and in the same organ (spleen) (Mebrahtu et al., 

1991), and two different L. infantum zymodemes were found in the same organs in a 

dog (Pratlong et al., 1989). No evidence of hybrid formation was found, however, 
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even in sandfly experiments with L. major (Panton ef al., 1991), despite previous 

observation of promastigote fusion (Lanotte and Rioux, 1990). There is weak 

evidence that recombination, if occurring, might be a vertebrate host event (Kreutzer 

ef al., 1994) with fusion of amastigotes followed by meiosis. However, the duplication 

of DNA seen might be explained by duplication of DNA during mitosis. 

It seems that Leishmania are capable of some form of recombination, even if 

not in the true sexual sense, but that population structure is clonal. The model of 

epidemic clonality (Maynard Smith ef al., 1993) may apply to Leishmania (Tibayrenc, 

1998). In this model, the species is essentially sexual with clonal propagation in 

epidemic situations. Leishmania may be a special case of this model, capable of 

recombination, but essentially with clonal spread. A few clones may be amplified 

preferentially in epidemic situations and thus become dominant in the population. 

Leishmania, as clonal organisms, are capable of colonizing new environments with a 

single founder strain and initiating an epidemic. Furthermore, the likelihood of two 

simultaneous infections may be small due to host / vector requirements, but also to 

low transmission and incidence. 

Studies on population structure of Leishmania are often biased because 

samples are often not sympatric (Tibayrenc, 1998). Methods used to detect genetic 

variability may not be sensitive enough to detect recombination events between 

closely related strains, which are the most likely to be able to cross. 

1.3. The Leishmania donovani complex 

1.3.1. Definitions of the complex 

The parasites responsible for VL are those of the L. donovani complex. It was 

from VL cases that characteristic organisms were observed by Leishman and 

Donovan in 1903 (Jarry, 1999). Laveran and Mesnil propose the name Piroplasma 

donovani but later that year Ross creates the genus Leishmania for the new 

organisms. Leishmania donovani was thus the first to be described and has become 

the type species for the complex and for the genus Leishmania. In 1908 the parasite 

responsible for Mediterranean VL is named L. infanfum by Nicolle, for the disease 

seems to be associated with infants. Castellani and Chalmers named the parasites 

causing VL in Sudan as L. archibaldi in 1919, which was later defined as zymodeme 

MON 82 (Rioux ef al., 1990). After VL was identified in South America by Chagas, in 

1911, the parasite was finally named L. chagasi by Cunha and Chagas in 1937. 

As more fully discussed in the next chapter, it is rather difficult to define 

species in Leishmania. Rioux ef al. (1990) have used phenetic complexes of strains 
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instead, that would apply to monophyletic and closely related groups of zymodemes 

usually with particular epidemiological characteristics. The L. donovani complex, 

defined in that way, would include the designated species of L. donovani, L. 

infantum, L. chagasi and L. archibaldi. The taxonomic status of L. archibaldi is 

uncertain, as it has only been defined as zymodeme MON 82 and no epidemiological 

or clinical support has been found yet. The status of L. chagasi is also uncertain as 

most authors propose synonymy with L. infantum. 

Several phylogenetic analyses, using either isoenzymes (Le Blancq et al. 

1986; Mebrahtu et al. 1992; Rioux et al. 1990), DNA sequences (Piarroux et al. 

1995), random amplified polymorphic DNA (RAPD) (Schonian et al. 1996), have 

shown that the L. donovani complex is monophyletic. The named species have been 

much more difficult to be identified as genetically monophyletic. Most analyses, 

however, have only used a small and often unbalanced number of strains of each 

group or used a limited number of characters which are difficult to apply for 

phylogenetics, such as isoenzymes, or single RAPD primers. Thus, except for 

isoenzyme typing, genetic diversity within the L. donovani complex has been poorly 

studied, despite the need of strain markers for diagnostics and better understanding 

of epidemiology. 

More specifically, Indian VL does not seem to be identical to African VL. 

Despite clinical similarities, humans are the reservoir in Indian VL, whilst the main 

reservoir in Africa is essentially unknown. Furthermore, Indian L. donovani are 

isoenzymatically very homogenous whilst African L. donovani are much more diverse 

(Le Blancq et al. 1986; Rioux et al. 1990). Complicating the picture, Chinese strains 

were found to have a specific zymodeme (MON 35), which was related to an African 

rather than Indian zymodeme (RiOUX et al., 1990). 

1.3.2. Leishmania infantum and Leishmania chagasi - Twins, sisters or 

cousins? 

Cunha and Chagas in 1937 described the organism responsible for VL in the 

NW and named it L. chagasi, but Cunha (1938) later suspected that this organism 

and L. infantum were indistinguishable. Lainson and Shaw (1999), however, still 

prefer to maintain the species status for the agent of VL in the NW, defended by 

Travi et al. (1998) whilst other authors proposed synonymy (Grimaldi and Tesh, 1993; 

Rioux et a/., 1990). 

A few genetic and phenetic methods have been reported to distinguish 

between L. infantum and L. chagasi, such as radiorespirometry (Decker-Jackson and 
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Tang, 1982), monoclonal antibodies (Santoro et al., 1986), glycoconjugate ligands for 

promastigote internalization into murine macrophages (Palatnik et al., 1990) and DNA 

fingerprinting (Ellis and Crampton, 1991), but all studied L. chagasi strains have 

isoenzyme profiles similar to the reference L. infantum strain IPT-1 (Cupolillo et al., 

1994; Momen et al., 1987; Moreno et al., 1984), the most common L. infantum 

zymodeme in Europe, and L. chagasi could not be distinguished from L. infantum by 

most genetic methods, such as restriction fragment length polymorphism (RFLP) 

(Beverley et al., 1987), DNA probes (van Eys et al., 1991) or RAPD (Schonian et al., 

1996). 

The agent of visceral leishmaniasis in the Americas is L. chagasi, but all other 

species of the L. donovani complex belong to the Old World, which indicates an 

origin in the OW. By way of explanation, Lainson and Shaw propose that L. chagasi 

has been present for a long time in the American continent. The finding of healthy 

infected foxes (Silveira et al., 1982) in the New Word, the existence of other New 

World reservoir hosts, such as sloths (Travi et al., 1994), adaptation of the parasite to 

at least two vectors in the New World and wide geographical range suggest an 

ancient association (Lainson et al., 1987), estimated at 2-3 million years (My) ago 

with the arrival of wild canids in the New World. However, L. infantum was also 

estimated to have diverged from L. donovani (Moreno et al., 1984) 2My ago, and 

most studies, showed reduced diversity between L. infantum and L. chagasi, 

suggesting that, on the contrary, separation was quite recent. 

1.4. Identification and phylogenies 

At this point, it is necessary to define concepts and terminology. Taxonomy is 

the science of classification, which is the construction of taxonomic groups. 

Identification is the act of assigning an organism to an already established group. 

Phylogeny is the evolutionary history of organisms. 

1.4.1. Traditional methods of identification and phylogenetic analysis of 

Leishmania 

Before the advent of DNA technology, criteria used to characterize and 

classify Leishmania can be divided in three main groups: clinical and biological, 

immunological and biochemical. 
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1.4.1.1. Clinical and biological criteria 

Since identification and isolation of L. donovani in 1903, and until the decade 

of 1950, other Leishmania species were predominantly named and classified 

according to geographic and clinical criteria (Pratlong and LanoUe, 1999). Thus, e.g. 

the names L. aethiopica, L. mexicana, L. braziliensis, were assigned, but also L. 

infantum, which was applied for mainly infantile kala-azar. Organisms isolated would 

be classified by the clinicians according to pathological presentation. It has, however, 

been recognized since that different species may produce similar clinical 

presentations and vice versa. 

Although higher categories of protozoa have quite distinct morphologies, 

closely related species are often very similar and Leishmania are no exception. 

Despite morphological variation within the life cycle, Leishmania species are virtually 

indistinguishable morphologically. Only L. major and L. braziliensis have been 

distinguished by size from, respectively, L. tropica and L. mexicana. Even electron 

microscopy could not define species specific morphological differences, although 

microtubules have been used for differenciation (Pratlong et al. 1999). 

As with bacteria, some researchers tried to characterize Leishmania using 

metabolic characteristics and growth rate. Unfortunately, Leishmania do not grow well 

in defined medium and require blood or serum, thus it was difficult to use metabolism 

as a character. Lainson and Shaw (1972) were able to distinguish between the faster 

growth of L. mexicana and the slower growth of L. braziliensis in Novy, McNeal and 

Nicolle (NNN) medium. 

Characterization by means of animal infection criteria has been done by 

tropism and speed of development by Lainson and Shaw (1972) in the New World 

and Pratlong et a/. (1986) in the Old World. 

Lainson and Shaw (1979) were able to divide the genus Leishmania into two 

sub-genera by development in the vector gut: species of the L. braziliensis complex 

are also present in the posterior gut, which came to define the sub-genus Viannia, all 

other species belong to the sub-genus Leishmania. 

1.4.1.2. Immunological criteria 

A test using direct agglutination with live parasites (Noguchi-Adler) was able to 

distinguish between Leishmania species complexes but standardization was difficult 

to accomplish (Le Fichoux et al., 1999). Schnur et al. (1972) used the excreted factor 

(phosphoglycans released by promastigotes and amastigotes during in vitro growth) 

for characterization. Phosphoglycans precipitate in presence of homologous rabbit 
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antiserum and are discriminated by Ouchterlony double diffusion. This technique 

differentiates between the main Leishmania species complexes. In 1981, a 

monoclonal antibody method was developed (McMahon Pratt and David, 1981) and 

differentiated between Leishmania species and even sub-species, but remained 

restricted to a few laboratories (Le Fichoux et al., 1999). 

1.4.1.3. Biochemical criteria 

An heir to metabolic characterization, a technique, based on consumption of 

14C labelled amino acids and hydrocarbon molecules and named radiorespirometry, 

was developed by Decker-Jackson et a/. (1977). Although a degree of correlation 

was found between metabolic profiles and clinical type, and it was claimed that 

radiorespirometry could distinguish between L. infantum and L. chagasi, 

characterization was not exact and it is technically demanding. Radiorespirometry 

never became adopted for identification purposes. 

Lectins, proteins which are capable of specific recognition of sugars, were 

used in an agglutination test to distinguish between Old World Leishmania species 

(Schottelius, 1982) and even OW from NW species if enough lectins were used 

(Pratlong et al., 1999). Many results were not convincing and lectin agglutination 

requires rigorous experimental conditions; it was also abandoned. 

A biochemical technique which proved to be of enormous value, not only in 

Leishmania, but in many other organisms, is isoenzyme electrophoresis analysis 

(lEA). lEA was first used by Gardener et al. (1974) for Leishmania taxonomy. The 

electrophoretic mobility of malate dehydrogenase (MDH) differentiated between 

Leishmania groups, and many other enzymes were subsequently included. lEA is 

now the reference method for Leishmania identification and taxonomy, because of 

the adoption of standardization, and because it combines both specificity and stability 

of electromorphs with a high degree of intra-specific polymorphisms. lEA is amenable 

to typing by the enzyme profile, and to numerical taxonomy methods and cladistics, 

and thus suitable for phylogenetic studies. lEA was used in the present work and is 

described more fully in the introduction to Chapter 3. 

Very recently, a method has been developed to identify the repeating 

phosphosaccharide units of Leishmania lipophosphoglycans using electrospray 

mass-spectrometry (Wilson et al., 1999), which was used to differentiate L. mexicana 

from L. major. This approach is suitable for quick-typing of lipophosphoglycan repeats 

and was shown to detect alterations in repeat side chains caused by: culturing L. 

major promastigotes in the presence of L-fucose and in vitro metacyclogenesis of L. 
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major promastigotes. The authors anticipate that the method will be applicable to 

small samples of cultured field isolates or genetically-manipulated strains. 

1.4.2. Molecular methods of identification and phylogenetic analysis 

The first DNA based phylogenetic studies of Leishmania relied on the degree 

of cross-hybridization between genomic DNA of different species to extrapolate the 

degree of relatedness. With the discovery of DNA endonucleases (see introduction 

for Chapter 5) DNA hybridization was taken a step further to comparison of DNA 

fragments with specific probes. Band polymorphisms generated in this manner were 

called restriction fragment length polymorphisms (RFLPs) in what is called 

fingerprinting (Beverley et a/., 1984; el Hassan et a/., 1995; Ghalib et al., 1992; 

Guizani et a/., 1994; Hu et a/., 1992; Lu and Hu, 1990; Macedo et al., 1992; 

Massamba and Mutinga, 1992; Mendoza Leon et al., 1995; Oskam et al., 1998; 

Pascale et al., 1992; Ramirez and Guevara, 1987; van Eys et al., 1991; van Eys et 

al., 1989). RFLP have been used for classification as well as for identification. Simple 

probe hybridization to genomic DNA has been a tool for sensitive diagnOSis 

(Agatsuma, 1992; Barrios et a/., 1994; Benavides et al., 1993; Blackwell, 1992; 

Briones et a/., 1992; Esseghir et a/., 1993; Howard et a/., 1991; Hu et a/., 1992; 

Laskay et a/., 1991; Lu and Hu, 1990; Maingon et a/., 1993; Massamba and Mutinga, 

1992; Singh, 1997; Wilson, 1995). Applicability, in terms of specificity, resolution and 

sensitivity, of RFLP or fingerprinting to taxonomic groups depends on the probe used. 

However, the RFLP method is not very flexible because it is dependent on the probe 

used and only detects variation in the size of fragments harbouring conserved 

sequences. 

In a variation of the method, but without restriction, it was possible to study 

chromosomes and their gene organization. As mentioned before (see 1.2.5.1.) PFGE 

is used to separate and thus visualize Leishmania chromosomes. By use of probes, 

homologous chromosomes can be identified (Wincker et a/., 1997) and karyotypic 

analysis has been used for comparison between Leishmania strains and species 

(Dujardin et al., 1995b; Dujardin et a/., 1995c; Giannini et a/., 1986; Soto et a/., 1995). 

With PCR, it is possible to amplify unstable / more polymorphic regions using 

conserved flanking regions for primer hybridization, such as intergenic regions 

(Cupolillo et a/., 1995; Eisenberger and Jaffe, 1999; Hassan et a/., 1993), kinetoplast 

DNA (Breniere et a/., 1999), or satellite DNA (Ravel et a/., 1995; Rossi et a/., 1994; 

Russell et a/., 1999). PCR methods, in their many experimental modifications, are 

suitable for studying different aspects of genomes and can be applied to different 

aspects of taxonomy. Band size polymorphisms can be generated by variation in 
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number of repeated nucleotides, such as mini or microsatellites (Ravel et a/., 1995; 

Rossi et a/., 1994; Russell et a/., 1999), or by random hybridization of primers within 

the genome (Banuls et a/., 1999a; Banuls et a/., 1999b; Bhattacharyya et a/., 1993; 

Eisenberger and Jaffe, 1999; Garcia et a/., 1998; Gomes et a/., 1995; Maingon et a/., 

1993; Motazedian et a/., 1996; Noyes et a/., 1996; Oskam et a/., 1998; Schon ian et 

a/., 1996; Singh, 1997; Welsh and McClelland, 1990; Williams et a/., 1990), as in 

RAPD (Williams et a/., 1990) or arbitrarily primed - PCR (AP-PCR) (Welsh and 

McClelland, 1990). Amplified products can be characterized with probes (Breniere et 

a/., 1999; Degrave et a/., 1994; Guevara et a/., 1992; Maingon et a/., 1993; Qiao et 

a/., 1995; Rodgers et a/., 1990; Rodriguez et a/., 1994; Wilson, 1995), and detected 

by radioactivity, chemioluminescence, or be linked to an ELISA (PCR- solution 

hybridization enzyme-linked immunoassay, PCR-SHELA) (Qiao et a/., 1995). 

Amplification products can be further characterized by restriction analysis (PCR­

RFLP) (Singh, 1997; Victoir et a/., 1998). Multiplex PCR can be used with or without 

nested-PCR to generate differently sized products in the same reaction (Belli et a/., 

1998; Harris et a/., 1998). 

A wide range of other techniques has been developed, which could be applied 

in PCR based approaches to Leishmania taxonomy. Separation of fragments in 

denaturing conditions (Stothard et a/., 1997) by denaturing gradient gel 

electrophoresis (DGGE, Cariello et a/., 1988), single stranded conformational 

polymorphism (SSCP, Orita et a/., 1989), temperature gradient gel electrophoresis 

(TGGE, Riesner et a/., 1989), which enables distinction between different sequences 

with identical lengths. Specific amplification of restriction products, by amplified 

fragment length polymorphism (AFLP) (Vos et a/., 1995). Single nucleotide 

polymorph isms can be detected in PCR reactions by molecular beacons (Marras et 

a/., 1999; Tyagi et a/., 1998; Tyagi and Kramer, 1996), which are hair pin probes that 

fluoresce upon specific hybridization, or by TaqMan technology (Heid et a/., 1996; 

Holloway et a/., 1999) (probes that fluoresce when a chelator is released from the 

annealed probe by the DNA polymerase in a PCR reaction. Micro or mini 

oligonucleotide arrays (Chetverin and Kramer, 1993; Ramsay, 1998) can be used in 

fast DNA sequencing (Chetverin and Kramer, 1993), to detect mutations (Ravine, 

1999) or to study phylogenetic relationships (Hacia et a/., 1998). The number of new 

techniques is increasing and mostly driving towards higher processivity, lower cost 

and applicability to a wider range of problems, although many may never become 

established. 
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The most powerful technique for phylogenetic analysis is DNA sequencing 

(see introduction to Chapter 6), which greatly benefited from the development of 

PCR. DNA sequencing is invaluable for detailed analysis of genetic diversity and, 

thanks to ever more cheap and easy methods, may even be used for identification. 

1.4.3. Phylogenetic reconstruction 

The first classifications of Leishmania were of the Linnean type, based on a 

small number of mostly extrinsic characters, which by exclusion would characterize 

taxonomic groups at any level. Categories were essentially applied for convenience 

of arrangement. Lainson and Shaw (1987) proposed the most complete classification 

of the genus. 

When it was recognized that all living organisms are linked by descent from 

common ancestors, in other words, that species evolve from others, it became 

evident that classifications should be based on evolutionary relationships rather than 

similarities or convenience for the scientist. It thus became necessary to devise 

methods for establishing degrees of relationship and speciation events. 

Initially, evolutionary classifications were dependent on the expertise of the 

scientists. Expert knowledge, based on years of studying organisms, frequently only 

morphological characters, was necessary for classifications. Frequently, experts 

would disagree, and a more scientific and reliable measure for evolutionary 

relationships became necessary. 

Numerical taxonomy (Sokal and Sneath, 1963), assumed that calculating 

distances from a large number of characters, pooled and without hierarchy, would 

provide a reliable measure of how related organisms were, without any evolutionary 

hypothesis. Resulting classifications are called Adansonian or phenetic, for they are 

based upon phenetic characters. This method became more practical thanks to the 

development of computational facilities. The use of numerical taxonomy with 

Leishmania was applied to biochemical, such as isoenzyme profiles, and now also 

molecular characters, DNA sequences, RFLPs and RAPDs. Demes or identical 

profiles represent operational taxonomic units (OTUs) and strains can be thus 

identified. 

Almost at the same time, critics claimed that evolution can only be deciphered 

by analysis of shared derived homologous characters (synapomorphisms) and thus 

only cladistic classifications (Hennig, 1965), based on clades or monophyletiC groups 

or organisms are true. Although cladistics seems a more realistic methodology, 

choice of adequate characters (often few) and distinction of homologies from 

homoplasies is often still a matter of the researcher's judgement. 
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Traditional characters on which to base phylogenies were replaced by protein 

and enzyme electrophoresis and later by DNA methods, which probe the very core of 

evolutionary change. The several methods that are or were used to produce 

phylogenies and classifications have already been described in the section above. 

Depending on the methodology and concepts used, several models were 

devised for determining phylogenies. Broadly, the methods can be divided into 

distance methods, which are essentially phenetic, character methods, like parsimony, 

which are cladistic in nature, and maximum likelihood. This separation of methods is 

not straightforward, however, because given enough data, parsimony becomes 

almost phenetic in the sense that contradictory information has to be weighted and 

phenetic methodology can produce effectively cladistic trees because true phenetic 

similarity implies evolutionary relatedness. 

1.4.4. Methods for construction of phylogenies 

Character based methods produce phylogenetic trees through search or 

optimality criteria (Page and Holmes, 1998) with explicit functions to relate tree and 

data (or model of evolution). The quality of the tree is thus evaluated. The foremost 

search methods are maximum likelihood and maximum parsimony. Both methods 

perform better with small numbers of taxa, and a limitation is the required computing 

time, most notably for maximum likelihood. Maximum likelihood produces a tree that 

makes the data the most probable evolutionary outcome (Page and Holmes, 1998). It 

is thus a probabilistic model (Weir, 1996) which assumes an evolutionary model. The 

model assumes that changes are more likely along long branches and so, branch 

lengths are important (Weir, 1996). All data are used in this method. Maximum 

parsimony searches for trees with minimum total lengths and can thus produce 

several alternative trees. Only informative sites are used (Weir, 1996) and parsimony 

relies on few assumptions (Page and Holmes, 1998), namely: minimum total length of 

tree and maximum similarity between taxa. Because branch lengths are not 

important, parsimony is sensitive to the long branch attraction phenomenon (Page 

and Holmes, 1998; Weir, 1996): lineages in which more evolutionary change 

occurred are placed nearer to the root. This method performs better with more data 

and small change. There are a number of algorithms for maximum parsimony search. 

Wagner (Farris, 1970; Kluge and Farris, 1969) assumes reversiblility of character 

states. Trees can thus be rooted at any node without change in tree length (Weir, 

1996). 00110 parsimony (Farris, 1977) weights probabilities of reversion and is thus 

the method of choice for restriction fragments. Polymorphism parsimony assumes 
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retention of polymorphisms and Camin-Sokal (1965) considers that change to 

ancestral states is irreversible (Avise, 1994). 

Distance methods use a measure of similarity on which the quality of the 

resulting tree is dependent (Weir, 1996). These are clustering methods, which 

produce a single tree, and are fast but results can sometimes depend on order of 

addition of taxa (Page and Holmes, 1998). The unweighted pair-group method with 

arithmetic mean (UPGMA) (Sneath & Sokal, 1973) produces a rooted tree because 

an equal rate of evolution (molecular clock) is assumed for all lineages (Avise, 1994; 

Page and Holmes, 1998; Weir, 1996). Despite these assumptions it was found to 

perform well (Avise, 1994). The neighbour-joining method (Saitou and Nei, 1987) is 

the most used and produces an unrooted tree by determining the closest pairs to 

minimize the length of the tree (Weir, 1996). The resulting tree is correct for purely 

additive data (Weir, 1996) and performs as the minimum evolution method (a search 

method for distance data) (Page and Holmes, 1998) if with unequal rates of evolution 

(Avise, 1994). Another method is Fitch and Margoliash (1967), an additive approach 

which uses a weighted least squares algorithm (Weir, 1996) and produces an 

unrooted tree. The optimal tree is searched for by percent standard deviation. It 

performs better than UPGMA if rates of change are unequal in different lineages. 

Distance methods assume that distances are metric (Page and Holmes, 

1998), or: 

1. are not negative 

2. are symmetric (the distance between taxa a and b is the same as b and a) 

3. have triangle inequality (the distance between a and c is smaller than the sum of 

the distance between a and b and between b and c) 

4. are distinct (or that a is not identical to b). 

Distances must also be ultrametric, or 

5. the two largest distances must be equal, and thus must arise through an equal rate 

of evolution. 

Finally, distances must be additive, or 

6. the sum of the distance between a and b and between c and d, must be smaller or 

equal to the sum of the distances between a and c and between band d, or the sum 

of the distances between a and d and between band c. 

One way of evaluating compliance with ultrametric requirements is to compare 

the difference between the distances calculated from the tree and the observed 

distances. This is done by a measure of cophenetic correlation. 

To correctly measure genetic distance a few assumptions are made (Page 

and Holmes, 1998): 
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• all nucleotide sites change independently, 

• substitution rate is constant, 

• base composition is at equilibrium, 

• probabilities of substitutions are the same for all sites at all times. 

These assumptions are often violated by genetic data. For example, regions 

coding for stems in rRNA genes are strongly dependent on the complementary strand 

(Wheeler et aI., 1988). The possible mutable sites made available by selection may 

be so low, that even fast evolving sequences can show less divergence than slower 

ones (Page and Holmes, 1998). In most organisms the distribution of mutation rates 

follows a Gamma distribution with a :s; 1, and thus exhibits a L shaped curve, with only 

a small number of sites exhibiting a high number of polymorphisms, and the large 

majority with only a few polymorph isms. In saturated sequences, mutations can often 

reverse characters to ancestral states, thus confusing phylogenies. Substitution 

saturation can be detected by comparison of branch lengths from parsimony 

analyses with pairwise distances. 

Except for maximum likelihood, most methods do not intrinsically provide a 

measure of the reliability of the tree. There are, however, resampling approaches 

which allow evaluation of the dependence of the tree on the sampled data (Weir, 

1996). The most used method is bootstrapping, which produces a new data set by 

randomly selecting characters from the original data set (Weir, 1996). Resampling 

can include duplication of some characters. Another, less used method, Jacknife, 

produces new data sets with (n-1) characters. Usually 100 or 1000 new data sets are 

used to produce the same number of alternative trees from which a majority rule 

consensus tree can be produced, which will include the most common nodes of all 

other trees. It can be said that a branch which is present in 95% of the trees can be 

trusted within a 5% confidence interval. Examples of other consensus trees are strict 

consensus, which only includes shared groups or splits, and Adam's consensus, 

which maintains the groups found in all trees (Page and Holmes, 1998). 

To choose an adequate method for reconstructing pylogenies, several 

properties have to be considered (Page and Holmes, 1998), particularly when 

analysing large data sets. Efficiency, or how fast a method is, is very important. 

UPGMA is very fast, and among search criteria methods, parsimony is much faster 

than likelihood, and can thus search more trees. The power of the method is a 

measure of how many data are necessary to produce a reliable result and 

consistency evaluates if a method will converge on the right tree if more data are 

added. A robust method is less sensitive to violation if it indicates whether 

assumptions are being violated. 
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Maximum likelihood is often considered, but not consensually (Steel and 

Penny, 2000), the best method because it combines a cladistic approach with branch 

lengths, it is a very consistent method and the only method that intrinsically produces 

a measure of falsifiability, or violations of assumptions. Being such a thorough 

method, maximum likelihood is also very slow and not at all efficient with large data 

sets. Neighbour-joining can be just as good in practice but more efficient. 

1.5. Objectives 

The present thesis describes the work done to achieve the following 

objectives: 

• to study the genetic diversity in the L. donovani complex; 

• to determine whether L. chagasi and L. infantum are valid species and their 

position in the L. donovani complex; 

• to determine if the antigen GP63 is conserved between L. infantum and L. 

chagasi strains; 

• to characterise genetically Portuguese strains of L. infantum. 
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2. Materials and Methods 
2.1. Parasites 

2.1.1. Leishmania strains 

A group of strains representing the L. donovani complex and belonging to its 

four named species was assembled for assessment of taxonomic relationships (Fig. 7). 

A collection of reference strains (RS) of L. major, L. tropica and L. aethiopica and DNA 

from New World Leishmania species, provided by Debbie Nolder were used as 

outgroups (Table II). 
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Figure 7 - Countries of origin of the Leishmania donovani complex strains. Some L. 

donovani strains (shown in open circles) were isolated in countries endemic for L. 

infantum. 

A group of 13 L. chagasi strains was assembled (Table III) , nine from the 

LSHTM cryobank and four from the Belem cryobank, Brazil. Two strains were isolated 

in Panama from human patients and the remainder from Brazil. Three strains were 

isolated from naturally infected dogs in Teresina, an important Brazilian focus where 

VL is epidemic, and four strains (Table III) were from Amazonian foxes, Cerdocyon 

thous. The remainder were chosen at random from the LSHTM cryobank, 

and 
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included canine and human cases. Dr. Harry Noyes provided DNA from 20 L. chagasi 

strains from VL or CL human patients of Honduras, three of which were used here. 

125Km 
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Ocean 
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Human: .... •• .. 
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Canine: 
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IMT 160 
IMT 161 
IMTl62 

Figure 8 - Map of Portugal, showing the main endemic areas and the origin of the 

strains used in this project. 

A total of 31 L. infantum strains were selected (Table IV). Twenty two were 

isolated in Portugal, and nine in other countries (China, Cyprus, France, Italy, Malta, 

Spain, Sudan, Tunisia). A CL isolate from Cyprus and a MON 34 from China were 

included as representatives of the diversity within L. infantum. Representative strains 

from the three main Portuguese foci (North, Lisbon and Algarve) and also from the 

Evora region that has recently been indicated as being another focus (Semiao 

Santos et at., 1995), Fig. 8, were chosen. Four canine isolates and four vector 
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isolates were from the North (Table IV), two of the latter were zymodeme MON 24. 

The human isolate was from the Lisbon region, and of the six canine isolates, three 

were from the second endemic area of Setubal, the origin of the two fox isolates 

(Table IV). The Algarve region contributed two canine isolates (Table IV). 

L. donovani strains (Table V) were selected from the extent of the distribution 

(Fig. 7) and retrieved from the LSHTM cryobank. The Portuguese strain, IMT 180, 

was isolated from a HIV patient and is thought to have been imported. The other 

Portuguese strain had been isolated from Sergentomyia min uta , usually considered 

as vector of lizard Leishmania. Two different stabilates were taken from the 

cryopreserved stock and transported to the UK at different times. One strain of L. 

archibaldi (Gebre 1) was also included. At least one strain (Gilani) had been typed as 

L. infantum in the Montpellier system, because of its aspartate aminotransferase 

(ASAT, or GOT) profile, but as L. donovani s.l. by Le Blancq (1986). 

2.1.2. Cultures 

Ampoules with cryopreserved Leishmania cultures from the LSHTM cryobank 

were retrieved from liquid nitrogen and quickly thawed in water, then immediately 

transferred to O.4ml of proline balanced salts solution (PBSS) and inoculated into 

Novy, McNeal and Nicolle (NNN) blood slopes (Evans et a/., 1989): 1.4% w/v purified 

agar (Oxoid), 0.9% weight / volume (w/v) sodium chloride (NaCI), in distilled water, 

autoclaved and supplemented with 10% v/v defibrinated rabbit blood. Strains from 

other cryobanks were immediately transferred upon arrival to fresh NNN slopes with 

PBSS overlay: 5.37mM potassium chloride (KCI), 167JlM di-sodium hydrogen 

phosphate dodecahydrate (Na2HP04.12H20), 441 JlM potassium dihydrogen 

phosphate (KH2P04), 1.26mM calcium chloride dihydrate (CaCb.2H20), 0.41 mM 

magnesium sulphate (MgS04.7H20), 0.49mM magnesium chloride (MgCb.6H20), 

136.89mM sodium chloride (NaCI), 8.69mM L-proline, 2.82JlM phenol red, in distilled 

water and adjusted to pH 7.2 with solid Tris (Tris (hydroxymethyl) aminomethane). 

The parasites were initially subcultured in a small amount of liquid overlay (-0.5ml) 

and, if actively growing, enough medium was added to cover the slope. Actively 

growing (3rd or 4th day) rich cultures were inoculated in a proportion of 1 :5, inoculum 

to fresh medium into suplemented a-Minimum Essential Medium (S-a-MEM) (Kar et 

a/., 1990): minimum essential medium (MEM) Eagle, alpha modification powder for 1 

litre, 0.11% w/v sodium hydrogen carbonate (NaHC03), pH 7.5, 4mM L-glutamine, 

16.6mM D-glucose, 11.3JlM folic acid, 8.2JlM D-biotin, 7.7JlM haemin, 38.4mM 

HEPES (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulforic acid, sodium salt) and 

0.296mM adenine in distilled water and 10% volume / volume (v/v) (to page 69) 
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Table II - Outgroup Leishmania strains. 

Species 
WHO code 

Zymodeme Cryobank Techniques 

L. aethiopica 
MHOM/ET/1970/L96 

OLD MHOM/ET/1972/L 100 * 

WORLD L. major 
MHOM/SU/1973/5-ASKH* 

L. tropica 
MHOM/SU/1974/K27* 

L. amazonensis 
MHOM/BR/1973/M2269*t 

L. braziliensis 
MHOM/BR/1984/L TB300*t 
MHOM/BR/1975/M2903*t 

NEW L. guyanensis 

LON MON of origin 

27 

1 

12 

14 
4 

60 

43 

L 
L 

L 

L 

L 

L 
L 

MHOM/BR/1975/M4147*t L 
WORLD L. lainsoni 

MHOM/BR/1981/M6426*t L 
L. mexicana 

MHOM/BZl1982/BEL21*t L 
L. panamensis 

MHOM/PA/1971/LS94*t L 
L. peruviana 

MHOM/PE/1984/LC39*t L 

3,4im 
3 

1,3,4im 

3,4im 

* _ WHO reference strains. t - DNA only. (1) assigned by Deborah Nolder (PhD 

thesis). WHO codes: CSSS/cc/yy/N : host(C- class; SSS - species)/countryNearl 

strain Name. Host: M - mammal; HOM - Homo sapiens. Country: BR: Brazil; ET: 

Ethiopia; PA: Panama; PE: Peru; SU: former Soviet Union. Cryobank: L - LSHTM. 

Techniques applied in this work: 1 - Lmet9; 3 - RAPD; 4 - RFLP (i - ITS, m - mini-

exon). 
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Table III - L. chagasi strains 

Number WHO code Patho- Zymodeme Cryobank Techniques 

logy LON MON of origin 

C MHOM/BR/1974/PP75a VL 49 1 L 1,2,3,4 

C3 MCAN/BR/1984/C0910 CVL L 2a, 3, 4m 

C6 MCAN/BR/1989/DOG 124 CVL L 2,3,41 

C7 MCAN/BR/1989/DOG136 CVL L 1,3 

C8 MCAN/BR/1989/DOG118 CVL L 1,3 

C13 MCER/BR/1981/M6445 VL B 1,2,4 

C9 MCER/BR/1983/M7633 VL B 3 

C12 MCER/BR/1989/M 12084 VL B 3c 

C11 MCER/BR/1989/M 12085 VL B 3 

C5 MHOM/BR/1984/M8270 L 3 

C4 MHOM/BR/1985/M9702 L 3 

C16 MHOM/HN/1988/HN115t CL LV 4i 

C17 MHOM/HN/1988/HN 122t CL LV 4 

C20 MHOM/HN/1993/HN336t CL LV 4 

C2 MHOM/PA/1978IWR285 L 1,2,3,4 

C1 MHOM/PA/1980IWR341 L 1 

* _ WHO reference strain. t - DNA only. WHO codes: CSSS/cclYY/N : host(C- class; 

SSS - species)/countryNearlstrain Name. Host: I - insect; M - mammal; HOM - Homo 

sapiens; CAN - Canis fa mi/iaris; CER - Cerdocyon thous; LUT - Lutzomyia 

sp.Country: BR: Brazil; HN: Honduras; PA: Panama. Cryobank: L - LSHTM; B -

Belem; LV - Liverpool. Techniques applied in this work: 1 - isoenzyme analysis; 2 -

mspC3' end sequence (2a - partial sequences); 3 - RAPD; 4 - RFLP (i - ITS, 9 - gp63, 

m - mini-exon). 
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Table IV - L. infantum strains. 

Number WHO code Zymodeme Cryobank Region Techniques 
LON MON of origin ** 

MHOMITU/1980/IPT-1 
i 

49 1 L 1,2,3,4 
123 IARI/PT/1989/1MT 169 1 M North 3 
124 IARIIPT/1989/1MT 170 1 M North 2a, 3 
125 IARIIPT/1989/1MT 171 24 M North 1,2,3,4iml 
126 IARIIPT/1989/1MT 172 24 M North 1, 2a, 3, 4icl 
13 MCAN/FR/1982/Pharoah 49 L 1,2a,3,4 
11 MCAN/PT 11981/L82 49 L Lisbon 1,2a,3,4 
110 MCAN/PT/1981/1MT 89 49 L Lisbon 1,3 
111 MCAN/PT/1982/1MT 124 L Lisbon 1,3 
18 MCAN/PT/1987/1MT 150 1 L Lisbon 3 
113 MCAN/PT/1993/1MT 193 1 Algarve 3 
19 MCAN/PT/1987/1MT 152 1 L North 1,3 
12 MCAN/PT/1988/Rebeio 2 L Other 1,2a,3 
120 MCAN/PT/1989/1MT 160 1 M North 3 
122 MCAN/PT/1989/1MT 161 1 M North 3 
121 MCAN/PT/1989/1MT 162 1 M North 3 
127 MCAN/PT/1991/1MT 177 1 M Lisbon 3 
129 MCAN/PT/1993/1MT 191 1 M Lisbon 3 
118 MCAN/PT/1994/1MT 204 1 Algarve 3 
119 MCAN/PT/1994/1MT 205 1 Other 3 
130 MCAN/PT/1994/1MT 195 1 M Other 1,3 
116 MHOM/CN/1980/Strain A 34 L 1,2,3,4 
117 MHOM/CY/1963/L53 L 1,2a,3,4 
14 MHOM/ES/1987/Lombardi L 1, 2a, 3, 4iml 
15 MHOM/FR/1978/LEM75 1 L 2a,3 
115 MHOM/IT/1981/Alessandro 1 L 1,2a 

131 MHOM/MT/1985/Buck 49 78 L 1,2,3,4icl 

16 MHOM/PT/1982/1MT 104 1 L Lisbon 1,3,4c 

133 MHOM/SDIOOOO/CAM 1 C 2,4icl 

112 MVUUPT/1983/1MT 108 49 L Lisbon 3 

17 MVUUPT/1984/1MPT 128 1 L Lisbon 3 

* - WHO reference strain. ** - Portuguese regions of isolation (see Figure 2). WHO 

codes: CSSS/cc/yy/N : host (C- class; SSS - species)/country/Yearlstrain Name. 

Host: I - insect; M - mammal; HOM - Homo sapiens; CAN - Canis fa milia ris; VUL -

VuJpes vulpes; ARI - Phlebotomus a ria si. Country: CN: China; CY: Cyprus; FR: 

France; IT: Italy; MT: Malta; PT: Portugal; SP: Spain; TU: Tunisia. Cryobank: C -

Cambridge; L - LSHTM; I - IHMT; M - Montpellier. Techniques applied in this work: 1 -

Lmet9; 2 - mspC3' end sequence (2a - partial sequences); 3 - RAPD; 4 - RFLP (i -

ITS, g - gp63, m - mini-exon). 
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Table V - L. donovani strains (according to the classification used by the LSHTM). 

Number WHO code Zi:modeme Cryobank Techniques 
LON MON of origin 

D MHOMIIN/1980/DD8*t 41 2 L 1,2,3,4 
D28 MHOM/ET/1972/Gebre 1** 50 82 L 1,2,3,4 
D21 IMAR/KE/1962/LRC-L57 44 37 L 1,2,3,4 
D35 ISER/PT/199311MT 188 I, Algarve 1,2,3,4 
D22 MARV/SD/1962/LRC-L64 48 L 1,3,4 
D23 MCANIIQ/1981/SUKKAR 2 43 L 1,2a, 3, 4 
D24 MCANIIT/1976/DORA 50 L 1,2,3,4 
D25 MCAN/KE/OOOO/D2 45 L 1,2,3,4 
D26 MHOM/CN/OOOOlWangjie-1 35 L 1,3,4 
D13 M HOM/ET 10000/H ussen 42 L 1,2,3,4 
D12 MHOM/ET/OOOO/Ayele 5 52 L 1,2,3,4 
D27 MHOM/ET/OOOO/Ayele8 56 L 1,2,3,4 
D1 MHOM/ET/1967/HU3 (LV9)* 46 18 L 1,2,3,4 
D14 MHOM/ET/1982/Bekele 42 L 1,3,4 
D15 MHOM/ET/1984/Addis 142 L 1,3,4 
D29 MHOM/ET/1984/Addis 164 83 L 1,2,3,4 
D4 MHOMIIN/1982/Patna 1t 41 L 1,2,3,4 
D6 MHOMIIN/1977/Chowd-Xt L 1,2,3,4 
D7 MHOMIIN/1979/STL 1-79t L 1,2,3,4 
D8 MHOMIIN/1982/Nandi 1t 41 L 1,3,4 
D30 M HOM/KE/OOOO/Neal-R 1 56 L 1,3,4 
D2 MHOM/KE/1967/MRC(L)3 L 1,2,3,4 
D3 MHOM/KE/1973/MRC74 51 L 1,2,3,4 
D31 MHOM/KE/1975/Mutinga H9 56 32 L 1,2,3,4 
D16 MHOM/KE/1980/Ndandu 4A 44 L 1,2,3,4 
D17 MHOM/LB/1984/Saiti 4 L 1,2,3,4 
D34 MHOM/PT/199211MT 180 18 I 1,2,3,4 

D32 MHOM/SA/1981/Jeddah KA 42 31 L 1,3,4 

D11 MHOM/SA/1987NL6 L 1,3,4 

D9 MHOM/SA/1987NL23 L 1,3,4 

D10 MHOM/SA/1987NL29 L 1,2,3,4 

D18 MHOM/SD/OOOO/Khartoum 46 18 L 1,2,3,4 

D33 MHOM/SD/1982/GlLANI 48 30 L 1,2,3,4 

D19 MHOM/SD/1985/A22 L 1,2,3,4 

D20 M HOM/SD/1987 IUGX-marrow L 1,3,4 

D5 MMERIIR/1996/MESH-17 50 IRAN 1,3,4 

* - WHO reference strain. ** - L. archibaldi. t - L. donovani s.s. 

WHO codes: CSSS/cc/yy/N : host(C- class; SSS - species)/countryNearlstrain 

Name. Host: I - insect; M - mammal; HOM - Homo sapiens; CAN - Canis fa milia ris; 

MAR - Phlebotomus martini; ARV - Arvicanthis sp; MER - Meriones sp; SER -

Sergentomyia minuta. Country: CN - China; ET: Ethiopia; IN: India; IR - Iran; IQ - Iraq; 

IT: Italy; KE: Kenya; LB- Lebanon; PT: Portugal; SA - Saudi Arabia; SD - Sudan. 

(continues next page). 

67 



(continuation of Table V) Cryobank: L - LSHTM; I - IHMT, Lisbon, Portugal; M -

Laboratoire d'Ecologie Medicale et Pathologie Parasitaire, Montpellier; B - Instituto 

Evandro Chagas, Belem, Brazil; LV - Liverpool School of Tropical Medicine and 

Hygiene, UK. Techniques applied in this work: 1 - Lmet9; 2 - mspC3' end sequence 

(2a - partial sequences); 3 - RAPD; 4 - RFLP (c - gp63 ITG/CS, i-ITS, I - gp63 ITG/L, 

m - mini-exon). 
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sterile heat sterile heat inactivated foetal calf serum, 50mg/1 gentamicin. Cultures 

were subcultured into increasing volumes of liquid medium (at 1:5 or 1: 1 0, inoculum 

to fresh medium) until enough parasites (106-107/ml) were obtained for DNA or 

enzyme extraction. 

2.2. Enzyme extraction 

Enzyme extractions from Leishmania were done as described by Evans ef at. 

(1989). Parasites from 120ml late logarithmic phase cultures (usually day 5), were 

collected and centrifuged (700g for 20 min at 4°C) and the pellet was sequentially 

washed with 10ml and 1.0ml cold PBSS. An equal volume of 2mM stabiliser solution 

[2mM ethylenediaminetetraacetic acid disodium salt (EDT A), 2mM, E-aminocaproic 

acid, 2mM dithiothreitol in distilled water] was added to the pellet. The suspension 

was treated with three cycles of freezing in liquid nitrogen and thawing, after which it 

was centrifuged at high speed (13000g) for 30 min at 4°C. The supernatant was 

collected, beaded in approximately 1 O~I droplets and stored in liquid nitrogen until 

needed. 

2.3. DNA extraction 

Extraction of genomic DNA was adapted from Kelly (1993). Parasites from a 

15ml mid-logarithmic phase bulk culture were collected by centrifugation (700g for 20 

min at 4°C) and washed three times in ice-cold sterile phosphate buffer saline (PBS), 

pH 7.2 (136.89mM sodium chloride (NaCI), 2.68mM potassium chloride (KCI), 12mM 

di-sodium hydrogen phosphate (Na2HP04), 1.76mM potassium di-hydrogen 

phosphate (KH2P04), in distilled water). The pellet was resuspended in sterile 1 ml cell 

lysis buffer (CLB; 0.125M NaCI, 0.125M EDTA, 2.5% w/v sodium dodecyl phosphate 

(SDS), 0.125M Tris, in distilled water, pH 8.0) with 100~g/ml proteinase K, and 

incubated at 37°C overnight or 56°C for 3 hours. 

The DNA was freed from contaminants in the lysate by sequential extraction 

with equal volumes of phenOl, phenol/chloroform (1: 1) and chloroform, each followed 

by a centrifugation step (6000g for 10min at 4°C). The DNA was preCipitated from the 

aqueous phase with 2.5 volumes of ice cold absolute ethanol, transferred into 200-

500~1 of sterile distilled water using a glass pipette loop, and left to dissolve. The 

DNA extract was incubated at 37°C for 1 hour with 5ng of heat-treated ribonuclease 

A (Boehringer Mannheim). All DNA samples were stored at 4°C. 

DNA concentration, purity and integrity were estimated by visualization on an 

agarose gel: 1 % agarose in tris acetate EDTA (TAE) buffer (40mM tris, 1.142% v/v 

glacial acetic acid, 10% w/v 10mM EDTA (pH8.0) in distilled water) with 1119/1 
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ethidium bromide (EtBr). The DNA concentration and purity were determined by 

spectrophotometry in a GeneQuant RNA/DNA Calculator (Pharmacia). The DNA 

sample was diluted in sterile distilled water to a total volume of 500~1 and 

absorbances at 260 and 280nm were measured. The DNA concentration was 

calculated according to the formula: 

DNA concentration = OD26onm X Of x 50, 

where 00 is optical density with 00 = 1 = 50~g/ml double stranded DNA, and Of is 

the dilution factor. 

The DNA was used only in a purity higher than 80%, or 2.0 ± 0.2 OD26onm:280nm 

ratio. Aliquots were diluted to a final concentration of 25~g/ml in sterile distilled water 

and stored at 4°C. 

2.4. Isoenzyme analysis 

Leishmania strains were characterized by isoenzyme electrophoretic analysis 

(lEA), as described by Godfrey and Kilgour (1976) and Harris and Hopkinson (1976), 

in thin-layer starch-gel. A set of eight enzyme systems that had been found to be 

polymorphic within the L. donovani complex was used: alanine aminotransferase 

(ALAT, EC 2.6.1.2), aspartate aminotransferase (ASAT, EC 2.6.1.1), glucose­

phosphate isomerase (GPI, EC 5.3.1.9), malate dehydrogenase (MDH, EC 1.1.1.37), 

mannosephosphate isomerase (MPI, EC 5.3.1.8), nucleoside hydrolase using inosine 

as substrate (NH, EC 3.2.2.1), proline iminopeptidase (PEPD, EC 3.4.11.5) and 6-

phosphogluconate dehydrogenase (decarboxylating) (6PGD, EC 1.1.1.44). The 

general conditions used are presented in Tables VI and VII and were adapted from 

Evans et al. (1984), LeBlancq (1986) and Miles et al. (1980a; 1980b), 

Tank buffers were prepared the day before and kept at 4°C until use. Starch 

gels were prepared with 40 ml of diluted buffer (Table VI) and 120% of the amount of 

starch recommended by the manufacturer, heated until boiling and degassed. The 

molten gel was then poured onto the plate, spread uniformly and left to coolon a 

cooling plate. The enzyme extract beads were left to thaw on ice. Cotton thread 

pieces (number 2) with 0.4 to 0.5mm were soaked in the enzyme extracts and then 

loaded into the set gel, at 1/3 of the gel plate length. The gel plate was placed in the 

tank, onto a cooling plate at 4°C, had the centre covered with a glass plate and buffer 

soaked sponge wicks connected each extremity with the respective buffer filled 

electrode chamber. The apparatus was held in place by a large glass plate and 

electrophoresis was run for pre-determined times for each enzyme. For agar 

development, all gel covers were removed and a frame was placed on the gel, to 

include the threads and the area where the enzyme bands were expected to be. 
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Reagents for development (Table VII) were mixed with liquid agar (kept at 56°C), 

immediately poured onto the gel and left to set. The gel plate was then transferred to 

a 37°C oven and kept in the dark. For UV development, 1 M filter paper, cut to size, 

was soaked in the mixed developer components and placed over the gel. Upon 

appearance of bands the gels were photographed using polaroid film, under white or 

ultra violet (UV) light. 

Table VI - Running conditions for thin layer starch-gel electrophoresis of Leishmania. 

Enzyme Tank buffer Gel dilution Time (hours) Voltage (V) 
ALAT 1 1:9 2 300 
ASAT 1 1:9 2 300 
GPI 2 1:9 2.5 300 
MDH1 3 2:1 4 120 
MDH2 4 1:9 4 250 
MPI 5 1:4 2.5 300 
NHi 6 1:9 2.5 300 
6PGD 2 1:9 2.5 300 
PEP-D 7 1:7 2.5 300 

* - 1.0M MgCb; ** - 0.1 M MgCb; *** - 0.5MnCb. Tank buffers, in distilled water: 1 -

0.15M Tris, 7.5mM citric acid, pH 9.0; 2 - 0.1M Tris, 0.1M maleic acid, 1mM 

magnesium acetate, 1 mM EDTA, pH 7.4; 3 - 0.2M Tris, 1mM EDTA, 47.6mM 

trisodium citrate, pH 9.5; 4 - 0.25M Tris, 0.09M citric acid, pH 7.0; 5 - 0.1 M Tris, 0.01 M 

sodium hydrogen phosphate, pH 7.6; 6 - 0.2M Tris, citric acid to pH B.9; 7 - 0.15M 

Tris, 0.1 sodium dihydrogen phosphate, pH B.2. 
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Table VII - Staining conditions for thin layer starch-gel electrophoresis of Leishmania. 

Enzyme Distil. Developer Activators I Co-enzymes Linking enzymes Substrates Visualization method 

Water (ml) Buffer inhibitors 

ALAT A 6.0ml 5.0mg NADH 6.01-11 LDH (EC 1.1.27) 12.0mg a-ketoglutaric acid UV, Filter paper 

80.0mg L- alanine 

ASAT A 6.0ml 5.0mg NADH 6.01-11 MDH(EC 1.1.1.37) 12.0mg a-ketoglutaric acid UV, Filter paper 

20.0mg L-aspartic acid 

GPI B 13.4ml 1.0ml NADP 101-11 G6PDH (1000U/ml) 1.6ml D-fructose-6-phosphate 1.0ml MTT (5mg/ml); 1.0ml PMS 

* O.4ml (10.0mg/ml) (disodium salt) (10mg/ml) (5mg/ml) ; 18.4ml Agar (1.2%) 

MDH1 3.0 B 8.0ml 1.2ml NAD - 2.0ml 1 M L-malate, pH 7.0 1.0ml MTT; 1.0ml PMS; Agar 16.2ml 

(10.0mg/ml) 

MDH2 3.0 B 8.0ml 1.2ml NAD - 2.0ml 1 M L-malate, pH 7.0 1.0ml MTT; 1 .Oml PMS; 16.2ml Agar 

(10.0mg/ml) 

MPI C 12.0ml ** 2.0ml 0.6ml NADP 30U GPI (EC 5.3.1.9) type III 10mg mannose-6-phosphate 1.0ml MTT; 1.0ml PMS; 16.8ml Agar 

(10.0mg/ml) 20U G6PDH (EC 1.1.1.49) 

NHi D 16.0ml 501-11 xanthine oxidase 20mg inosine 1.0ml MTT; 1.0ml PMS; 18.1 ml Agar 

6PGD B 12.0ml ** 2.0ml 0.6ml NADP - 1.0ml 6-phosphate gluconate 1.0ml MTT; 1.0ml PMS; 17.6ml Agar 

(10.0mg/ml) (10mg/ml) 

PEP-D C 14.0ml *** 0.4ml 2.0mg peroxidase 20.0mg L-Ieucyl L-proline 20mg 3-amino-9-ethyl carbazole in 

(E C 1 .11 .1 .7) 2ml ethanol; 18.2ml Agar 

2.0mg snake venom 

* _ 1.0M MgCb; ** - 0.1 M MgCb; *** - O.SMnCb. Development buffers: A - O.OBM Na2HP04, 0.02M NaH2P04,pH 7.4; B - 0.3M Tris pH B.O; C - 0.3M 

Tris pH 7.4; D - 0.3M Tris pH 7.0. 
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2.5. Random amplification of polymorphic DNA 

A set of 28 decanucleotide primers (Table VIII) was assayed for random 

amplification of polymorphic DNA (RAPO) with the reference strains (L. donovani 

complex and L. major) and a selection of L. infantum and L. chagasi strains. Primers 

A1-A6, H1-H6 and L 1-L6 were obtained from R&D products (Abingdon, UK) and 

primers 01-010 were a kind gift from Dr. Douglas Barker (Cambridge University). 

Seven primers produced a very poor band pattern or none and were discarded (Table 

VIII). The remaining 21 primers were selected to be used with a large set of strains, of 

which ten primers (A2, A4, AS, A6, 03, 08, 010, H1, H4, L2), randomly chosen, were 

used for RAPO analyses. The analysis to study the relationship between L. infantum 

and L. chagasi, included three outgroup strains (L. aethiopica, L. major and L. 

tropica) with a total of 33 strains; 17 L. infantum, 11 L. chagasi and five L. donovani. 

The analysis of Portuguese L. infantum strains included Old World Leishmania and L. 

chagasi reference strains and 22 Portuguese L. infantum strains. The analysis of L. 

donovani included again Old World Leishmania reference strains, the L. infantum 

zymodeme variants and all L. donovani strains;46 strains in total. 

In order to assess the influence of DNA concentration on RAPOs, 1, 10, 25 

and 50 ng of genomic DNA of the L. donovani complex reference strains was 

amplified by RAPO with each of the ten primers used for analysis. 

Table VIII - Primers used for RAPO amplification. 

NAME SEQUENCE (5'-3') NAME SEQUENCE (5'-3'} 
A1 tca cga tgc a 09 AGGTGACCGT 
A2 GAAACG GGTG 010 GTT GCG ATC C 
A3 AGTCAG CCA C L1 CGG CCC CTG T 
A4 AAT CGG GCT G L2 CGG ACG TCG C 
A5 CTCACG TAG G L3 CCCGCCATCT 
A6 CTGATC GCAG L4 GTG GAT GCG A 
01 CAG GCC TTC L5 AAGAGC CCG T 
02 agg ggt ctt c L6 aag gat cag a 
03 TTC CGAACC C H1 CGC GCC CGC T 
04 GGTCCC TGA C H2 ttc ccc cgc t 
05 GGGTAACGCC H3 cat ccc cct g 
06 CAA TCG CCG T H4 TGC CGAGCTG 
07 TCG GCG ATA G H5 tag gat cag a 
08 AGC CAG CGAA H6 cac atg ctt c 

In bold are the primers randomly chosen for the analysis, from among those 

producing good quality amplification profiles, in lower case the non-working primers. 
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The RAPD procedure was based on the technique first described by Williams 

et a/. (1990) and conditions are described in Annex 1. To ensure homogeneity of the 

PCR mix throughout the reactions at one time, enough reaction mixture (without 

DNA) was prepared for the total number of tubes for each RAPD assay (samples and 

one negative control). Aliquots of the mixture were distributed to the reaction tubes 

and covered with mineral oil. The DNA was then added through the mineral oil. All 

strains in each set were amplified at the same time in the same block. 

RAPD products were separated by agarose gel electrophoresis: 1.2% agarose 

in T AE buffer, with 1 mg/I EtBr. The RAPD products were run against 1 kb molecular 

weight markers (LKB Pharmacia) in a large gel (25cm x 20cm) using a 42 tooth comb, 

with 400ml of 1.2% agarose, at 100mV, or in a medium size gel (15cmx12.5cm) using 

a 20 tooth comb in separate batches, with 100ml of the same gel. The gels were 

photographed under UV light, initially, in a video gel developing system (Mitsubishi), 

and later, in a UVP, Inc. (USA) white/UV transilluminator photographic system 

coupled to programme GRAB-IT, Annotation Grabber 2.51 (Synoptics Ltd, UK). 

Photographs were printed in a Sony Digital Graphics printer. 

2.6. Preparatory peR amplifications 

2.6.1. 3' end of the constitutive major surface protease gene (MspC3) 

The 3' end of the constitutive major surface protease (mspC3), between 

nuc\eotides 924 and 2238 of L. chagasi mspC (GenBank M80671) was amplified by 

PCR. Three pairs of primers were designed from an alignment of L. chagasi mspC, 

mspL and mspS1 and L. donovani gp63 genes (GenBank, M80671, M80672, 

M80669 and M60048, respectively). MspC specific primers were designed from 

conserved regions, as judged by comparison with the L. donovani sequence, and 

each pair to amplify 500-650bp. Primers were designed for low repeat content, a GC 

content of at least 30%, similar melting points (around 60°C), higher GC content in 

the 3' codon and thymidine residues in the 3' end were avoided. Primers were a 

Perkin-Elmer product and are shown in Table IX . 

Each pair of primers was initally used to amplify three separate regions (A, B, 

C), but primers C4F and C8R were later used to amplify the full mspC3 (Fig. 9), which 

improved the sequence quality and reduced the number of sequences needed for 

each strain. Each 20iJi amplification reaction was optimized for yield and specificity. 

The optimized PCR conditions are detailed in Annex 1. 
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Table IX - Primers used to amplify within mspC and expected product sizes. 

Region Expected size Primer Primer sequence (5' - 3') 

(bp) name 

A 652 C4F tgt aaa aeg aeg gee agt cac gtc ggc ttc agt gga 

C6R eag gaa aea get atg ace aaa aac cct gct gcc aac 

8 502 C6F cca gtc gtc tga tgg tcg 

C7R ctg ctg gag ctg tcg gag 

C 542 C11F gcg cgg cag tat gga cta 

CaR tgg acc gga gaa gac gag 

mspC3 1351 C4F (as above) 

CaR (as above) 

R - reverse; F - forward. C4F and C6R had, respectively, the -21 M13 and M13Rev 

primers added (italics). 

2.6.2. Gp63 intergenic regions: ITG/CS and ITG/L 

Primers for amplification of intergenic regions within the gp63 gene array 

(Table X, Fig. 10) were designed either to be specific for the intergenic region located 

upstream of mspC (gp63 ITG/CS) or to amplify the intergenic region downstream of 

any gp63 gene in the array (gp63 ITG), and were designed in the same way as the 

mspC3 primers (above). MspC specific primer (C9F) was chosen from areas with low 

or no evidence of variation between sequences for gp63 published for L. ehagasi and 

L. donovani. Because gp63 ITG/L is multicopy, the msp generic primers (C10F and 

C 1 R) were designed with added restriction sites, compatible with the multiple cloning 

site of M 13 type plasmids, in order to be able to differentiate different alleles by 

cloning if necessary. The optimized PCR mixture compositions and temperature cycle 

conditions for amplification of all intergenic regions described are given in Annex 1. 

DNA from Leishmania reference strains (Table II) and L. infantum, L. ehagasi 

and L. donovani strains was used in a PCR assay to verify the specificity of the gp63 

ITG PCRs. 80th undiluted (100-500ng) and 25ng of genomic DNA were used. 
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mspC coding region non-coding region 
, j 

5' 
A 

B 

Figure 9 - Amplified regions within the sequence of the L chagasi mspC (GenBank MB0671). 

Table X - Primers designed for PCR amplification of gp63 ITGs. 

Region Expected size (kb) Name Sequence (5' - 3') 

gp631TG/L 1.7 + 2.0 (/4.5) C10F ggg aag ctt acg tac agc gtg cag gtg 

+ 

C 1 R ggg ccc ggg cga cag cag cga tga ctg 

gp631TG/CS -1.6 

+ 

C9F ggc tcc cga cgt gag tta 

Hindlll, Xmal - sequences for restriction with the named enzymes (bold). R - reverse; F - forward. 
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ITG/L 
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Figure 10 - Schematic representation of amplified gp63/1TG regions. Not drawn to 

scale. Large and small rectangles are, respectively, coding and non-coding regions. II 

represent and unknown number of of mspL unit repeats. The purple line represents an 

ITG/CS product generated by the ITG primers used to amplify ITG/L, whilst the red 

lines are the required ITG/L product. The blue line is the ITG/CS product generated 

from the specific ITG/CS PCR. 

ITS1F ITS1 ! ITS2F ITS2R ~ 

-1 SSU ~ LSU H LSU H LSU ~ 
~ ~ 

IR1 IB2 ~ ITS fragment 
- primers 

(1-1.1 kb) 
Figure 11 - Schematic representation of PCR amplification and primers within the ITS 

region (not drawn to scale). SSU - small sub-unit; LSU - large sub-unit; ITS - internal 

transcribed spacer. 

2.6.3. Internal transcribed spacer (ITS) 

For amplification of the ribosomal internal transcribed spacer (ITS), the same 

primers were used as described by Cupolillo et al. (1995): 

IR1 - 5' GCT GTA GGT GAA CCT GCA GCA GCT GGA TCA TT 3' Forward 

IR2 - 5' GCG GGT AGT CCT GCC AAA CAC TCA GGT CTG 3' Reverse 

The initial PCR conditions (Annex 1, ITSa) were derived from Stothard et al. 

(1996) but later modified (ITSb): MgCI2 was reduced to 3mM and primers to 30nM. The 

expected PCR products for OW Leishmania were between 1.1 and 1.0kb. 

Four internal primers to the ITS PCR products (Fig. 11) were designed, from an 

alignment with all trypanosomatid ribosomal DNA sequences available, in order to 

sequence the variable intergenic regions in the Leishmania ITS: 

ITS 1 F 5' GCA GCT GGA TCA TTT TCC 3' Forward 

ITS 1 R 5' AGC TTC TCC CAT GCG CCG 3' Reverse 

ITS2F 5' GTC ATC CCC GTG CAT GCC 3' 

ITS2R 5' AAC ACT CAG GTC TGT AAA C 3' 

Forward 

Reverse 

77 



2.6.4. Mini-exon 

The primers used for amplification of the mini-exon repeat unit (Figure 12), 

were adapted from Fernandes et a/. (1994). Primers are located in the conserved 

exon region, which is only 39nt, and thus were partially complementary in their 5'end. 

ME1 - 5' CAA TAT AGT ACA GAA ACT G 3' Reverse 

ME2 - 5' TTC TGT ACT TTA TTG GTA 3' Forward 

PCR amplification of the mini-exon repeat unit (ME/unit) was done according 

to Ramos et a/. (1996) (Annex 1) with expected products for Old World Leishmania 

between 400 and 460bp. In order to improve the PCR product and reduce the 

amount of primer used, protocols were modified to include only 30 cycles, and to use 

1/4 of the primer concentration with twice the amount of DNA, respectively. 

--------------------------------------------- n 2n 
------------------------------------------------------------------------------------------------------------------------------3n 

Figure 12 - Schematic representation of the mini-exon PCR amplification. The 

primers are indicated by arrows. Because primers are partially complementary, 

multiple unit repeats (2n, 3n) were also expected in addition to the single unit 

amplification (n). 

2.6.5. Preparation of peR products 

The gp63 ITG/L band (1.6 kb) was separated and purified from the other ITG 

PCR products, the mini-exon unit fragment was purified from multiple amplification 

fragments and all other PCR products were also purified to eliminate spurious non­

specific background and primers. After separation in 0.8% agarose gels the required 

PCR fragments were excised and purified using a QIAEX IITM gel purification Kit 

(Qiagen), according to the manufacturer's instructions. The purified DNA was kept in 

10mM Tris-HCI buffer, pH 8.5. 

Different concentrations of DNA template were sequenced initially to assess 

the best sequencing concentration. The following sequence reactions used 50 to 

100ng DNA as calculated, or extrapolated, by comparing with a working reference in 

a 1 % agarose gel. The template DNA concentrations for RFLP analYSis were 

adjusted to roughly 0.1 ~g/~I amongst all strains by visual estimation in an agarose 

gel. 
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2.7. Restriction fragment length polymorphisms (RFLPs) 

The ITS, mini-exon and both gp63 ITG PCR products were analysed through 

enzyme restriction. Restriction enzymes (Table XI), with a minimum of two restriction 

sites in each target sequence, were chosen either by trial and error with six Old World 

WHO reference strains (ITS and gp63 ITGs) and/or by screening published 

sequences (gp63 ITGs and mini-exon). Restriction reactions were of 1 O~I, with 

approximately 0.5~g of DNA and 5U of restriction enzyme in the recommended buffer 

and were incubated overnight at 37°C (or at 65°C for Taql, 60°C for BstUI). 

Restriction products were separated at 250V for 2h in 6% acrylamide, 3.5% cross 

linking gels, for good resolution of smaller DNA fragments: 40ml 10.5% 

volume/volume (v/v) 2% liquid bisacrylamide, 20% v/v 30% liquid acrylamide 

(National Diagnostics) in TBE (Tris-borate-EDTA buffer: 89mM Tris-borate, 2mM 

EDTA), filtered and degassed, and then were added, per plate, 70~1 TEMED (NNN'N' 

tetramethylethylenediamine), 260~1 10% weighUvolume (w/v) ammonium persulphate. 

The gels were silver stained (Stothard et a/., 1998). Briefly, the gels were twice fixed 

for 3min in 10% v/v ethanol, 0.5% acetic acid; stained for 10min in 0.1 % w/v silver 

nitrate (AgN03); washed twice in distilled water; developed in 1.5% w/v sodium 

hydroxide (NaOH), 0.01 % w/v sodium borohydrate (NaBH4), 0.015% v/v 

formaldehyde, until bands were seen and neutralized for 10min in 0.75% w/v sodium 

carbonate (Na2C03). All incubations were done with 300m I of each solution with 

gentle agitation. The gels were stored in plastic bags and photographed under white 

light with the UVP system (see 2.5). 

Table XI - Restriction enzymes used for analysis of PCR amplification products. 

Enzyme Recognition site ITS Gp631TGs Mini-exon 

Acil C.CGC A 

Alul AG.CT A A 

BstUI CG.CG A A A 

Gfol GCGC A A A 

Haelll GG.CC A A A 

Msel T.TAA A 

Mspl C.CGG A A 

Sau3AI .GATC 

Scrfl CC.NGG A 

Rsal GT.AC A 

Taql T.CGA A A 

EcoRI G.AATTC A 

Sphl GCATG.C A 

A _ enzyme applied. The dot represents the cleavage site for each enzyme. 
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2.8. DNA sequencing 

Purified mspC PCR products, obtained from selected strains, were 

sequenced. A partial gp63 ITG/L sequence was also obtained for L. chagasi PP75. 

Direct sequencing, of either full mspC3 or partial PCR products (A, B, C), was 

done with ASI PRISMTM Dye Terminator Cycle Sequencing Ready Reaction kits 

(Perkin-Elmer, UK) or AmpliTaq® DNA Polymerase, FS Thermo-sequenase Dye 

Terminator Cycle Sequencing Premix kits (Amersham, Life SCience) according to the 

manufacturers' instructions, using the PCR primers or internal primers. The cycling 

protocol was, 25 cycles at 96°C for 30s, 50°C for 15s, 60°C for 240s. The sequencing 

products were purified by ethanol precipitation with 3M sodium acetate pH 4.6, 

according to the sequencing kit manufacturers instructions, and separated in an ABI 

Prism™ 377 DNA Sequencer (Perkin-Elmer, UK). Consensus sequences were 

obtained from forward and reverse reactions aligned in ABI Prism Sequence 

Navigator™ Version 1.0.1 (Perkin-Elmer, UK) using Clustal V (Higgins et al. 1992). 

2.9. Phylogenetic analysis 

2.9.1. Analysis of band patterns 

Isoenzyme bands were scored for analysis as presence I absence data, but 

also coded as nucleotide residues or amino acids in, respectively, DNA or protein 

sequence data. Within the L. donovani complex, only A and T letters were used to 

minimize the influence of base composition on the results. Algorithms which did not 

categorize bases or aminoacids were used when possible. 

Electrophoretic bands from isoenzyme analysis, RAPD or RFLP were scored 

for presence (1) or absence (0), except RFLP fragments larger than 900 bp for which 

resolution was poorer. Bands that were too faint or judged inconsistent and strains 

with poor RAPD amplification profiles were ignored. Data matrices of each individual 

RAPD primer or each PCR-RFLP were analysed separately, or as pooled data, with 

packages SYN-TAX-pc 5.0 (Podani, 1993) or PHYLIP (Felsenstein, 1993). 

Dendrograms were built from a Jaccard distance matrix {...J[1-a/(a+b+c)], in 

which a is a double presence and band c are presence in one taxa and absence in 

the other} using single linkage and unweighted pair group method with arithmetic 

averages (UPGMA, SYN-TAX), neighbour-joining and Fitch-Margoliash (PHYLlP) 

clustering algorithms. In some cases minimum spanning trees were superimposed on 

principal coordinates distributions. Cophenetic correlation was used to verify the fit of 

tree derived distances (SYN-TAX) to observed pairwise distance matrix. The 

cophenetic correlation coefficient ranges from 0-1, in which 1 is the perfect fit. 
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PHYLIP analyses - neighbour-joining and UPGMA (NEIGHBOR), Fitch-Margoliash 

(FITCH), Wagner and Camin-Sokal parsimony (MIX), polymorphism and 00110 

(DOLLOP) parsimonies - were performed using taxa jumbling and global 

rearrangements. Parsimony bootstrap analyses were done for 100 replications to 

estimate robustness of lineage divergence. Consensus trees were obtained by 

majority rule consensus (CONSENSE). 

2.9.2. Analysis of mspC3 DNA sequences 

The sequences of L. donovani complex mspC3, and the putative homologues 

L. major gp63-6 and L. mexicana gp63-C1, from GenBank (respectively AF039721 

and X64394), in a total of 1083, bases were aligned by Clustal V (Higgins et a/. 1992) 

and were used to infer phylogenies using programmes within the PHYLIP package 

(Felsenstein, 1993). Dendrograms were produced from sequence alignment data 

using maximum parsimony (DNAPARS) and maximum likelihood methods (DNAML), 

and from a distance matrix (corrected nucleotide divergence using Kimura-2-

parameter model; DNADIST) using neighbour-joining and Fitch-Margoliash least 

squares methods. Bootstrap analyses were done, except for the maximum likelihood 

method, based upon 1000 or 100 replicate data sets. 
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3. Isoenzyme Characterization 
3.1. Introduction 

3.1.1. Isoenzyme analysis 

The ultimate phenotypic characters are proteins, responsible for morphology 

and metabolism, and which are direct products of genes although they may be 

subject to post translational modifications. Proteins thus reflect DNA sequence and 

composition, even though phenotype may vary with environmental factors and with 

cell differentiation. 

Protein electrophoresis allows distinction between different proteins (allelic 

products) mainly by electrical charge but also by size or conformation (Avise, 1994). 

Not all proteins are amenable to analysis; most membrane proteins cannot easily be 

analysed by electrophoresis because of hydrophobic regions. Proteins can be 

visualised with a general protein detection strain, but only those that are abundant will 

be easily identified (May, 1992). Proteins present in small amounts and those which 

cannot be identified by size alone require specific identification techniques. 

Monoclonal antibodies designed to conserved regions can be used to identify the 

desired protein (eg. by western-blotting). Most enzymes, most notably metabolic 

enzymes, are soluble and catalyze specific reactions which can be used for direct 

identification on an electrophoretic gel. 

Specific enzyme staining can be achieved through production of coloured or 

fluorescent products either of the reaction itself for by coupling to a dye reaction 

(May, 1992). Each enzyme reaction will produce a banding pattern which is 

characteristic of the enzyme and organism and is dependent on the quaternary 

structure of the enzyme and number of alleles and loci. Sub-units in the quaternary 

structure of the enzyme, multiple alleles and multiple loci give rise to different 

motilities increasing and complicating the number of bands seen in the heterozygous 

profile (May, 1992). Analysis can be further complicated by generation of artifacts, 

either by conformational changes in the enzyme due to electrophoretic or extraction 

conditions or by expression of an alternate enzyme with similar reaction 

requirements, or by contamination (May, 1992). 

The study of electrophoretic enzyme banding patterns, known as allozyme or, 

more broadly, isoenzyme analysis (lEA), has many applications, such as the study of 

organ metabolism, allele and gene composition and organization, quaternary 

structure of enzymes, gene linkage and determination of allele frequencies in 

populations (Avise, 1994; May, 1992). The application most relevant to this project is 

in typing of organisms (May, 1992). Some diversity will remain undetected, however, 
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because only variation producing charge differences are evident. Despite this 

limitation, lEA is widely used because it was the first method to produce reliable 

taxonomic data for Leishmania and thus it became the reference method for 

identification of Leishmania, as well as for many other unicellular organisms. 

lEA resolution can be improved for some enzymes by isoelectric focusing 

(IEF) (Piarroux et a/., 1995) on a gel with a pH gradient (May, 1992). IEF allows better 

discrimination by separating proteins on the basis of their isoelectric point, but it has 

some limitations, because some enzymes lose activity when subject to IEF 

conditions. However, IEF data can complement standard isoenzyme characterization 

and genotypic variance data (Piarroux et a/., 1995). 

Media other than starch are also used for allozyme electrophoresis, such as 

cellulose acetate and polyacrylamide. Cellulose acetate is faster and requires less 

sample and staining reagents (May, 1992), but fewer samples can be loaded. 

Polyacrylamide gels are adequate for IEF and, by addition of SDS (a detergent), 

proteins and their sub-units can be separated according to size. The highest 

throughput method is thick starch gel electrophoresis, as gels can be sliced and thus 

used for detection of several enzymes Simultaneously. 

3.1.2. Isoenzyme typing of Leishmania 

Many enzymes, mainly from the glycolytic pathway, are available for typing 

Leishmania and, upon development of the allozyme electrophoresis method (Godfrey 

and Kilgour, 1976; Harris and Hopkinson, 1976), different enzymes and methods 

were introduced. The LSHTM reference laboratory, uses thin layer starch gel 

electrophoresis with 12 enzymes, of which 8 were found to discriminate between 

strains of the L. donovani complex (underlined): alanine aminotransferase (ALA T; 

E.C.2.6.1.2), aspartate aminotransferase (ASAT; E.C.2.6.1.1), esterase (ES; 

E.C.3.1.1.1), glucosephosphate isomerase (GPI; E.C.5.3.1.9), malate dehydrogenase 

(MDH; E.C.1.1.1.37), mannosephosphate isomerase (MPI; E.C.5.3.1.8), nucleoside 

hydrolase (NH; E.C.3.2.2.2), 6-phosphogluconate dehydrogenase (6PGD; 

E.C.1.1.1.44), proline iminopeptidase (PEP-D; E.C.3.4.11.5), phosphoglucomutase 

(PGM; E.C.2.7.5.1), pyruvate kinase (PK; E.C.2.7.1.40) and superoxide dismutase 

(SOD; E.C.1.15.1.1). Zymodemes, or enzyme types, from the LSHTM are coded with 

serial numbers and the prefix LON. Under this system all L. infantum were typed as 

LON49, L. donovani ss defined as LON 41 with 10 other zymodemes described as L. 

donovani sl. The Montpellier reference laboratory uses a system of 15 enzymes, 

which are suitable for described Leishmania species and for construction of 

phylogenies (RiOUX et a/., 1990): MOH, malic enzyme (ME; E.C.1.1.1.40), isocitrate 
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dehydrogenase (ICD; E.C.1.1.1.42), PGD, glucose-6-phosphate dehydrogenase 

(G6PD; E.C.1.1.1.49), glutamate dehydrogenase (GLUO· E C 1 4 1 3) d·aph , ..... , I orase 
NADH (DIA; E.C.1.6.2.2), purine nucleoside phosphorylase 1 (NP1; E.C.2.4.2.1), 

purine nucleoside phosphorylase 2 (NP2; E.C.2.4.2), glutamate-oxaloacetate 

transaminase (GOT1, GOT2; E.C.2.6.1.1), PGM, fumarate hydratase (FH; 

E.C.4.2.1.2), MPI and GPI. Montpellier uses a typing code with the prefix MON. MON 

1 is for the most common L. infantum (LON 49), which comprises more than 17 other 

zymodemes (Rioux et al., 1990) further increased with the discovery of new 

zymodemes in HIV patients. L. donovani reference strain is zymodeme MON 2 and 

12 more zymodemes have been described. 

3.1.3. Technical procedure 

Enzymes are released by rupture of the cell membranes either by mechanical 

action or freeze-thawing, into a stabilizing buffer. Extracts are stored in liquid nitrogen 

in beads of 10IlI, which, when needed, are each placed in a well of a multiwell plate 

to thaw and kept on ice during use. 

Preparation of a thin layer starch gel is achieved by boiling starch in diluted 

tank buffer, pouring and evenly spreading on glass plates. Gels must be free of any 

gas bubbles and are placed on a cooling plate. Small cotton threads are soaked in 

the samples and loaded onto the gel on a straight line. Plates are covered and 

connected to the tank buffer by soaked sponge wicks. Adequate times, voltages and 

buffers for electrophoresis have to be selected empirically. Staining reagents are 

mixed and poured onto the gel as a solution for colour staining or soaked into filter 

paper for fluorescent staining. Staining gels are poured into frames placed on the gel 

and the filter paper is placed directly onto the gel. Gels are incubated until bands are 

optimally stained for photography. 

3.1.4. Future of isoenzyme analysis 

Isoenzyme analYSis still proves useful in many areas of biology and medicine, 

but there are many disadvantages, especially for Leishmania: only limited genetic 

diversity can be identified, only a few loci are usually examined, only strains isolated 

from the host and free of contaminants can be studied, and a large number of 

parasites are required for analysis. Until now, lEA has been cheaper and easier to 

perform than genotyping, and was used to gather the most comprehensive genetic 

data on Leishmania. The entire Leishmania genome is being sequenced, however, 

and genotyping methods are being developed that are faster, cheaper and can be 

species specific such that isolation and culture of parasites are not necessary. Most 

84 



peR based methods are also sensitive enough to require only small samples. By 

genotyping it may also be possible to identify parasites from host biopsies without the 

lengthy and hazardous process of culture. 

Despite the recent focus on genomics, protein analysis expanded to the entire 

protein complement of the genome (proteomics). The sequencing of genomes allows 

faster identification of proteins and thus of their relation with biological function. 

3.2. Results 

3.2.1. Enzyme profiles for each strain 

Each strain was analyzed by thin layer starch gel electrophoresis and stained 

for the enzymes: ALA T, ASAT, GPI, MOH, MPI, NH, PEPO, 6PGO. According to Le 

Blancq (1986), these were the polymorphic enzymes for the L. donovani complex 

among the 12 which have been used in the LSHTM to characterize Leishmania 

strains. The profiles obtained for each strain and the codes from previous 

characterizations are listed for the outgroup strains in table XII, L. chagasi strains in 

table XIII, L. infantum strains in table XIV and L. donovani strains in table XV. 

Graphical depictions of the profiles for each enzyme are shown in Figure 13. 

In the present work, some profiles did not match those described by Le Blancq 

(1986). The LON 45 ALA T double band profile which had been described by Le 

Blancq (1986) was not consistent because a similar pattern was also observed for 

other strains. Each ALA T profile presented only one consistent single band, but two 

other alleles were detected in strains C1 (WR341), 023 (Sukkar 2) and 026 (Wangjie 

1) (Tables XIII and XV, and Figure 13). Since zymodeme LON 45 could also be 

differentiated from LON zymodemes by other enzymes, its designation was kept in 

the absence of the ALA T characteristic pattern, but in the form of LON 45*. 

Two single band 6PGO profiles were identified in the L. donovani complex, 

and according to Le Blancq (1986) an extra, faint, band of the same size as the 

slower 'allele' should have been present in all strains with the faster band pattern, 

except LON 52. In this work only a few of the expected strains had the extra band, 

therefore, and because the phenotype was not consistent with conventional 

heterozygosity, only the stronger bands were scored. It became thus impossible to 

differentiate between zymodemes LON 42 and LON 52, which are here referred to as 

LON 42/52. 

It was very difficult to discriminate between MDH patterns, especially between 

the fainter bands but also between the sizes of the slower stronger bands. For 

simplicity, only the stronger bands were coded and the profiles corresponding to 

relative motilities 100 and 104 in the MaN system were not distinguished. 
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Table XII - Enzyme profiles of the outgroup strains. 

Code Name Enzymes* Zymodeme 

ALATASAT GPI MDH MPI NH PEPD 6PGD LON MON ILM 

L. aethiopica MHOM/ET/1970/L96 E E DOE F E E 27 14? 18 

L. major MHOM/SU/1973/5-ASKH 0 C C OED o 1 4 17 

L. tropica MHOM/SU/1974/K27 B B A F 60 

* distinct isoenzyme profiles are designated A, 8, C, etc. 

Table XIII - Enzyme profiles of L. chagasi strains. 

Code Name Enzymes* Zymodeme 

ALAT ASAT GPI MDH MPI NH PEPD 6PGD LON MON ILM 

C MHOM/BR/1974/PP75'f A C A A A B A B 49 1 9 

C3 MCAN/BR/1984/C0910 C A B B 

C8 MCAN/BR/1989/DOG118 A C A A A B A B 9 

C7 MCAN/BR/1989/DOG136 A C A A A B A B 9 

C13 MCER/BR/1981/M6445 A C A A A B A B 9 

C9 MCER/BR/1983/M7633 C A B B 

C12 MCER/BR/1989/M 12084 C A B B 

C11 MCER/BR/1989/M 120 1985 C A B B 

C5 MHOM/BR/1984/M8270 C A B B 

C4 MHOM/BR/1985/M9702 C A B B 

C2 MHOM/PAl1978IWR285 A C A A A B A B 9 

C1 MHOM/PAl1980IWR341 C A A A A B A B (204) 14 

Not all strains were fully typed. In parenthesis is a LON zymodeme assigned in this 

project, based on partial characterization. t WHO reference strain. * distinct 

isoenzyme profiles are designated A, 8, C, etc. 
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Table XIV - Enzyme profiles of L. infantum strains. 

Code Name Enzymes· Zymodeme 

ALAT ASAT GPI MDH MPI NH PEPD 6PGD LON MON ILM 

MHOMITU/198011 PT _1'f A C A A A B A B 49 1 9 

123 IARIIPT 1198911 MT 169 

124 IARIIPT/198911MT 170 

125 IARIIPT/198911MT 171 A 

126 IARIIPT/198911MT 172 A 

13 MCAN/FR/1982/Pharoah A 

11 MCAN/PT/1981/L82 A 

110 MCAN/PT/198111MT 89 A 

111 MCAN/PT/198211MT 124 A 

18 MCAN/PT/198711MT 150 

19 MCAN/PT/198711MT 152 A 

12 MCAN/PT/1988/Rebeio 2 A 

120 MCAN/PT/198911MT 160 A 

122 MCAN/PT/198911MT 161 

121 MCAN/PT/198911MT 162 

127 MCAN/PT/199111MT 177 

129 MCAN/PT/199311MT 191 

113 MCAN/PT/199311MT 193 

130 MCAN/PT/199411MT 195 A 

118 MCAN/PT 1199411 MT 204 

119 MCAN/PT/199411MT 205 

116 MHOM/CN/1980/Strain A A 

117 MHOM/CY/1963/L53 A 

14 MHOM/ES/1987/Lombardi A 

15 MHOM/FR/1978/LEM75 

115 MHOMIIT/1981/Alessandro A 

131 MHOM/MT/1985/Buck A 

16 MHOM/PT/198211MT 104 A 

112 MVUUPT/198311MT 108 

C 

C 

C 

C 

C 

A 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

B 

C 

C 

C 

C 

C 

A A B A 

A B 

A A 

A A 

A A 

A A 

A A 

A A A 

A A A 

A B A 

A B A 

A B A 

A A A B A 

A A A B A 

A A A B A 

A A B A 

A A B A 

A A B A 

A B 

A B 

A B 

A A A B A 

A B 

A B 

A A A B A 

A A A A A 

A A A A A 

A A A B A 

A A A B A 

A A A A A 

A A A B A 

B 1 

B 1 

B (201) 24 11 

B (201) 24 11 

B 49 9 

B 49** 8 

B 49 9 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

9 

9 

9 

9 

B 34 9 

B (202) - 12 

B 11 

B 1 

B 1 9 

B 49** 78 11 

B 1 9 

49 

17 MVUUPT/198411MPT 128 1 

Not all strains were fully typed. In parenthesis are LON zymodemes assigned in this 

project, based on partial characterization. t WHO reference strain. * distinct 

isoenzyme profiles are designated A, B, C, etc. ** is a zymodeme previously reported 

by Le Blancq (1986) but found here to be different. 
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Table XV - Enzyme profiles of L. donovani strains. 

Code Name 

o MHOMIIN/1980/008't 

028 MHOM/ET/1972/Gebre 1ta 

021 IMAR/KE/1962/LRC-L57 

035 ISER/PT/199311MT 188 

022 MARV/SO/1962/LRC-L64 

024 MCANIIT/1976/00ra 

025 MCAN/KE/0000/02 

023 MCANIIQ/1981/Sukkar 2 

026 MHOM/CN/0000IWangjie-1 

012 MHOM/ET/OOOO/Ayele 5 

027 MHOM/ET/OOOO/Ayele 8 

013 MHOM/ET/OOOO/Hussen 

01 MHOM/ET/1967/HU3 (LV9)t 

015 MHOM/ET/1984/Addis 142 

029 MHOM/ET/1984/Addis 164 

014 MHOM/ET/1982/Bekele 

06 MHOMIIN/1977/Chowd-X 

07 MHOM/IN/1979/STL 1-79 

08 MHOM/IN/1982/Nandi 1 

04 MHOM/IN/1982/Patna 1 

02 MHOM/KE/1967/MRC(L)3 

03 MHOM/KE/1973/MRC74 

031 MHOM/KE/1975/Mutinga H9 

016 MHOM/KE/1980/Ndandu 4A 

030 MHOM/KE/0000/Neal-R1 

017 MHOM/LB/1984/Saiti 4 

034 MHOM/PT/199211MT 180 

032 MHOM/SAl1981/Jeddah KA 

09 MHOM/SAl1987NL23 

010 MHOM/SAl1987NL29 

011 MHOM/SAl1987NL6 

018 MHOM/SO/OOOO/Khartoum 

033 MHOM/SO/1982/Giiani 

019 MHOM/SO/1985/A22 

Enzymes· Zymodeme 

ALAT ASAT GPI MDH MPI NH PEPD 6PGD LON MON ILM 

A A A A A A A A 41 2 1 

A B A B A A A B 50 82 6 

A 

A 

A 

A 

A 

B 

B 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A A A A A A 

A A B A A A 

CAB A A A 

B A B A A A 

A A A A B A 

o C C C/E 0 C 

A B A A C A 

A B A B A B 

A A A A A A 

A B A B A B 

A A B A A A 

A A A A A A 

A B A B A B 

A B A CAB 

A A A A A A 

A A A A A A 

A A A A A A 

A A A A A A 

A A A A A A 

A A A A A A 

A A A A A A 

A A A A A A 

A A A A A A 

A A B A A A 

A A B A A A 

A B A B A B 

A B A B A B 

A B A B A B 

A B A B A B 

A A B A A A 

CAB A A A 

CAB A A A 

B 44 37 3 

B 

B 48 

B 50 

B 45 

C 43** 

5 

7 

6 

8 

13 

B 42** 35 16 

B 52 10 

B 56 3 

B 42 10 

B 46 18 5 

B 3 

B 83 10 

B 42 10 

A 

A 

A 41 

A 41 

B 

A 51 

1 

1 

1 

1 

3 

1 

B 56 32 3 

B 44 

B 56 

B 

B 

3 

3 

5 

18 5 

B 42 31 10 

B 10 

B 

B 

10 

10 

B 46 18 5 

B 48 30 7 

020 MHOM/SO/1987/UGX-marrow A A B A B A B 

B 

B 

7 

10 

6 
05 M M ERII R/1996/M ESH-17 

50 

t WHO reference strain. a L. archibaldi. * distinct isoenzyme profiles are designated 

A, B, C, etc. ** is the zymodeme previously reported by Le Blancq (1986) but found 

here to be different. 
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3.2.2. Zymodeme assignments 

The zymodeme numbers assigned to each strain are listed for the outgroup 

strains in table XII, L chagasi strains in table XIII, L infantum strains in table XIV and 

L donovani strains in table XV, with the graphical depiction of the profiles of each 

enzyme and each zymodeme in Figure 13. A new coding system (ILM) was 

implemented because of the incompatibilities between the LON coding system and 

the procedure used here. More specifically, ILM uses partial typing (eight enzymes) 

and a simpler ALA T, 6PGO and MOH profile coding. Furthermore, some strains were 

found here to have different profiles from those which had been previously described 

(Le Blancq, 1986). Fifteen distinct profiles were described (Fig. 13; ILM 1, 3, 5-14,16-

18), but three more numbers (ILM 2, ILM 4 and ILM 15) were also assigned, which 

could correspond to distinct LON zymodemes (Fig. 13) if MOH had been coded as for 

the LON system. 

Five novel zymodeme profiles in relation to previously described LON 

zymodemes (Le Blancq, 1986) are described here. Strain Sukkar 2 (023) was 

assigned zymodeme ILM 13. This strain was heterozygous for 6PGO, had an ALA T 

profile similar to strain Wangjie 1 (026) and had a GPI profile similar to L. major, but 

all other assayed enzymes were different from any strain tested in the L. donovani 

complex and outgroups. Strain Wangjie 1 (026) was typed as ILM 16, which was 

similar to ILM 10, except for an ALAT profile similar to ILM 13 (see above) and a 

novel distinctive NH profile. Strain WR341 was assigned zymodeme ILM 14, which 

was very similar to ILM 8, although with a novel ALA T profile. Some L. infantum 

strains have two different novel combinations of previously known alleles which were 

coded as ILM 11 and ILM 12. ILM 12 had the particularity of being, as ILM 6, 

heterozygous for ASA T. The profiles observed for all zymodemes are shown in 

Figure 13. The new zymodemes (ILM 11-16) were also tentatively assigned a LON 

number, starting from 201 and are described here with the respective profiles. 

Zymodemes MaN 24, 34, 35 and 83 were typed by the LON system for the 

first time, although using only eight enzyme systems. The profiles observed here 

were equivalent to those observed for the same enzymes by Rioux et al. (1990), 

except for MOH 100 and 104, which could not be discriminated from each other, and 

ASAT which intermediate MaN code (113) was seen and coded here as a 

heterozygous profile. MaN 24 and MaN 35 strains were typed as novel zymodemes 

ILM 11 and ILM 16, respectively, whilst MaN 34 and MaN 83 strains were 

indistinguishable from previously described zymodemes ILM 9 (LON 49) and ILM 10 

(LON 42/52), respectively. 
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ALAT - ---------------- -
ASAT - -------- - - ------ - -- -GP~I--------------------------------------------------- -- -- --- --
MDH --------- -----, ---
MPI --- -- ---------- -- - -
NH ---------- --- ---- -
PEPD ------------ - - -- --
6PGD - + ---------------- t --

I LM 1 = 2 3 = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
I = I Profiles 

LON 41 51 56 44 46 50 48 45 49 42 201 202 203 204 205 200 1 Zl 
125 117 023 C1 020 026 M A Strain 
126 

Figure 13 - Schematic representation of the isoenzyme profiles for each zymodeme 

type found. Not drawn to scale. Dashed lines indicate bands which presence was not 

reliable in different replicates but which had been used by Le Blancq (1986). Identical 

zymodeme profiles are indicated (=), which would be differentiated if MDH had been 

scored as by Le Blancq (1986). Bottom lines represent origin of migration (anode). 
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3.2.3. Phylogenetic analysis 

The isoenzyme data obtained in this work was scored either as presence / 

absence characters or as qualitative multistate characters (each band coded as a 

base or an amino acid in, respectively, DNA or protein sequence files, and being 

analysed with the simplest algorithms by the appropriate programmes); 10.2. Annex 2 

- Table XXXVI. 

The shortest parsimony trees from binary coded data were produced by Dollo 

parsimony (Fig. 14). Rooting of those trees depended on the outgroup used: if ILM 13 

was used as outgroup, then the root lay in the branch leading to ILM 10 and ILM 16, 

but if only ILM 17 and 18 were used as outgroups, then the root lay in the branch 

leading to ILM 8 and 9. Topology of the two trees was otherwise similar, except for 

position of I LM 11. 

An UPGMA tree using Jaccard dissimilarity data (Table XVI) was rooted as the 

equivalent tree obtained by Le Blancq et al. (1986) using LON zymodemes (Fig. 15), 

but further topology within the L. donovani complex was different, except for 

clustering of ILM 8 with 9, and ILM 5 with 7. The UPGMA phenogram, however, was 

not affected by the outgroup (ILM 13, 17, 18) as the parsimony trees had been. In 

trees by neighbour-joining and Fitch-Margoliash (sum of squares (SO) = 2.1; average 

percent standard deviation (ASD) = 14), ILM 3 clustered with ILM 1, and ILM 11 with 

I LM 5 and 7. However, I LM 11/5/7 were associated with I LM 8 and 9 or with I LM 1 

and 3 by Fitch-Margoliash or by neighbour-joining clustering, respectively. Clustering 

methods using distances from data coded as amino acid residues in a protein 

sequence (Table XVI) produced further alternative trees. 

Parsimony trees from data coded as bases in a DNA sequence varied 

enormously according to the rooting and in each analysis, therefore, a maximum 

likelihood tree is presented instead (Fig. 16), with a transition / transversion ratio set 

to 1. This tree is equivalent to that obtained by Rioux et al. (1990) except that ILM 

5/6/7 were not in the root of the L. donovani complex, but branched from ILM 11, 

which is depicted here as part of a circle including ILM 3 and ILM 12 (a putative 

hybrid, heterozygous for ASAT). Another circle links ILM 5/6/7, in which ILM 6 is the 

putative hybrid, heterozygous for ASA T. Cladograms using MON data (8 by Rioux et 

al. (1990) and C, coded as bases in a DNA sequence) were compared. Whilst 

general topologies are similar, the clear cut division between L. donovani and L. 

infantum seen in Rioux's cladogram is less obvious in the alternative parsimony tree 

and even less in the ILM data tree, where L. infantum is much less diverse than L. 

donovani. 
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Table XVI - Dissimilarity calculated between all zymodemes analysed: bottom half for 

binary coding using Jaccard index and upper half for coding as multistate qualitative 

characters (amino acids in a protein sequence like file) using Kimura parameter. 

ILM 1 ILM 3 ILM5 

ILM 1 0.000 0.160 
ILM 3 0.222 0.137 

ILM 5 0.400 0.222 

ILM 7 0.545 0.400 0.222 

ILM 8 0.400 0.222 0.400 

ILM 9 0.545 0.400 0.545 

ILM 10 0.667 0.545 0.667 

ILM 11 0.400 0.222 0.400 

ILM 13 0.941 0.941 0.941 

ILM 16 0.769 0.667 0.769 

ILM 17 1.000 1.000 1.000 

ILM 18 1.000 1.000 1.000 

A 
1 character 
-

B 

ILM 7 ILM 8 

0.360 0.159 
0.304 0.137 

0.137 0.304 

0.516 

0.545 

0.400 0.222 

0.769 0.667 

0.222 0.400 

0.941 0.941 

0.857 0.667 

0.933 1.000 

1.000 1.000 

ILM 9 ILM 10 ILM 11 ILM 13 ILM 16 ILM 17 
0.356 
0.304 

0.516 

0.304 

0.137 

0.769 

0.222 

0.941 

0.769 

0.933 

1.000 

0.626 0.159 
0.516 0.137 

0.799 0.304 

1.214 0.137 

0.799 0.304 

1.214 0.137 

0.799 

0.667 

0.941 0.941 

0.545 0.769 

1.000 0.933 

1.000 1.000 

ILM 1 

ILM9 
ILM8 
ILM 5 
ILM 7 
1 

-1.000 
-1.000 

-1.000 

1.984 

-1.000 

1.984 

-1.000 

1.984 

0.875 

0.941 

1.000 

--- ILM 3 

J 
L 

ILM 13 

ILM 1 
ILM 16 
ILM 10 

1.013 -1.000 
0.799 -1.000 

1.214 -1.000 

1.984 -1.000 

1.214 -1.000 

1.984 -1.000 

0.137 -1.000 

1.214 -1.000 

1.984 -1.000 

-1.000 

1.000 

1.000 1.000 

ILM 17 

0.6 
ILM 1 

ILM3 
0.4 ILM 5 

ILM7 
ILM 11 
ILM8 
ILM9 

ILM 17 
ILM 18 

ILM 16 
ILM 10 

Figure 14 - Parsimony analysis of the isoenzyme profiles determined with eight 

enzymes. Consensus trees from 00110 parsimony, using binary coded data: A) with 

ILM 17 and 13 as outgroups and from 18 best trees with 20 reversions in each 

character; B) with ILM 17 and 18 as outgroups and from 42 trees with 13 reversions 

in each character. All branches were present in more than eight out of 10 trees, 

except for those which have relative frequencies indicated above the branch. 
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Figure 15 - Comparative UPGMA phylogenetic analysis of the isoenzyme profiles 

determined in this work (eight enzymes) with that of previous workers (12 enzymes). A) 

UPGMA tree from Jaccard dissimilarity compared with B ) UPGMA tree obtained by Le 

Blancq et al. (1986). Correspondence between zymodemes is shown by arrows. A 

broken line indicates correspondence of strains, but not of zymodemes (see text). 
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Figure 16 - Comparative parsimony analysis of the isoenzyme profiles determined in 

this work with that of previous workers. Comparison of A) maximum likelihood 

c\adogram (without branch lengths) obtained with data from the present work and 

scored as multistate qualitative data in the form of bases in a DNA sequence (using 

transition / transversion ratio = 1) with 8) a cladogram obtained by Rioux et al. (1990) 

and C) a reconstruction of a MON lEA parsimony tree with data (same as in 8) scored 

as DNA sequence data (as in A) (consensus from 100 most parsimonious trees). ILM 

zymodemes are represented by numbers inside circles and MON codes are 

represented in trees 8 and C by ILM zymodeme numbers: MON 1 is 9, MON 24 is 11 , 

MON 18 is 5, MON 30 is 7, MON 31 is 10, MON 32 is 3, MON 35 is 16, MON 37 is 4, 

MON 82 is 6, MON 83 is 15, MON 34 is ? In blue are L. infantum strains, as defined by 

Rioux et al. (1990), in green are L. donovani strains, in red is L. archibaldi and in CYAN 

is zymodeme ILM 8, which was used in this work but has no known correspondence in 

MON. ILM 6 and ILM 12, heterozygous for ASAT, were not included in the ILM analysis 

but were placed here as putative ILM 5 and ILM 7 or ILM 11 and ILM 3 hybrid, 

respectively, hence the triangular branching patterns on A). Alternative root position 

using ILM 13 as outgroup is shown in A. The number of steps for each branch is 

represented by dashes in 8 and C. 



3.3. Discussion 

The isoenzyme system of 15 enzymes described by Rioux et al. (1990) is the 

most widely used and the current reference for typing and taxonomy of OW 

Leishmania. The 12 enzyme system used in the LSHTM has fallen into disuse , 
although it was an important reference. 

The cladistic analysis of MON zymodeme profiles by Rioux et al. (1990) used 

ASA T as the diagnostic enzyme (Rioux et aI., 1990) to differentiate two main clades 

in the L. donovani complex L. infantum and L. donovani, and a third species L. 

archibaldi. Alternatively, LON 49 has been used as synonymous with L. infantum ss, 

LON 41 as synonymous with L. donovani ss (Le Blancq, 1986), and all other 

zymodemes in the L. donovani complex have been designated as L. donovan; sl. 

Problems encountered 

Isoenzyme typing has historically been the gold standard in characterization of 

Leishmania and any DNA based method has to be evaluated against it for continuity 

purposes. However, any phylogeny produced by enzyme electrophoresis will suffer 

from many pitfalls, not least of all because only charge differences are detected by 

this method and many changes in amino acid composition are missed. Other 

problems are the low number of characters produced, the impossibility of correlating 

band size with similarity and the dependence on growing conditions for expression of 

determined enzymes or alleles. 

The profiles observed for some strains were not those expected from previous 

characterizations by Le Blancq or Evans. Some differences were strain restricted. In 

the case of strain Sukkar 2 (023), the profiles were so different from all other strains 

used here, that the possibility of an error retrieving the right strain is very strong. In 

the case of strain Wangjie 1, it had been typed as LON 42, but in here a small 

difference was detected in size of the NH band, the size of which was equivalent to 

that described by Rioux et al. (1990). This strain was also found here to have 

different profiles for enzymes ALA T, MPI and PEPO than those described by Le 

Blancq (1986). Some L. infantum strains previously typed as LON 49 (Le Blancq, 

1986) were found here to have different profiles - L82 (11) with a L. donovani type 

ASAT, and Buck (131) with the alternative NH pattern. Other differences were generic 

for one enzyme (MOH, ALA T and 6PGO), for which some bands were difficult to 

discriminate by size (MOH) and others were faint and not reproducible. These 

secondary bands are probably artifacts, most likely dependent on particular running 

conditions or enzyme extractions. 

95 



The reasons for differences in particular strain profiles are not clear, although 

cross contamination is a possibility in the original typing. Great care was taken 

thoughout the present work and particular DNA based profiles, most notably that of 

Wangjie 1, were consistent with their respective MON zymodemes. 

There are several possible explanations for the difficulties encountered here in 

replicating certain profiles, especially regarding faint bands. Enzyme extractions could 

have been done from parasites in different stages of growth, or the culture medium 

could have been different from the one previously used, thus slightly altering enzyme 

expression. Running or staining conditions may not have been totally reproduced. 

However, only minimal changes would be expected to result from these latter 

variables, such as satellite bands and increasing or decreasing resolution. 

The difficulties faced in this work to fully reproduce the profiles found by 

previous workers using the same system are a small example of the problems faced 

when trying to standardize the method for use in different laboratories. Not only the 

same reference strains are required, but diverse laboratories use different 

methodologies for culture, electrophoresis and development. 

Zymodemes 

An alternative classification to the LON was used in this work because of the 

differences between the profiles found now with those previously by Le Blancq 

(1986), the scoring method used and because enzymes that had not been found to 

be polymorphic in the L. donovan; complex were not tested here. The new series 

uses the prefix ILM and describes 15 distinct zymodemes. Some strains, which had 

not been characterized before by the LON system, were found to have novel profiles. 

These strains were tentatively ascribed a LON number, starting from 200, exclusively 

and were described here with the respective profiles. Because further 

characterization is required stabilates were stored in the LSHTM. 

Two zymodemes described here were found to be heterozygous for ASAT, 

thus suggesting that recombination may occur within the L. donovan; complex. 

Heterozygosity may have arisen independently with descendants becoming 

homozygous, but such a scenario is not likely because heterozygosity would have to 

have arisen independently twice producing the same alleles. 

The enzyme typing of the strains used in this project provided a basis for 

comparison of traditional typing methods with DNA based methods. Although a 

comprehensive allozyme study of the L. donovan; complex was not achieved in this 

work the characterization of strains was sufficient to provide a correlation with 

established isoenzyme typing. 
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Phylogenies 

The isoenzyme data collected here was used to generate phylogenies of the 

L. donovani complex in order to compare with phylogenies generated by DNA based 

methods. In all obtained phylogenies, there were apparent associations of 

zymodemes (ILM 5, 7 and 6, ILM 8 and 9, ILM 10 and 16) but topologies were 

variable, according to the coding method, outgroup and tree building method used. 

The simplification of the MDH data had as consequence a reduction in tree resolution 

and higher topological uncertainty. However, it was evident that the clear division of 

the L. donovani complex into L. donovani, L. infantum and L. archibaldi, as suggested 

by Rioux et a/. (1990), was not well supported, inclusively by re-analysis of their data. 

Phylogenetic reconstructions based on isoenzyme characters, especially using a 

small number of characters are not robust and should be interpreted with care when 

addressing Leishmania taxonomy. 
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4. Comparison of Leishmania genomes: RAPD 

analysis 
4.1. Introduction 

A simple method to generate random anonymous genetic markers by PCR 

amplification was developed simultaneously by Williams et at. (1990) and Welsh and 

McClelland (1990) and was called random amplified polymorphic DNA (RAPD) or 

arbitrarily primed PCR (AP-PCR), respectively. A single primer of, usually, short 

length (8-12 bases) is used in a PCR reaction, frequently with low annealing 

temperatures during thermal cycling, and thus low specificity. Potentially, a number of 

fragments are amplified from undetermined regions in the genome. Whole genomes 

can be compared without the need to have previous information on DNA sequence, 

through this fingerprinting method. Lack of reproducibility due to sensitivity to 

experimental conditions is a common problem with RAPDs (Lamboy, 1994; Noyes et 

a/., 1996) but it has been a useful technique in producing taxonomic data for 

Leishmania (Andresen et a/., 1996; Motazedian et a/., 1996; Noyes et a/., 1996). By 

careful choice of primers the taxonomic discrimination level can be manipulated, 

although RAPD is usually applicable to strain and species levels. 

A fragment is amplified if the primer sequence is present in the 5' terminus of 

both ends of the target sequence, so that a single point mutation can produce or 

eliminate a band if located in either priming site. Deletions and insertions can also 

modify RAPD patterns and it is not possible to identify homologous bands except by 

probing blots with labelled isolated fragments, or by comparative DNA sequencing. 

An amplified character is dominant over a non-amplification, therefore it is not 

possible to determine homozygosity or heterozygosity for each amplified band. 

In this work, RAPDs were used to compare: L. infantum and L. chagasi; 

Portuguese strains of L. infantum, and L. donovani strains. 

4.2. Quality control of RAPD amplification 

The effect of DNA concentration on RAPD profiles was assessed for all 

primers but A5, that is, a total of nine primers in all, six of which are shown in Figure 

17. The three L. donovani complex reference strains - 008, PP75 and IPT-1 - were 

used with four different DNA concentrations (0.05, 0.5, 1.25, 5 ng/~I). 

Profiles were generally reproducible across the range of DNA concentrations 

tested. In some cases, the most extreme concentrations - 0.05 and mostly 5ng/~1 -

did not produce reliable profiles. The DNA concentration selected was 1.25ng/~1. 
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Lower DNA concentrations worked equaly well and small variations in DNA 

concentration did not greatly affect results . Relative intensity of bands, especially 

shorter fragments in relation to longer fragments, could vary somewhat with DNA 

concentration, although not in the middle concentration values tested. 

kb M L. in antum L. chagasi L. donovani kb M L. in antum L. chagasi L. donovani 

1.0 

0.5 

1.0 

0.75 

0.5 

IPT 1 PP75 008 IPT 1 PP75 008 

2.0 

1.5 

1.0 

0.75 --- - -
0.5 

~~ .. ~ .... -
0.25 

- ----
--

a c a c a abcdabcdabcd 

Figure 17 - RAPD amplification of L. donovani complex reference strains with different 

DNA concentrations (a, b, c, d; respectively 0.05, 0.5, 1.25 and 5ng//-lI) , for primers 

(left to right, top to bottom) 03, 08, 010, A6, A4, AS. eM' are molecular weight 

markers. 
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4.3. The relationship between Leishmania infantum and Leishmania 

chagasi and their relation to the Leishmania donovani complex. 

RAPO amplification, using primers A2, A4, A5, A6, 03, 08, 010, H1, H4 and 

L2, produced very distinct profiles between the selected strains of Old World 

Leishmania species complexes: L. donovani, L. aethiopica, L. major and L. tropica, 

with all the primers tested. Furthermore, primer H1 separated the L. infantum I L. 

chagasi strains from the L. donovani strains (Fig. 18A). Genetic diversity detected as 

polymorphic RAPO profiles, was identified within the L. donovani complex and within 

L. infantum I L. chagasi (Fig. 188). RAPO bands were scored for presence or 

absence (Annex 2) and genetic distances (Table XVII) were calculated to produce 

phenograms. 
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A MW 

B 

kb 

-1.0 

...... 
-0.5 

-0.3 

_2.0 

-1.6 

-1.0 

-0.5 

kb 

Figure 18 - RAPO profiles for strains of the L. donovani complex obtained with primers H1 (A) and 08 (8) . The band shown by the arrow 

discriminated between L. infantum / L. chagasi and L. donovani strains and 08 generated polymorphic profiles within L. infantum and L. chagasi. 

Reference strains: A - L. aethiopica; C - L. chagasi; I - L. infantum; 0 - L. donovani; T - L. tropica. For strain codes, see Tables II to V. -c is negative 

control. 
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Table XVII. Pairwise distance (Jaccard index) and band sharing among L. donovani and L. infantum / L. chagasi for RAPD data. 

5-ASKH 
L96 

K27 

IPT-1 
L82 

Pharoah 

Lombardi 

LEM75 

IMPT104 

IMT150 

IMT152 

IMT89 

IMT124 

IMT108 

IMT193 

82 20/156 24/181 24/18523/17825/18822116924/180 231184 24/189 231185 24/18823/18224/18922118524/181 25/18323/181 23118323/184221180221171 24/18824/18423/18225/189221181 24/185221184 24/180 26/187 221183 26/188 

0.853 74 44/17321/177 20/170221180 19/161 21/172 21/176 21/181 21/177 21/180 21/174 21/181 20/177 21/173 221175 21/173 20/17520/17620/17218/163 21/180 221176 19/174231181 19/17321/177 20/176221172 21/179 201175 211180 

0847 0.659 99 251202 25/195241205 19/18625/197241201 24/206 241202 24/205 24/199 251206 24120224/198 251200 25/198241200 251201 25/19720/18824/20524/201 24/199261206 24/19824120225120125/197 241204 231200 251205 

0851 0.865 0.859 103 94/199 971209 84/190941201 96/205991210 961206 97/209 93/203 991210 95/206 921202 921204 95/202 941204 961205 941201 83/192 971209931205 94120396/21093/202961206 861205831201 831208 78/204 831209 

0 .852 0.867 0.853 JMM:~ 96 93120284/18393119493/19893120392119993120290/19694/203 91/199 881195 89/197 90/195 921197 94/198 921194 84/185 93/202 90/198 91/196 921203 88/19592119981/198821194 781201 74/197 771202 

0847 0.861 0.867 MJt.fhO::1;il]::: 106 85/193 961204 1011208104121310012091021212981206 1041213981209 97/205 981207 971205 951207 96/208 951204 87/195 1021212971208 96/2061011213941205 991209 871208871204 841211 801207 861212 

0850 0.866 0.886 ·~:5g~I~5j~it:ti;'Z:ii:: 87 84/18583/18984/19482119083/19381/18784/19481/190 82118680/18881118686/18883/18981/18579/17683/193 81/189 81/187 82119478/18682119072118975/185 71/192 691188 70/193 
:;:::;:::::;:::::::::::::;:::::::::;:::;:::::::::::::;:::;:::::::: 

0846 0.861 0.855 WI::::: 
0.857 0.865 0.864 ::t1m 

0 .855 0.869 0 .868 :: ~ · 

o 858 0.865 0.865 ::: 

0.854 0.868 0.867 / , .. 

o 855 0.863 0.863 ·' 

0.855 0.869 0.862 

0.865 0 873 0.865 

.:t~ 

98 961200 961205 951201 961204 93/198 961205 931201 91/197 92119991/197 93/199 941200 91/196 83/187 961204 931200 93/198 951205 89/197 941201 82120086/196 801203 761199 811204 
.-.-.. {:~:::;::;:::: ... ,~:~~ 

102 102120910112051011208991202100120998/205 95/201 961203 951201 931203 96/204 93/200 83/191 100120897/204 96/202 991209 941201 98/205 861204851200 831207 791203 841208 

i:::::O~:::::Eu:~~r::::a;Mt:: 107 1021210102121399/207103121499121096120698120897/206941208 961209 951205 85/196 103121397120996/2071021214951206991210881209 86/205 841212 801208 871213 

··· ·:·:·:· :·:·:·:·: ·:·:·;. : ·: · :·:·:·\&~~~m:t~f\o;oo~g 103 1021209 1001203 991210 991206 961202 961204 951202 921204 951205 921201 821192 1001209 981205 97/203 991210 961202 991206 87/205 841201 841208 801204 861209 

...... ····························:::::::::}::::::}:{to::o41::: 106 10012061031213102120996/205 971207 951205 941207 971208 921204 831195 10112121001208991206 10012139812051031209871208861204 861211 81/207 881212 
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............................. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
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107 100121096/206 981208 981206 96120898/20996120586/196102121397120997/2071011214 9712061001210891209871205 831212 781208 881213 

" A~~::: 103 93/202 93120492120292120495120590/201 80/19297/209961205961203961210951202991206 86/205821201 831208 801204 841209 

Strain A 0 847 0.862 0.862 ::0: . fiR . ~ .. . .. . 7... .... 99 94/200 94/198 901200 91/201 88/197821188951205941201 92119994120692119893/202 84/201 84/197 821204 801200 831205 

L53 0 842 0.856 0.857 : 

PP75* o 854 0.862 0.855 ::0::1: 

WR285* 0856 0.871 0.864 ·A

• 

C0910* 0.857 0872 0.858 

M9702* 0.861 0.868 0.855 

M8270* 

M12727* 

M12734* 

o 852 0 876 0.881 

0.854 0.868 0.867 

0.850 0.857 0.864 

M12337* 0855 0.877 0.863 

:::;t •.•. 

::::~:: :::::: 

~ .... :::D:2l 

... - . ~~:s: ... _ .. 

101 941200 90120293120390/19983/190981207951203921201 97/208 92120094/204 85/20386/199 801206 771202 861207 

I :UI:m::::::tH1~t: 99 911200 941201 92119784/18898/205951201 93/199971206 93/198 94/202 84/201 83/197 801204 771200 821205 
:::::::::::::::::::::::::::::;:::::;:: 

101 961203 93/199 83/190 951207 911203 921201 941208891200 931204 82120383/199 831206 771202 821207 

" '~ ' ~:1~::::::n::1:"""::::::O::1~:::::::O::j:f:rt::: 1 02 941200 83/191 97/208 941204 951202 961209 921201 961205 841204 831200 821207 761203 821208 

[:';1;3.::: 98 85/187 95/204 90/200 91/198 941205 89/197 911201 821200 81/196 781203 74/199 801204 

.................. *:~1:t:9.'~tr9.'Mf 89 86/19583/191 82118985/19680/188821192 73/191 751187 70/194 67/190 721195 

::::O:'Z:i::t: 106 10012089912061041213961205100120986/208871204 84/211 801207 861212 

:N\JHil:'t.·( : 102 98/202 981209 951201 991205 831204851200 841207 811203 841208 

100 981207 95/199 991203 83/202 83/198 831205 791201 821206 

M7633* 

M12085* 

M12084* 

008 
HU3 
MRC(L)3 

MRC74 0863 0.871 0.870 0.381 0.398 0.370 0.420 0.382 0.363 0.375 0.355 0.357 0.339 0.400 0.355 0.333 0.384 0.374 0.384 0.402 0.408 0.455 0.370 0.336 0.352 0.362 0.387 0.355 0.376 0.328 

Patna1 
0840 0868 0.861 0341 0.384 0.317 0.431 0.341 0.323 0.310 0.301 0.290 0.311 0.296 0.328 0.320 0.289 0.333 0.344 0.349 0.355 0.415 0.317 0.323 0.339 0.336 0.277 0315 J j:,'22:t 0.300 0.298 :.:.:-:::;:.:.;.;.:-: 0.395 106 

The three groups of strains are, from top: outgroup , L. infantum / L. chagasi* and L. donovani. In the upper triangular matrix are shared over total 

number of bands of each strain pair. In the lower matrix are Jaccard distances and in the diagonal the number of bands for each strain. (Continues) 
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(Table XVII) Bold underlined are maximum and minimum distances within the L. 

donovani complex. Distances smaller than 0.273 (60% of the maximum distance 

within the L. donovani complex) are shaded. 

In both single linkage and UPGMA dendrograms, built from a Jaccard distance 

matrix (Table XVII), L. infantum and L. chagasi were resolved from the L. donovani 

strains but not from each other (Fig. 19), forming a single branch within L. donovani. 

Leishmania donovani strains of the same geographical origin (Indian or Kenyan) were 

grouped. The dendrograms were rooted to the outgroups (L. aethiopica, L. major, L. 

tropica) between the L. donovani Kenyan strains and the remainder. Other distance 

coefficients, like simple matching [1-(a+d)/n], Yule [1-(ad-bc)/(ad+bc)] and Euclidean 

distance ["(b+c)] produced topologies similar to single linkage and UPGMA. The 

cophenetic correlation coefficient (CC) was high using either method (0.994 for single 

linkage and 0.996 for UPGMA), suggesting that the dendrograms were good 

representations of the patristic distances, however, it was not possible to measure 

robustness of the nodes by bootstrap analysis. A three dimensional principal 

coordinates analysis, plotted with a superimposed minimum spanning tree (Fig. 20), 

illustrated again that L. infantum / L. chagasi were indistinguishable, and that L. 

donovani strains grouped according to geographical origin. 
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Figure 19. Single linkage dendrogram built from Jaccard distances recorded for 

RAPD data in strains of the L. donovani complex. Outgroups are L. tropica (T, L96), 

L. aethiopica (A, K27) and L. major (M, 5ASKH) strains. CC = 0.994. Leishmania 

donovani (1-5): 1- MRC(L)3; 2- MRC74; 3- 008; 4- Patna 1; 5 - HU3, Ke - Kenyan; In 

- Indian. Leishmania infantum ('i', dark green) strains are mixed with L. chagasi ('e', 

light green) (6-30): 6- M8270; 7- Lombardi; 8- IPT-1; 9- WR285; 10- L53; 11- M9702; 

12- C0910; 13- Strain A; 14- PP75; 15- M12085; 16- DOG 124; 17- M7633; 18- DOG 

136; 19- DOG 118; 20- IMT193; 21- M12084; 22- IMT89; 23- IMPT104; 24- IMT152; 

25- IMT124; 26- IMT108; 27- IMT150; 28- Pharoah; 29- LEM75; 30- L82. Leishmania 

donovani groups are as in Table XXXII (insert). 
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Axis 2 

Axis 1 

o L. infantu mIL. chagasi 
~L. donovani 
• outgroup 

Figure 20 - A principal coordinates analysis with a superimposed minimum spanning 

tree depicting the first (29.48%), second (10.69%) and fourth axes as coordinates 

(cumulative percentage: 47.25%), from RAPO data. Outgrouped by L. aethiopica (A), 

L. major (M) and L. tropica (T) strains. Note that strains of L. infantum / L. chagasi are 

separated from L. donovani and that the latter show geographical patterns. 

Leishmania donovani strains are: 1 (group C) - HU3; Kenyan, 2 (group A)- MRC(L)3 

and MRC74; Indian (group 8), 3- Patna 1, 4- 008. Leishmania donovani groups are 

as in Table XXXII (insert). 
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4.4. Genetic characterization of Portuguese Leishmania 

All available Portuguese strains, from the four main foci were studied by RAPD 

analysis using the same ten primers as previously: A2, A4, A5, A6, 03, 08, 010, H1 , 

H4 and L2. Other L. infantum and L. chagasi strains were used for comparisons, and 

L. donovani, L. major and L. aethiopica reference strains were used as outgroups. The 

analysis included all 22 Portuguese L. infantum strains, although some strains did not 

produce good quality profiles, and thus, only 18 Portuguese L. infantum strains were 

chosen for subsequent analysis of RAPD patterns. 

Limited genetic diversity was identified within MON-1 Portuguese L. infantum 

strains, but polymorphic profiles were produced by some primers (Fig . 21) . 

Unfortunately most polymorphic bands were not strong enough to be reliably 

considered and were not scored . 

kb 

MOl C A 1 2 6 7 8 9 10 11 12 13 14 18 MW 19 20 21 22 23 24 25 26 27 29 30 0 .
5 

Figure 21 - RAPD profiles of some Portuguese L. infantum strains using primer A5. 

Most Portuguese strains were more closely related than other L. infantum 

strains and MON 24 Portuguese strains, had Jaccard distances of between 0.24 and 

0.60 (Table XXVIII), or 0.56 without MON 24 strains, as seen in Fig. 22. It was not 

possible to discriminate between different foci through UPGMA (CC = 0.99) , single 

linkage (CC = 0.98) or neighbour joining trees, although three strains from the North 

clustered in the single linkage and neighbour joining trees. The phenograms were very 

assymetric, however, perhaps because the data were not sensitive enough to produce 

a phylogenetic structure or the sample was simply inadequate. Different methods 

generated different topologies within the Portuguese L. infantum strains and the 

neighbour-joining tree partially inverted the order of branching of these strains in the 

single linkage dendrogram (Fig. 22). 
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Table XVIII - Pairwise distance (Jaccard index) among Portuguese L. infantum strains for RAPD data. 

5- L100 008 PP 75 IPT-1 L82 IMT IMT IMT IMT IMT IMT IMT IMT IMT IMT IMT IMT IMT IMT IMT IMT IMT 
ASKH 104 150 152 89 124 193 193 160 162 161 169 170 171 172 177 191 195 

5-ASKH 56 

L 100 0.926 56 

008 0.927 0.933 74 

PP75 0.918 0.923 0.593 76 

IPT-1 0.935 0.924 0.632 0.550 70 

L82 0.927 0.915 0.625 0.556 0.370 66 

IMT104 0.917 0.933 0.631 0.494 0.481 0.464 75 

IMT150 0.922 0.927 0.626 0.532 0.482 0.509 0.391 82 

IMT152 0.923 0.928 0.623 0.492 0.500 0.525 0.389 0.264 84 

IMT89 0.921 0.932 0.607 0.506 0.494 0.520 0.378 0.287 0.354 81 

IMT124 0.918 0.934 0.627 0.447 0.539 0.546 0.351 0.360 0.358 0.310 77 

IMT108 0.923 0.933 0.609 0.492 0.479 0.506 0.360 0.264 0.302 0.243 0.289 84 

IMT193 0.921 0.931 0.642 0.523 0.494 0.537 0.435 0.300 0.260 0.378 0.432 0.331 88 

IMT160 0.918 0.928 0.595 0.471 0.500 0.525 0.389 0.303 0.302 0.322 0.325 0.216 0.361 84 

IMT162 0.929 0.924 0.586 0.459 0.467 0.473 0.426 0.320 0.318 0.337 0.371 0.240 0.346 0.240 85 

IMT161 0.930 0.930 0.611 0.516 0.506 0.530 0.508 0.404 0.348 0.461 0.445 0.402 0.344 0.402 0.331 87 

IMT169 0.927 0.932 0.639 0.549 0.503 0.528 0.524 0.422 0.394 0.478 0.483 0.442 0.390 0.464 0.406 0.240 82 

IMT170 0.928 0.928 0.604 0.521 0.511 0.517 0.494 0.382 0.406 0.466 0.450 0.406 0.425 0.406 0.365 0.333 0.285 83 

IMT171 0.925 0.935 0.611 0.550 0.542 0.596 0.543 0.428 0.425 0.440 0.466 0.425 0.397 0.425 0.413 0.359 0.428 0.438 87 

IMTI72 0.925 0.930 0.645 0.537 0.547 0.603 0.548 0.450 0.469 0.462 0.445 0.447 0.484 0.447 0.457 0.454 0.450 0.437 0.322 78 

IMT177 0.930 0.925 0.624 0.508 0.476 0.503 0.500 0.413 0.457 0.450 0.431 0.384 0.452 0.411 0.339 0.367 0.358 0.371 0.464 0.391 79 

IMT191 0.917 0.933 0.618 0.521 0.511 0.517 0.429 0.285 0.320 0.397 0.343 0.320 0.376 0.320 0.335 0.333 0.354 0.303 0.415 0.437 0.371 83 

IMT195 0.917 0.932 0.626 0.532 0.522 0.564 0.506 0.397 0.367 0.411 0.415 0.367 0.390 0.394 0.380 0.378 0.369 0.408 0.404 0.426 0.413 0.322 82 

The lower triangular matrix shows Jaccard distances, the diagonal the total number of fragments per strain. 
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Figure 22 - Single linkage A) and neighbour-joining B) trees depicting RAPO genetic 

diversity within portuguese L. infantum. Sp. - species; o. - geographical origin ; h. - host; 

y. _ year; A - L. aethiopica (L96) , C - L. chagasi (PP75); 0 - L. donovan; (008), I - L. 

infantum (IPT -1), M - L. major (5-ASKH); d - dog; f- fox; s - sandfly; h -human; A 

(purple) - Algarve , L (green) - Lisbon, N (blue) - North, 0 (red) - other; SL (dark green) -

South Lisbon; * are zymodeme MON 24. 



4.5. Genetic characterization of Leishmania donovani strains 

All L. donovani strains were amplified by nine RAPO primers: A2, A4, A5, A6, 

08, 010, H1, H4 and L2. Reference strains of L. major (5-ASKH), L. aethiopica 

(L 100), L. chagasi (PP7S), L. infantum (lPT1) were also included in the sample used 

for this part of the analysis, as well as the most divergent strains within L. infantum: 

Lombardi (14), Strain A (116), L53 (117), IMT171 (l2S) and IMT 172 (126). As had been 

apparent in the first L. donovani complex analysis, L. donovani strains were much 

more polymorphic than L. infantum strains (Fig. 23). The bands were scored as 

presence or absence (Annex 2), individually for each primer and then pooled for 

phylogenetic analysis. Some strains did not amplify well with some primers, and were 

excluded from the final analysis. Jaccard distances (Table XIX) were calculated for 

generation of dendrograms. 

Several distance and cladistic methods were used to produce phylogenetic 

trees from RAPO data on L. donovani complex strains. It was possible to identify 

small groups of related strains, which appeared reliably in all trees (Figure 22). Larger 

groups also emerged which appeared in most analyses (not shown here). 

In both neighbour-joining and 00110 parsimony trees (Figure 24), but also 

UPGMA (CC = 0.94) and Fitch-Margoliash (Sa = 3.7; ASO = 4.8), group E was the 

first cluster to diverge in the L. donovani complex. 00110 and Wagner parsimony 

generated the trees with the lowest number of steps necessary (352) and 00110 was 

chosen to represent parsimony analyses (Fig. 24) because there were no undefinined 

branch lengths. The consensus, from 14 equally parsimonious trees, was very similar 

to the UPGMA tree and placed the root in the same position. Bootstrap values, 

however were lower than 6S%, except for Indian L. donovani and some pairs of 

strains. In the Wagner parsimony method (24 trees), strains in group A did not form a 

group as such, but rather branched separately from the root, before any other strains 

or groups. The Cam in & Sokal method produced trees (three trees, with 454 steps in 

total length) with two divisions and polymorphism parsimony produced the longest 

trees (two trees with 641 steps in total length). Some strains were not reliably 

positioned, mainly 016, 029, 024 and OS. In most methods (UPGMA and 00110, 

Polymorphism, Wagner and Camin-Sokal parsimonies), 016 and 026 were placed 

with group A, whilst 026 was placed with group C by neighbour-joining. Strain 029 

was placed with group C in UPGMA and group B in parsimony analysis. Although it 

was possible to identify clusters of genetically related strains in the distance matrix in 

Table XIX, definition of those groups was not very good. 
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Figure 23 - RAPO band patterns within L. donovani with primers A) H4, 8) 010 and C) L2. em' and 'MW' stand for molecular weight markers. 
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Table XIX - Pairwise distance (Jaccard index) among L. donovan; complex strains for RAPD data. Values lower than 0.52 (65% of the maximum distance 

within the L. donovan; complex) are shown in black on the upper half. 

Group Stmjn M A Q23 017 I 011 0 15 0 29 D~2 0]3 019 0141 Q26 0 16 I 021 027 Q2 A 03 0 25 Q39 1 024 E 05 0 0 4 B 0 6 0 7 1 0 22 1 0 32 033 0 34 1 0 28 0 29 1 0 1 G 0191 C 131 14 P 116 117 125 126 
A 0.930 

023 9.961 9.906 

017 9.923 9.938 9.858 

-E---O'-'- 9.911 0.937 0.882 0.673 

015 0.913 0.926 0.864 0.643 

020 0.925 0.928 0.868 0.661 

012 0.921 0.9« 0.885 0.707 

013 0.905 0.945 0.878 0.677 

010 0.918 0.921 0.849 0.678 

__ .....,0,..,'.".4_ 0.907 0.938 0.871 0.670 ,_._ .. _ .. _. _ .. n _ •• ___ ._n _. __ _ 

026 0.918 0.930 0.894 0.740 ft ~~ft ft M. ft --- - --- - _.- - _.-

___ 0_'_6_ 0.918 0.921 0.884 0.678 0.714 0.566 0.614 0.680 0.629 0.632 0.624 0.609 

A 021 0.931 0.935 0.898 0.714 0.784 0.679 0.600 0.648 0.616 0.707 0.659 0.644 0.594 

027 0.917 0.929 0.893 0.693 0.685 0.583 0.653 0.694 0.644 0.688 0.638 0.572 0.572 

02 0.930 0.934 0.899 0.720 0.733 0.624 0.662 0.701 0.655 0.695 0.649 0.588 0.532 

03 0.928 0.931 0.886 0.707 0.758 0.653 0.624 0.688 0.638 0.682 0.632 0.593 0.566 

025 0.923 0.934 0.901 0.726 0.756 0.632 0.670 0.725 0.701 0.701 0.695 0.480 0.514 

~ __ 0"..3O ____ 0.919 0.931 0.896 0.727 0.740 0.604 0.647 0.688 0.638 0.682 0.655 0.537 0.46910.515 0.408 0.490 0.447 0.374 

F 024 0.926 0.929 0.913 0.734 0.798 0.754 0.694 0.694 0.707 0.757 0.719 0.542 0.647 0.659 0.614 0.577 0.632 0.561 

___ -.....;05...;....- 0.930 0.925 0.899 0.720 0.784 0.725 0.662 0.661 0.675 0.730 0.689 0.588 0.612 0.624 0.577 0.567 0.598 0.551 

B 0 0.938 0.916 0.909 0.772 0.768 0.707 

04 0.937 0.914 0.898 0.751 0.745 0.681 0.655 0.653 0.647 0.670 0.618 0.577 0.627 0.661 0.618 0.556 0.612 0.592 0.612 0.566 0.556 

D6 0.936 0.903 0.906 0.763 0.775 0.694 0.647 0.667 0.681 0.682 0.632 0.618 0.566 0.653 0.632 0.572 0.603 0.582 0.603 0.555 0.514 

____ 07 __ 0.936 0.913 0.886 0.727 0.740 0.674 0.647 0.644 0.638 0.662 0.609 0.593 0.537 0.653 0.609 0.544 0.577 0.582 0.577 0.524 0.514 ,v_w vv' v VL~L 

022 0.922 0.935 0.909 0.692 0.748 0.679 0.540 0.595 0.559 0.644 0.583 0.644 0.620 0.606 0.701 0.668 0.674 0.655 0.629 0.583 0.599 0.647 0.638 0.629 0.629 
-::---=----C 032 0.917 0.928 0.894 0.701 0.714 0.627 0.544 0.618 0.561 0.592 0.556 0.592 0.476 0.649 0.607 0.597 0.602 0.606 0.577 0.630 0.572 0.546 0.535 0.577 0.551 0.577 

033 0.920 0.924 0.898 0.693 0.745 0.661 0.555 0.604 0.572 0.627 0.593 0.627 0.549 0.614 0.618 0.607 0.612 0.616 0.588 0.618 0.527 0.556 0.598 0.561 0.588 0.529 

-

___ .::0.:,34:-_ 0.918 0.921 0.894 0.678 0.770 0.688 0.588 0.659 0.629 0.655 0.647 0.583 0.555 0.620 0.668 0.657 0.618 0.598 0.618 0.599 0.532 0.588 0.627 0.593 0.618 0.535 'Y 'xi' y Lit' 
028 0.928 0.940 0.886 0.639 0.740 0.674 0.599 0.667 0.614 0.662 0.632 0.593 0.618 0.604 0.609 0.572 0.603 0.582 0.577 0.555 0.514 0.572 0.561 0.603 0.577 0.515 0.551 

--

___ 0:.;29;.;;..._0.910 0.931 0.886 0.727 0.700 0.629 0.599 0.620 0.560 0.618 0.583 0.537 0.505 0.604 0.555 0.514 0.603 0.527 0.447 0.583 0.572 0.572 0.500 0.577 0.519 0.548 0.491 

01 0.923 0.934 0.910 0.687 0.756 0.695 0.627 0.647 0.618 0.683 0.635 0.572 0.598 0.632 0.612 0.577 0.630 0.562 0.607 0.500 0.456 0.522 0.509 0.582 0.556 0.524 0.500 0.509 0.544 0.460 0.495 G 
~ __ .".0_'9 __ 0.914 0.927 0.910 0.700 0.714 0.665 0.553 0.546 0.505 0.629 0.566 0.629 0.604 0.616 0.620 0.609 0.614 0.641 0.588 0.594 0.583 0.583 0.572 0.614 0.588 0.489 0.500 0.433 0.515 0.529 0.495 L.;'-~. ;,:._;;;,-__ ..... 
o C 0.927 0.93 0.933 0.775 0.786 0.725 0.701 0.701 0.694 0.713 0.688 0.632 0.655 0.688 0.725 0.695 0.701 0.643 0.662 0.624 0.612 0.588 0.603 0.618 0.618 0.594 0.638 0.649 0.609 0.618 0.593 0.572 0.629 

0.929 0.932 0.926 0.800 0.797 0.729 0.707 0.707 0.701 0.733 0.696 0.702 0.685 0.729 0.696 0.702 0.723 0.691 0.691 0.696 0.630 0.609 0.642 0.655 0.691 0.658 0.632 0.622 0.648 0.655 0.635 0.596 0.624 

131 

14 

116 

117 

125 

126 

0.934 0.929 0.913 0.752 0.765 0.680 0.629 0.714 0.688 0.688 0.681 0.624 0.572 0.659 0.661 0.649 0.675 0.635 0.632 0.661 0.603 0.627 0.641 0.632 0.655 0.583 0.556 0.505 0.510 0.555 0.555 0.588 0.594 

0.937 0.933 0.917 0.733 0.763 0.661 0.632 0.694 0.688 0.649 0.641 0.627 0.627 0.701 0.682 0.671 0.676 0.638 0.657 0.662 0.630 0.630 0.621 0.635 0.635 0.588 0.587 0.572 0.577 0.561 0.561 0.539 0.572 

0.936 0.931 0.925 0.745 0.791 0.694 0.647 0.725 0.701 0.682 0.675 0.593 0.593 0.653 0.675 0.643 0.649 0.582 0.603 0.632 0.598 0.598 0.612 0.577 0.603 0.548 0.577 0.532 0.505 0.519 0.549 0.556 0.614 

0.936 0.940 0.916 0.727 0.791 0.713 0.647 0.707 0.681 0.701 0.695 0.566 0.593 0.629 0.655 0.621 0.627 0.556 0.577 0.609 0.572 0.598 0.612 0.603 0.603 0.548 0.577 0.532 0.505 0.485 0.519 0.527 0.588 

0.939 0.943 0.901 0.744 0.756 0.675 0.649 0.668 0.662 0.664 0.657 0.643 0.572 0.655 0.657 0.645 0.671 0.611 0.607 0.676 0.577 0.602 0.638 0.630 0.630 0.609 0.557 0.509 0.544 0.556 0.527 0.535 0.566 

0.940 0.944 0.902 0.732 0.761 n "A? n ""7 n "7" n "7n n R71 0664 0.630 0.582 0.662 0.643 0.632 0.658 0.597 0.616 0.664 0.562 0.587 0.624 0.616 0.616 0.618 0.541 0.491 0.527 0.539 0.539 0.518 0.577 

D34 = 035. A - L. aethiopica; M - L. major 
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Figure 24 - Phylogenetic trees of the L. donovan; complex based on RAPO data. A) 

Neighbour-joining and B) Consensus 00110 parsimony tree. Bootstrap values higher 

than 65% are shown, from 100 replicate data sets, for 00110/ Wagner/ polymorphism 

parsimony. Branches present in both UPGMA I neighbour-joining I Fitch Margoliash 

trees are indicated by U/N/F. Ungrouped - 1: 023; 2: 017; 10: 026; 11 : 016; 27: 029; 

28: 028; 31 : 022. Group E - 3: 011 ; 4: 015; 5: 010 ; 6: 014; 7: 012; 8: 013; 9: 020. 

Group A - 12: 025; 13: 030; 14: 027; 15: 02 ; 16: 03 ; 17: 021 . (continues next page) 
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(continuation of Fig. 24) Group F - 18: D24; 19: D5. Group 8 - 20: D7; 21: D6; 22: D4; 

23: D*. Group e - 24: D35, D34; 25: D33; 26: D32. Group G - 29: D1; 30: D19. Group 

D - 32: 126; 33: 125; 34: 117; 35: 116; 36: 131; 37: 14; 38: 1*; 39: e*. * are WHO 

reference strains. Groups of strains are equivalent to those in Table XXXII, except F 
and G. 

4.5. Discussion 

Although RAPDs were excellent for fast production of highly polymorphic 

band patterns, analysis of RAPD patterns was complicated by differences in band 

intensity and susceptibility to DNA quality (although not so much to concentration). 

Some strains did not amplify well probably for the latter reason, as reamplification 

using fresh DNA dilutions often produced good quality profiles. Influence of the 

thermocycler or heterogeneity of the peR mix did not seem likely as most poor 

amplifications happened for the same strains. Furthermore, identification of 

homologous bands would only be reliable by Southern blot hybridization with labelled 

isolated bands, which was not done here, because RAPD analysis was not pursued 

further. However, RAPDs were a useful tool for constructing phylogenies, when 

based on simultaneous amplification experiments. Low reproducibility implied that it 

was not possible to compare more than a restricted number of strains in each 

analysis and for this work it was decided to be limited by the capacity of the 

thermocycler, that is, 46 wells. Therefore, RAPD analysis of the L. donovani complex 

was divided here in three parts, the main components of which were: Portuguese L. 

infantum strains; L. infantum / L. chagasi, and L. donovani strains. Outgroups and 

other strains of the complex were included in each analysis for reference. 

RAPDs are one of the potential tools for population biology in Leishmania, 

because highly polymorphic markers can be produced. Although not a true population 

study, L. infantum strains from different foci of one country (Portugal) were studied. 

The sample was not large enough to measure gene frequencies, however, and 

because Leishmania are mainly clonal organisms, a phylogenetic analysis can shed 

some light on population structure, or on evolutionary independence of different 

populations. By clustering methods using Jaccard distances it was not possible to 

individualize anyone population, meaning that no population was sufficiently 

differentiated from the others or that this RAPD analysis was not sufficiently sensitive. 

The structures of the dendrograms and cladograms were very assymetric, however, 

and it is possible that not enough information was obtained to scrutinize the sample 

with high sensitivity or, conversely, that the method was not adequate, simply 

because the genetic diversity level was indeed very low in the sample. The results, 
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however, indicate that Portuguese foci are probably not isolated and that control in 

one area may be hindered by immigration of isolates from other foci. If populations 

are indeed separated, the results suggest that those populations must have only 

recently separated and have not yet fully differentiated. The Leishmania genetic pool 

in Portugal or in each geographical location taken as a population seems to have, at 

least at present, an endemic rather than an epidemic structure, meaning that diverse 

genotypes are present rather than only a few different genotypes favoured in 

epidemic outbreaks. 

In an extended analysis of genetic diversity by RAPO within L. infantum and 

L. chagasi, it was not possible to discriminate the two species, although diversity was 

found. The close relationship between L. infantum and L. chagasi contrasted with a 

higher level of genetic diversity of L. donovani, the tested strains of which were easily 

separated from the L. infantum / L. chagasi group and from each other. The 

impossibility of distinguishing here between L. infantum and L. chagasi strains, with 

similar intraspecific variability within each, gave strong support to the hypothesis that 

these species are synonymous (Mom en et a/., 1987). Furthermore, L. infantum / L. 

chagasi formed a single branch in RAPO dendrograms suggesting that L. infantum / 

L. chagasi is a well individualized, monophyletic group. 

A substantial amount of diversity was observed within the L. donovani strains 

included on the above analysis. On the UPGMA dendrogram, the L. donovani 

complex was rooted within L. donovani strains, with L. infantum depicted as a recent 

branch of L. donovani, suggestive of L. donovani as a paraphyletic group, contrasting 

with earlier findings (Moreno et a/., 1984; Thomaz Soccol et a/., 1993), but supporting 

others (Le Blancq et a/., 1986; Mebrahtu et a/., 1992). 

The need for an extended analysis of L. donovani resulted in the analysis of 

a total of 30 L. donovani strains and six L. infantum / L. chagasi strains. The study of 

the L. donovani complex evidenced division of the taxa into seven groups of which 

only the Indian cluster was robust in parsimony analyses. Most distance based 

methods agreed with each other on group formation, especially groups 0, C, 8-F, A 

and E. Group C-G was not reliably identified, perhaps because of strain 028 (Gebre 

1), which was also closer to 016 (Ndandu 4A). This latter could appear closer to 

group A. Groups B, F and A seemed to be related and boostrap values were higher 

than 650/0 for the lineage containing these three groups. 

The overall low bootstrap values suggest that RAPOs may be too sensitive 

for phylogenenetic analyses. Alternatively, it may be that RAPO data does not 

produce reliable synapomorphisms to be amenable for parsimony analyses and some 

of the indefinitions on the RAPO tree might be due to recombination events, which 
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would have to be studied extensively. However, RAPD seemed very useful for 

identification of genetic diversity between closely related strains. In the history of the 

L. donovani complex as shown by RAPD, group E was seemingly the first to diverge 

from the initial L. donovani genetic pool, with four groups emerging later in a probable 

radiation event, or a five clade radiation event may also have occurred. The different 

RAPD analyses suggested that emergence of L. infantum / L. chagasi was a recent 

episode in the life of the complex, that L. chagasi is not distinct from L. infantum and 

also indicated paraphyly of L. donovani. 
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5. Comparison of Intergenic Regions: 

PCR - RFLP 
5.1. Introduction 

5.1.1. DNA restriction 

Most bacterial strains have enzymes capable of recognising specific DNA 

sequences and either methylating bases (adenine or cytosine residues) in a (usually 

recently synthesised) non-methylated DNA strand or of cutting DNA non-methylated 

in both strands. This means that foreign DNA which does not have the DNA 

modifications specific to the strain of bacterium is susceptible to attack by restriction 

enzymes of that bacterium. These restriction endonucleases were discovered when 

cross-infection with bacteriophages failed to succeed, and it is thought that such 

enzymes may play a role in protecting against bacteriophage infections or against 

any other foreign DNA, for example blocking conjugation with incompatible strains. 

Most restriction enzymes (type II) recognise and cut, or methylate, within or 

near a specific short DNA sequence (usually 4 or 6bp), thus functioning as separate 

endonucleases and methylases. As a rule, endonucleases recognise palindromic 

sequences, but a few recognise uneven, nonpalindromic binding sites, or allow for 

one or more non specific nucleotides. Enzymes with similar recognition sequences 

may be sensitive to different methylation patterns and may cut in different positions: 

these features may be useful for different molecular biology applications. 

The restriction pattern of genomic DNA or of a DNA fragment, clearly is 

sequence dependent, thus, appearance or disappearance of restriction sites and 

shortening or elongation of restriction fragments enables indirect comparison of DNA 

sequences. Different restriction patterns are called restriction fragment length 

polymorphism (RFLP) and are used for several purposes, including strain typing, 

DNA fingerprinting, parent determination, etc. 

One way of producing restriction maps is to cut whole genomic DNA, separate 

the fragments by electrophoresis and transfer the DNA onto a membrane (Southern 

blot) which is then probed with appropriately labelled DNA probes to identify the 

desired fragments. This method provided some of the first molecular data on genetic 

organisation and genetic diversity of Leishmania (Beverley et al., 1984; Macedo et 

al., 1992; Mendoza Leon et al., 1995; Oskam et al., 1998; Ramirez and Guevara, 

1987; van Eys et al., 1991; van Eys et al., 1989). 

With the invention of PCR, DNA fragments from a specific region can be 

obtained in large quantities and restriction fragments produced from PCR products 

can be readily analysed by gel electrophoresis. Series of restrictions with different 

116 



enzymes allow comparisons of DNA sequence from different individuals in what 

became known as PCR-RFLP. This is a very powerful technique for comparison of 

DNA regions which are difficult or too long to sequence or when there is a large 

number of samples to be compared. PCR-RFLP requires knowledge of the flanking 

sequences for primer design, although not of the amplified region. 

The converse technique was named amplified restriction fragment 

polymorphism (AFLP). Whole DNA is restricted with two enzymes, one a six and the 

other a four base cutter, and adapters are ligated to the ends of the fragments. 

Fragments are amplified using one labelled primer for the six base cutter end and 

one unlabelled primer for the four base cutter end. Both primers have sequences 

complementary to the adapters. Double digest fragments are detected by 

autoradiography or another detection system, after separation in a gel. The 

fragments generated by the six base cutter are most likely too long to be productively 

amplified by PCR, while fragments produced by the four base cutter will not be 

detected because the primer is not labelled. This method does not require the large 

amounts of DNA needed for classical RFLP, nor the knowledge of sequence 

demanded by PCR-RFLP, but still requires detection by labelled markers. 

Restriction analysis is very robust and reproducible, but it can only identify 

sequence differences at the recognition site or differences in fragment length. To 

differentiate further between similar sized fragments other techniques must be 

employed, such as denaturing gradient gel electrophoresis (DGGE), single stranded 

conformational polymorph isms (SSCP) and DNA sequencing (see Introduction). 

5.1.2. Ribosomal internal transcribed spacer 

Leishmania rRNA genes are arranged in tandem repeat units, separated by a 

non-transcribed spacer (NTS) region (Cupolillo et a/., 1995). Each repeat has coding 

regions for the small sub-unit (SSU) or 18S rRNA and the large sub-unit (LSU) or 28S 

rRNA, which are separated by an internal transcribed spacer (ITS). The ITS region is 

divided into ITS1 and ITS2 by the coding region for the small 5.8S. T. brucei 

(Rudenko, 1999) and C. fascicu/ata (Spencer et a/., 1987) were found to have about 

six copies of LSU genes separated by spacers. Both NTS and ITS, as well as the 

LSU spacers, are postulated to suffer less selective pressure against mutations than 

the highly conserved coding regions and were found to be more polymorphic than the 

coding regions. The ITS is particularly interesting as it is flanked by highly conserved 

segments for which PCR primers can be designed and it is relatively small (about 1 kb 

in Leishmania). Study of the ITS located between the SSU and the first LSU gene 

was reported (Cupolillo et a/., 1995) for several American Leishmania species with 
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good correlation with isoenzyme and mini-exon data. 

5.1.3. Mini-exon 

The mini-exon gene codes for the spliced leader of all kinetoplastid mRNA 

(Nilsen, 1994). It is present in 100-200 tandem repeat gene units (Fernandes et a/., 

1994), each with a transcribed region and a non transcribed spacer. The transcribed 

region codes for a highly conserved 39 nucleotide exon, the RNA transcript of which 

is trans-spliced to the 5'-end of all nuclear mRNA (Fernandes et a/., 1994), and a less 

conserved intron of between 55 to 101 nucleotides. The non-transcribed spacer is 

highly variable in sequence (ranging from 250 to 1350 nucleotides), and is thus 

useful to discriminate between closely related species of kinetoplastids. In the L. 

donovani complex the amplification of the mini-exon repeat unit generated products 

from 422 to 467bp (Fernandes et a/., 1994). This region has been used successfully 

in peR diagnosis (Hassan et a/., 1993; Katakura et a/., 1998), and for identification of 

Leishmania complexes (Harris et a/., 1998; Ramos et a/., 1996). The mini-exon is a 

potentially good target for typing, since it shows variability within the L. donovani 

complex (Fernandes et a/., 1994) but there are no intra-specific studies as yet. 

5.1.4. Intergenic regions of msp genes 

The Leishmania major surface protease (msp) genes are multicopy in all 

studied Leishmania species. Gene organization has not been described, except for L. 

chagasi (Roberts et a/., 1993) and L. guyanensis (Steinkraus et a/., 1993) and to a 

lesser degree for L. mexicana (Medina Acosta et a/., 1993), although different gene 

families could be identified (Maingon et a/., 1990; Victoir et a/., 1995; Voth et a/., 

1998). In L. chagasi, three gene families were described, which initially were said to 

be expressed preferentially in logarithmic or stationary growth phases, or to be 

constitutively expressed (Ramamoorthy et a/., 1992). Gene families were accordingly 

named mspL, mspS and mspC, although it was later found that all genes were 

expressed in all stages of development (Roberts et a/., 1993). MspC was identified as 

a single copy gene, mspL were present in an array of identical genes and mspS were 

found to have at least 4 subgroups. Each gene family can be distinguished by its 

non-coding region and the 3' half of the coding region. Msp or gp63 genes were 

found to be located on chromosome 10. In L. chagasi, there is an array of an 

indeterminate number of mspS, followed by an array of an unknown number of mspL. 

Next is mspC, followed by a single copy of mspS4. Sequences for L. infantum gp63 

were obtained recently (Gonzalez Aseguinolaza et a/., 1997; Morales et a/., 1997). 
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5.2. Ribosomal internal transcribed spacer 

5.2.1. peR amplification 

The sizes of the L. donovani complex PCR products were , in agarose gel 

electrophoresis, approximately, 1 kb (Fig . 25). The alternative primers ITS1 F and 

ITS2R amplified a product shorter by 34 bp (siTS), which was comparable to the full 

ITS product in terms of yield and the appearance of a single band using similar 

amplification conditions. A fragment of approximately 1.1 kb was amplified from L. 

major, one fragment of 1.05kb from L. aethiopica and two fragments of 1.05kb and 

O.9kb from L. tropica. 

A 

- 1kb 

M 0 CAT C1 C6 01 02 03 04 11 

B ITS siTS 

-1kb 
-O.75kb 

L inf. L don. L inf. L don. 

Figure 25 - Amplification products from A) ITS within the L. donovani complex and 

other OW Leishmania reference strains, and 8) siTS compared with ITS. Reference 

strains: A - L. aethiopica; C - L. chagasi; I - L. infantum; 0 - L. donovani; M - L. major, 

T - L. tropica. For strain codes, see Tables II to V. 

5.2.2. Restriction analysis of the internal transcribed spacer in the 

Leishmania donovani complex 

Only small size differences were observed in the ITS PCR-RFLP profiles within 

the L. donovani complex (Fig . 26) . The outgroup strains, by contrast, were highly 

divergent. Enzymes BstUI , EcoRI , Haelll , Msel and Taql were the most polymorphic. 

The full RFLP data are shown in Table XL (Annex 2). Restriction fragments for most 

strains added up to the expected size with A/ul , Haelll and Msel (Table XX) , allowing 

for small errors in determination of band size, although with other enzymes the total 
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fragment size was much larger. Strains 09, 010, 011 , 013, 020, 026, 029 and 032 , 

gave fragments that added up to approximately twice the expected size with enzymes 

EcoRI , Haelll , Sphl and Taql. 

A 
517-

B 

396-
344-
298 _ . 

201-

154-
134-

344 -

298 -

201 -

154 -
134 -

L donovan; 

I 0 6 7 8 9 1112 14151617 2021 22 
Groups 0 AS AS AS AS E E E E AS AS C EASe 

L donovan; 

Figure 26 - Restriction profiles of ITS obtained with A) BstUI and 8) Taql within the L. 

donovani complex and outgroup strains. Strain codes are as in Tables IV and V. 

Genetic groups are shown for each profile and are as shown in Table XXXII (insert). 
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Table XX - Total fragment lengths (bp) scored per strain and per enzyme for ITS 

RFLP in the L. donovani complex. 

St[aio ~ Eoz~rne Alul BstUI Ctal EcoBI Haelll Msel ~o121 laal 
L. maior 1161 1107 . 546 1153 1243 1137 1081 1285 
L. aethiooica 1102 1545 1137 1099 1099 1044 753 1235 
L. trQQica 2037 2061 967 966 ~14 8Z5 525 j034 
C 1025 1086 1552 1113 1075 947 1305 1251 
C2 1025 1086 1552 1113 1075 947 1305 1251 
C13 1025 1086 1552 1113 1075 947 1305 1251 
C16 1025 1086 1552 1113 1075 947 1305 1251 
C17 1025 1086 1552 1113 1075 947 1305 1251 
C20 1025 1366 1552 1113 1075 947 1305 1251 
I 1025 1086 1552 1113 1075 947 1305 1251 
13 1025 1086 1552 1113 1075 947 1305 1251 
14 1025 1086 1552 1113 1075 947 1305 1251 
/16 1025 1086 1552 1113 1075 947 1305 1251 
/17 1025 1086 1552 1113 1075 947 1305 1251 
125 1025 1086 1552 1113 1075 947 1305 1251 
126 1025 1086 1552 1113 1075 947 1305 1251 
131 1025 1366 1552 1113 1075 947 1305 1251 
133 1025 1366 1552 1113 1075 947 1305 1251 
D 1049 1366 1555 1113 1082 947 1305 1258 
D1 1049 1366 1552 1113 1082 947 1305 1258 
D2 1049 1366 1552 1113 1082 947 1305 1258 
D3 1049 1366 1552 1113 1082 947 1305 1258 
D4 1049 1366 1555 1113 1082 947 1305 1258 
D5 1049 1386 1552 1113 1088 947 631 1263 
D6 1049 1386 1555 1113 1082 947 1305 1258 
D7 1049 1386 1555 1113 1082 947 1305 1258 
D8 1049 1386 1555 1113 1082 947 1305 1258 
D9* 1049 1357 1552 1098 2087 938 1305 2927 
D10* 1049 1366 1552 2269 2087 1161 2156 2251 
D11* 1049 1489 1552 2269 1695 1161 1305 2927 
D12 1049 1357 1552 1098 1448 1161 1305 1573 
D13* 1049 1366 1552 2269 2087 1161 2156 2251 
D14 1049 1357 1552 1098 1065 1161 1305 1258 
D15 1049 1388 1552 1113 1082 947 1305 1258 
D16 1049 1388 1552 1113 1082 947 1305 1258 
D17 1049 1388 1552 1113 1088 947 1305 1263 
D18 1049 1386 1552 1113 1088 947 1305 1263 
D19 1049 1386 1552 1113 1088 947 1305 1263 
D20* 1049 1489 1552 2269 1695 1161 1305 2920 
D21 1049 1388 1552 1113 650 947 1305 1258 
D22 1049 1386 1552 1113 1088 947 1305 1263 
D24 1049 1386 1552 1113 1088 947 1305 1263 
D25 1049 1388 1552 1113 1082 947 1305 1258 
D26* 1049 1364 1552 1098 1065 938 1305 2920 
D27 1049 1388 1552 1113 1082 947 1305 1258 
D28 1049 1388 1552 1113 1088 947 1305 1263 
D29* 1049 1366 1552 2269 1695 1161 1305 2920 
D30 1049 1388 1552 1113 1082 947 1305 1258 
D31 1049 1388 1552 1113 1082 947 1305 1258 
D32* 1049 1199 1552 2269 1695 1161 1305 2920 
D33 1049 1368 1552 1113 988 947 1305 1246 
D34 1025 1386 1552 1113 1088 947 1305 1263 
~35 :]025 1386 1552 1113 1088 947 1305 1263 

Fragment size was determined by comparison with molecular markers or 

extrapolation. Accumulation of small errors may cause some variation in total size 

differences, whilst heterogeneous targets may produce artificial larger sizes (*). 
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Table XXI - Pairwise distance (Jaccard index) among L. donovan; complex strains for ITS RFLP data. Pairs of strains with distance values lower than 

0.484 (65% of the maximum distance within the L. donovan; complex) are shown in black in the upper half. 

Group E 0 C AS 

L. m. L. a. L. t. 026 010 011 020 029 032 09 012 014 Ii/Ie 133 033 034 017 05,01E 0 01 06 015,016 021 
013 131 035 028 019 04 02 07 025, 

C20 022 03 08 027,030 
024 031 

- -

L. major (L. m.) 

L. aethiopica (L. a.) 0.964 

L. troe/ca (L. t.l 0.973 0.905 

E 026 0.967 0.985 0.952 

010,013 0.970 0.987 0.948 0.505 

011 0.970 0.987 0.949 0.520 

020 0.970 0.987 0.949 0.442 0.326 

029 0.970 0.987 0.948 0.422 0.295 0.326 

032 0.970 0.987 0.956 0.466 0.357 0.326 

D9 0.968 0.986 0.954 0.452 0.515 0.361 

012 0.966 0.985 0.951 

014 0.965 0.985 0.950 

0 L. infantum I L. chagasi (Iillc) 0.973 0.984 0.948 

133, 131, C20 0.964 0.984 0.939 0.571 0.639 0.672 0.623 0.612 0.639 0.661 

C 033 0.953 0.984 0.948 0.650 0.721 0.686 0.707 0.700 0.721 0.652 0.610 0.584 0.555 0.531 -034,035 0.974 0.984 0.949 0.707 0.745 0.733 0.733 0.727 0.745 0.728 0.700 0.683 0.487 0.506 0.487 

017,028 0.964 0.984 0.958 0.684 0.745 0.733 0.733 0.727 0.745 0.707 0.676 0.657 0.570 0.584 0.373 0.333 

05,018,019,022,024 0.974 0.984 0.949 0.684 0.727 0.714 0.714 0.707 0.727 0.707 0.676 0.657 0.531 0.548 

AS 0.D4 0.964 0.976 0.939 0.684 0.727 0.672 0.714 0.707 0.727 0.661 0.622 0.598 0.570 0.548 0.487 0.584 0.584 0.548 

01.02.03 0.964 0.984 0.939 0.659 0.707 0.648 0.693 0.686 0.707 0.636 0.591 0.563 0.531 0.506 0.435 0.548 0.548 0.506 0.239 

06.07.08 0.974 0.976 0.949 0.707 0.745 0.693 0.733 0.727 0.745 0.685 0.650 0.629 0.570 0.584 0.531 0.548 0.548 0.506 0.239 

015.016. 025. 027. 030. 031 0.964 0.984 0.958 0.684 0.745 0.693 0.733 0.727 0.745 0.661 0.622 0.598 0.570 0.584 0.435 0.548 0.459 0.506 0.403 
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Figure 27 - Phylogenetic trees of the L. donovani complex produced from ITS RFLP 

data with alternative topologies (C). A) Neighbour-joining tree from Jaccard distances. 

Branches present in all UPGMA, neighbour-joining and Fitch-Margoliash trees (U/N/F) 

are indicated. B) Dollo parsimony tree. Bootstrap support higher than 70% (higher than 

80% in bold) is shown for Dollo I Wagner I polymorphism I Camin-Sokal parsimony. 

Group AB: 1: D*, D4; 2: D1 , D2, D3; 3 - D6, D7, D8; 4: D15, D16, D25, D27, 030, D31 ; 

5: D21. Group C: 6: D5, D18, D19, D22, D24; 7: D17, D28; 8: D34, D35; 9: 033. Group 

D: 10: C*, C2, C16, C13, C17, 1*, 13, 14, 116, 117, 125, 126; 11 : 133, 131. Group E: 12: 

D20; 13: D29; 14: D32; 15: D11 ; 16: D10, D1 3; 17: D26; 18: D14; 19: 012; 20: 09. 

*WHO reference strains. Groups are as in Table XXII (insert). 



Detailed results from tree construction: 

• Distance methods 

• In phenograms from Jaccard distances four clusters of strains could be 

identified with all clustering methods (Fig. 27): UPGMA (CC = 0.99), 

neighbour joining and Fitch-Margoliash (Sa = 1.75; ASD = 5.9). The L. 

donovan; complex was rooted between group 0 and the remainder. 

• Parsimony methods: 

• Dollo produced the shortest cladograms (30 trees with 77 total steps). In 

the consensus tree (Fig. 27) the L. donovan; complex was rooted between 

group AS and the remainder (BCD). 

• polymorphism generated 8 trees with 119 polymorph isms in each 

character and rooted the L. donovan; complex between groups AB and 

CD, but with bootstrap support between 50 and 60%. 

• the consensus Wagner tree, from 20 trees with 176 total steps, had a 

topology similar to the clustering (distance) methods. 

• Camin-Sokal generated the longest cladograms (15 trees with 195 total 

steps), in which consensus tree group 0 was associated with group C, 

although with low bootstrap support. 

Upon phylogenetic analysis of ITS RFLP it was possible to identify four major 

clusters of strains within the L. donovan; complex (Fig. 27), which were congruent 

amongst distance methods. Parsimony methods were congruent, and congruent in 

relation to the clustering methods, for values higher than 75%, except for the root of 

the L. donovan; complex in the 00110 tree. 00110 parsimony usually is the method of 

choice for restriction fragments and it has produced here the shortest trees, however, 

the 00110 cladogram was assymetric and suggested different evolutionary rates, 

contrary to all other methods. 

Through the distance matrix in Table XXI definition of similarity triangles was 

poor, but many strains shared identical profiles. There was, however, a clear 

separation between group E and the remaining strains. 

124 



5.3. Mini-exon 

5.3.1. peR amplification 

The mini-exon PCR products varied in size within the L. donovani complex, 

between 0.4 to 0.5kb, with double bands in the Indian L. donovani strains (Figure 28). 

However, the L. donovani complex could not be distinguished from other OW strains 

by size alone, despite some size polymorphism. 

bp 

500 
400 

75 

Figure 28 - Amplification products for miniexon. Reference strains: A - L. aethiopica ; C 

- L. chagasi; I - L. infantum; 0 - L. donovani; M - L. major, T - L. tropica; alb - larger 

and shorter fragments, respectively, from doublet amplification. For strain codes, see 

Tables II to V. The shorter fragment was also amplified with fragments Da and D4a. 

5.3.2. Restriction analysis of mini-exon in the Leishmania donovani complex 

Mini-exon PCR-RFLP profiles (Fig. 29) of L. chagasi were indistinguishable 

from most L. infantum, whilst L. donovan; presented a high degree of diversity. The 

restriction fragments from the L. donovani complex were clearly distinct from the 

outgroup profiles. The full RFLP data are shown in Table XLI (Annex 2). 

Total fragment size (Table XXII) varied from -0.2 to -1 kb, whilst some strains 

had total sizes between the expected 0.4 to 0.5 kb. 
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Figure 29 - Restriction products of miniexon within the L. donovani complex, with A) 

Haelll and 8) Mspl. Absence of bands in the marked region is characteristic of L. 

infanfum / L. chagasi strains. Genetic groups are shown for each profile. 
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Table XXII - Total fragment length scored per strain and per enzyme for mini exon 
RFLP. 

Strain \ Enz~me BstUl efal Haelll MSQI 
L. major 209 203 335 398 
L. aethiopica 223 123 418 301 
L. tr0e.ica 209 240 354 247 C 234 384 419 199 C2 234 244 253 199 C3 234 244 253 199 C6 234 244 253 199 C13 234 244 253 199 C17 234 244 253 199 C20 234 244 253 199 1 350 384 253 199 13 234 244 253 199 14 435 404 253 199 116 234 244 253 346 
117 234 244 453 199 
125 551 404 328 346 
D 234 244 340 277 
D1* 886 479 990 346 
D2 234 244 253 340 
D3 234 244 253 340 
D4 234 244 340 277 
D4a 234 244 282 277 
D5* 886 975 762 346 
D6a 432 359 415 277 
D6b 432 359 415 277 
D7 432 359 415 277 
D8a 432 359 415 277 
D8b 432 359 415 277 
D9* 842 760 415 329 
D10* 730 760 908 346 
D11* 842 760 415 329 
D12* 842 760 415 329 
D13* 551 760 762 346 
D14* 842 760 415 329 
D15 234 244 415 340 
D16 234 384 315 340 
D17* 954 851 315 329 
D18* 749 975 928 346 
D19* 886 893 928 346 
D20 315 404 415 329 
D21 234 244 315 340 
D24* 234 544 402 329 
D25 234 384 315 340 
D26 234 384 315 340 
D27* 234 625 315 340 
D28* 234 625 415 329 
D29 234 244 415 329 
D30 234 384 315 340 
D32 234 485 415 251 
D33* 234 625 415 251 
D34* 234 625 415 251 
D35* 401 661 415 329 

Fragment size was determined by comparison with molecular markers or 

extrapolation. Accumulation of small errors may cause some variation in total size 

differences, whilst heterogeneous targets may produce artificial larger sizes (*). 
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Table XXIII - Pairwise distance (Jaccard index) among L. infantum complex strains for mini-exon RFLP data. Values lower than 0.511 (65% of the 

maximum distance within the L. donovani complex) are shown in black on the upper half. 

Group 0 ACE 

MAT C2 117 C 116 016 021 02 027 028 032 033 035 020 024 05 018 019 01 010 013 011 017 

M 

A 0922 

T 0.827 0.882 ----o C2 0.933 0.951 0.956 

117 0.935 0.953 0.933 

C 0.938 0.956 0.959 0.365 

0.938 0.956 0.959 0.365 0.433 

__ -.,;.;.11 .... 6_ 0.938 0.929 0.935 0.365 0.433 0.485 

B o 0.938 0.929 0.959 0.365 0.433 0.485 0.485 

__ -=D4;:.:A;;. 0.959 0.926 0.957 0.447 0.500 0.542 0.542 

029 0.920 0.935 0.941 0.485 0.527 0.562 0.562 

015 0.917 0.933 0.961 0.542 0.577 0.607 0.607 0.527 0.420 ----A 016 0.941 0.933 0.961 0.542 0.577 0.527 0.527 0.527 0.527 0.577 0.592 

021 0.938 0.929 0.959 0.500 0.542 0.577 0.577 0.485 0.485 0.542 0.562 0.420 

02 0.935 0.926 0.957 0.447 0.500 0.542 0.542 0.433 0.433 0.500 0.527 0.354 

-
__ ..:0~2~7 0.945 0.938 0.943 0.607 0.632 0.592 0.592 0.592 0.592 0.632 0.640 0.54810.333 0.408 v.~., ~ 

06A 0.903 0.917 0.945 0.562 0.592 0.617 0.548 0.548 0.459 0.513 0.447 0.500 0.640 0.617 0.592 0.677 
--~-C 028 0.928 0.943 0.926 0.592 0.617 0.577 0.577 0.577 0.500 0.548 0.387 0.535 0.603 0.640 0.617 0.522 0.552 

032 0.923 0.961 0.920 0.527 0.562 0.592 0.592 0.592 0.513 0.562 0.397 0.548 0.674 0.655 0.632 0.603 0.564 

.. 
-

__ ....::;0,;;;33:;,. 0.926 0.962 0.923 0.562 0.592 0.548 0.548 0.617 0.548 0.592 0.447 0.577 0.640 0.674 0.655 0.564 0.590 L:I 0;,;,.:.2::2:-;4~=::....-___ 

035 0.916 0.928 0.913 0.659 0.677 0.645 0.645 0.645 0.590 0.626 0.511 0.612 0.663 0.693 0.677 0.650 0.566 0.456 0.540 0.500 _ .. 

020 0.928 0.943 0.947 0.592 0.617 0.640 0.640 0.577 0.500 0.548 0.387 0.535 0.659 0.640 0.617 0.693 0.552 0.511 0.522 0.552 

024 0.949 0.943 0.947 0.592 0.617 0.577 0.577 0.577 0.500 0.548 0.488 0.603 0.535 0.577 0.617 0.590 0.612 0.511 0.590 0.552 0.456 0.426 ----F 125 0.950 0.945 0.949 0.617 0.640 0.659 0.603 0.535 0.603 0.640 0.645 0.677 0.626 0.603 0.640 0.663 0.632 0.694 0.707 0.720 0.609 0.540 0.540 

__ ~14_ 0.943 0.959 0.962 0.485 0.527 0.562 0.562 0.562 0.562 0.607 0.617 0.655 0.655 0.632 0.607 0.692 0.659 0.677 0.640 0.659 0.577 0.488 0.564, _.~w , 

E 05 0.920 0.930 0.918 0.771 0.750 0.759 0.729 0.729 0.729 0.750 0.718 0.739 0.767 0.786 0.778 0.728 0.637 0.651 0.696 0.674 0.577 0.651 0.686 0.628 0.685 

018 0.920 0.946 0.918 0.771 0.750 0.729 0.729 0.729 0.729 0.750 0.718 0.739 0.767 0.786 0.778 0.728 0.637 0.651 0.696 0.674 0.577 0.651 0.686 0.628 0.685 0.246 

019 0.920 0.930 0.918 0.771 0.750 0.729 0.729 0.729 0.729 0.750 0.718 0.739 0.767 0.786 0.778 0.728 0.637 0.651 0.696 0.674 0.618 0.686 0.717 0.664 0.718 0.246 

01 0.915 0.926 0.930 0.753 0.730 0.741 0.741 0.707 0.707 0.730 0.696 0.718 0.750 0.741 0.762 0.767 0.648 0.728 0.739 0.748 0.628 0.622 0.661 0.548 0.658 0.420 0.420 0.420 

010 0.915 0.943 0.930 0.753 0.762 0.741 0.741 0.707 0.707 0.730 0.696 0.718 0.778 0.771 0.762 0.739 0.606 0.661 0.672 0.685 0.586 0.622 0.696 0.596 0.658 0.478 0.420 0.478 0.535 

013 0.926 0.955 0.924 0.720 0.694 0.743 0.707 0.667 0.667 0.694 0.655 0.681 0.753 0.743 0.732 0.707 0.598 0.616 0.627 0.643 0.577 0.567 0.658 0.535 0.609 0.395 0.395 0.461 0.522 0.402 

011 0.928 0.921 0.926 0.732 0.743 0.753 0.719 0.719 0.681 0.707 0.627 0.695 0.762 0.753 0.743 
017 0.946 0.924 0.928 0.743 0.753 0.730 0.695 0.730 0.730 0.753 0.711L 0.771 0.707 0.730 0.753 0.696 0.672 0.685 0.729 0.707 0.568 0.648 0.606 0.577 0.64310.507 0.553 0.553 0.561 0.601 0.632 0.468 

A is L. aethiopica, M is L. major, Tis L. tropica. C2 = C3, C6, C13, C17, C20, 13; 0 = 04; 02 = 03; 06 = 07, 08; 010 = 09; 011 = 012, 014; 016 = 025, 
026,030. 
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Detailed results from tree construction: 

• Distance methods 

• 

• 

• 

In the neighbour joining phenogram (Fig. 3D), six groups were identified 

and the L. donovani complex was rooted between group A and the 

remainder. 

by UPGMA (CC = 0.96) the phenogram was similar to neighbour joining 

but the branching order of B, D and A was different from either neighbour 

joining or Fitch-Margoliash. 

by Fitch-Margoliash (Sa = 4.8; ASD = 6.2) produced the same groups as 

neighbour joining but the L. donovani complex was rooted between group 

B and the remainder. 

• Parsimony methods: 

• Wagner (Fig. 30) generated the shortest cladograms (73 trees with 109 

total steps). The same groups as by neighbour joining were produced, 

except that a clear group D was not resolved from a clade DF. 

• Dollo generated 26 trees with 115 total steps. 

• polymorphism parsimony generated 8 trees with 188 polymorphisms in 

each character. 

• Camin-Sokal generated 100 trees with 128 total steps. 

In the phenograms built using distance methods (Fig. 30) six congruent 

groups were identified, although the branching order could be different (see above). 

Resolution was good for all groups except group D by Wagner, however affinities of 

several strains were not congruent between the different analyses. No major lineage 

within the L. donovani complex had bootstrap support higher than 70% and topology 

of consensus trees varied considerably among parsimony methods. Accordingly, in 

the distance matrix show in Table XXIII, there were no obvious groups formed. 
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Figure 30 - Phylogenetic analysis of the L. donovani complex from mini-exon RFLP 

data. A) Neighbour-joining tree from Jaccard distances. Branches present in all three 

UPGMA, neighbour-joining and Fitch-Margoliash trees (U/N/F) are indicated. B) 

Wagner parsimony consensus tree. Bootstrap values higher than 60% (higher than 

80% in bold) are shown for Wagner I 00110 I polymorphism I Camin-Sokal parsimony. 

Group A - 1: 02, 03; 2: 021; 3: 016, 025, 026, 030; 4: 027. Group 0 - 5: C2, C6, C13, 

C17, 13, C3, C20; 6: 117; 7: C*; 8: 1*; 9: 116. Group B - 10: 0*, 04; 11 : 04a. Group C -

12: 028; 13: 033, 034; 14: 032. Group F - 15: 14; 16: 125. Group E - 17: 018; 18: 05; 

19: 019; 20: 01; 21: 013; 22: 09, 010; 23: 011 , 012, 014; 24: 017. Not grouped: 25: 

015; 26: 029; 27: 06, 07, 08; 28: 024; 29: 020; 30: 035. * are reference strains. 

Groups are equivalent to those in Table XXXII (insert), except for F. 
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5.4.ITG/CS 

5.4.1. peR amplification 

ITG/CS amplification generated a product of around 1.7kb as estimated by 

comparison with a 1 kb DNA ladder on agarose gel electrophoresis (Fig. 31A) 

Amplification of a single band for gp63 ITG/CS was specific fo r the L. donovani 

complex (Fig. 318). 
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Figure 31 - A) Amplification products from ITG/CS within the L. donovani complex. 8) 

Specificity of ITG/CS amplification. Reference strains: A - L. aethiopica , Am - L. 

amazonensis, 8 - L. braziliensis, G - L. guyanensis, L - L. lainsoni, M - L. major, Me -

L. mexicana, P - L. panamensis, Pe - L. peruviana, T - L. tropica . MW are molecular 

weight markers. 
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Figure 32 - Restriction profiles generated by enzymes A) Cfal and B) Haelll on ITG/CS amplification products. Cfal generated specific profiles for L. 

infanfum / L. chagasi for the size indicated by an arrow. Genetic groups are shown for each profile, as in Table XXII (insert) . 
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5.4.2. Restriction analysis of ITG/CS in the Leishmania donovani complex 

Restriction of ITG/CS generated rich band profiles. Enzymes Ctol (Fig. 32), 

Alul and Rsal, used upon gp63 ITG/CS produced profiles specific for L. intanfum and 

L. chagasi, and most strains of these two species were indistinguishable. The full 

RFLP data are shown in Table XUII (Annex 2). Only BsfUI and Ctol produced 

fragments that added up to approximately the expected size (Table XXIV), but with 

BsfUI some strains had significantly larger total sizes (016, 021, 025, 027, 030 and 

031). The larger total sizes included strains with more fragments, thus indicating a 

polymorphic target. Enzyme Rsal produced only 1 or 2 usable fragments (smaller 

than O.9kb) and thus the scored total fragment size was very small. 

Table XXIV - Total fragment length scored per strain and per enzyme for ITG/CS 

RFLP. 

Enzymes Enzymes 
Strain Alul BstUI Cfol Haelll Mspl Rsal Taql Strain Alul SstUl Cfol Haelll Mspl Rsal Taql 

C 982 1605 1531 1025 1300 235 997 011 1127 1486 1542 1000 1212 98 982 
C2 982 1605 1531 1025 1300 235 997 012 1132 1486 1544 1000 1212 98 427 
C12 982 1605 1531 1025 1300 235 997 013 947 1486 1544 1000 1212 98 982 
C13 982 1605 1531 1025 1300 235 997 014 1127 1486 1542 1000 1212 98 982 
C17 982 1605 1531 1025 1300 235 997 015 827 1600 1547 1027 1300 245 973 
C20 982 1605 1531 1025 1300 235 997 016* 827 1996 1549 1027 1300 - 982 

I 982 1605 1531 1025 1300 235 997 017 827 1651 1527 980 1232 245 962 

13 982 1605 1531 1025 1300 235 997 018 832 1651 1527 980 1232 245 952 

16 982 1605 1531 1025 1300 235 997 019 832 1651 1527 980 1232 245 952 

116 982 1605 1531 1025 1300 235 997 020 1127 1486 1542 1000 1212 98 982 

117 982 1605 1531 1025 1300 235 997 021* 740 1996 1549 1027 1300 - 992 

126 982 1605 1531 1025 1300 235 772 022 827 1651 1524 980 1232 245 1177 

131 827 1600 1534 1027 1300 245 973 024 832 1651 1527 980 1232 98 972 

133 982 1605 1531 1025 1300 235 997 025* 827 2076 1549 1027 1300 245 982 

0 827 1561 1341 1000 1232 245 943 026 992 1571 1406 1000 1232 245 982 

01 832 1576 1592 1127 1232 245 967 027* 745 1996 1549 1027 1517 245 982 

02 827 1535 1549 1027 642 245 982 028 745 1651 1527 980 1232 98 967 

03 827 1600 1549 880 642 245 982 029 1137 1486 1544 1000 1212 98 997 

04 827 1636 1342 1000 1232 245 742 030* 832 2076 1549 1027 1300 245 982 

05 827 1651 1528 980 1232 245 1153 031* 745 1996 1549 1027 1300 245 982 

07 740 1636 1341 1000 1232 98 943 032 745 1486 1479 1000 1212 98 992 

08 827 1636 1341 1000 1232 98 943 033 745 1651 1527 980 1232 245 967 

09 1045 1486 1479 1000 1212 98 410 034 740 1651 1527 980 1232 245 969 

010 947 1486 1544 1000 1212 98 982 035 827 1651 1527 980 1232 98 952 

Fragment size was determined by comparison with molecular markers or 

extrapolation. Accumulation of small errors may cause some variation in total size 

differences, whilst heterogeneous targets may produce total sizes larger than the 

PCR products (*). 
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Table XXV - Pairwise distance (Jaccard index) among L. donovani complex strains for ITG/CS RFLP data. Values lower than 0.502 (65% of the maximum 

distance within the L. donovani complex) are shown in black on the upper half. 

B 07 

08 

o 
D4 

F 026 

C 017 

034 

035 
05 

028 

033 

022 0.550 0.528 0.528 0.488 0.558 

024 0.518 0.494 0.535 0.535 0.528 0.358 0.392 0.324 0.442 0.285 0.324 0.442 

01 0.584 0.564 0.528 0.564 0.522 0.413 0.442 0.442 0.482 0.358 0.320 0.436 0.387 

018 0.535 0.512 0.512 0.512 0.463 0.320 0.281 0.281 0.354 0.324 0.281 0.354 0.281 0.354 
A-:---~0~2:;<7;-- 0.626 0.636 0.636 0.608 0.537 0.670 0.636 0.661 0.655 0.652 0.636 0.655 0.661 0.629 0.619 

02 0.632 0.615 0.615 0.584 0.544 0.626 0.615 0.615 0.608 0.684 0.668 0.608 0.668 0.636 0.626 0.383 

03 0.603 0.584 0.584 0.550 0.544 0.626 0.615 0.615 0.608 0.684 0.668 0.608 0.668 0.661 0.626 0.383 0.229 

016 0.615 0.596 0.626 0.596 0.590 0.661 0.652 0.626 0.645 0.692 0.700 0.645 0.677 0.670 0.661 0.408 0.413 0.413 

025 0.619 0.601 0.601 0.571 0.565 0.612 0.601 0.601 0.595 0.670 0.655 0.595 0.655 0.623 0.612 0.374 0.378 0.378 0.271 

030 0.645 0.629 0.629 0.601 0.532 0.639 0.629 0.629 0.623 0.645 0.629 0.623 0.629 0.595 0.583 0.309 0.431 0.431 0.345 0.218 

031 0.626 0.636 0.636 0.608 0.537 0.670 0.636 0.661 0.655 0.652 0.636 0.655 0.661 0.629 0.619 0.224 0.436 0.436 0.349 0.309 0.221 

015 0.596 0.577 0.577 0.544 0.601 0.645 0.661 0.661 0.601 0.700 0.685 0.655 0.685 0.655 0.670 0.477 0.436 0.436 0.408 0.374 0.426 0.431 

021 0.603 0.615 0.643 0.615 0.636 0.652 0.668 0.668 0.685 0.684 0.692 0.685 0.692 0.685 0.700 0.436 0.488 0.488 0.277 0.378 0.431 0.383 0.436 

131 0.643 0.626 0.626 0.626 0.645 0.636 0.652 0.652 0.619 0.692 0.677 0.645 0.677 0.645 0.661 0.500 0.463 0.463 0.436 0.403 0.452 0.457 0.349 0.463 
-E--~0~9- 0.584 0.598 0.598 0.598 0.650 0.640 0.528 0.629 0.650 0.707 0.714 0.727 0.714 0.676 0.667 0.648 0.692 0.692 0.639 0.616 0.589 0.623 0.595 0.655 

032 0.617 0.629 0.629 0.629 0.591 0.640 0.657 0.657 0.676 0.617 0.629 0.676 0.629 0.650 0.640 0.632 0.667 0.667 0.700 0.700 0.677 0.659 0.728 0.667 0.722/0.465 

012 0.610 0.591 0.591 0.591 0.584 0.632 0.650 0.622 0.643 0.667 0.676 0.643 0.650 0.643 0.659 0.677 0.632 0.632 0.668 0.670 0.693 0.700 0.700 0.684 0.692 0.333 0.459 

010 0.676 0.659 0.659 0.659 0.528 0.692 0.684 0.659 0.677 0.676 0.684 0.677 0.659 0.652 0.643 0.636 0.643 0.643 0.677 0.678 0.655 0.661 0.728 0.714 0.721 

029 0.659 0.643 0.643 0.643 0.544 0.677 0.692 0.668 0.685 0.632 0.643 0.661 0.643 0.608 0.652 0.645 0.652 0.652 0.685 0.686 0.663 0.670 0.714 0.700 0.707 

011 0.684 0.668 0.668 0.643 0.544 0.700 0.692 0.668 0.661 0.684 0.692 0.685 0.668 0.661 0.652 0.670 0.677 0.677 0.707 0.707 0.686 0.693 0.714 0.741 0.74710.541 0.500 0.447 0.281 0.387 

""o--""C-- 0.747 0734 0.752 0.714 0.663 0.740 0.752 0.734 0.727 0.721 0.728 0.740 0.707 0.707 0.721 0.639 0655 0.655 0.629 0.606 0.577 0.612 0.583 0.645 0.629 0.772 0.735 0.728 0.693 0.678 0.655 

126 0.741 0.728 0.747 0.707 0.655 0.734 0.747 0.728 0.721 0.647 0.657 0.650 0.657 0.721 0.714 0.707 0.645 0.645 0.722 0.721 0.741 0.728 0.748 0.715 0.742 0.767 0.735 0.721 

010 = 013; 018 = 019; C =C2, C12, C13, C17, I, 13, 16, 116, 117, 133, C20; 011 = 014,020; 034 = 035. 
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Detailed results from tree construction: 

• Distance methods 

• The neighbour jOining, UPGMA (CC = 0.98) and Fitch-Margoliash (Sa = 
3.7; ASD = 5.9) phenograms had similar main topologies and the same 

groups of strains were identified (Fig. 33). 

• Parsimony methods: 

• 00110 generated 39 trees with 136 total steps, in which consensus group E 

was closer to group 0 than group A, whilst the remainder were similar; 

• Wagner (Fig. 30) generated the shortest parsimony trees (96 trees with 

117 total steps), for which the consensus had the same groups and main 

topology as the neighbour joining tree; 

• polymorphism generated 4 trees with 233 polymorph isms in each 

character, in which consensus strain D26 (Wangjie 1) clustered with group 

B, although with low bootstrap support, and group C was further sub­

divided in two (strains 1-5 and 6-10); 

• Camin-Sokal generated 20 alternative trees with 181 total steps, in which 

consensus, strains 131 (Buck) and D15 (Addis 142) clustered with group D 

(L. infantum) instead of group A, although at a large distance (a total of 17 

steps). 

Phylogenetic analyses of RFLP of gp63 ITG/CS produced very consistent 

results across the different methods used. The only exceptions were the exchange of 

positions of groups D and A in the Dollo cladogram, clustering of strains 131 and D15 

with L. infantum in the Camin-Sokal cladogram and the relative positions of strain 

Wangjie 1 (D26) which could be between CB and ADE or near group Busing 

different methods. Strain groups B, D and E had the highest boostrap support, but 

neither group A nor the relative positions of the groups were well supported. 

In the gp63 ITG/CS PCR-RFLP distance matrix in Table XXV, five groups of 

closely related strains could be identified visually, which had been defined in the 

phylogenetic analysis by all clustering methods (Fig. 33). 
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Figure 33 - Phylogenetic analysis of the L. donovan; complex from ITG/CS RFLP data. 

A) Neighbour-joining tree, with topology compared to a 00110 cladogram. B) Main 

alternative topologies. Bootstrap support higher than 60% (higher than 80% in bold) is 

shown for parsimony methods (00110 / Wagner / polymorphism / Camin-Sokal) at 

branches. Group C - 1: 05; 2: 022; 3: 017; 4: 035; 5:034; 6: 028; 7: 033; 8: 018, 019; 

9: 024; 10: 01 . Group B - 11: 07; 12: 08; 13: 0 *; 14: 04. Group F - 15: 026. Group E -

16: 010, 013; 17: 029; 18: 011 , 014, 020; 19: 012; 20: 09; 21 : 032. Group A - 22: 

02; 23: 03; 24: 025; 25: 030; 26: 031 ; 27: 0 27; 28: 016; 29: 021 ; 30: 131 ; 31: 015. 

Group 0 - 32: C*, C2, C12, C13, C17, 1*, 13, 16, 116, 117, 133, C20; 33: 126. * WHO 

reference strains . Groups are the same as those in Table XXXII (insert). 
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5.5. ITG/L 

5.5.1. peR amplification 

ITG/L amplification generated a product with an estimated size of 1.6kb on 

agarose gel electrophoresis (Fig. 34) . Amplification of gp63 ITG/L was specific for the 

L. donovani complex, although at high DNA concentrations it was possible to amplify a 

band of similar size to that of the L. donovani complex from some OW Leishmania 

strains, together with many non-specific bands (Fig. 34). 
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Figure 34 - A) Amplification products from ITG/L within the L. donovani complex. 8) 

Specificity of ITG/L amplification. Reference strains: A - L. aethiopica, Am - L. 

amazonensis, B - L. braziliensis, G - L. guyanensis, L - L. lainsoni, M - L. major, Me -

L. mexicana, P - L. panamensis, Pe - L. peruviana, T - L. tropica . MW are molecular 

weight markers. 

5.5.2. Restriction analysis of ITG/L in the Leishmania donovani complex 

The restriction profiles of L. infantum and L. chagasi strains were identical , 

except for strains Lombardi and Strain A (Fig. 35) whilst diversity within L. donovani 

was evident. Most strains had similar profiles and few polymorphisms were detected 

within the L. donovani complex compared with ITG/CS. The full RFLP data are shown 

in Table XLV Annex 2. 

The total usable fragment size for ITG/L (Table XXVI) was usually smaller than 

the expected and ranged between 1.58kb (some strains with Mspl) and 185bp (Taql) . 

Whilst with some enzymes larger bands were not scored , some fragments must have 

had the same size and thus have been indistinguishable with other enzymes. ITG/L 

RFLP profiles were often very complex, with small bands produced , and thus the 

opportunity for band coincidence was greater. 



A 

134 -

75 -

MW 
(bp) 

Groups 

~N.q-V)\.Ot""--O~N 
\.Ot""--OOO\~~~~~""""NNN 

~QQQQQQQQQQQQQQ 

o B B B BEE E E A A C' E A C' 

OMOOO\ Mt""-­
........ NM.q-V) ........................ ~\.O ................ 
QQQQQQQQQQUUU~~~ 

-- ----
B C' F F B C' F F C' C' 0 0 0 0 0 0 

- 344 

- 298 

- 220 

- 154 
- 134 

MW 
(bp) 

8 

Figure 35 - Restriction profiles generated by enzymes A) Ctal and B) Mspl on ITG/L amplification products. cral generated a specific profile for L. 

intantum. The restriction patterns are also very different from those obtained with ITG/CS. A vertical bar highlights region of L. inrantum specific band 

patterns. The groups corresponding to each profile are shown and are equivalent for most strains to those in Table XXXII (insert), except for group F. 
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Table XXVI - Total fragment length per strain and per enzyme for ITG/L RFLP. 

Strain \ Enz~me Alul SstUl efal Haelll Mspl Rsal Taql 
C 681 845 598 959 887 1407 185 
C2 681 845 598 959 887 1407 185 
C6 681 845 598 959 887 1407 185 
C13 681 845 598 959 887 1407 185 
C17 681 845 598 959 887 1407 185 
C20 681 965 520 959 1032 1407 185 
I 681 845 598 959 887 1407 185 
13 681 845 598 959 887 1407 185 
14 681 845 598 959 887 1407 185 
116 681 845 598 959 887 1407 185 
117 681 845 598 959 887 1407 185 
125 681 845 598 959 887 1407 185 
126 681 845 598 959 887 1407 185 
131 681 845 745 959 1032 1407 185 
133 681 975 673 959 1032 1407 185 
D 681 1074 727 959 899 1407 185 
D1 681 1148 724 959 899 1393 185 
D2 681 948 675 959 891 1407 185 
D3 681 948 675 959 891 1407 185 
D4 681 1074 727 959 899 1407 185 
D5 681 1278 724 959 899 1393 185 
D6 681 1074 727 959 1146 1407 185 
D7 681 1074 727 959 1146 1407 185 
D8 681 1074 727 959 1146 1407 185 
D9 681 845 745 959 1536 1407 185 
D10 681 845 725 959 887 1407 185 
D11 681 845 745 959 1536 1407 185 
D12 681 845 745 959 1021 1407 185 
D13 681 845 725 959 887 1407 185 
D14 681 845 745 959 1021 1407 185 
D15 681 1198 745 1166 1559 1407 185 
D16 681 1198 745 1166 1559 1407 185 
D17 681 1278 794 959 1159 1393 185 
D18 681 1278 644 959 899 1393 185 
D19 681 1148 644 959 899 1393 185 
D20 681 845 745 959 1026 1407 185 
D21 681 948 745 1166 1575 1407 185 
D22 681 1148 794 959 894 1393 185 
D24 681 1278 871 959 894 1393 185 

D25 681 1198 747 1166 1575 1407 185 

D26 681 1095 745 959 1186 1407 185 

D27 681 1198 670 1166 1575 1407 185 

D28 681 1278 871 959 1158 1362 185 

D29 681 971 745 959 1036 1407 185 

D30 681 948 747 1166 1045 1362 185 

D31 681 948 747 1166 1580 1362 185 

D32 681 845 745 959 1302 1362 185 

D33 681 1198 871 959 1179 1362 185 

D34 681 1278 794 959 894 1362 185 

D35 681 1045 724 959 1041 1393 185 

Fragment size was determined by comparison with molecular markers or 

extrapolation. Accumulation of small errors may cause some variation in total size 

differences, whilst fragments of the same size may cause artificial smaller sizes. 
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Table XXVII - Pairwise distance (Jaccard index) among L. donovani complex strains for ITG/L RFLP data. Values lower than 0.413 (65% of the maximum 

distance within the L. donovani complex) are shown in black on the upper half. 

Strain 
o C 

C20 

010 .. 
E 133 

09 
012 

026 0.397 0.363 0.424 0.281 0.354 0.281 
~9 o~o~o~o~o~o~o~ -----
032 0.459 0.480 0.480 0.424 0.418 0.363 0.442 0.447 

~F-"""""0"""'2~- 0.408 0.435 0.435 0.429 0.474 0.429 0.494 0.453 0.541 

B 0 0.435 0.459 0.403 0.500 0.535 0.500 0.512 0.424 0.591 0.368 
06 0.459 0.480 0.429 0.518 0.550 0.518 0.528 0.447 0.571 0.397L..lo_.1_6_7 __ 

A 021 0.518 0.535 0.535 0.528 0.558 0.528 0.537 0.506 0.577 0.358 0.442 0.413 

C 

015 0.550 0.528 0.564 0.522 0.552 0.558 0.494 0.537 0.629 0.413 0.482 0.500 0.309 

025 0.550 0.528 0.564 0.522 0.552 0.522 0.452 0.500 0.571 0.413 0.482 0.457 0.309 0.305 
027 0.535 0.512 0.550 0.544 0.601 0.577 0.516 0.558 0.619 0.442 0.463 0.436 0.271 0.267 0.267 

01 
05 

0.506 0.480 0.524 0.556 0.584 0.556 0.528 0.535 0.571 0.453 0.424 0.447 0.506 0.500 0.500 0.482 
0.524 0.500 0.541 0.535 0.596 0.571 0.506 0.550 0.584 0.474 0.447 0.469 0.522 0.477 0.477 0.457 

022 0.524 0.500 0.541 0.571 0.596 0.571 0.544 0.550 0.584 0.474 0.447 0.469 0.482 0.477 0.516 0.457 
018 0.506 0.480 0.524 0.518 0.584 0.556 0.488 0.535 0.571 0.500 0.474 0.494 0.544 0.500 0.500 0.482 
019 0.487 0.459 0.506 0.541 0.571 0.541 0.512 0.518 0.556 0.480 0.453 0.474 0.528 0.522 0.522 0.506 
017 0.556 0.535 0.571 0.564 0.619 0.596 0.537 0.577 0.608 0.512 0.488 0.506 0.477 0.426 0.471 0.403 
034 0.577 0.556 0.591 0.584 0.636 0.615 0.558 0.596 0.564 0.535 0.512 0.528 0.537 0.494 0.532 0.477 0.320 0.277 0.277 0.320 0.358 0.274 
024 0.556 0.535 0.571 0.528 0.558 0.528 0.457 0.506 0.544 0.469 0.488 0.506 0.516 0.471 0.426 0.494 0.277 0.226 0.316 0.277 0.320 0.312 0.349 
028 0.603 0.584 0.615 0.577 0.601 0.577 0.516 0.558 0.522 0.528 0.544 0.558 0.532 0.489 0.447 0.511 0.383 0.349 0.408 0.383 0.413 0.345 0.312 0.271 
030 0.563 0.577 0.577 0.571 0.564 0.535 0.544 0.512 0.469 0.424 0.494 0.512 0.436 0.477 0.431 0.500 0.469 0.488 0.488 0.512 0.494 0.522 0.463 0.436 0.408 
031 0.591 0.603 0.603 0.596 0.590 0.564 0.571 0.544 0.463 0.469 0.528 0.506 0.378 0.471 0.374 0.452 0.506 0.522 0.522 0.544 0.528 0.516 0.500 0.477 0.403 0.226 

.. .. 

033 0.591 0.571 0.603 0.596 0.590 0.564 0.537 0.506 0.506 0.512 0.488 0.506 0.552 0.546 0.511 0.565 0.413 0.436 0.436 0.463 0.442 0.477 0.408 0.378 0.345 0.383 0.431 

C = C2, C6, C13, C17, I, 13, 14, 116, 117, 125, 126; D = D4; D2 = D3; D6 = D7, D8; D9 = D11; D10 = D13; D12 = D14, D20, 131; D15 = D16; D34 = D35. 
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Detailed results from tree construction: 

• seven clusters of strains were identified across the different phylogenetic 
methods used. 

• Distance methods 

• the neighbour joining tree (Fig. 36A) assuming a molecular clock, is 

almost star like in shape with four main clusters: C', C"A, BF and ED. 

• in the UPGMA tree (CC = 0.95) was similar to the neighbour joining 

tree except that group C' was closer to cluster ED. 

• a Fitch-Margoliash tree (Sa = 5.0; ASO = 8.1) was very similar to the 

neighbour joining tree, but groups Band F did not cluster together. 

• Parsimony methods: 

• the consensus 00110 tree (34 trees, 80 total steps) was similar to the 

neighbour joining tree except that strains 02 and 03 (#12, group F) were 

included within group A. Although group 0 was identified, some strains (#6 

and 7) from group E were closer to group O. 

• the consensus Wagner tree (100 trees, 69 total steps) (Fig. 36B) was star 

like in shape and had group C" clustered with group C' and group A with F. 

• the consensus polymorphism tree (9 trees, 133 total polymorphisms) had 

a similar topology to the neighbour joining tree. 

• the consensus Camin-Sokal tree (100 trees, 109 total steps) included 

strain D32 (# 9) in group C and disrupted group 0 to be scattered in the root 

of group E. The method placed the root between group C and the remainder. 

In the gp63 ITG/L PCR-RFLP trees (Fig. 36) seven clusters of strains were 

identified. Groups E and D were always associated but the relationships between 

other groups were variable (Fig. 63C). The weaknesses of the phylogenies were 

reflected on the bootstrap values, which were only consistently higher than 70% for 

groups C" and B. 

In the Jaccard distance matrix (Table XXVII) some groups were easily 

identified, although other clusters were not obvious, and distances were generaly 

small, just over 0.6. 
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Figure 36 - Phylogenetic analysis of the L. donovani complex from ITG/L RFLP data 

with alternative topologies (C). A) Neighbour-joining tree. Branches present in UPGMA 
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Wagner parsimony tree. Bootstrap values higher than 69% (higher than 80% in bold) 

are shown for Wagner I 00110 I polymorphism I Camin-Sokal parsimony. Group 0: 1 -

C20, 2 - C*, C2, C6, C13, C17, 1*, 13, 14, 116, 117, 125, 126; 3 - 010, 013. Group E: 4 -

131, 012, 014, 020; 5 - 09, 011; 6 - 133; 7 - 026; 8 - 029. Ungrouped: 9 - 032. Group 

B: 1 ° -0*, 04; 11 - 06, 07, 08. Group F: 12 - 02, 03. Group A: 13 - 025; 14 - 027; 15 

- 015, 016; 16 - 021. Group C": 17 - 030; 18 - 031. Group C': 19 - 033; 20 - 028; 21 -

024; 22 - 01 ; 23 - 05; 24 - 022; 25 - 018; 26 - 019; 27 - 017; 28 - 034, 035. * WHO 

reference strains. t dotted line indicates alternative branching. Groups are equivalent to 

those in Table XXXII (insert) for most strains, except group F. 
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5.S. Integrated analysis of the Leishmania donovani complex 

Detailed results from tree construction: 

• Distance methods 

• the neighbour joining tree (Fig. 37 A) had five main groups of strains, of 

which two (E and C) could be divided in sub-groups. All branch lengths were 
positive. 

• the UPGMA tree (CC = 0.97) had the same groups and a very similar 

topology throughout, except that group A was closer to group B. 

• in the Fitch-Margoliash tree (Sa = 2.7; ASD = 4.4) the main clusters were 

maintained, but groups A, Band C formed a tricotomy, due to negative 

branch lengths, which also ocurred within groups. 

• Parsimony methods: 

• the Dollo consensus tree (from 6 trees, 490 total steps) had the same 

topology as the UPGMA tree, but with strain D26 closer to L. infantum. 

• Wagner produced the shortest trees (100 trees, 395 total steps) for 

which the consensus had similar topology to the UPGMA tree (Fig. 37B). 

• the polymorphism consensus tree (from 16 trees, 812 total 

polymorphisms) was very similar but strains D2 and D3 clustered with group 

B instead of C, although with low bootstrap support. 

In all pooled PCR-RFLP trees (Table XXVIII), the L. donovani complex was 

divided into five main groups, which were also evident from the Jaccard distance 

matrix (Table XXVIII). The exceptions were strains D2 and D3 which clustered with 

group B (Indian strains) in the polymorphism parsimony tree, strain D26 which was 

closer to L. infantum (group D) in the Dollo parsimony tree and subgroups within 

groups C and E which were not strongly supported by parsimony trees. 

Topologies were very similar (Fig. 36C) with the exceptions of the neighbour 

joining tree in which group B clustered with group C instead of group A and Fitch­

Margoliash which did not resolve the node between groups A, Band C. 

Bootstrap support for the main groups of strains and nodes was higher than 

90% by Wagner parsimony, except node A-B, followed by Dollo parsimony for which 

group A was not robust (54%). Strains from group A frequently associated with Indian 

L. donovani (group B) most notably in ITS RFLP trees. Low diversity groups such as 

L. infanfum (group D) and Indian L. donovani (group B) were the most robust, as did 

cluster ABC. Afinities of strain D26 to group E were only distant as, in the consensus 

00110 tree, it was closer to L. infanfum with a bootstrap support of 73%. 
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Table XXVIII - Jaccard distances within the L. donovan; complex from pooled RFLP data. Values lower than 0.452 (65% of he maximum distance within 

the L. donovani complex) are shown in black on the upper half. 
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5.7. Discussion 

5.7.1. Targets 

A novel PCR-RFLP method using two gp63 intergenic targets (gp63 ITG/L 

and gp63 ITG/CS) was added to the methods available for phylogenetic analysis of 

the L. donovani complex and phylogeny of the L. donovani complex was addressed 

by a combination of targets for the first time. The four PCR-RFLP analyses 

complemented each other and proved more robust when pooled. These PCR-RFLPs 

provided phylogenetic data at different levels, presumably as these gene targets are 

evolving at different rates. 

All targets, except ITG/L, often generated a number of fragments which total 

length was greater than the size of the amplified fragment. This effect is characteristic 

of the presence of alleles with different sequences either in the same or in different 

loci. On the contrary, the total length of ITG/L restriction fragments was mostly 

smaller than the amplified segment. For some enzymes, as for other targets, this 

effect was due to not scoring bands larger than 0.9kb. With other enzymes it was 

apparent that not all possible bands had been scored, probably because some 

fragments had the same size. 

The ITS RFLPs were more conserved but identified genetic diversity between 

the most divergent strains of L. donovani. By ITS RFLP major clusters could be 

identified by inspection of band profiles. 

The gp63 ITG RFLPs distinguished between the L. infantum / L. chagasi and 

L. donovani strains. The radical rearrangements in ITG/L of strains 030 (Neal R 1) 

and 031 (Mutinga H9) but also 032 ( Jeddah KA) and 033 (Gilani), suggested that 

ITG/L may suffer different evolutionary rates between groups of strains. ITG/L is 

multicopy and analysis may be complicated by polymorphisms present in different 

alleles. However, from analysis of scored total fragment size it emerged that not all 

fragments may have been differentiated. Furthermore, ITG/L RFLP distances within 

the L. donovani complex were low relatively to ITG/CS and it is possible that ITG/L is 

very conserved and does not provide enough information. Because of the difficulty in 

establishing clear groups and the broad inconsistency of the groups by ITG/L as 

compared with the overall analysis of RFLP data and ITG/CS RFLP, ITG/L emerged 

as an unreliable marker for typing within the L. donovani complex. 

The mini-exon RFLPs were also very polymorphic and some groups were not 

well resolved. The different branching patterns of L. infantum by mini-exon RFLP 

when compared with the other RFLPs might be explained by differential evolution of 

the numerous copies of the mini-exon unit. The small size (less than 500bp) and the 

limitation of analysis to four enzymes only, all G and C based, could also have biased 
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results. The lack of resolution indicated that miniexon RFLP data may not generate 

reliable markers for strain typing in the L. donovani complex, perhaps because of 

sequence diversity within the mini-exon repeat unit with deletions and repeats 

(Fernandes et a/., 1994). Occasional genetic exchange, in a history of clonal 

propagation, between Leishmania parasites could complicate phylogenetic analysis. 

Topology of the UPGMA tree was affected by assumption of a molecular clock as , 

seen by comparison with the neighbour-joining tree and the Fitch-Margoliash tree. 

Position of strain 029 (Addis 164) changed radically, but other groups were also 

badly affected. Leishmania infantum I L. chagasi, Indian L. donovani and group E 

(ILM 10) were the most reliable. Both because phylogenies are not congruent and 

because of the low bootstrap values, mini-exon does not seem to be useful on its 

own for phylogenetic analysis of the L. donovani complex. Despite this, some mini­

exon RFLP markers may be useful for typing, although its use will be limited. 

Compared with the pooled analysis of RFLP data, the best targets were 

ITG/CS, followed by ITS, although with less resolution, and the least useful targets 

were ITG/L and mini-exon, which did not seem to generate reliable markers for L. 

donovani strain typing. The latter targets were also those which generated the 

smallest number of characters and the least clear cut markers which may have 

influenced the analyses. 

The general consistency of the groups of strains upon phylogenetic analyses 

indicates the suitability of RFLP of intergenic regions for taxonomic studies. Affinities 

between groups varied depending on the region analysed, which could indicate 

different rates of evolution, a radiation event or be due to limitions of the methods of 

analysis. It is probable, however, that individual targets simply do not produce enough 

markers to produce reliable trees because most individual analyses had low 

bootstrap support throughout, whilst the pooled analysis was robust. 

5.7.2. Phylogenetic methods 

Both Wagner and 00110 parsimony methods performed well, regarding tree 

lengths and similarity to distance methods, and the main branches in the resulting 

trees for the pooled RFLP analysis had high bootstrap support. These methods also 

generated the shortest trees, when compared with Camin-Sokal and polymorphism 

parsimony methods. This may be because the first allows reversibility of characters, 

whilst Camin-Sokal does not. The robustness of the trees, measured by bootstrap 

analysis, seemed to decrease with the length of the trees generated, which agrees 

with the theoretical basis of cladistics. Wagner parsimony produced the shortest and 

most robust trees and may be, in the future, the parsimony method of choice to 
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handle RFLP analysis of large data sets, despite that 00110 is the best theoretical 

method. 

Distance methods seemed to perform well with RFLP data. All tested methods 

generated the same major genetic groups, despite some differences in topology. This 

effect may be due to independence of a molecular clock on the part of both Fitch­

Margoliash and neighbour-joining methods. Indeed the cophenetic correlation 

coefficient of the UPGMA tree was 0.97, which indicated that the data were almost 

but not perfectly ultrametric. 

Phenetic (distance) and cladistic (parsimony) methods produced similar 

results, particularly when the largest, pooled, data set was used. Parsimony methods 

may in these instances behave as phenetic methods and thus with pooled RFLP data 

true cladograms of the L. donovani complex may not have been obtained. 

5.7.3. Taxa within the Leishmania donovani complex 

In all PCR-RFLP analyses L. chagasi was indistinguishable from L. infanfum 

as had been described previously (Beverley ef a/., 1987; Cupolillo ef a/., 1994; 

Moreno ef al., 1984; Schonian ef al., 1996; van Eys ef a/., 1991) and, upon 

phylogenetic analysis, L. infanfum (L. chagas/) were monophyletic except by mini­

exon RFLP. The degree of diversity found here fell within the level of intraspecific 

diversity (Beverley ef al., 1987) and each L. donovani group had similar or more 

genetic diversity than L. infanfum (L. chagas/). 

Four more strain clusters were identified within the L. donovani complex in a 

pooled analysis of all RFLPs. Those groups had also been found in most individual 

analyses, although some were not well resolved, especially by ITG/L and mini-exon 

RFLPs. It was apparent that the designation L. donovani includes at least four main 

genotypic groups, equivalent to L. infanfum. When trees were rooted (ITS and mini­

exon RFLPs, or by using UPGMA), the most ancient branch of the L. donovani 

complex was more often with the cluster identified as group E (strains from Ethiopia 

and Saudi Arabia) in the pooled analysis, although L. infanfum was often not far away 

from the root, thus challenging alternative rootings for the L. donovani complex 

(Rioux ef al., 1990). 
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6. Comparison of DNA Sequences. 

The Major Surface Protein Genes 
6.1. Introduction 

6.1.1. DNA sequencing 

Sequencing of a DNA molecule can be achieved through two major lines of 

methodology, developed in the late seventies. The Maxam and Gilbert or chemical , 

method, is founded on base-specific or base-selective cleavage of DNA (Maxam and 

Gilbert, 1977; Maxam and Gilbert, 1980). The Sanger, or dideoxy method, is based 

on addition of complementary bases to a template DNA strand (Sanger et a/., 1977). 

Both methods required separation by polyacrylamide gel electrophoresis of labeled 

DNA fragments, which was improved with the development of thin polyacrylamide 

gels. The dideoxy method, the most widely used, is more flexible and requires less 

labour than chemical methods which, however, are irreplaceable in locating rare 

bases, such as 5-methylcytosine sites. 

In the Sanger method a complementary strand is synthesized from single 

stranded DNA template, with the help of a priming oligonucleotide. Introduction of di­

deoxynucleotides (ddNTPs) interrupts synthesis of the complementary strand, thus 

producing different sized DNA fragments. Either the primer or terminator ddNTPs can 

be labeled in order to identify the end base of each DNA fragment. Radioactive 

labeling, always requires four reactions for identification of the four bases, whilst with 

fluorescent labeling, differently labeled terminators can be used in one tube 

reactions. Fluorescent labeling also allows fragment separation in one lane, 

whichever labeling method is used. 

Because both sequencing methods require single stranded DNA, cloning of 

template DNA in single stranded vectors such as the bacteriophage M13 is desirable. 

By adaptation of the polymerase chain reaction (PCR) to the dideoxy method, 

sequencing of double stranded DNA was made possible in what is now called direct 

sequencing. This method involves less manipulations of template DNA, is faster and, 

with adequate primers, sequences of both DNA strands are easily obtained. PCR 

products can also be sequenced. Furthermore, fluorescently labeled products can be 

separated in automated sequencers, which detect the passage of labeled DNA 

fragments through a point in the gel. Sequencing with fluorescent labeling is faster 

than with radioactive labeling, not only because the detection step is simultaneous 

with electrophoresis, but readable data are immediately produced. It is also safer, but 

less sensitive. 
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In the present work, direct sequencing of PCR products was done with 

fluorescent labeling. The same primers as for the preparative PCR reaction were 

often used. Primers for sequencing are designed according to the same rules as PCR 

primers, although more demanding in terms of specificity, because non-specific 

products, can make a sequencing reaction unreadable. 

6.1.2. Major surface protease genes 

Major surface protease (msp) or GP63 coding genes are important antigenic 

genes in Leishmania (Morales et a/., 1997; Russo et a/., 1991; Shreffler et a/., 1993; 

Yang et a/., 1993). These genes seem to be important for parasite virulence and may 

have some role in internalization of the promastigote in the macrophage (Chakrabarty 

et a/., 1996). Their proteolytic activity has been implicated in cleavage of CD4 which 

may influence induction of the immune response and thus disease progression in 

Leishmania infections (Hey et a/., 1994). GP63 may (Brittingham et a/., 1995; Russell, 

1987) or may not (Nunes and Ramalho Pinto, 1996) be important for complement 

fixation, but seems to protect against complement mediated lysis (Joshi et a/., 1998). 

Analysis of msp sequence may provide relevant comparisons with current isoenzyme 

classification or information on adaptation to hosts and vectors, and a more functional 

perspective than the intergenic regions analyzed by RFLP (Chapter 5). 

Msp genes have been found in multiple copies in all Leishmania species for 

which they have been studied (Button et a/., 1989; Maingon et a/., 1990; Medina 

Acosta et a/., 1993; Ramamoorthy et a/., 1992; Steinkraus et a/., 1993; Victoir et a/., 

1995). Three gene families were described in L. chagasi (Ramamoorthy et aI., 1992): 

mspL, mspS and mspC. MspC was identified as being a single copy gene, while the 

other gene families were present in multicopy arrays (Roberts et a/., 1993; Webb et 

a/., 1991). Multigenic gene clusters have also been identified in L. mexicana (Medina 

Acosta et a/., 1993) where a gene cluster of mspC type genes was described (gp63 

C 1). MspC genes do not have consensus GPI anchors and the enzyme product has 

been located in the flagellar pocketof the amastigote (Medina Acosta et a/., 1993). 

The homologous gene isolated from L. major (gp63-C) was similarly expressed in the 

amastigote, but the carboxyl terminus was found to be capable of mediating GPI 

anchor attachment (Voth et a/., 1998). Leishmania major also has different classes of 

GP63 (Button et a/., 1989; Voth et a/., 1998), which are differentially expressed 

during the parasite cycle. Although different Leishmania species seem to have 

distinct GP63 gene organizations and copy numbers, the presence of different gene 

classes in cluster organization seems to be a rule. 
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Phylogenetic reconstruction based on multicopy genes is fraught with 

methodological problems. Phylogenetic trees may not reflect true genealogies but, 

instead, composite genealogies based on different loci. Thus, for simplification of 

approach, the single gene mspC was chosen for sequencing and analysis. 

Leishmania chagasi mspC has two regions involved in the Zinc binding site 

(Ramamoorthy et a/., 1992), but not a recognizable GPI anchor binding site. It is 

debatable whether or not this gene codes for a soluble enzyme (Medina Acosta et aI. , 

1989). MspC is unique among other msp genes in having a longer and distinct 3' or 

carboxyl terminus, which may encode for a transmembrane region or for mediation of 

GPI attachment (Voth et a/., 1998), at least in L. major. Specific sequences were 

identified which enabled design of primers for selective PCR amplification of the 3' end 

of this gene (mspC3). 

6.2. peR amplification of mspC 

Partial mspC amplification was achieved as described in Materials and Methods 

(Chapter 2). However, the thermal profile was later modified to increase the yield whilst 

maintaining specificity of PCRs to amplify the products Band C (Materials and 

Methods). Previous conditions were kept, except that the stage with annealing 

temperature at 65°C was reduced to 5 cycles and followed by 25 cycles with an 

annealing temperature of 60°C. 

- 3.0 

- 1.6 

1.0 

0.5 

MW 
kb 

Figure 38 - Specificity of mspC amplification for the L. donovani complex. -c is negative 

control; Lb is L. brazi/iensis, Lpe is L. peruviana, Lg is L. guyanensis, Lpa is L. 

panamensis; Lm is L. mexicana, LI is L. /ainsoni, La is L. amazonensis, M is L. major, 

A is L. aethiopica (L 100) and A 1 is L96, T is L. tropica, I is L. infantum and 0 is L. 

donovani. 



Amplification of each fragment or the entire mspC3 was specific for L. donovani 

complex strains and generated a single product of 1.3-1.4 kb (Fig. 38). Amplification 

with strain Sukkar 2 (023) was only achieved for the C fragment, which generated two 

different sized products of around 500bp (Fig . 39) . 

- 1.0kb 

- O.5kb 

CAM 1 Sukkar 2 

Figure 39 - Oouble band mspC - C product generated for strain Sukkar 2 (023) 

compared with a full mspC product (CAM 1, 133). 

6.3. Leishmania infantum and Leishmania chagasi are indistinguishable 

The full 1083bp sequences from the coding region of L. infantum and L. 

chagasi mspC3 were identical (strains IPT-1, PP75, 00G124, M6445, Strain A, 

IMT171, Buck; EMBL accession numbers AJ010234, AJ009908, AJ009911 , 

AJ010240-2, AJ290785 respectively), except for a single base pair in strain WR285 (at 

nucleotide 582; EMBL accession number AJ009909) . All incomplete mspC3 

sequences from other L. infantum and L. chagasi strains were also identical to the 

complete sets: combined sequences of fragments A and B for strains Pharoah, 

Lombardi , LEM75, Alessandro (599-625 nucleotides (nt) , EMBL accession numbers 

AJ01 0248-51), and of fragments Band C for L82, Rebelo 2, L53, IMT170, IMT172, 

C0910 (784-840nt, EMBL accession numbers AJ01 0243-47, AJ00991 0). 

All sequences (including those from L. donovani strains) possessed highest 

similarity to L. chagasi mspC on a BLAST search (Experimental WU-BLAST server 

from the Bioinformatics Group of the Swiss Institute for Experimental Cancer Research 

_ ISREC), confirmed by visual inspection, but diverged from it by three extra base pairs 

in the coding region (Fig . 40). 



A L. chagasi (published) 5'catcccttggg--ctactcgc-atttct3' 

L. donovani complex 5'catcccttgggggctactcgccatttct3' 

B L. chagasi (published) S L G L L A F 

L. donovani complex S L G G Y S P F 

Figure 40 - Divergence of L. donovani complex mspC sequences from the originally 

published L. chagasi mspC (M80671, nucleotides 1450 to 1474). A is nucleotide 

sequence and B is amino acid sequence (centre of codon). Dashes (-) were inserted 

in the sequence to maximize alignment. 

6.4. Genetic variability among the Leishmania donovani 

Full mspC3 protein coding sequences were obtained from the L. donovan; 

strains listed below. The groups listed below could be formed based on the degree of 

identity between sequences. Only one sequence of which was used for phylogenetic 

reconstruction: 

A. A 1. MRC(L)3 (02, EMBL AJ010238) and Mutinga H9 (031, EMBL AJ290780); 

A2. MRC74 (03, EMBL AJ010239) ; 

A3. Ndandu 4A (016, EMBL AJ290770) 

A4. LRC-L57 (021, EMBL AJ290774) and 02 (025, EMBL AJ290776); 

A5. Ayele 8 (027, EMBL AJ290777); 

B. Patna 1 (04, EMBL AJ010236), Chowd-X (06, EMBL AJ290783) and STL 1-79 

(07, EMBL AJ290784); which were very similar to 008 (0, EMBL AJ010235); 

C. HU3 (01, EMBL AJ010237), Salti 4 (017, EMBL AJ290771), Khartoum (018, 

EMBL AJ290772), A22 (019, EMBL AJ290773), Dora (024, EMBL AJ290775), 

Gebre 1 (028, EMBL AJ290778), Gilani (033, EMBL AJ290781), IMT180 (034, 

EMBL AJ290782) and IMT 188 (035, EMBL AJ290786); 

D. L. infantum and L. chagasi strains (except WR285); 

E. VL29 (010, GenBank AF267730), Ayele 5 (012, EMBL AJ290768), Hussen (013, 

EMBL AJ290769) and Addis 164 (029, EMBL AJ290779); 

Both Sukkar 2 (023) mspC3 - fragment C PCR products were sequenced and 

an extensive deletion of 48bp (Fig. 41) was found in the shorter fragment. The 

sequence corresponding to the gap was flanked on both sides by 'gcggcg' which in 

the shorter fragment was reduced to one 'gcg'. Otherwise both sequences were 

identical. The stop codon present in all other strains was also modified to code for 
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serine, but there was a second stop codon 11 amino acids dowstream (Fig. 43 and 

45). 

Fifty six nucleotide positions (5.2%) were found to be polymorphic within the 

studied strains of the L. donovani complex (Sukkar 2 excluded), which corresponded 

to 28 amino acid polymorphisms (7.78%) (Fig. 43), including changes in the second 

region of the Zinc binding site in the L. donovani strains (Ramamoorthy et a/., 1992). 

Eighteen polymorphisms were observed in the first codon position, 15 in the second 

and 24 in the third. All substitutions in first and second positions were non-silent, but 

third position substitutions were all silent except one. One of the third position 

polymorphisms was acompanied by a second position polymorphism, which meant 

that a third position substitution could have been silent or not, depending on whether 

the adjacent second position substitution occurred before or after it. Although there 

were 33 non-silent substitutions, in some cases there was more than one non 

synonymous polymorphic site per codon (three codons with two and one codon with 

three), and thus only 28 amino acid polymorphisms. 

Despite the large number of aminoacid polymorphisms, most substitutions 

were unlikely to modify the function of the protein. A large number of putative 

aminoacid substitutions were for aminoacids with similar net charge (31.0%): 5 

(17.20/0) polar and 4 (13.8%) hydrophobic. No changes between negative and 

positively charged aminoacids were observed, but 34.5% were between polar and 

negative (5) or positively (5) charged residues. However, a large number, in a total of 

37.90/0, were changes from hydrophobic to polar (6) or charged aminoacids (5). 

These polymorphisms may be responsible for different properties of the proteins in 

which they are present. Most changes among the six observed between L. infantum 

and group E (D10) were between polar and hydrophobic amino acids (four), whilst 

the remainder were between polar and charged residues. 

A number of polymorph isms might be considered specific for L. infantum I L. 

chagasi and group E in relation to the majority of the L. donovani (Fig. 42). However, 

some of these were not specific in relation to the L. major and L. mexicana 

sequences. Within the L. donovani complex position 932 is specific for group E, and 

positions 1011 and 1020 for L. infantum (L. chagas/) . 
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Group 972 (M80671) bp 
D L. infantum caaatgatga acattcgtgg aaaggacttt aatgtttctg tgatcaacag cagcacggcg gtggcgaagg 70 
E L. donovani 10 · · · . . · · · · · .c g. · · · · c . c . · · · · · · 
B1 L. donovani · · g. · · · · · 
B L. donovani 4 · · · · · · · · · · · · · · · · · . . · · · · . · · · · · · · 
C L. donovani 1 · · · · · · · c . c . 
A1 L. donovani 2 · · · · · · · · · · · · · . · · · · 
A2 L. donovani 3 · · · · · . . · · · · · · · · · · · · · · · · 
A3 L. donovani 16 · · · · · · · · · . 
A4 L. donovani 21 · · · · · . . . · · · · · . . · · · · · 
A5 L. donovani 27 · c . 

L. i 

a.cg.ttc. .a maJor . . . g . · · · a. . c . a .c g · c . c . · · · · · · . . 
L. · · g . · g . c. t. meXlcana g.gg. . cc.c c. · · . gc. c . 

D inf cgcgcgagca gtacggctgc gacaccttgg agtatctgga gatcgaggac cagggcggtg cgggctccgc cgggtcgcac 150 
E D10 . . · · · · · · · · 
B1 D · · · · · · 
B D4 · · · · · · 
C D1 . g . · . . · . . . .a · · · . . 
A1 D2 . . · · · . . . · . . · . . . · · · · · · · · 
A2 D3 · · · · · · · · · · · · · · 
A3 D16 .g. · · · · · . . · · · . . 
A4 D21 · · · . . . . . . . · · · · · . . . . · 
A5 D27 

i .g.g. rna] · · · · · 
mex t a. . · g . · . . · t . · · · · · · · · . . . . . . . . · · · .t 

(Figure 41 - Alignment of L. donovan; complex and outgroup mspC3 sequences. See page 161) 
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Group bp 
D inf ateaagatge geaaegeeaa ggaegagete atggegeetg eegeagetge egggtaetae agegeeetga eeatggeeat 230 
E D10 · · · · · 
B1 D · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
B D4 · · · · · · · · · · 
C D1 . . · · · · · · · · · · . . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
A1 D2 .ge. · · · · · · · · · · · · · · · · · 
A2 D3 .ge. · · · · · 
A3 D16 · · · · · 
A4 D21 · · · · · · · · · · · · · · · · · · · · · · · 
A5 D27 · · · · · · , 

rna] · · · · · · . ge. .t · · · · · · e . · · · · · 
rnex . · · · · . . . . . · · · · · · · . · · · t · e . · · · · · · · · g. 

D inf etteeaggae eteggettet accaggcgga cttcagcaag gccgaggtga tgccgtgggg ccggaacgcc ggctgegcet 310 
E D10 · · · · · 
B1 D · · · · · · · · · · · · a. · · · · · · · · 
B D4 · · · · · · . . . . · · · · · · · a. · 
C D1 . . . . . · · · a . · 
Al D2 · · · · · · a. · · · · · · . . · · · · · · · · 
A2 D3 · · · · · · . · · · · · · · · · · · · 
A3 D16 · · a. · 
A4 D21 · · · · · . . . . . . . · · · · . · · · · · a. · 
A5 D27 . · · · · · · · a. · 

rna] c · . . . . · · · · · · · . . · a. 
rnex · · · · · · · · · · a. · · · · · . . · · · . t. . . · . . . · · · · 

(Figure 41 - Alignment of L. donovan; complex and outgroup mspC3 sequences. See page 161) 
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Group 
D inf 
E D10 
Bl D 
B D4 
C Dl 
Al D2 
A2 D3 
A3 D16 
A4 D21 
AS D27 

rna] 
rnex 

D inf 
E D10 
Bl D 
B D4 
C Dl 
Al D2 
A2 D3 
A3 D16 
A4 D21 
AS D27 

rna] 
rnex 

bp 
tcctcagcga gaagtgcatg gagcggaaca tcacgaagtg gccggcgatg ttctgcaatg agaacgaggt gactatgcgc 390 

. . c . a. c . 

. a. 
· . a . ... ~ 
· . ~ .. 
· . ~. 
. g~cgg 
· . A· 
~ 

· . a .. 
. ~ .. g.g 

. c . aa .... g .. ~ .. 
. c .. 

· . t .. 
· . t . 

· . t . 
t 

. t . 

'~l ~~;1;lg;tl~m~~E~ ll~~~~\\Sg~~nj . 

;~lt!llil~~m!~t~lIiji~III~~~8~ : 
~~~Ulg~Bl~liB;UH~~~l~~:~g~1Fg . 
~~~~~~~lg~1 ~~j~~~jjg;~Hjj~g#'~~~19 . 

1~!~lIfl®~I~tIDf~ll~I~IJI@~~lltl@ : 
'i€ l ~HWgBl~~jbUljUl~m;dgBWg . 

· g ..... a cg. c .. c . 
· gt . c .. c c .. c .. a .. g 

tgccccacca gtcgtctgat ggtcggaacc tgtggtataa ggggatacag cactccgttt tcgctgtact ggcagtactt 470 

. g ac .. 
.cc. 

·!Pl· 
.ld. 
. ~q . 
. \~ .. 
. :0. 

· l~ . .:p .. 
. !d. . 
ss· 

... g a ... 
. . g 

. t 

· ~ ..... . 
· ~ .. 
· ~. 
· ~. 
· ~. 
· ~. 
· Fi· 
· a. 
· .. a . 
cal. c .. 

.ga aC.g. 

.. a t ... t. 

· . gc . 
· . E:c 
· . qc . 
· . ,q. 

B· . 
· . ~ .. 
· . S· . 
· . c. . 

. g c ... ga .. 

. g g .. ac ..... 

(Figure 41 - Alignment of L. donovan; complex and outgroup mspC3 sequences. See page 161) 

157 



Group 
D inf 
E DIO 
BI D 
B D4 
C DI 
Al D2 
A2 D3 
A3 D16 
A4 D2I 
A5 D27 

rna] 
rnex 

D inf 
E DIO 
BI D 
B D4 
C DI 
Al D2 
A2 D3 
A3 D16 
A4 D2I 
A5 D27 

rna] 
rnex 

bp 
caccaacgca tcccttgggg gctactcgcc atttctggat tactgcccgt ttgttatcgg ctacagtgat ggttcgtgca 550 

:t.~t.. 
taB 

. tat 
... tat. 

. ~~~ 
. . . . . . B~t 

.~g~ 
.. tat. 

g 
.. t .. g 

. . t . . c .. c 
.c . c . . c 

t 
. t. . . . . . 

. . t 
t 
t. 

atcaggacgc atcgttggca gcagggtttt tcagtgcatt caacgtcttc 

. c .. 
t g ... ac . a .. 

~ ... 
b i 
~. 

~ 
~. 
~. 
~ .. 
a .. 
. ag . a ... c . 
c. g. acc .. c 

· . ~~ .. 
· . ~g.. . 
· .lg.. 
· . ~g: .. 
· ·lg'· . 
· . ~g . 
· .:g; .. 
· .:g. 
· .. c 
· {~C ... g .. 

g.t 

$.;. 
· ~ .. 

· . g ... g. 
· . g .. 
· . g . 
· . ~ .. 
· . g. 

· g. 
· gc .. 
• : ~~l • ga .. 

.. c . 
c . 

tccgacgcgg cgcgctgcat cgatggcgcc 

a 
· a. 
· a . 
· a. 
· a . 

t 
g .. c . g 

630 

(Figure 41 - Alignment of L. donovan; complex and outgroup mspC3 sequences. See page 161) 
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Group 
D inf 
E DIO 
BI D 
B D4 
C DI 
Al D2 
A2 D3 
A3 D16 
A4 D2I 
AS D27 

rna] 
rnex 

D inf 
E DIO 
BI D 
B D4 
C DI 
Al D2 
A2 D3 
A3 D16 
A4 D2I 
AS D27 

rna] 
rnex --
D23a 
D23b 

ttcaggccga agaatagaac 
· .. c .. 
· . . . . . . . . . · . . . . . 
· . . . . . . . . . 

· . . . . . . . . . · . . . . 
· . . . . . . . . . · . . . . . . . . . 
· . . . . . . . . . · . . . . . . . . . 
· . . . . . . . . . · . . . . . . . . . 
· .... a. . .. · .gca.ct.a 
· . . . c . . . . . · ... c . 

bp 
cgctgccaat ggctactacg ccggactgtg cgccaacgtg cggtgcgaca cggccacgcg 710 

g'" . : . 
.. g 

=H. • ::::1_ • 

. fJ· . 
. . r~t.: . 

....... ~ .. 

....... g .. 
... g .. 

gcata;gtc 
. . . . gg .. 

aag.cg . 
. . a ...... a 

c. 
. cc . 

. a ... t .. . a .. 
aa .. . 

cacgtacagc gtgcaggtgc gcggcagtat ggactacgtg aactgcacgc cgggcctcag agttgagctg agcaccgtga 790 

c. 

.t 
t 

. . t 
: 1:~: 
· .::c. . t .. 
· .i:c 
A: 
~S:-

· {s· 
· j t! 

a. a c... . acc 
.cg.a c.g ... cc ........................ a .. t ...... g. 

. . . . . . . . . . 
.g 
. 9 . 

44 
60 

(Figure 41 - Alignment of L. donovani complex and outgroup mspC3 sequences, See page 161) 
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Group 
D inf 
E D10 
B1 D 
B d4 
C d1 
A1 d2 
A2 d3 
A3 d16 
A4 d21 
AS d27 

rna] 
rnex 
D23a 
D23b 

D inf 
E D10 
B1 D 
B D4 
C D1 
A1 D2 
A2 D3 
A3 D16 
A4 D21 
AS D27 

rna] 
rnex 
D23a 
D23b 

gcagcgcctt cgaggagggc ggctacatca cgtgcccgcc 

· aaa .. . a. 

gtacgtggag gtgtgccagg ccaacgtcaa 
g. 

g ... 

gc 
g. 
g. 
g. 

.gc. 
qa .......... a ........... q ................................. q .... . 

· a ..... . g ...... . 
· a ... . n. g. 

gggagccaag 
.. ct ..... . 

ct. 
a.ct 

bp 
870 

124 
140 

gacttcgcag gcgactccga cagctccagc agcgccggtg acgctgccga cagagcggcg atgcagcggt ggaatgacag 950 

. . . . . t . at 
t 
t .. t 
t .. t 

a .. 
t a . 

. . a 
a .. 
a 

· . itJ. . 
I"·: 

· ·lt l· . 
·10· . 

: :Il : 
· .,t .. 

i'·l · . : tj .. 

.g 
g 

ago 
a .. a . 
ag .. 
ago 

. c ... 

tg .. g 
g 

204 
197 

(Figure 41 - Alignment of L. donovan; complex and outgroup mspC3 sequences. See page 161) 
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Group 
D inf 

bp 
gatggccggc ttggctactg cggcgatggt gctgctagga atggttctct ctctcatggc actcgtggtg 1020 

E D10 
B1 D 
B D4 
C D1 
A1 D2 
A2 D3 
A3 D16 
A4 D21 
AS D27 

D 
E 
B1 
B 
C 
A1 
A2 
A3 
A4 
AS 

rna] 
rnex 
D23a 
D23b 

inf 
D10 
D 
D4 
D1 
D2 
D3 
D16 
D21 
D27 
rna] 

· . . . . . . . .. .......... .......... ......... . 
· . . . . . . . .. .......... .......... ......... . 
· . . . . . . . .. .......... .......... ......... . 

c. . . . . . . . . . . . . . . c . g . a ..... 
· . . . . . . . c . a ... c.c. . g. 

. . . . .. c . 
----- c 

gtgtggctac tccttctcac ctgcccctgg tggtgttgca aatttggggg gctcccgacg 

· · · · · · · · · · · . . . . . . . . · · · . . 
· · . . . . . . · · · · . ~9.- . 

· · · · · · · · · · · . . . ~a . 
· · · · · · . ~a 

· · · · · . . · . ~~ . 
· · · · · . .:a. 

· · · · · · · · · . . · .;a. 
. · ."a. 

. . . . . ."a. 
g. g g a g · . • 

rnex ... c. . . . .. . .... ac .. q .. c. . . . . .. .. c .. c. . .. g. c . g. . . .. . ........ . 

. . . . . . . . 
. .. c . 

. ... c . c . 
.... c . 

...... c . 

tga 1083bp 

D 2 3 a .......... ..... g. . . g .......... .......... .. c . . . . . .. .. ct. . . g.. . c . 3 3 7 bp 
D 2 3 b .......... ..... g . . . g .......... .......... .. c . . . . . .. .. ct. . . g.. . c. 3 0 S bp 

274 
242 

Figure 41 - Alignment of L. donovani complex and outgroup (L. major - maj - and L. mexicana - mex) mspC3 sequences" Dots are identical bases 

and (-) are missing bases. Double underlined are stop codons. Lightly shaded boxes are nucleotides specific to L. donovani in relation to L. 

infantum / L. chagasi and group E (010) and dark boxes are nucleotides specific to all L. donovani in relation to all L. infantum / L. chagasi. 

Groups are the same as those in Table XXXII (insert). 
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Groups 335 371 385 412 432 455 477 535 571 583 ill 658 759 918 ill 1011 1020 1077 

D L. infantum 9 agaaogaggtgaota 9 9 t ogo a 9 oa a a 9 0 t a gg 

E VL29 ............... 0 0 9 t . 

B1 DD8 a t .. gt . t .. aogt . 9 0 a 0 tat 9 a .g 9 0 t 9 t a 

B Patna 1 a t .. gt . t .. aogt . 9 0 a 0 tat 9 a .g 9 0 t 9 t a 

C HU3 a t .. gt. t .. aogtog 0 a 0 tat 9 a .g 9 0 t 9 t a 

A2 MRC74 a t .. gt . t .. aogt . 9 0 a 0 tat 9 a .g 9 0 t 9 t a 

A1 MRC(L) 3 a t .. gt . t .. aogt . 9 0 a 0 tat 9 a .g 9 0 t 9 t a 

A3 Ndandu 4A a t .. gt . t .. aogt . 9 0 a 0 tat 9 a .g 9 0 t 9 t a 

AS Ayele 8 a t .. gt . t .. aogt . 9 0 a 0 tat 9 a .g 9 0 t 9 t a 

A4 LRC-L51 a t .. gt . t .. aogt . 9 0 a 0 tat 9 a .g 9 0 t 9 t a 

L. major a ... go .... aogoo. 0 9 9 9 

L. mexicana a ... gt . o .. 00 •. o. a 0 t .. 0 .g 9 

Figure 42 - Sites potentially diagnostic between L. infantum (L. chagas/) , group E strains (VL29, Ayele 5, Hussen and Addis 164), and L. 

donovani. Underlined are positions with sequence specific to L. infantum within the L. donovani complex and double underlined are positions 

specific to group E among the species studied. Nucleotide positions as in Fig. 41. Groups are the same as those in Table XXXII (insert). 
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Group X + * aa 
D L. infantum QMMNIRGKDF NVSVINSSTA VAKAREOYGC DTLEYLEIED OGGAGSAGSH IKMRNAKDEL MAPAAAAGYY 70 
E L. donovani 10 · . . . . D. P ....... · . . . . . . . . . . . . . . 
B=Bl L. donovani 4 · . . . . . . . . . . . . . . . . . . . . . · . . . . 
C L. donovani 1 . . . . . . · . P. . . . . . . . . . . . . . . G. 
Al L. donovani 2 · . . . . . . . .... Q . · . . . . . . . . . 
A2 L. donovani 3 . . . . . . . . . . . . . . . · . . . . . . . . . . . · .. Q . . . . . . . 
A3 L. donovani 16 · . . . . . . . . . . . . . . . . . . . 
A4 L. donovani 21 · . . . . · . . . . . . . . . · . . . . . · . . . . 
AS L. donovani 27 · . . . . . . H .. · . . . . . . . . . . . . . . 

L. maJor NVS. V ... N. D.P. . . . . . . . . .. V .. . . . . . · Q. . . . . . . . . 
L. meXlcana EVPHL. R ... . T ... V NS. . . . . . · . . . . . S .. 

+ xzn 

D INF SALTMAIFOD LGFYOADFSK AEVMPWGRNA GCAFLSEKCM ERNITKWPAM F CNENE VTMR CPTSRLMVGT CGIRGYSTPFlS0 
E DIO . . . . . . . . . . • • . ~ ... ~ ... ~ .. " .. . : ... ! .. . . . . . . . . . . . 
B=Bl D4 . . . . . . · . E . . . . . . . · Q .. ... vsV:PVVi· · ... U .. 
C Dl . . . . . . . . · . E . · Q. .VS®.W. · . rJ .. 
Al D2 · . E . · Q . .y~yp~. lj · . . . . . . . . . . . . . . 
A2 D3 . . . . . . . . . . . . . . . . . . . . · DG .. . . . \!SVPY.;V1· · . . . ti .. · . . . . . 
A3 D16 . . . . . . . . . . . · . E .. · Q. · . VSvp.YYl. · . iJ. . 
A4 D21 · . . . . . . . . . . . · . E . · Q .. . VSVP.vv. . ~ .. 
AS D27 · . E .. · Q ... .vsvnW. .lJ . 

MAJ T. . L. · . . . . . . Q .. . . TN .. · QSV. Q .. . S. DAI. · LiJ .. .E.EP.L 
MEX T. · V .. · . E ...... V AK. V .... · .. SA A. I. . D .. R ... ... TA.N.SL 

(Figure 43 - Alignment of deduced protein sequence coded by mspC3 of L. donovani complex strains and the outgroups L. major and L. 
mexicana. See page 165.) 
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D INF * SLYWQYFTNA 
E 
B=Bl 
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AS 
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· ~. . . . \I 
· p; ....... ~ 
· P. . . .. I .. . 
.1:1 ..••.. ·il 
· E. l 'p.: : . .. . . . . . . [[ 
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· .t~. 
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NCTPGLRVEL 
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. K. 

GSCNQDASLA 

. S . 
. . TT 
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STVSSAFEEG 

S . 

. KT. 
. S .. D ... KG 

. N. 

. N. 

AGFFSAFNVF 

~ . . . . ~'.. ft1. . ·i§1· . . . . 
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<~ •• · I~I · . m· . · 1~l · .... 
~ .. ·!Gl· . 
EE .. T ... 
PDLLA .. 

GYITCPPYVE 

. V . 

. ? 

SDAARCIDGA 

. E .. 

VCQANVKGAK 
· G .. QA. 

· G .. QA . 
· G ... A. 
· G. 
· G ..... . 
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FRPKNRTAAN 

· .p 
· .10 
· .n 
· ·R 
· .10 
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·fP 
.ATNGIY 

. T ....... D 

(gpi) 

DFAGOSDSSS 
J ~ ... j • • 

-l . 
. : . 

-j 

-: . 
. D. -j 

- l . iT . 
.: . -; 
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GYYAGLCANV230 

KS . 
.TA. 

SAGDAADRAA310 

SS 
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· D. 
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66 

(Figure 43 - Alignment of deduced protein sequence coded by mspC3 of L. donovani complex strains and the outgroups L. major and L. 
mexicana. See page 165.) 
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Group aa 
D INF MQRWNDRMAG LATAAMVLLG MVLSLMALVV VWLLLLTCPW WCCKFGGLPT * 360 
E DI0 T......... ....... . . . . . . . * 
B=Bl D4 .......... . . . . . . . . . . . . * 
C Dl . . . . . . . . .. ...... . . . . . * 
Al D2 . . . . . . . . . . . . . . . . . . . . . . . . . .. * 
A2 D3 . . . . . . . . .. * 
A3 D16 . . . . . . . . . . * 
A4 D21 . . . . . . . . . . . . . . . * 
AS D 27 ..... . . . . . . . . . . . . . .. .......... * 

MAJ IE ... E . . . T . V. . . . . . . . VS .. R .... V. . * 
MEX .. S .. A .... TTL. .L .. R ... TSS C .. RL. * 
D23A. . .T.. .VS. . ... L .. P.A SVTAACSPET E* 123 
D23B---------- -----T.. . .. VS. . ... L .. P.A SVTAACSPET E* 112 

Figure 43 - Alignment of deduced protein sequence coded by mspC3 of L. donovan; complex strains and the outgroups L. major and L. 

mex;cana. Dots are amino acids identical to the L. ;nfantum sequence, dashes (-) are missing amino acids, * are stop codons and? are 

undetermined amino acids. Underlined are regions for which peptides were studied as T cell epitopes (Morales et al., 1997; Russo et al., 1993). 

In one box is the second metalloprotease zinc binding site (zn) and in the other is the site where the GPI anchor should be (Ramamoorthy et al., 

1992). Potential N-linked glycosylation sites are depicted as described by Ramamoorthyet al. (1992) (+) in L. chagas;, by Voth et al. (1998) (X) in 

L. major and (*) in both. Shaded boxes are amino acids specific to L. donovan; in relation to L. ;nfantum / L. chagas; and group E (010). Groups 

are the same as those in Table XXXII (insert). 
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Table XXIX - Corrected genetic distances between mspC DNA (below) and protein (top) sequences as measured using Kimura 2-parameter 

models. Groups are the same as those in Table XXXII (insert). 

Group Code Strain name o E 81 8 A2 A1 A3 A5 A4 C 

o Inf IPT 1 r~tlilitUi~Q9.t~~ 0.0459 ·0.0459 0.0460 < 0.0459 .:: 0.0429 . 0.0459 9:9429 . 0.0578 
:::ttt ::ttt::: :0.0639:. 0.0639 0.06;9 : 0.0639 :-: 0.0608 E 

81 

8 

010 VL29 

o 008 

04 Patna 1 

A2 03 MRC74 

~r~tlJl1~2jr~~~ 

Illr 0.0351 
: : : ::~:: ::: 0.0341 

0.0312 0.0400 

A 1 02 MRC3 1::££0292\( 0.0380 

A3 016 Ndandu 4A :~1·1:6.11~11.1!1! 0.0370 

A5 

A4 

C 

027 Ayele 8 

021 LRC-L57 

01 HU3 

Maj L. major 

:::::~W:~~l:]j~~g~:I . 
:::~~[ill~101!l!l![ '< 0.0370 :: 

:[:[~:~ill~i82!·[l·· 0 .03~0 :· 
0.0350 0.0380 

0.1271 0.1214 0.1372 0.1372 0.1382 0.1382 

0.0639 0;0608 < . 0.0700 

all!1 lt11 

0.1418 0.1418 0.1406 0.1395 

L. major L. mexicana 

0.2071 

0.1890 

0.2071 

0.2071 

0.2035 

0.2446 

0.2524 

0.2524 

0.2524 

0.2602 

0.2035 0.2524 

0.2071 0.2485 

0.2108 

0.2071 

0.2145 

0.2485 

0.2485 

0.2524 

0.3212 

Mex L. mexicana 0.1347 0.1415 0.1407 0.1418 0.1475 0.1440 0.1428 0.1428 0.1416 0.1475 0.1757 

Legend: 0-0.0050 0.0051- 0.0100 ._-::r~ItI 0.0101- 0.0200 fff:I:::r~I:~:~~r::::r~::: 0.0201- 0.0300 0.0301- 0.1000 distance 
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6.5. Phylogenies of the Leishmania donovani complex 

The mspC3 sequences obtained from strains of the L. donovani complex were 

aligned with published homologues for two outgroup species: L. major gp63-6 and L. 

mexicana gp63-C1, from GenBank (respectively AF039721 and X64394) (Fig. 41). 

In all phylogenetic analyses of mspC, rooted to L. major and L. mexicana (Fig. 

44), the L. donovani complex was monophyletic. The L. infantum / L. chagasi (group 

A) were also monophyletic; they formed a branch of indistinguishable strains. The L. 

donovani formed a paraphyletic group (did not include all taxa in the clade) because 

branch E was closer to or before the L. infantum branch. All branch lengths were 

positive by neighbour-joining (Fig. 44) and UPGMA, but not Fitch-Margoliash, from 

Kimura 2-parameter corrected genetic distances. In the other phylogenetic methods 

tested, topologies were similar, except by maximum likelihood which placed group E 

at the base of the L. donovan; tree. Bootstrap values were high for the main 

branches, especially for neighbour-joining. The L. infantum / L. chagasi (group D) 

were grouped with group E strains at a long distance from the remaining L. donovani 

complex strains. However, groups E and 0 were not closely associated and some 

equally parsimonious trees had a trifurcation at the base of the L. donovani complex, 

with group 0 (L. infantum / L. chagas) , group E and the other L. donovani as main 

branches. The latter were more polymorphic than L. infantum and two subgroups 

could be defined by both visual inspection (Fig. 41) and tree analysis of the 

sequences (Fig. 44): one comprising LON 41 (Indian) (group B) and LON 46, 48 and 

50 (group C) and the second, more polymorphic, which included LON 44, 45, 51, 56 

(group A). 

Protein sequences generated similar trees as DNA sequences with neighbour­

joining and parsimony. Resolution of strains in groups A to C, however, was much 

lower than with DNA sequences, failing to isolate a clade A. All branch lengths were 

positive by neighbour-joining (Fig. 44) and UPGMA, but not Fitch-Margoliash. 

Correlation with zymodeme type, as typed in this project (Chapter 3) was 

observed for all main groups, although stronger for clade 0 (L. infantum / L. chagasi) 

and group E strains (LON 42/52; ILM 10). One branch included closely related 

zymodemes ILM 5, 6, 7 (only distinguishable by ASAT) , and another two ILM 3 

strains. The LON 41 (ILM1) strains, which formed group B, were in one branch except 

for 008 (see discussion). ILM 4 and ILM 8 strains presented much more diversity and 

were divided into three very closely related branches. 
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A 
0.01 distance 

100/100/100 

B 
0.01 distance 

C 
0.01 distance 

L. mexicana 
L. major 

E ILM 10 (Ethiopia, Saudi Arabia) 
D L. infantum / L. chagasi 

70/87/68 C I LM 5, 6, 7 (mainly Sudan) 
89/87/- ) B ILM 1 (India) 

10011100/100 
91/71/--

A5 
A4 
A3 

A2 
A1 

ILM 3, 8 (mainly Kenya) 

L. mexicana 
L. major 

E ILM 10 (Ethiopia, Saudi Arabia) 
D L. infantum / L. chagasi 

C ILM 5, 6, 7 (mainly Sudan) 

) B ILM 11ndia 

A5 
A4 
A3 

A2 
A1 

ILM 3, 8 (mainly Kenya) 

L. mexicana 
L. major 

E ILM 10 (Ethiopia, Saudi Arabia) 77177/61 ....--_ 

100/93/94 

D L. infantum / L. chagasi 
49/74172 r-- C ILM 5, 6, 7 (mainly Sudan) 

n B ILM 1 (India) 

~ 
A5 

A4 
A3 ILM 3, 8 (mainly Kenya) 

99/100/100 A 1 
'-- A2 

Figure 44 - Neighbour-joining dendrograms of mspC3 A) DNA and C) protein 

sequences in the L. donovani complex, with L. major and L. mexicana as outgroups, 

from Kimura genetic distances (Table XXIX). Leishmania donovani complex strain 

groups were numbered according to the list previously presented (see 6.4.). 

Maximum likelihood, maximum parsimony and Fitch-Margoliash (SQ=0.1237, ASD= 

3.251) produced similar trees, except for maximum likelihood which tree is shown in 

8) (Ln Likelihood = -2869). Bootstrap values from 1000 replicates in A) and from 100 

replicates in C) are shown for neighbour-joining / Fitch-Margoliash / maximum 

parsimony. 
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6.6. Partial GP63 ITG/CS sequences 

Partial sequences of the transcribed non-translated 3' tail of the mspC gene 

(GP63 ITG/CS) were also obtained (Fig. 46). In 147 base pairs (bp), 6 (4.1 %) 

polymorphic sites were positively identified within the L. donovani complex, except for 

strain Sukkar 2 (023), which was much more polymorphic. 

None of the obtained sequences had the 19bp repeat described in the first 

published L. chagasi mspC (Fig. 45). 
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L. chagasi 2122 tagcggcagtatgtcctcatgtcggcagtatgtcctcatgtcggcagc 

L. infantum 1183 tagcggcagtatgtcctcatgt-------------------cggcagc 

L. infantum 1183 tagcggcag-------------------tatgtcctcatgtcggcagc 

Figure 45 - An alignment of the published L. chagasi mspC sequence (M80671) and the L. donovani complex sequence obtained in this project 

(L. infantum IPT 1, AJ010234). Two alternative L. donovani complex alignments are shown, highlighting the 19bp repeat in L. chagasi. Identical 

sequences at the extremes of the repeat are double underlined. Nucleotide positions are from GenBank sequences. 

Group 
mspC 

D INF 
E D1D 
Bl D 
B D4 
C Dl 
A1 D2 
A2 D3 
A3 D16 
A4 D21 
A5 D27 

D23 

3gttacgacggtcggcgagcttgaaacggagtggagaggatggccatcggcgagaaggccgcgacgaagtgtagcggcagtatgtcc 
gttacgacggtcggcgagcttgaaacggagtggagaggatggccatcggcgagaaggccgcgacgaagtgtagcggcagtatgtcc 
· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.................. g.e ........................................................... c .... . 
.................. g.e ........................................................... c .... . 
.................. g.e ........................................................... c .... . 
· . . . . . . . . . . . . . . . . a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c. . . . . 
· . . . . . . . . . . . . . . . . a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c. . . . . 
· . . . . . . . . . . . . . . . . a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c. . . . . 
· . . . . . . . . . . . . . . . . a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c. . . . . 
· . . . . . . . . . . . . . . . . a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c . . . . . 
· ..... g ... c . t .. tc .. c ............ a .. t .................. g ... a ..... a ............... c .... . 

(Figure 46 - Alignment of gp63 ITG/CS sequences, following the stop codon in mspC. See next page.) 

170 



Group 
mspC 

D INF 
E DI0 
Bl D 
B D4 
C Dl 
Al D2 
A2 D3 
A3 D16 
A4 D21 
A5 D27 

D23 

mspC 191 
INF 

mspC 276 
INF 

mspC 361 
INF 

80tcatgtcggcag( ... )ccatcgctgcacacgtgcgccggagtgttattattattatgcttcgctgtcgctcgtcttctccggtcca 
tcatgtcggcag ccatcgctgcacacgtgcgccggagtgttattattattatgcttcgctgtcgctcgtcttctccggtcca 

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
........ t .......................................... n ....... n. 
· . . . . . . . t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . t. . . . . . . . . . . . 
........ t .............. g ............... n.nn ...... n. 
· . . . . . . . t. . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
........ t .............. g ................................... - ... . 
· . . . . . . . t. . . . . . . . . . . . . . g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

c .... c .... g. . ..... g .................... c ................... c .................... n. 

ccttcggagtctgagctgggtatgtgtttgggtggatggggctgtttcacagcctccgtctccatccctttcctcccttctgccg 
ccttcggagtctgagctgggtatgtgtttgggtggatggggctgtttcacagcctccgtctccatccctttcctcccttctgccg 

tgggtgtgtgcttgccgccgataagcaccttaagttcttggtcagccatcgcgcaatggccagatgatcatcaaggtcagcgggc 
tgggtgtgtgcttgccgccgataancaccttaanttcttggtcagccatctcccaanggccanatnatcatcanngtcancgggc 

ggctctcgacgcatctcgcggtgccgtcgtgccacaatgtgtgcctctgttacgctttttctgcttcgtgctgttttgctatt 
ggctctcnanncatctcgcggtgccntcntgccacaangtgtgcctctgttaccctntctctgcnncctgctgtcttgcnatt 

Figure 46 - Alignment of gp63 ITG/CS sequences, following the stop codon in mspC, and compared with the published L. chagasi 3' end 

sequence (mspC; S81769) (Streit et a/., 1996). The stop codon of strain Sukkar 2 (023) (double underlined) is shown and a partial sequence of 

the coding region for comparison purposes. Dots are bases similar to the L. chagasi PP75 mspC sequenced in this project (INF) and dashes (-) 

were used for optimal alignment. Further gp63 ITG/CS sequence obtained for L. chagasi PP75 is shown below. ( ... ) represents the 19 nt insertion 

present in mspC. Groups are the same as those in Table XXXII (insert). 
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6.7. Discussion 

6.7.1. Comparison of mspC sequences with Leishmania chagasi mspC 

The sequence of the original L. chagasi mspC was not identical to that found 

in the L. donovani complex, or in L. major or L. mexicana. 

The 3 base gap found in the original L. chagasi mspC sequence (M80671): 

1450catcccttggg--ctactcgc-atttct 1474 

may have been a sequencing error. The high number of repeated Gs may cause 

compression of bands and be more difficult to read. The authors may have 

speculated on the actual sequence to produce a working gene sequence, because a 

true mutation, although not impossible, would require two separate deletion events, 

each of which would have to be an out of frame mutation. 

Similarly, in positions 19 and 20, all other sequences have GG (L. mexicana 

CG), while the original L. chagasi has CC. 

The strain used in the original work is not one well known or even a reference 

strain. It may be that it has been cultured in the laboratory for a long time without 

selective pressure and thus may have accumulated mutations. Alterations during 

cloning are also possible. This case advises against the use of non-reference strains 

and stresses the need for including comparative sequence analysis with other strains 

of the same species when describing a new gene. 

6.7.2. Comparative analysis of Leishmania donovani complex mspC genes 

6.7.2.1. Typing markers 

Upon mspC3 sequence analysis, L. infanfum and L. chagasi strains were 

indistinguishable, in contrast with variability between L. donovani strains. It is a strong 

argument against separation of L. infanfum and L. chagasi into distinct species. 

Sequence identity of L. infanfum and L. chagasi strains suggested that it might 

be possible to identify markers present in all L. infanfum and L. chagasi for specific 

typing of L. infanfum 1 L. chagasi. Sites 1011 and 1020 are L. donovani specific and 

some other sites are L. donovani specific except for group E (LON42/52). Sites 634 

and 932 are LON 42/52 specific but there are no single L. infanfum specific markers 

because of the high similarity of group E with L. infanfum and some similarities with L. 

major and L. mexicana, which suggests that, upon analysis of other related species 

or L. donovani complex strains, it may be impossible to define a single diagnostic 

marker within this gene for either species or group. Instead it may be necessary to 

rely on groups of markers for specific diagnosis 1 typing. These markers could be 
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achieved by designing probes to the desired regions or by combinations of primers to 

design specific nested-PCRs. 

6.7.2.2. Gene and function 

There was a higher percentage of amino acid (7.75%) than nucleotide 

polymorphisms (5.3%) throughout the analysed portion of the gene, which is a 

consequence of the large number of polymorphisms in first and second codon 

positions, which were mostly non-silent. Some regions did not have amino acid 

polymorphisms, whilst others are extremely divergent. Although there were 33 non­

silent substitutions, in four cases there was more than one polymorphic site per 

codon, and thus only 28 amino acid polymorphisms. 

Although the third codon position was more polymorphic than the first or second, 

the difference between the observed and the expected distributions if distribution of 

mutation was equal among sites, was not statistically different to a degree of 10% by 

the X2 test (Table XXX), ie., the difference in polymorphism frequency between codon 

positions 1, 2 and 3 is not statistically significant. No substitution restraints were 

identified regarding codon position or synonymy of base change, given that first and 

second base substitutions were not silent, and thus, regions with genetic 

polymorphisms in mspC did not seem to be targets for conservative selection. 

Table XXX - X2 statistics of distribution of base changes over the three codon 

positions. 

Position 1 2 3 total 

Observed 18 15 23 57 

Expected 18.3 18.3 18.3 56 

Ho : n1 = n2 = n3 H1 : n1 1=- n2 1=- n3 

X2 = L [(0 - E)2 / E] 2 degrees freedom X2 = 1.33 < p=0.5 

It is tempting to speculate over the large percentage of nucleotide 

polymorph isms producing amino acid substitutions. MspC does not seem to be a 

pseudogene, because findings of only in frame, and no out of frame, mutations argue 

against this hypothesis. Similarly, distribution of polymorphisms does not seem 

entirely random and there are many conserved motifs among L. donovani. It may be 

that mspC is mutation tolerant or even that mutations may often be beneficial rather 

than harmful. Because GP63 is a surface protein, the parasite may benefit from 

diversity in some antigenic regions. 
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The most promising T cell epitope for yielding protection against leishmaniasis 

(peptide 7- shown in bold in Fig. 47) produced similar effects whether given in the L. 

major or in the L. chagasi form, despite major sequence differences, and divergent 

homol.ogous sequences seem to encode for immunogenic peptides (Fig. 47). The first 

region of the Zn binding site may also have important antigenic properties (Yang et 

a/., 1993), but it is located upstream of the region sequenced in this work. Published 

data on antigenic epitopes are rather difficult to interpret, since different peptides of 

different lengths have been used in different experiments. It may be that position of 

certain sequences may influence antigen presentation and hence the immune 

response. Except for the case with peptide 7, it is not known whether sequence 

differences between strains are important or not for the immune response. 

Three polymorphic regions were identified within the seemingly immunogenic 

region shown in Fig. 47. Although different genes may have been compared in the 

several antigenic epitopes studied, there are some common species specific amino 

acid patterns and it is tempting to relate amino acid motifs to the immune response 

elicited by each parasite. Especially in the third box, the L. donovani complex has 

NRTAAN/oGY and L. major genes have ATo/NGIVKS. Is it possible that one of the 

motifs elicits a Th1 response and the other a Th2 response, thus influencing the 

outcome of infection and participating in the mechanisms by which one species 

causes the milder CL form and the other the dangerous VL. Leishmania mexicana, 

however, has a sequence similar to VL species. Leishmania pathogenesis is far from 

simple, however, and this subject deserves further investigation. 

Differences in gene sequence may have implications in antigenic and 

virulence properties. Contradictory results on the study of GP63 may reflect 

differential regulation or amino acid composition of the protein. Although not 

exclusive of this protein, the comparative study of GP63 sequences and properties 

might provide some light on the striking differences found among Leishmania species 

regarding immunogenicity and clinical presentation. I believe that this analysis shows 

how important it is to integrate functional studies with comparative genetics. 

174 



CPFVIG 47 
FNVFSEAARC 48 ~----~ 

EAARCIDGAFTP RTAAD 49 
TAADG AGLCANVRCDTAT 50 
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171 I 240 
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Figure 47 - Alignment of the most studied region for GP63 antigens. Where L. major sequences were studied a sequence comparison is shown. * 

represents polymorphic sites. The most variable regions are highlighted by boxes. Epitopes 47 to 50 were studied by Morales et al. (1997) and 

were from L. infantum, 361 to 364 by Soares et al. (1994) and 6 to 7 by Russo et al. (1993) from L. major. Epitopes 7 and 8 were shown to 

stimulate T cell proliferation in leishmaniasis patients. Epitopes 47, 49 and 50, underlined, produced high FAST-ELISA titres. Epitope 364 was 

shown to produce a protective Th1 response, while 361 and 368 (underlined) were shown to produce an exacerbating Th2 response. 
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6.7.3. Phylogenies of the L. donovan; complex from mspC3 

MspC3 was polymorphic within L. donovani, but not L. infantum / L. chagasi. 

High bootstrap values strongly support the main branches. As far as we are aware, 

this is the first time that the sequence of a GP63 gene has been shown to be of value 

for inference of phylogenies in Leishmania. 

As shown in the dendrogram, both L. infantum and the L. donovani LON 42/52 

groups were closer to the base of the tree, than most of the L. donovani. Position of 

the LON 42/52 was uncertain in this phylogeny, but they seemed at least as divergent 

as L. infantum (L. chagas/) is from other L. donovani strains. 

L. donovani complex strains could be grouped according to isoenzyme types 

(Fig. 44), which corroborates the initial hypothesis that phylogeny of GP63 may 

correlate with biological properties of the parasites. MspC is thus a strong candidate 

for the development of molecular typing methods to supplement isoenzyme typing, 

although less variable. Possible typing methods could be nested-PCR or molecular 

beacons. 

Strains 008 (D) and MRC74 (03), although similar to strains of their 

respective zymodeme groups, had singular sequences. 008 also has two different 

sized mini-exon alleles (Chapter 5). It is possible that most strains are essentially 

clones circulating in the same form throughout epidemics. Others, like 008 and 

MRC74 may have been under different selective pressures or may be strains of 

clonal lines less represented in the populational gene pool. It is known that PCR 

amplification may introduce errors in sequences, but it is unlikely that they should be 

introduced preferentially in one strain and not in others. 

The phylogenetic analysis using the protein sequence rather than the DNA 

sequence produced similar results, except for the clade C-A. Despite this, association 

of type C (strains ILM 5/6/7) and Indian L. donovani (type 8) was still strong. This 

confirms that protein sequences are good tools to infer phylogenies, except from 

closely related sequences. Despite this constraint, it is useful to verify that purely 

genetic distances correlated with phenotypiC distances. Again, this effect may be due 

to the observed high rate of non-synonymous polymorph isms and suggests a strong 

positive selection (favouring diversity) acting upon this gene or in some regions, 

instead of negative selection (favouring conservation). 

MspC genes are sufficiently conserved to assume that the trees obtained 

reflect the true phylogeny of the gene, which also reflects phylogeny of the parasites, 

and it is, thus, possible to speculate on the history of the L. donovani complex. In the 

mspC phylogenies the L. donovani complex was only slightly more closely related to 

L. major than to L. mexicana, which was more evident at the protein level. Although 
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analysis of more strains and input of a more distant outgroup would be necessary, 

data here were compatible with the hypothesis of radiation of L. mexicana-like 

parasites into the Old World with quick radiation of species in the new environment. 

At least two main lines of L. donovani complex evolution emerged: one with L. 

infanfum (group D) and ILM 10 strains (group E) and the other with clade A-C. Both L. 

infantum and group E were closer to the outgroups but it was not clear whether those 

formed a clade or were two ancient groups. Indeed, L. infanfum and group E were 

more distant from each other than any sequences within clade A-C which was much 

more polymorphic. Phylogeny within clade A-C was not well resolved and it may be 

that addition of other strains may complicate it. Leishmania infanfum and group E 

seemed to have undergone little evolutionary change as far as the mspC gene is 

concerned whilst clade A-C has undergone fast radiative evolution. Whether the 

evolutionary patterns are associated with vectors, with reservoirs or with simple 

population events, such as population bottlenecks, deserves further investigation. 

6.7.4. Sequence of gp631TG/CS 

Partial sequences of the transcribed non-translated 3' tail of the mspC gene 

were also obtained. Although lower, the number of polymorphic sites (4%) found in 

the non-coding region were close to the 5.2% in the coding region sequenced in this 

work. The short sequence data did not allow for conclusions. Some parts of 

intergenic regions are expected to be conserved because of their function in 

regulation of transcription and mRNA synthesis. 

Analysis of the sequences obtained indicated that the first L. chagasi mspC 

sequence had a 19bp repeat in the non-coding region. Figure 48 shows how this 

duplication may have occurred either in the parasite or during the cloning-sequencing 

process. The six base repeat present twice in the initial sequence may be due to 

slipped annealing, which would initiate a second amplification of the sequence that is 

repeated. The duplication may have become stable through a DNA repair mechanism 

involving new DNA synthesis from the single strand DNA in the loop or after 

chromosome replication in the next mitosis event. 

Mispaired crossing-over might produce a similar effect; it should have been 

found, however, a shorter allele with a deletion of the sequence repeated. 

6.7.5. Strain Sukkar 2 

Strain Sukkar 2 (D23) was different from any strain studied here and 

possessed a few remarkable features. Two PCR products were identified, the shorter 

fragment of which revealed a 48bp in frame deletion. The deletion may have 
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occurred by formation of a long loop with pairing of 7bp during transcription (Fig. 

49A). Six of these pairings are C-G, which are very strong, thus stabilizing the loop 

enough to allow transcription. A new DNA molecule with the deletion would be 

produced, either by a second replication of the shorter strand in the next mitosis 

event or by DNA repair mechanisms (see 6.7.4.). Alternatively, the deletion might 

have occured through slippage involving the 6bp repeat sequence in the template 

strand which could be stabilized by a short loop with four base pairings, three of 

which C-G (Fig. 49B). Deletions may also occur through mispaired crossing-over, but 

it would most likely not produce the truncated repeat 'gcg' present in the deletion, and 

would cause a duplication in the sister chromosome. This duplication would have to 

be observed if Leishmania reproduction is assexual and only mitotic. 

cggcag 

cggcag '"---_ ......................................................................................................... > 

gccgtc gccgtc 

cggcag cggcag cggcag 

gccgtc gccgtc gccgtc 

Figure 48 - How a duplication may have occurred to produce the 19bp repeat present 

in the published L. chagasi mspC sequence. The lower strand is the sequence 

present in all L. donovani strains studied in this project and the upper strand is the 

newly synthesized strand after slippage of the new DNA molecule during synthesis. 

Below is the resulting DNA after a second round of amplification or DNA repair with 

synthesis of DNA complementary to the single strand DNA of the loop. 

Remarkably, both SUKKAR 2 sequences had a polymorphism in what is a 

stop codon for every other studied strain, which coded for a serine residue. The 

mutation may not affect the function of the gene, since there is a second stop codon 

in both fragments, only 11 amino acids downstream. This second stop codon is not 

present in any of the studied L. donovani complex strains and it is located in a region 

conserved within the L. donovani complex. There are no other stop codons 

downstream for a large distance. 
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It is intriguing how such polymorphisms, distinctive from any other strain (or 

species) studied in this work, become present in both fragments. This may indicate 

that these events precluded the deletion event. Although gene duplication may have 

occurred, no other fragments were identified. Karyotypic analysis might shed some 

light on whether or not the two alleles were in the same locus, but itwas beyond the 

scope of this work. 

A 

cgacg 
. ' 

---'-.....L...-L.....&... __ -'--I_' .:. _ .) 

tccg ctgc 

New DNA 
with deletion 

aggcgacg gcgacg 

B 

-7 11111111 ~ ---L.t....Lc....lc....lg......JcL-tL-gL-c-'---- -tL-c ............ c--....Lg......JcL-t ~ C .) 

. Figure 49 - The two best explanations of how a deletion may have occurred in a 

newly synthesized DNA strand in strain Sukkar 2 (023). A) A long loop is formed, 

thus causing replication to continue through the base of the loop. B) A short loop 

stabilizes a slippage of the template strand during replication. Both these alternatives 

explain why sequence 'gcg' is present only once in the shorter fragment but a double 

repeat 'gcggcg' is be present in both flanks of the deletion region in the longer 

fragment. The dotted arrow shows the direction of synthesis of the new DNA strand 

and the thick small lines show C-G base pairing. A new DNA molecule with a deletion 

will eventually be produced (see text). 
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7. Overall Phylogenetic Approach to the 

Leishmania donovani complex 

7.1. Potential phylogenies of the Leishmania donovani complex 

7.1.1. Phylogenies from pooled RFLP and RAPD data 

RAPD and RFLP data were pooled, since both data sets produced trees with 

similar genetic groups. By pooling RFLP and RAPD data, phylogenies were 

constructed for the L. donovani complex using clustering or maximum parsimony 

methods. All distance and parsimony based trees discriminated between five main 

clades or groups of strains with a possible sixth (Fig. 50), which had strong 

correlations with geographical origin or zymodeme (Fig. 52): 

A - mainly zymodeme ILM 3; mainly Kenyan strains; 

B - ILM 1; Indian strains; 

C - ILM 5, 6, 7; mainly Sudan but includes isolates from several other locations, such 

as Ethiopia, Lebanon, Iran, Italy, Portugal; 

D - L. infantum (lLM 9 and related zymodemes); several locations in Mediterranean 

countries to China, and Latin America (not all strains were shown here); 

E - ILM 10; Ethiopian and Saudi Arabian strains; 

F - ILM 16; China. Here represented by one strain only, because, although usually 

associated with, it was not sufficiently close to group E (ILM 10). 

All groups were robust upon bootstrap analysis of Wagner parsimony (Fig. 

50), which produced the shortest cladograms (642 total steps), followed by Dollo (772 

total steps) and polymorphism (1351 total polymorphisms). Groups and their 

relationships were congruent in all phenograms [neighbour joining, UPGMA (CC= 

0.94) and Fitch-Margoliash (SQ= 1.17; ASD= 3.44)] and cladograms (Wagner, Dollo 

or polymorphism parsimony). The only exception was that in the Fitch-Margoliash tree 

group A (Kenyan strains) was closer to group C, than to group B (Indian strains), 

however the distances in a Fitch-Margoliash tree between groups A, Band C were 

negative and bootstrap values were lower than 70% for either combination AB, BC or 

AC. These three groups thus emerge as a tricotomy. 

The five groups of strains could also be defined at 65% of the maximum 

distance within the L. donovani complex (Table XXXI), as with single RFLP analyses. 

Increasing the discrimination level to 75% improved definition of groups C and D 

without compromising overall definition, except for strains D2 and D3. 

Several degrees of geographical diversity were apparent among the groups. 

The most geographically restricted was group B (Indian strains) followed by groups A 
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and E (in KenyalEthiopia and in Ethiopia/Saudi Arabia, respectively). The most 

disperse was group D (L. infantum) , in both OW and NW, followed by group C, in 

Mediterranean I North African countries. Although group F was here represented by 

one strain only, it is probable that it is restricted to China. 
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Figure 50 - Phylogenetic analysis of the L. donovani complex based on pooled RFLP 

and RAPD data. A) Neighbour-joining tree compared with B) Wagner consensus tree 

(642 steps). Branches present in all UPGMA I neighbour-joining I Fitch-Margoliash 

(U/N/F) are shown in A) and bootstrap support higher than 70% (higher than 80% in 

bold) for Wagner I Doliol polymorphism (W/D/P) parsimony are shown at branches in 

B). Countries are: CN - China; CY - Cyprus; ET - Ethiopia; IN - India; IR - Iran; IT - Italy; 

KE - Kenya; LB - Lebanon; PT - Portugal ; SD - Sudan; TU - Tunisia. Groups are the 

same as those in Table XXXII (insert) : A - ILM 3; B - ILM 1; C - ILM 5/617 ; D - L. 

infantum; E - ILM 10; (F) - ILM 16. *WHO reference strain. 
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Table XXXI - Jaccard distances from pooled RFLP and RAPD data in the L. donovan; complex. Values lower than 0.459 (65% of the maximum distances 

within the L. donovan; complex) are shaded black and 0.530 (75% of the maximum distances within the L. donovan; complex) are shaded grey, on top. 
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7.1.2. Comparison of DNA sequence and fragment based phylogenies. 

The same main groups as in RAPD/RFLP trees could be identified in the mspC 

sequence trees, but both distances and topology of groups A (ILM 3), B (ILM 1) and C 

(ILM 5/6/7) were different. Position of groups D and E was also variable in relation to 

each other. Highly diversified groups, such as C (ILM 5/6/7) and E (ILM 10), had 

identical mspC sequences, whilst group A was the most polymorphic cluster by mspC. 

Rooting of most mspC trees differed from the RAPD/RFLP UPGMA tree in that 

it separated L. donovani in groups ABC and DE, but the rooting methods were 

different. Whilst the RAPD/RFLP tree was rooted by UPGMA to the most divergent 

branch , the mspC tree was rooted by an outgroup. The maximum likelihood tree for 

mspC (Chapter 6, Fig. 44), however, did place group E closer to the root. Thus, it is 

possible that group E and group D belong to separate clades , with group E being the 

first to diverge and closely followed by group D. 
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Figure 51 - Comparison of A) pooled RFLP and RAPD UPGMA (CC = 0.94) and B) 

mspC neighbour-joining (rooted) phylogenies for the L. donovani complex (Chapter 6). 

Only strains with available mspC sequences were used. * WHO reference strain . 
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7.1.3. Comparison of DNA with isoenzyme typing. 

DNA based trees did not agree well with isoenzyme trees and are not shown for 

that reason. On one hand, ILM 8, grouped with group B within L. donovani in the 

RFLP/RAPO tree and with the L. infantum strains in the lEA tree. However, one strain 

of L. infantum had also been typed as ILM 8 (11; L82). On the other hand, in the genetic 

trees, groups E and 0 are related, whilst in the phenotypic (isoenzyme) trees those 

groups would often be in opposite sides. 
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Figure 52 - Comparison of A) pooled RFLP and RAPO UPGMA (CC = 0.94) and B) 

mspC neighbour-joining (rooted) phylogenies for the L. donovani complex (Chapter 6) 

showing country, year of isolation and isoenzyme data for each strain. Only strains for 

which mspC sequence is available are shown in the RFLP/RAPO tree. Countries are: 

CN - China; CY - Cyprus; ET - Ethiopia; IN - India; IR - Iran; IT - Italy; KE - Kenya; LB -

Lebanon; PT - Portugal; SO - Sudan; TU - Tunisia. * WHO reference strain. 

Unprocessed isoenzyme data correlated well with gene (mspC) and genomic 

trees (pooled RAPO/RFLP) (Fig. 52). The exceptions were strain 03 (MRC74) in group 

A (ILM 3) , which was typed as zymodeme ILM 1, and ILM 8 of which there were two 

strains in different groups. One ILM 8 strain is not shown in this tree but had already 

been assigned to group 0 (L. infantum) and the other is seen here with group 
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Chapter 3) and ILM 8 strains might be differentiated if more enzymes were used. The 

similarities of zymodeme typing for these strains may be due to the low number of loci 

studied and may have been caused by analogous, rather than homologous, alleles, 

which are very difficult to distinguish by lEA alone. 

Congruence of methods differed according to the group. Group B (Indian 

strains, ILM1) was the most conserved across all methods, whilst only group A 

(Kenyan strains, mostly ILM 3) was diverse across all methods, however, 

differentiation of a sub-clade with MRC(L)3 and MRC74 within group A was not 

detectable by isoenzyme typing. Other groups had contradictory results. Group C was 

both diverse by RAPD I RFLP and isoenzymes (ILM 5, 6, 7), but only one type of 

mspC sequence, and group E (mainly Ethiopian strains, ILM 10) was highly 

conserved by lEA and mspC, but much more polymorphic by RAPD I RFLP. 

7.2. Discussion 

7.2.1. Genetic analysis of the Leishmania donovani complex 

Pooled phylogenies based on combined RAPD and RFLP data, which had 

already been obtained from data collected from several RAPD primers or RFLP 

targets and restriction enzymes, respectively, were used to provide an approximate 

genome phylogeny rather than a strict gene phylogeny. RFLP analyses of single 

targets and RAPDs had previously produced similar strain groupings, and similar to 

those observed with DNA sequence of mspC. Pooling RAPD and RFLP data thus 

seemed a valid approach, despite RAPD characters being dominant, whilst RFLP 

characters are co-dominant. Furthermore, it did not seem necessary to weight the 

data, since the number of characters per technique were generally balanced. Indeed, 

the results from the pooled data were robust and compared well with those obtained 

with individual and other analyses, such as mspC sequence and isoenzyme analysis. 

Groups 

It was interesting to observe that not only formation of strain clusters but also 

relationships between groups were congruent between cluster and parsimony 

methods, for bootstrap values higher than 70%, when RAPD and RFLP data were 

pooled. Most reassuringly, in the shortest cladogram, a Wagner parsimony tree, the 

main branches had more than 90% support, except topology of the ABC clade. Most 

of the branches were also well supported in the polymorphism parsimony tree, but not 

so much by Dollo parsimony, perhaps because the RAPD data was less robust. 

Furthermore, the relative positions of the groups were stable in either pooled RFLP or 

RAPD/RFLP. 
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The groups of strains identified in the L. donovani complex were congruent 

across different methods: pooled RAPO/RFLP, mspC sequence and isoenzyme 

typing. Some zymodemes, however, were found in more than one group. ILM 8 was 

found in L. infantum (strain L82) and group A (mainly ILM 3) (strain 025, 0-2), whilst 

ILM 1, which is characteristic the Indian group, was also found in group A (strain 03, 

MRC74). An interesting possibility would be that the L. infantum ILM 8 strain was a 

remnant from the ancestors of the group, and that the group A ILM 1 strain was a 

ancestor of Indian L. donovani, if L. infantum and L. donovani had both originated 

from group A. However, L. infantum was only distantly related to group A in all 

analyses and Indian L. donovani could cluster with either group A or C. It is likely, 

however, that the strains with zymodemes ILM 1 and ILM 8 in different groups were a 

case of convergent evolution, because of the low resolution power of isoenzyme 

analysis, in general and in this project. 

Root of the L. donovan; complex 

Unfortunately, it was not possible to root the final pooled RAPO I RFLP trees, 

because no outgroup amplification of ITG/CS or ITG/L was possible. The structure of 

the L. donovani complex in unrooted trees was often star like, which might indicate an 

initial radiation or lack of a resolvable phylogeny with the gene. If this is the case, 

establishing the phylogeny of genetic groups of the L. donovani complex may be 

virtually impossible. The root of the complex, however could be deduced from 

UPGMA analyses, because it assumes a molecular clock, and from RAPO, ITS and 

mini-exon phylogenies, which were outgrouped. 

From an overall analysis of the trees, no group is particularly close to the root 

of the L. donovani complex. The identified groups thus seem to be survivors of an 

unknown ancestral population, which may have been lost or highly modified. Group E 

appeared more often as the first clade to differentiate (with or without L. infantum and 

Wangjie 1) suggesting that group E (ILM 10) may have been the first to diverge. The 

L. infantum clade is the alternative candidate to be the first lineage to emerge from 

the L. donovani complex but ILM 10 strains (group E) were often the closest to the 

root, when determined. It is not clear whether L. infantum arose as an early branch 

from clade ILM 10 or as an independent line, although the latter seems to be 

favoured by the data. Groups A, Band C seem to be part of another clade, which 

may have arisen at approximately the same time as clades L. infantum and group E. 

Although the above phylogeny may have been a result of a long branch 

attraction phenomenon (Felsenstein, 1988) due to a higher mutation rate in group E, 

it is not very likely, given the similarity of mspC sequences within the group and also 

to the closest group, L. infantum. The other L. donovani groups seemed to be much 
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more phenotypically diverse, as detected by isoenzyme electrophoresis, DNA 

sequence analysis of mspC but not putatively neutral diversity of intergenic regions, 

as detected by restriction analysis. 

An alternative hypothesis for phylogenetic indeterminations is the occurrence 

of recombination in the origin of some groups. The analysis done here, however did 

not provide adequate data to resolve this question. 

Phylogenies of groups 

A cladogram of the genus Leishmania obtained from isoenzyme data (13 

enzymes) by Rioux et a/. (1990), indicated monophyly of the complex L. donovani, 

which was divided in the monophyletic sister branches L. donovani and L. infantum. 

ASA T was used as the determinant character for separation of the two branches. As 

seen above, however, L. infantum repeatedly appeared as a secondary clade within 

the L. donovani complex, even in parsimony trees, or, at best, one of three main 

clades in the root of the complex. 

Groups A, Band C formed a robust clade, however the phylogenetic 

relationships between each group were not well determined. In particular, affinities of 

Indian L. donovani were not clear. They had lower genetic diversity than most L. 

donovani groups, including L. infantum, and usually formed a subgroup of either 

group A (ILM 3) or C (lLM 5/6/7). Strain MRC 74 from group A had a zymodeme 

indistinguishable here from ILM 1 (the only Indian zymodeme), although it had been 

differentiated by Le Blancq (1986) through MDH. Either the three groups emerged in 

a three clade radiation from an ancestral clade ABC population, or one of the groups 

originated from hybridization of strains from the other two groups. Although the 

present project does not make it possible to answer that question, the most likely 

candidate for a recombination product would be the Indian L. donovani group, which 

has characters from both the other two groups. 

In summary, the most probable scenario for the phylogeny of the L. donovani 

complex is a three clade radiation near the origin of the complex, producing clades L. 

infantum, I LM 10 and ABC. The latter would have had a three clade radiation of 

groups A (ILM 3), B (Indian) and C (ILM 5/6/7). 

Consequences of phylogeny 

Species denominations. 

The data from this project, thus suggest that L.donovani, as currently defined 

(RiOUX et a/., 1990) is a paraphyletic taxa, because it does not include all organisms 

in the clade, since L. infantum seem to be part of the 'L. donovani' clade whenever 

trees were rooted. Although there may be ecological and clinical reasons to maintain 
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L. infantum as a species, the molecular data in this work did not support species 

status, according to a cladistic definition of species, unless the clade with ILM 10 was 

also granted species status. 

The fourth species of the complex, L. archibaldi, was not supported. Strain 

Gebre 1 (and all MON 82), the type strain of L. archibaldi, is characterised by an 

ASA T profile intermediate between that of L. infantum (MON 30) and L. donovani 

(MON 18) as shown in the lEA cladogram by Rioux et al. (1990), which placed MON 

82 between the ancestral strains of L. infantum and L. donovani. Here, and on the 

analyses by Le Blancq (1986), the ASAT profiles for these strains were similar to 

those described by Rioux et al. (1990), but it was in addition obvious that 'L. 

. archibaldi' profiles resemble more a heterozygous profile than a true 'intermediate' or 

third type profile. Accordingly, Gebre 1 (ILM 6) clustered with strains of zymodemes 

ILM 5 and 7 in all other analyses done here. Among other strains found to have the 

same ILM 6 profile, one was from Italy and another from Iran. MON 82 strains are 

known to occur sympatrically with MON 30 and MON 18 in Sudan. Furthermore, the 

cluster containing ILM 5, 6 and 7 did not appear close to the root of the L. donovani 

complex in any rooted robust tree of the L. donovani complex, and strains with these 

zymodemes were not reliably separated. I feel compelled to suggest that L. archibaldi 

does not warrant specific status and that this name should be discontinued, or that 

the definition of L. archibaldi be extended to include MON 30 and MON 18 as well. In 

the latter case, however, all five genetic groups of the L. donovani complex would 

have to be elevated to species, which is not practical. 

Diagnosis and typing 

Results from this work helped explain why it has been so difficult to find 

specific diagnostic tools for L. infantum in relation to L. donovani. Many characters 

are expected to be shared with other L. donovani groups, especially group E, but 

most importantly, if strains typed as MON 30 are considered as L. infantum, it will be 

impossible to find specific diagnostiC tools. A rational search for such molecular tools, 

should include phylogenetic analyses followed by identification of autapomorphisms 

(or character states unique to a single taxon). 

Characteristics and history of groups 

Geographical correlations and genetic diversity levels varied in the L. 

donovani complex, depending on the genetic group. A strong geographical linkage 

was apparent in groups A (ILM 3) and B (Indian), and less in group E (ILM 10), whilst 

groups D (L. infantum) and C (ILM 5/6/7) are more cosmopolitan. A strong 

geographical linkage was also associated with low diversity in group B (Indian) but 
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not in group A (ILM 3 / Kenyan), which was one of the most genetically and 

phenetically diverse groups. Conversely, geographical dispersion was associated with 

high genetic diversity in group C (ILM 5/6n) but not in group D (L. infanfum), which 

was very conserved, except in the isoenzyme phenotypes. Group E (ILM 10) was 

mixed with low dispersion, low phenetic and mspC diversity, but with high RFLP and 

RAPD diversity. 

Group A (mostly ILM 3) was polymorphic by all typing methods and had the 

most diverse mspC sequences, despite being restricted to Kenya and neighbouring 

regions of Ethiopia. This group may be ancient in the history of the L. donovan; 

complex, but it appears relatively recent on mspC phylogenies and it is never near 

the roots of isoenzyme, RFLP or RAPD phylogenies. If indeed group A is recent or 

contemporary in origin to other L. donovani complex groups, two competing 

hypothesis are possible. Firstly, group A may have faced challenging and diverse 

habitats which would have thus exerted a positive selection for diverse genotypes. 

Secondly, the host/vector habitat of these strains may be more permissive than for 

other groups and thus letting through more diverse genotypes. Two Kenyan strains 

(MRC(L)3 and MRC74) usually clustered separately within the group or even outside 

the group. It is possible that it is an effect of longer culture or storage, but if the 

distinction is real, it could also suggest active speciation. 

Not surprisingly, the Indian clade (group B) was very homogeneous, both 

phenetically (isoenzymes) and genetically (mspC, RFLP, RAPD). The Indian cluster 

was restricted to an isolated part of India and Indian L. donovan; seem to be 

restricted to man. Indian kala-azar may have been a recent event, perhaps in a local 

adaptation to an exclusive human reservoir, or might have been the result of isolation 

of a small population (or a few founder strains). Both hypotheses would explain the 

low genetic diversity levels. This clade could have been spread with or within the 

Indian population but it did not. Perhaps local populations do not have migrating 

habits or perhaps Indian L. donovani are restricted to a local vector, the distribution of 

which would determine the geographical range of the parasite. Adaptation to a 

particular species of vector could also catalyse a speciation event and restrict genetic 

diversity. Indian strains other than MON 2 have been reported (MON 38) with distinct 

MDH, NH and PGD (RiOUX ef al. 1990). It would be interesting to determine if those 

strains belong to the Indian clade as determined in this project or if those are 

introductions from other genetic groups or even if those could be hybrids with strains 

from other groups. 

Assuming that the Indian clade is the most recent, it was not possible to 

determine from the analyses done in this project which was their ultimate group of 
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origin. Phylogenies based on the mspC sequence pointed to group C (ILM 5/617), but 

isoenzyme based phylogenies favoured group A (lLM 3, Kenyan) and phylogenies of 

pooled RFLP, pooled RAPD/RFLP or RAPD did not favour group C in relation to 

group A. It is thus possible that the Indian clade originated from hybrid strains of 

clade A and C. Alternatively, the Indian clade may have diverged, instead, at the 

same time as those two groups from a more diverse population, having retained 

features that were also retained differently by the other clades, which would explain 

the apparent contradictory phylogenetic results. 

Group C (ILM 5/6/7) strains can be found widespread in the Old World, mostly 

in the Mediterranean basin and the Horn of Africa, but more conSistently in Sudan. As 

expected from its geographical but also host range, the diversity present in group C 

was high at all studied levels. This group may have benefited from a more plastic 

genome to conquer new habitats and find new ways of transmission, although group 

C may have been restricted to rodents, and limited by their ecology and distribution 

until recently when human population movements favoured dispersion of domestic 

rodents. 

Remarkably, group D (L. infantum / L. chagasl) was simultaneously the most 

geographically dispersed and the second most genetically conserved group in the L. 

donovani complex. Some L. infantum / L. chagasi were not used in the overall 

analysis of the L. donovani complex, but they are widespread through tropical regions 

of the globe, from Western Europe to China, including the North of Africa, but also 

from South to North America. A somewhat similar process to that of group C may 

have happened with the L. infantum clade. Leishmania infantum / L. chagasi are 

mainly associated with canids, and particularly so with dogs. Not only may this 

association have produced the necessary isolation for emergence of a distinct clade, 

but also the association of dogs with man may have contributed to their faster and 

more effective spread. This group also seems to be very permissive in terms of vector 

and is thus capable of being transmitted by a large number of vectors present in new 

habitats. The most remarkable example is the colonisation of the American Continent 

by L. infantum, where it is transmitted by a different genus of sandfly. 

Group E (lLM 10), instead was highly polymorphic in non-coding genomic 

regions, but had only one type of lEA profile and mspC sequence. This group is 

restricted to Ethiopia and a region of Saudi Arabia, close to Ethiopia, where these 

strains may have similar ecological niches, or where they may have differentiated 

recently. Interestingly, Saudi Arabian strains could not be distinguished from 

Ethiopian strains by any analysis, thus suggesting that one of the populations was 
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founded recently by migrants from the other (most likely Ethiopia, migrating to Saudi 

Arabia) or that the two populations have effective genetic exchange. 

Whilst it is easy to envisage 'speciation' processes for both L. infantum I L. 

chagasi and Indian clades, it is more complicated to speculate on the differentiation 

processes which produced clades C, A and E, which are present in an almost cline 

of Sudan - Kenya - Ethiopia, respectively. It is possible that powerful geographical 

barriers contributed to their initial differentiation and that different adaptations to 

particular hosts or vectors may have maintained their geographical restrictions, with 

the exception of clade C (ILM 5/6/7) but probably in recent times only. 

7.2.2. Analytical techniques 

The gene tree (mspC) compared well with the more 'genome-wide' tree 

(RAPD, RFLP), especially regarding definition of clades. 

The use of both RAPD and RFLP data, from several primers or enzymes and 

DNA regions, respectively, helped to overcome the limitations of gene phylogenies. A 

more realistic genomic tree was thus obtained. Although there is a possibility that the 

different typing methods were not compatible and therefore should not have been 

pooled, the trees generated have much more stable major groups than individual 

analyses, which, furthermore, were highly compatible to gene groups and lEA 

clusters. The methods used here thus seem complementary to each other. On the 

other hand, if RAPD and RFLP methods were analysed separately to build 

consensus trees (not shown), the main tree branches were not robust. Parsimony 

methods were the most amenable to consensus tree approachs, in that the main 

strain groups were identified, perhaps because of the large number of alternative 

trees produced in each analysis whilst clustering methods only produced one tree. 

Distance and parsimony trees produced congruent topologies, which might be 

due to the large number of characters used. In such instances a cladistic approach 

has to weight multiple, often contradictory, synapomorphisms and may behave in a 

similar way to a numerical taxonomy approach. 

As expected, the level of genetiC diversity identified using RAPD and even 

RFLP was much larger than that of a functional gene sequence, such as mspC, or 

enzyme phenotype. RAPD/RFLP and mspC trees, however, were roughly compatible 

and differences could be explained by methodological constraints. It was interesting 

to observe that some groups with high internal diversity had only one mspC 

sequence. It is possible that whilst those groups are ancient and neutral mutations 

accumulate over time, the mspC sequence is maintained by selective pressure. In 
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such case it is an example of how a gene phylogeny can diverge from a genomic 

phylogeny. 

It can be agreed that the most reliable data for phylogenies are DNA and 

protein sequence data, however, most data sets (as here) are limited to a single 

gene. RAPD and RFLP data, although not amenable to precise analysis (see above) 

can provide what may be considered as genome genetic data and thus generate 

phylogenies of organisms rather than that of genes. lEA data, although also providing 

information for several genes, is much more limited in size, less sensitive and data is 

much more difficult to analyse. Data from intergenic regions and anonymous regions 

(RAPD) may provide an estimate of neutral or nearly neutral evolution as opposed to 

the evolution of an enzyme coding gene. In that case, the mspC tree may not reflect 

the true history of the L. donovani complex. However, the major groups were 

congruent, and four of them could even be identified by specific mspC sequences. 

It was apparent from comparison of U PGMA and neighbour-joining trees for 

pooled RAPD/RFLP data that the obtained distances were essentially ultrametric and 

compatible with the assumption of a molecular clock. Furthermore, by using pooled 

RAPD I RFLP data, all methods used for tree construction performed well in detecting 

the same genetic groups. 
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8. General Discussion 

8.1. Evaluation of techniques 

8.1.1. Typing methods 

It became apparent from the results obtained in this project that genomic 

diversity and taxonomic studies should include several markers. These several 

markers should be of different natures, such as protein coding genes, intergenic 

regions and anonymous markers. Although most markers will correctly identify strain 

affinities, some problematic strains can only be satisfactorily typed with the aid of 

different methods. Determining which strains are problematic may not be easy from 

one analysis only and at least two reliable typing methods should be routinely 

employed. 

• Isoenzyme analysis 

Isoenzyme analysis, as used here, was useful for assignment of strains to 

groups because of the limited number of zymodemes found. Inclusion of more 

enzymes in the analysis, as for MON typing, increases the number of zymodemes but 

not enough to visualize the genetic groups in the L. donovani complex and may even 

further complicate analysis. Furthermore, the low level of discrimination obtained 

creates problems such as typing the Kenyan strain MRC74 as ILM 1, which was also 

the only zymodeme found in Indian L. donovani, and such as with the zymodeme ILM 

8 that included both L. infanfum and L. donovani strains. Therefore, phenotypic 

characters, like lEA, seem to be reliable for typing but not so much as phylogenetic 

markers, mainly because of their limited number and the uncertainty of distinguishing 

homologies from homoplasies . 

• RAPD 

RAPD was a much less reliable technique than lEA given the low 

reproducibility and its sensitivity to experimental conditions, but it was useful for 

detection of diversity at lower taxonomic levels. As such, RAPD was a sensitive 

method to analyse the relationship between L. infanfum and L. chagasi, but also 

allowed detection of genetic clusters of L. donovani. Some strains' affinities, however, 

were not reliably determined. RAPD did not perform well at retrieving phylogenetic 

information between some groups of strains; tree topology changed according to the 

method used and bootstrap support was high only for some groups. Furthermore, the 

lack of reproducibility meant that different analyses could not be compared and 

restricted the number of strains or taxa that could be compared at anyone time. 

RAPD is not a good method to detect heterozygosity unless homologous fragments 

are determined. 
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• RFLPs 

Regarding the different RFLP typing methods, ITS RFLP seemed to be a good 

typing method, because there was less diversity within groups and groups could 

easily be identified by visual analysis of the RFLP patterns. However, some strains 

could not be reliably separated and group ITS-AB was not resolved, which included 

Indian strains (ILM 1) and Kenyan strains (ILM 3). Although ITS is a multicopy region, 

the low level, but robust, sequence diversity within groups may have been the reason 

for good separation of most groups. 

By RFLP analysis of the mini-exon repeat unit it was not possible to identify 

reliably the genetic groups, although it could be useful to detect diversity within 

groups. The mini-exon is a very G-C rich region which limits the number of applicable 

enzymes. The mini-exon repeat unit had a high diversity level, in terms of fragment 

size and restriction sites, and it is full of nucleotide repeats, thus it may be a better 

marker for population genetics than for phylogenetics and taxonomy. 

ITG/L did not produce reliable typing markers. One of the reasons may be that 

it is a multicopy target, but with a low diversity level. The PCR product also included 

part of the coding region, which may have complicated the analysis. 

The best RFLP based typing method was ITG/CS because the main genetic 

groups were identified and strains were mostly correctly assigned when compared 

with the overall analysis of the L. donovani complex, except for strains Buck (131) and 

Wangjie 1 (026). This region is the only single locus analysed by RFLP which may be 

one of the reasons for its reliability, despite essentially corresponding to a gene 

phylogeny. ITG/CS was demonstrated to have a substantial degree of genetic 

diversity across L. donovani and within groups. 

RFLPs can detect heterozygosity if the total fragment size is larger than the 

PCR product. In this project some strains were found to be heterozygous to several 

targets. However, no attempt was made to find putative parents to determine if those 

strains were hybrids or simple mutational heterozygotes. 

• MspC sequence 

Analysis of mspC DNA sequence arose as a useful method for analysis and 

typing of strains in the L. donovani complex. Not only were the same genetic clusters 

identified as by RFLP and RAPD analysis, but also because the resulting phylogeny 

has a sounder theoretical basis. Although this target may not be good for typing 

purposes because of the cost and labour associated with sequencing, some single 

nucleotide polymorphisms were identified which could be used in quick typing 

methods such as TaqMan, molecular beacons or nested-PCRs. 
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8.1.2. Phylogenetic analyses of the data 

A problem with the phylogenetic analysis of RFLP is that the precise nature of 

all the data is not clear. The size of RFLP bands is dependent on both the size of the 

amplified fragment and on the presence of internal restriction sites. However, some 

polymorphisms also seemed to be due to simple divergence in size of the sequences, 

by insertions or by deletions, often in repetitive sequences. It was thus decided to 

treat each band equally as a separate character for analysis, as for RAPD data, 

irrespective of the origin of the size differences. In this project RAPD and RFLP data 

sets were pooled and the generated groups and phylogenies were congruent for 

bootstrap values higher than 90% to those obtained with individual data sets. 

The best way of assessing genetic distances based on RAPD and RFLP data 

is debatable because the nature of variation is not known with precision in each case. 

Indeed, identification of homologous bands is uncertain without sequencing or some 

other form of sequence identification. There are models developed for restriction 

sites, which could not be determined with precision in this project and, thus, only 

restriction fragments were scored. The difficulty in determining restriction sites 

primarily arises from the complexity of the restriction profiles, which can have many 

causes, such as the long size of the fragments, the multiple copies of each target, the 

use of frequent cutting enzymes and the presence of insertions or deletions. 

A phenetic approach was used here for phylogenetics, since a large number 

of characters was used, without many assumptions. Relatedness was simply 

determined by the proportion of fragments in common between two species (Jaccard 

distances) and analysed using clustering methods. A cladistic approach based on 

different parsimony methods was also applied, and the data were also analysed by 

maximum likelihood. Parsimony using large data sets can behave more like a 

phenetic method than a cladistic method, for it is necessary to conjugate often 

contradictory data, and parsimony analysis performed well in identifying genetic 

clusters when data were pooled and the method allowed for reversions to occur 

(Wagner parsimony). Genetic groups within the L. donovan; complex were reliably 

identified by most phylogenetic methods. 

Distance based methods are usually not universally supported for analysis of 

genetic data, because they do not have an intrinsic measure of reliability and 

information is lost in the process. In the present analysis, however, they were 

consistent throughout, with assumption of a molecular clock (UPGMA) or without 

such an assumption (neighbour-joining). 

The analysis by several different methods to some extent allowed assessment 

of the reliability of phylogenies derived from the data. In fact, analyses of pooled data 
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were very similar whilst those of individual data (RFLPs, but also RAPD) were much 

less reliable. Either Wagner parsimony, UPGMA or neighbour-joining could be used 

in the future to analyse pooled RAPD or RFLP data, because group identification was 

congruent between methods and those groups were also supported by mspC 

sequence and, to some extent, isoenzyme analysis. 

8.1.3. Identification of genetic clusters 

Formation of genetic clusters was largely reproducible across the different 

techniques, except for the mini-exon and ITG/L (see above). The groups generated 

by RAPD and RFLP, as well as isoenzyme typing and mspC sequencing were 

consistent. The main groups of strains were: 

• A - strains mainly from Kenya, mainly zymodeme ILM 3; 

• B - strains from India, zymodeme ILM 1; 

• C - strains from several locations, mainly from Sudan, zymodemes ILM 5, 6 and 7; 

• D - strains from several locations, mainly zymodemes I LM 9 and 11; 

• E - strains from Ethiopia and Saudi Arabia, zymodeme ILM 10 . 

• F - strain from China, zymodeme ILM 16. 

All strains were affiliated with one group but some affinities were more difficult 

to determine, such as the case of strains Salti 4, Addis 142, Jeddah KA, Addis 164, 

Buck, MESH-17, Dora, MRC(L)3 and MRC74. Only strain Wangjie 1 was considered 

to be sufficiently distinct to constitute one group on its own (F). 

Demes based on the present analyses were not assigned because of the 

large degree of diversity found, instead it was judged as more appropriate to find 

genetic families, which proved to be extremely interesting for typing, epidemiology 

and phylogenetic purposes. A possible exception might be mspC sequence for which 

only eight different types were found, and most groups only had one sequence type, 

which could be considered as 'DNAdemes': MSPC 1 (group E, ILM 10), MSPC 2 

(group D, L. infantum) , MSPC 3 (group C, ILM 5/6/7), MSPC 4 (group B, Indian), and 

MSPC 5-9 (group A, ILM 3). 

Demes, such as zymodemes, schizodemes or 'RAPDemes', have little 

biological meaning unless included in a larger perspective, because they reflect 

information only at very restricted levels. The information conveyed can be 

contradictory and thus difficult to reconcile because integrated analyses are very 

rarely done. Furthermore, even if closely related strains often have very similar or 

identical profiles, if enough data are analysed, most strains could be differentiated. 

The best practice, then, would be to use two or three carefully chosen typing 

techniques; two if they agree and a third if they disagree. 
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From the data presented in this project, it was found that ITS and gp63 

ITG/CS RFLP may provide enough reliable and reproducible data for typing to 

genetic family. RAPDs could be a good typing method, but require the inclusion of 

several reference strains for accurate typing and are very difficult to apply correctly in 

practice. Mini-exon and gp63 ITG/L should only be used if more sensitive typing is 

required, such as for tracking of epidemics and population genetics. The DNA 

sequence of mspC provides more clear cut typing but may be difficult to apply in most 

laboratories. 

8.2. Genetic characterization of Portuguese Leishmania infantum strains 

As verified by lEA, most Portuguese L. infantum strains were genetically very 

similar by RAPD, in comparison with L. infantum strains from other areas. Most 

strains analysed by RAPD had been isolated from the canine reservoir, four from the 

sandfly vector and one from a fox. Most strains were ILM 9 (putative MON 1 or LON 

49), but two of them (IMT 171-2), which were isolated from the vector in the North, 

were MON 24 (ILM 11) and these clustered separately in RAPD trees. It was not clear 

whether these strains could have originated from local strains, as the neighbour 

joining tree suggests, or they are outside the local clade, as the single linkage tree 

indicates (Fig. 22). All other strains were very closely related and only a small cluster 

of three strains, two isolated from the vector and one from a dog in the North and in 

the same campaign, could be distinguished from the rest. 

Unfortunately, the analysis was limited both in number of strains and number 

of RAPD primers, but most internal branches were very short and it is possible that 

the population structure of Portuguese L. infantum can not be resolved by RAPD 

analysis. Perhaps the use of more defined genetic markers, such as microsatellites, 

can elucidate the epidemiology of L. infantum in Portugal. It would also be beneficial 

to have an Iberian analysis, rather than a Portuguese restricted study, in order to 

investigate the possibility of migrations. 

Two L. donovani strains which had been isolated in Portugal were also studied 

here. These strains were very similar and belonged to the same genetic group (C, 

ILM 5/6/7). One of the strains had been isolated from an HIV+ patient (IMT 180) and 

the other (IMT 188) from S. min uta , putative vector of L. (Sauroleishmania). It had 

been assumed that the HIV+ patient had been infected abroad or intravenously, since 

no L. donovani had been previously known in Portugal. However, the isolation of the 

second L. donovani strain from a lizard biting vector, suggests that either the parasite 

is currently being transmitted in Portugal, possibly from HIV+ patients, initially or that 

there was an unidentified L. donovani cycle in Portugal, from which the HIV+ patient 
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was accidentally infected. These findings, and the increasing number of unusual 

Leishmania strains isolated from HIV+ patients, stress the importance of a detailed 

knowledge of VL epidemiology in endemic regions, including unforeseen hosts and 

vectors. 

8.3. Synonymy of Leishmania infantum and Leishmania chagasi 

8.3.2. The mysterious origin of Leishmania chagasi, or a return home 

The only known agent of visceral leishmaniasis in the Americas is named L. 

chagasi. However, the other species of the L. donovani complex are found in the Old 

World. Several enzymatic and genetic methods have indicated that L. infantum and 

L. chagasi were very close related and some authors propose synonymy (Rioux et al. 

1990; Grimaldi & Tesh, 1993). Some other authors do not agree (Shaw 1994) and 

have used minor phenotypic and genotypic differences (Decker-Jackson & Tang, 

1982; Santoro et al. 1984; Palatnik et al. 1990; Ellis & Crampton, 1991) to justify 

separation into two distinct species. In the case of two distinct species L. chagasi is 

said to have been present for a long time on the American continent. On the contrary, 

most studies of these species have shown a low level of diversity between L. 

infantum and L. chagasi, suggesting that separation was quite recent and probably 

occurred by importation with infected dogs accompanying Spanish and Portuguese 

colonists (Killick-Kendrick 1980; Momen et al. 1993). 

Ecological and epidemiological characteristics of the parasite have been 

interpreted as evidence for the prolonged presence of L. chagasi in the Americas 

(Lainson & Shaw 1987; Travi et al. 1998). It has been said that the severity of 

disease seen in dogs would prevent any infected animal surviving a long voyage to 

the New World. The incubation period, however, can be very long (Rioux et al. 1979; 

Vexenat personal communication) and subclinical infection, with infectivity for 

sandflies, is common (Vexenat et al. 1993, Molina et al. 1994). The finding of healthy 

infected foxes in the New Word might also suggest an ancient association. However, 

the potential of New World foxes to be a reservoir of L. infantum was high since they 

are closer to Old World canids than to Old World foxes. Furthermore, severity of 

disease does not necessarily correlate with duration of host-parasite association 

(Combes 1997; Lipsitch & Moxon 1997), and infection in dogs is also frequently 

asymptomatic. The existence of non-canid reservoir hosts in the New World has also 

been used as an argument for the ancient presence of L. chagasi, but infection 

seems to be more dependent on feeding habits of the vector and not to require 

special adaptation. Leishmania infantum is known to infect rodents in the wild in 
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Europe (Rattus rattus) and also in the laboratory (Mus spp. and Mesocricetus 

auratus). The adaptation of the parasite to at least two vectors in the New World 

would seem very difficult in a short time, and yet Lu. longipalpis was shown to be as 

susceptible to L. infantum infection as P. ariasi (a vector in Europe), New World 

sandflies have less parasite specificity than OW sandflies (Killick-Kendrick et al.1980) 

and L. infantum can be transmitted by a variety of different Phlebotomus spp. in the 

Old World. The wide geographical range of L. chagasi in the New World may not 

have required a long history because both Spanish and Portuguese may have 

introduced the parasite independently. Movement of populations, facilitated by trade, 

common or similar languages and cultures, not forgetting that those two countries 

were politically united for about 60 years in the 17th century, may have been another 

factor faCilitating a rapid spread of the organism. The lack of genetic diversity and 

remarkable overall similarity with L. infantum are not compatible with the introduction 

of L. chagasi to south America 2-3 My ago, simultaneous with the arrival of wild 

canids in the New World (Lainson et al. 1987), if the estimate of less than 2My for the 

separation of L. infantum from L. donovani (Moreno et al. 1984) is correct. 

The amount of genetic and enzymatic data assembled to the present time and 

in this project strongly suggest that L. infantum and L. chagasi are synonymous. The 

many arguments against synonymy, as exposed above, seem to be invalid, although 

they are still being put forward (Travi et al. 1998), despite the amount of evidence 

against them. Here, not one solid argument could be found for the prolonged 

presence of L. chagasi in America, and therefore, all present data are compatible with 

introduction after the arrival of European colonists. We believe that L chagasi are L. 

infantum parasites that returned to the place where Leishmania most likely originated, 

that is South America. As explained above it is not surprising as L. infantum was 

clearly pre-adapted to colonise a different continent in a short time. 

It is possible that L. chagasi is undergoing speciation by allopatry, but this 

process may be complicated by re-introductions and migrations to and from the Old 

World. 

8.4. Genetic diversity in the Leishmania donovani complex 

8.4.1. Clustering of strains into genetic groups 

Through the use of different techniques it was possible to define in this project 

at least five genetiC groups within the L. donovani complex, as shown in Table XXXII, 

and as described in 8.4.2. Any relationships with the year of isolation were not 
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apparent from the analysis, although there were strong geographical and isoenzyme 

associations. 

Most groups were robust and easily defined, but assignment of some strains 

was difficult. If a number of methods was considered the affinities of problematic 

strains became apparent. 

• strain Addis 142 (015) was placed in group A by lEA, RFLP and RAPO/RFLP, but 

clustered with group E in RAPO. 

• strains MRC(L)3 (02) and MRC74 (03) belonged to group A by every technique, 

except that they clustered independently by ITG/L and with group B by ITS RFLP. 

• strain Salti 4 (017) clearly belonged to group C by every technique, except by 

RAPO, in which it was placed near the root. 

• strains MESH-17 (05) and Dora (024), belonged to group C but clustered in group 

F(8) in RAPO. 

• strain Buck (131) is L. infantum (groupO) but did not cluster reliably by ITG/CS and 

ITG/L. 

• strain Jeddah KA (032) clustered with group E in all techniques, except that by 

RAPO it was placed with group C. 

• strain Addis 164 (029) clustered with group E in RFLP and RAPO/RFLP trees, but 

was closer to group A in RAPO. 

Other strains were much more problematic. Strain WR 341 (C1) was not 

included in most analyses because its identity was not certain and thus its 

characterization would not be relevant. Affinities of strain Sukkar 2 (023) were 

impossible to determine as it was so different from any other, and most analyses 

were not even scored, although it was included in most analyses. 

8.4.2. Description of genetic groups 

• Group A 

Strains in group A had been isolated from Kenya, mainly, but also from 

neighbouring regions of Ethiopia. The group could be defined by zymodeme ILM 3, 

although two strains (MRC74 and 02) had zymodemes ILM 1 and 8, respectively. The 

mspC sequence was polymorphic, but RAPO and ITG/CS RFLP produced a defined 

cluster. Group A, however, could not be distinguished from group B upon ITS RFLP. 

Strains MRC(L)3 and MRC74, from Kenya, seemed to be special cases within group 

A, because, they usually formed a sub-group. It is possible that a definite sub-group 

could have emerged if more related strains were included in the analysis. It is also 

possible, but less likely, that the more awkward genotypes might be due to long term 

culture of these strains. 
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Table XXXII - Group assignment of L. donovani complex strains. 

Code WHO code Zym MspC RAPO ITS ITGI RFLP Group 
LON MON ILM ICS 

02 MHOM/KE/1967/MRC(L)3 - - 3 A1 A AB A A 
03 MHOM/KE/1973/MRC74 51 - 1 A2 A AB A A A 
015 MHOM/ET/1984/Addis 142 - - 3 - E AB A A (kenya) 
016 MHOM/KE/1980/Ndandu 4A 44 - 3 A3 ® AB Ah A ILM 3 
021 IMARlKE/1962/LRC-L57 44 37 3 A4 A AB Ah A 
025 MCAN/KE/0000/02 45 - 8 A4 A AB Ah A Kenyal 
027 MHOM/ET/OOOO/Ayele 8 56 - 3 AS A AB Ah A IEthiopia 
030 MHOM/KE/OOOO/Neal R1 56 - 3 - A AB Ah A 
031 MHOM/KE/1975/Mutinga H9 56 32 3 A1 - AB Ah -
0 MHOM/IN/1980/008t 41 2 1 B1 B AB B B 
04 MHOM/IN/1982/Patna 1 t 41 - 1 B B AB B B B 
06 MHOM/IN/1977/Chowd Xt - - 1 B B AB - - (india) 
07 MHOM/IN/1979/STL 1-79t - - 1 B B AB B B ILM 1 
08 MHOMIIN/1982/Nandi 1t 41 - 1 - - AB B B India 
01 MHOM/ET/1967/HU3(LV9) 46 18 5 C G(Q) AB C C 
05 MMERlIRl1996/Mesh 17 50 - 6 - F@ C C C C 
017 MHOM/LB/1984/Saiti 4 - - 5 C U C C C (sudan) 
018 MHOM/SO/OOOO/Khartoum 46 18 5 C - C C C ILM 
019 MHOM/SO/1985/A22 - - 7 C G(Q) C C C 5/617 
022 MARV/SO/1962/LRC-L64 48 - 7 - U(Q) C C -
024 MCAN/IT/1976/00ra 50 - 6 C F@ C C C Sudan 
028 MHOM/ET/1972/Gebre 1 * 50 82 6 C U(Q) C C C 
033 MHOM/SO/1982/Giiani 48 30 7 C C C C C L. archi-
034 MHOM/PT/1992/1MT 180 - 18 5 C C C C C baldi? 
035 ISERlPT/1993/1MT 188 - - 5 C C C C -
I MHOM/TU/1980/lPT 1 49 1 9 0 0 0 0 0 
C MHOM/BRl1974/PP75a 9 0 0 0 0 0 D 
14 MHOM/ES/1987/Lombardi - - 11 D 0 D - - (infantile) 
116 MHOM/CN/1980/Strain A - 34 9 D D 0 D D ILM 9 
117 MHOM/CY/1963/L53 - - 12 0 D 0 D D (ILM 11) 
125 IARIIPT/198911MT 171 - 24 11 0 D D - - L. infan-
126 IARI/PT/1989/1MT 172 - 24 11 0 0 D 0 0 tum 
131 MHOM/MT/1985/Buck 49 78 11 0 D D A -
D9 MHOM/SAl1987 NL23 - - 10 - - En E E 
D10 MHOM/SAl1987 NL29 - - 10 E E Eh E E E 
011 MHOM/SAl1987 NL6 - - 10 - E Eh E E (red sea) 
012 MHOM/ET/OOOO/Ayele 5 52 - 10 E E E E E ILM 10 
013 MHOM/ET IOOOO/H ussen 42 - 10 E E Eh E E 
014 MHOM/ET/1982/Bekele 42 - 10 - E E E E Ethiopial 
020 MHOM/SD/1987/UGX- - - 10 - E Eh E E ISaudi 

marrow Arabia 
029 MHOM/ET/1984/Addis 164 - 83 10 E U® Eh E E 
D32 MHOM/SAl1981/Jeddah KA 42 31 10 - C Eh E E 

026 MHOM/CN/OOOOlWangjie 1 - 35 16 - U® En F (E) F? 
(china) 

C1 MHOM/PAl1980IWR341 - - 14 - - E? - - -
023 MCANIIQ/1981/Sukkar 2 43 - 13 I U - - - -
In parenthesis are external affiliations to groups. U IS ungrouped and In parenthesIs, 

underlined, are majority consensus groups. * - L. a rchiba Idi. In bold are strains 

suggested here as reference strains for their group. h are putative heterozygotes. a L. 

infantum (L. chagas/) alternative reference strain. 
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• Group B 

Group B is characterised by zymodeme ILM 1 and only contains strains from 

India. This group had only limited genetic diversity and formed a robust cluster, 

which, however, could not be separated from group A upon ITS RFLP. 

• Group C 

Strains included in group C were typed as three zymodemes, ILM 5, 6 and 7. 

Although most of the strains, and according to the literature, had been isolated in 

Sudan, this group is dispersed over a number of countries and not only in Africa. The 

group was not robust upon RAPD but was consistent upon other techniques. 

According to this analysis there is no support for a specific status or sub­

specific status of L. archibaldi (ILM 6). The type strain of this group clustered with 

group C, which included zymodeme variants ILM 5, 6 and 7 and is extremely 

cosmopolitan. This group had been placed in the root of the L. donovani complex by 

Rioux et al (1990) and from which three species (L. infantum, L. donovani and L. 

archibaldi) were defined. In the present lEA, however, zymodeme MON 82 (ILM 6) 

emerged as a putative hybrid of ILM5 and ILM7 and in another analysis the group 

was reliably placed far from the root of the complex. Indeed, as Cupolillo et a/. (1998) 

had already pointed out, descriptions of species or groups should not be based on a 

single character. 

• Group 0 

Strains in group 0 were included in the species L. infantum and L. chagasi. 

These strains formed a robust clade with low genetic diversity, but some phenotypic 

diversity (ILM 8, 11, 12). It was here demonstrated that the two species are 

synonymous, and thus this group is the most geographically diverse of the L. 

donovani complex. 

• Group E 

Strains in group E were restricted to Ethiopia and Saudi Arabia, although 

strain UGX-marrow was from Sudan. These strains were all I LM 10 and also formed a 

robust clade. Genetic diversity was high, but mspC and isoenzymes were very 

conserved. 

• Group F 

A possible sixth group might include Far-East strains such as strain Wangjie 1 

(from China). This strain was difficult to place reliably in this analysis, which may be 

due to being the only one of its kind used in this project. 
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8.4.3. Biological significance of the groups 

It is not clear whether the five clades described in this project have any 

biological or clinical significance. Group B (Indian strains) had good geographical, if 

not clinical and epidemiological, fit. Group A also fitted with Kenya and also Ethiopia, 

and group E with Ethiopia and Saudi Arabia. Unfortunately, the reservoirs for these 

latter groups have not yet been established. Group 0 (L. infantum) was the only 

group with recognised clinical and epidemiological significance. 

PKOL is commonly associated with Indian strains, whilst the L. infantum clade 

is not known for it. PKOL is also present but rare in Africa, although it was frequent in 

a recent epidemic in Sudan (Zijlstra et al., 1994) and it would be interesting to 

investigate the association of the different groups with PKOL. However, it is possible 

that PKOL may be a host dependent condition. 

8.4.4. Clonality versus sexuality 

Although Leishmania are considered to have a clonal population structure, 

some putative hybrids have been found which suggest the possibility of genetic 

recombination in natural populations. No hybrids have been described which involved 

L. donovani complex strains, but some clues were found here which suggested 

hybridization or recombination events within the L. donovani complex. No strain, 

however, was found to have a definite hybrid profile in all methods employed. 

Zymodeme ILM 6 identified in group C ('L. archibaldij is heterozygous for 

ASAT, and could be a hybrid between zymodemes ILM 5 and 7. Zymodemes ILM 5, 6 

and 7 may form or have formed a population with recombination, probably still active 

in some areas of Sudan. Alternatively, an initial 5 or 7 phenotype may have suffered 

a mutation in one of the ASAT alleles, thus forming a heterozygote (ILM 6), which by 

meiosis or unequal mitosis could have produced the third homozygote. However, the 

existence of another ASA T heterozygote, as discussed in Chapter 3, indicated that 

recombination was the most likely scenario. 

Strains in group B (Indian strains) were clearly polymorphic for mini-exon, with 

two alleles of different sizes, and some strains also appeared to be heterozygous 

upon RFLP analysis. The total size of the RFLP fragments was larger than the PCR 

product or significantly larger than or most other strains, which suggests the presence 

of different alleles. Some 'heterozygous profiles' were more common in certain 

groups (Table XXXII): in group A (ILM 3), ITG/CS and ITG/L (015, 016, 021, 025, 

027); in group E (ILM 10, Ethiopia/ Saudi Arabia), ITS and mini-exon (09-014); in 

group C, mini-exon (01, 05, 018, 019, 028, 033-035). Not all strains in one group, 

neither strains in group E (L. infantum) , nor each mini-exon PCR product in group B 
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(Indian strains), however, had heterozygous profiles. It was not possible in this project 

to determine whether the different alleles had arisen independently, if the different 

alleles were at the same loci or if heterozygous strains were hybrids. 

The occurrence of genetic recombination in local L. donovani complex 

populations would explain why genetic groups have been so clearly identified instead 

of a multitude of different clades. If the population structure of the L. donovani 

complex is mainly clonal, a multitude of clades would be expected. Thus, most 

ancient clades would have to have been extinguished, and each clonal group would 

descend from a single strain. The possibility of recombination in the L. donovani 

complex, thus, deserves to be investigated. MspC markers could be used in 

laboratory experiments and microsatellites would be invaluable in research on local 

populations. 

8.4.5. Practical significance of the groups 

From this project, the phylogenetic conclusions were not considered to be as 

important as the production of a working basis for analysis of the L. donovani 

complex. Using mainly ITG/CS and ITS RFLP or sequence analysis of mspC, but also 

RAPDs and even lEA, strains can be assigned to one of the groups. 

It is never desirable to increase the number of Leishmania species, least of all 

within a conserved complex such as the L. donovani. However, if the L. donovani 

complex genetic groups are found to have biological, clinical or epidemiological 

significance it may be useful to find working designations. One of the groups already 

had the specific designation of L. infantum or L. donovani infantum, depending on the 

authors and could be named L. donovani (infantile), but there is no designation for 

any of the other groups. The designation L. archibaldi has been used for zymodeme 

MaN 82 (ILM 6, LON 50), but that could be extended to include zymodemes MaN 30 

(ILM 7, LON 48) and MaN 18 (ILM 5, LON 46) which were found here to belong to 

the same genetic group C, although it would be better a new designation, L. donovani 

(sudan). The designation L. donovani 5.5., although not fully correct, could also be 

applied to designate the Indian L. donovani, as has been in use by LSHTM 

researchers, but L. donovani (india) would be preferable. Designations for groups A 

(ILM 3), E (ILM 10) and F (ILM 16) are not available. Because the remaining groups 

seem to have clear geographical associations, the designation L. donovan; (china) 

could be used for group F (Wangjie 1), from China, and the designation L. donovan; 

(kenya) could be used for group A (ILM 3), from Kenya / Ethiopia. The designation L. 
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donovan; (red sea) could be used for group E (lLM 10), from Ethiopia / Saudi Arabia. 

These designations will be used from here on. 

Correct group identification depends not only on the method, but also on 

appropriate reference strains, especially when applying methods which require 

comparison of bands, such as lEA and RAPD but also RFLPs. It has been suggested 

that Indian strain 008 is not a good L. donovan; reference strain because it is 

polymorphic for the mini-exon. In the present project, this feature was confirmed and 

seemed to be present in most, if not all, Indian strains, but not in any other groups. 

Therefore, 008 could still be used as a reference strain for Indian L. donovani, but 

should be used alongside reference strains for other L. donovani groups if a more 

detailed analysis is necessary. Strains that were systematically and reliably placed in 

the correct groups by all techniques used and have been used by other researchers 

would make good references. HU3 and IPT 1 have been used as reference strains 

and could still be used for L. donovan; (sudan) and L. donovani (infantile), 

respectively. Strain HU3 was not correctly placed by ITS, however, and strain Gilani 

might be a better reference for L. donovani (sudan). Leishmania donovani (kenya) 

and L. donovani (red sea) did not include any traditionally used reference strains. For 

L. donovan; (kenya), strain LRC-L57 fills these conditions, whilst for L. donovan; (red 

sea) strain Hussen is the best candidate. 

The definition of genetic groups within the L. donovan; complex may be 

extremely important for establishment of better epidemiological models. Whilst finding 

the main host of the L. donovani (infantile) and L. donovani (india) clades was easy, 

because they are very specialised, more generalist and ancient clades may survive in 

several hosts, depending on historical conditions if transmission is maintained by the 

vector. The finding of the responsible host for African kala-azar in Sudan - Ethiopia -

Kenya may be difficult for different reasons. Generalist groups, such as L. donovan; 

(sudan) may be able to colonise a number of hosts, whilst L. donovani (red sea) may 

have a much more human dependency. 

8.4.6. Phylogeny of the Leishmania donovani complex genetic groups 

One of the main questions regarding the phylogeny of the L. donovan; 

comples is how did the genetic groups emerge. The geographical association of 

some groups seems to favour a scenario with isolation of small populations, but other 

factors, such as host, vector, and climate, may have been important for some groups. 

It is therefore apparent that several effects may have acted on the evolution of the L. 

donovani complex, depending on local and historical events. Factors involved in 

evolution of each group have been discussed in Chapter 7. 
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The other main question is how did the groups evolve in relation to each other. 

From the data gathered here and from the literature, two different models of evolution 

of the L. donovan; complex are described: an integrated model, which was deduced 

from mspC, RAPD and RFLP phylogenies, obtained in this project, and a zymodeme 

model, which was based on the isoenzyme phylogeny of Rioux et al. (1990). Whilst 

the first model deals with evolution of genetic groups, the second deals with evolution 

of zymodemes, but the genetic groups can be conjugated with the isoenzyme 

phylogeny because they were found to correlate strongly with zymodeme types or 

groups. The two models, however, differ in rooting the complex and thus the two 

alternative scenarios are proposed (Fig. 53 and 54). Unfortunately, many hosts for 

African L. donovani are still poorly or not known and it is thus difficult to speculate on 

their importance for 'speciation' within the complex. 

The zymodeme model in Fig. 53 places three main genetic pools in Africa, 

which may have differentiated from an ancestral population in a Sudan - Ethiopia _ 

Kenya cline, but had been rooted to the L. donovan; (sudan) by Rioux et al. (1990). 

According to this model, L. donovan; (kenya) would have differentiated from L. 

donovan; (sudan), perhaps by association with different vectors, subgenus 

Synphlebotomus and subgenus Larroussius respectively. However, the separation of 

the two clades could have been only coincidental with different distributions of the 

vector and be due to geographical isolation or association with different hosts. From 

L. donovan; (kenya) would have originated the clade which became established in 

India and is now recognised as L. donovan; (india), which would also explain the 

profile of a L. donovani (kenya) strain only distinguishable by small differences in the 

MDH profile from ILM 1. Zymodeme ILM 1 is not found anywhere else but India and 

the vector belongs to a different sub-genus. The ancestor of L. donovan; (red sea) 

would have become isolated in or migrated to Ethiopia, also from L. donovan; (kenya) 

strains. This group may have been introduced recently into neighbouring Saudi 

Arabia, possibly by rodents transported by ships or by infected humans. The origin of 

L. donovani (china) is more obscure as it could be a descendent of either L. donovani 

(kenya) or L. donovani (red sea). The L. donovani (china) group could be a remnant 

of related strains which could have spread early through Asia (possibly before the 

Indian group). Events such as a glaciation, or simply geographical distance, might 

have restricted its distribution to East China. 

On the other main branch of the tree, are the L. donovani (infantile). According 

to the isoenzyme model, they would have branched from L. donovan; (sudan) strains. 

The main hosts of the infantum group are canids, the adaptation to which may have 

contributed to speciation of this group. Leishmania donovan; (sudan) have also been 
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found in carnivores as well as rodents and it is a very likely ancestor fo r more 

specialised groups. The two clades are transmitted by the same vector subgenus, 

although L. donovani (infantile) is known to be very versatile in that respect for it is also 

transmitted by Lutzomyia in the New World . These two clades are both generalists, 

because strains of the ILM 5, 6, 7 clade (Group C) were also found in Italy in rats and 

Iran in rodents, perhaps in recent introductions driven by human action. Leishmania 

donovani (infantile) is the most successful clade of L. donovani, for it spread across 4 

continents. The extreme success of L. donovani (infantile) may be due to a close 

association with the genus Canis, which domestication may have allowed not only a 

greater geographical diversity as an increased probability of transmission in permanent 

settlements. 

Ph. (Lar.) pernic. 
Ph. (Lar.) ariasi 
Lutzomyia 

other Canis 

Ph. (Euph.) 

Homo 

countries other countries 

carnivores: 
Genetta 
Felis 
Herpestes 

rodents: 
Rattus 
Acomys 

Ph. (Lar.) ori. 

A rvican thus 
Mastomys ROOT 

jrodentS? I 
Nyctereutes 

r - - - - -, 

Ph. (Synph.) mar. I 
I I 

I (Ser. garnhami) 
I I 
I I Ph. (Adler.) 

Figure 53 - Schematic representation of the speculative history of the L. donovani 

complex based on the isoenzyme phylogeny by Rioux et al. (1990) , clarified by the 

genetiC groups identified here. Genetic pools are represented by thick circles, with the 

country and zymodeme (below). Hypothetical reservoirs are in boxes and vectors in 

dotted boxes. Key for countries : Cn is China, Et is Ethiopia, Ke is Kenya, In is India, SA 

is Saudi Arabia and Sd is Sudan. Key for vector: Ph. is Phlebotomus, Lutz. is 

Lutzomyia, Ser. is Sergentomyia, Adler. is for Adlerius, Lar. is for Larroussius, Syn. is 

Synphlebotomus, mar. is martini, ori. is orientalis, per. is perniciosus. Although all 

groups are known to infect humans, these are the exclusive reservoir only for ILM 1. 
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The alternative representation of the evolution of the L. donovani complex is 

an integrated model (Fig. 54), based mostly on mspC phylogenies, but also RFLP 

and RAPD phylogenies, and has a very different topology from the above, although 

particular speciation events can be similar. This model is based on an initial 

population of visceralizing strains, and suggests two radiative events, one at the 

origin of the main clades and the other within one of the clades. It is tempting to 

speculate that the initial population may have been constituted by generalist strains, 

or by a mixture of strains with different specificities. This initial population may have 

existed either in Africa (Sudan - Kenya) or in Asia (Near - Middle East) and might 

have been a small population restricted to an area in Northeast Africa or the Near 

East, probably with a high recombination frequency, or may have been spread in a 

continuum through to China. In this model it is suggested that L. donovani (china) is 

an old clade which may have become isolated in or migrated early to China. Three 

other clades would have become separated in the first radiation event. Two of these 

clades would have become differentiated early to what are their modern forms; L. 

donovani (infantile), would have become associated with canids, as suggested in the 

previous model, and L. donovani (red sea) may have become isolated either in the 

Arabian peninsula or in the North-eastern tip of Ethiopia, perhaps isolated by the Rift 

Valley. The third clade, or perhaps the remaining of the initial population seems to 

have had a second radiation event, in which clades L. donovani (sudan) and L. 

donovani (kenya) may have become differentiated. The appearance of clade L. 

donovani (india) is problematic. It probably descends from a third clade, but could 

descend from a hybrid between L. donovani (sudan) and L. donovani (kenya). 

The two models are not totally incompatible because it is possible that L. 

donovani (sudan) are the direct descendants from the initial undifferentiated 

population. This clade could have maintained its host generalist features and possibly 

its zymodeme phenotypes, although suffering evolutionary change, mainly in non­

coding DNA sequences such as the intergenic sequences analysed by RFLP, but 

also in genes such as mspC. This scenario would explain the isoenzyme rooting of 

the zymodeme model. The two models, however, differ in the position of groups L. 

donovani (Red Sea) and L. donovani (infantile), although the integrated model is 

probably more correct because it is based on different methods. The L. donovani 

(Red Sea) and L. donovani (infantile) groups are distantly related and may appear to 

descend from different groups in the zymodeme model because they may have 

become individualised from distinct segments or strains of the primordial population. 

When the different segments in the ancestral population later 'speciated', their 
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isoenzyme profiles may have changed little and thus the group would appear closer 

to other, in fact, distantly related strains or zymodemes. 

Diversity: 

Geographic + 

Genetic ? 

Phenetic +? 

Differenciation ? 

Host Nyctereutes 

Vector Ph. (Adler.) 

Second radiation event 

First radiation event 

+ 

+++ 

+ 

isolation? 

? 

? 

++++ +++ 

+ +++ 

+++ +++ 

host isolation? 

Canis rodents/carniv. 

Ph. (Lar.) per. Ph. (Lar.) ori. 
Ph. (Lar.) ari. 

Lutzomyia 

+ + 

+ ++ 

+ ++ 

? isolation? 

Homo rodents? 
Ph. (Euph.) Ph. (Syn.) mar. 

Ser. garnhami 

Figure 54 - Speculative alternative to the history of the L. donovani complex based on 

mspC and RAPD / RFLP data. Dashed lines are highly speculative. Scale of diversity 

is + (low) to ++++ (very high). Key for vector: Ph. is Phlebotomus, Lutz. is Lutzomyia, 

Adler. is for A dIe rius , Lar. is for La rroussius , Ser. is for Sergentomyia, Syn. is 

Synphlebotomus, mar. is martini, ori. is orientalis, per. is perniciosus. 

The L. donovani (infantile) and L. donovani (india) clades share a low degree 

of genetiC diversity and a strong association with humans, which may indicate a 

relatively recent origin, probably in close association with human action: the L. 

donovani (infantile) clade indirectly by domestication of dogs and the Indian clade 

directly by development of a human exclusive cycle. However, and especially in the 

case of L. donovani (infantile) this may not be entirely true. Whilst it is likely that 
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L. donovani (india) are only as old as established human populations in India, L. 

donovani (infantile) can be more diverse than L. donovani (india) and may seem more 

recent due to a genetic bottle-neck at some point during their history. This might be 

the preferential survival of Canis familiaris strains or reduction to a small population 

during a glaciation period. The L. donovani (infantile) appear as recent as wolves / 

dogs (1-0.1Mya, Pleistocene) (Vila et a/., 1997; Wayne et a/., 1993) but are probably 

older, even as old as wolf-like canids (9Mya, Miocene) (Wayne et a/., 1993). One of 

the apparently old groups, L. donovani (chinensis), is associated with racoon dogs, 

which have originated in the Miocene (Wayne et a/., 1993). Such dating would put the 

date of the first L. donovani complex radiation in the Miocene. To resolve this issue it 

would be necessary to investigate the presence of L. donovani (infantile) in wolves 

and jackals in wild populations throughout the Old World. 

In order to test these hypotheses it would be necessary to study strains from 

Central Asia, as well as China to test the existence of a cline, and of different hosts. 

Robust rooting of the L. donovani complex and a molecular clock are imperative to 

test whether L. donovani started differentiating in Africa or Asia. 

8.4.7. Speculations on the origin of the Leishmania donovani complex 

Some published phylogenies of Leishmania show the L. donovani complex as 

a separate clade from OW CL complexes (L. major, L. aethiopica, L. tropica) 

(Piarroux et a/., 1995; Croan et a/., 1997) or even as separately from all CL 

complexes (Schonian et a/., 1996). Most available phylogenies, however, do not 

resolve species of the sub-genus Leishmania. The L. donovani complex as a whole is 

very versatile because it has varied hosts, from rodents to carnivores, and vectors 

(subgenus Larroussius, Euphlebotomus, Synphlebotomus and Adlerius) and it is thus 

difficult to establish which would be the ancestral condition. One intrinsic factor, 

however, might help explain the differentiation of a VL clade. Visceralizing 

Leishmania are known to tolerate higher temperatures than cutaneous Leishmania 

(Berman and Neva, 1981; Callahan, et a/., 1996; Fehniger, et a/., 1990). The 

ancestors of visceralizing strains may have become adapted to higher temperatures 

than cutaneous strains, thus being able to survive in a wider range of habitats, 

namely, internal organs of hosts and, perhaps, survive more extreme temperatures in 

the vector. This suggestion would have to be tested in terms of L. donovani complex 

genetics and ecology of hosts and vectors. 

The L. donovani complex seems to be an ancient branch of the OW 

Leishmania and the cutaneous Leishmania species may have become differentiated 
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by association with different hosts / vectors or geographical isolation. Each speciation 

event may have had different causes and it is difficult to find a general trend. 

Leishmania major seems associated with arid climates, whilst L. tropica is present in 

semi-arid and cool-arid climates, both found in several countries of Africa and Asia , 

but some species are more restricted (L. arabica in Saudi Arabia, L. turanica in 

Uzbekistan, L. gerbilli in China / Mongolia / former USSR and L. aethiopica in 

Ethiopia) (Dereure, 1999). Certain species are host specific (L. turanica and L. gerbilli 

in Rhombomys opimus) , others have preferential hosts (L. aethiopica with 

Procaviidae) and yet others can have several hosts (L. majof) or are only known in 

humans and dogs (L. tropica) (Dereure, 1999). There is some association of species 

and vector subgenus: L. aethiopica with P. (Larroussius) , L. major with P. 

(Phlebotomus), L. tropica with P. (Paraphlebotomus) (Esseghir et al. , 2000), but not 

all species in each sub-genus will transmit Leishmania and the association does not 

seem to be of a co-evolutionary nature. 

8.4.8. Speculations on the origin of the sub-genus Leishmania 

There are several competing hypothesis for the origin of Leishmania 

(Euleishmania) / Endotrypanum (Paraleishmania): Neartic, Paleartic and African 

origins (see Introduction). Euleishmania could have evolved in South America, 

simultaneously with Paraleishmania, and with separation of one branch, Leishmania 

(Leishmania), to North America followed by quick spread to the OW, where the 

Sauroleishmania would have evolved (Noyes, 1998b). Alternatively, Leishmania 

(Leishmania) could be the most ancient and would have evolved in the OW together 

with Sa uroleishmania , and then migrated to the American continent, with Leishmania 

(Viannia) and Paraleishmania developing in South America (Kerr, 2000). The African 

hypothesis states that Leishmania would already have been present in Southern 

supercontinent Gondwana, and that the separation of sub-genus Viannia and 

Leishmania would have followed separation of Africa and South America (Momen et 

al., 2000). Section Paraleishmania would have originated after introduction of 

porcupines in South America. 

The Paleartic hypothesis does not explain why Leishmania (Viannia) and 

Paraleishmania infect mainly mammals from ancient orders in South America and 

how all phylogenies of Leishmania / Endotrypanum are rooted between Euleishmania 

and Endotrypanum clades. Neither Paleartic nor African theories explain why 

Leishmania (Leishmania) are strongly associated with rodents, which appeared much 

later than Paraleishmania and Leishmania (Viannia) hosts in the fossil record and 
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later than the separation of Africa from South America. The African model does not 

explain why species of Viannia are found mainly in tropical forests, whilst species of 

the sub-genus Leishmania are found in mainly savanna like habitats. If indeed 

Leishmania are as old in Africa as they are in South America, it would seem likely that 

leishmaniasis would be common in African forest environments, as they are in South 

America. If any ancient Leishmania have ever been present in Africa, they must be 

extinct or be present in an unknown host. Present day medically important parasites 

must have been imported, forthe reasons stated below. The Neotropical hypothesis 

thus seems more likely, with Paraleishmania and Leishmania (Viannia) as the first to 

differentiate in Leishmania. 

Euleishmania I Paraleishmania clade 

From the above considerations and assuming that most phylogenies of 

Leishmania are essentially correct, I believe that the most likely scenario (Fig. 55) is a 

Neotropical origin for Leishmania, but with an early migration of ancestors of the su­

genus Leishmania and Sauroleishmania to North America. Emergence of the clade 

Euleishmania / Paraleishmania must have occurred in South America some time after 

separation from Africa from a kinetoplastid ancestor, possibly a Crithidia like 

organism, which are monogenetic parasites of Diptera and Hemiptera. The first 

Phlebotominae, one of the first dipteran groups to individualize, probably appeared in 

the Middle Jurassic (Lewis, 1982) and it is possible that they were able to spread 

throughout the supercontinent Pangea before the separation of the two major 

Northern (Laurasia) and Southern (Gondwana) continents. Later (90 Mya, Late 

Cretaceous), South America separated from Africa, thus becoming two completely 

isolated continents (Cox and Moore, 2000). After the separation, a dipteran parasite, 

probably infecting early Phlebotominae, might have become associated with 

edentates or marsupials developing a digenetic life cycle. During the early times of 

Africa-South America separation, caviomorph rodents and some monkeys may have 

been able to cross to South America (Cox and Moore, 2000). Some Leishmania 

ancestors would have adapted to caviomorphs and differentiated into the 

Paraleishmania clade (Cupolillo et al., 2000). 

Cross to North America 

During the Earliest Cenozoic (Paleocene, 65 to 56 Mya) 10 different groups of 

South American mammals were able to migrate to North America through a short 

lived land bridge (Cox and Moore, 2000). Some of these mammals may even have 

reached Europe, where the fossil of an anteater (edentate) has been found, and 

marsupials were able to reach Africa in the Oligocene. A population of Euleishmania 

could have thus migrated from South to North America, probably with edentates, 
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where they would have first encountered myomorph rodents and would have found 

other groups of Phlebotominae. Adaptation of some Leishmania strains to rodents 

(and to rodent associated sandflies) might have caused the differentiation between 

sub-genera L. (Viannia) and L. (Leishmania). 

The other possible route would be to cross to Africa. There are, however, 

several objections to this hypothesis. Only the appearance of monkeys and 

hystricomorphs in South America suggests that there was ever a connection between 

South America and Africa, which would have occurred no later than the Late 

Cretaceous or even Early Eocene (Cox and Moore, 2000). There is no evidence, 

however, of any South American group reaching Africa through this route. The 

direction of ocean currents is thought to have been from Africa to South America, 

thus facilitating migration of animals from island to island in that direction but not in 

the opposite, as a complete land bridge is not thought to have occurred. Furthermore, 

most Leishmania species are present only in the northeast part of Africa and mostly 

Asia. A btidge into Africa would probably have included tropical forest types as 

present in modern Central Africa and Leishmania would be expected to be present in 

its whole extension, as it is in South America. A fourth objection will be discussed 

later. 

During the Paleocene / Eocene (65-35Mya), Leishmania ancestors, or even 

some L. (Viannia) strains, would have been able to disperse in the northern 

hemisphere and later populations would have been isolated. At that time there were 

extensive land bridges between North America and both Asia and Europe (Cox and 

Moore, 2000). Migration of both hosts and vectors would be facilitated by warmer 

climates (Paleocene with temperature gradients of 5°C from pole to equator) which 

lasted until the Miocene (23-18Mya). From the beginning of the Miocene the climate 

became too cool to allow passage through high latitudes, except for larger mammals, 

and there was complete separation of the three northern continents (Cox and Moore, 

2000). 

The fourth objection to a crossing to Africa option is that it would not have 

been possible for an African derived sub-genus Leishmania to cross from Asia to 

North America. Until the Late Oligocene / Early Miocene, Africa was separated from 

Eurasia (Cox and Moore, 2000). That would mean that Leishmania would have to 

spread to Eurasia and then to North America through the Bering landbridge, which 

would probably be already too cold for an easy crossing (not many animals crossed, 

and mostly large ones). 
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Here it is proposed that an early separation of the Leishmania sub-genus in 

North America would allow plenty of time and climatic conditions for Leishmania to 

adapt to rodents and cross to the OW. At this point it must be referred that the most 

consistent model for evolution of Leishmania (Noyes, 1998b) proposes that 

Leishmania would have migrated to the OW in the Miocene. However, it would have 

required a very rapid passage through the Bering land cross during brief milder 

climate periods. This theory also implies that L. (Sauroleishmania) would have 

evolved from OW Leishmania which crossed to reptiles and underwent rapid 

evolutionary change. 

Sauro/eishmania 

The model here proposed also contemplates the hypothesis that 

Sauroleishmania may have indeed separated early from L. (Leishmania) or even from 

the same 'Viannia' ancestors, as some molecular phylogenies suggest (Croan et a/., 

1997; Noyes et a/., 1997). The edentates and marsupials that were able to cross to 

the OW might have carried L. (Leishmania) ancestors, which had become associated 

with rodents in the NW, but that could have become, instead, associated with reptiles 

in Europe. Upon extinction of the primitive hosts all evidence of NW Leishmania 

would have disappeared in the OW. 

Further supporting this hypothesis, the genus Phlebotomus seems to be 

paraphyletic, with Sergentomyia and Lutzomyia as sister groups (Oepaquit et a/., 

1998). Therefore, present day Sergentomyia could be Lutzomyia relatives, which 

crossed to the OW and some of which adapted, or already were adapted, to reptile 

feeding. It must be noted that not all Sergentomyia are obligatory reptile feeders, and 

that there are some reptile feeding sandflies in South America. Furthermore, 

Sauroleishmania have been isolated from several species of reptiles and have a wide 

distribution (Killick-Kendrick et a/., 1986), which suggests a long evolutionary history. 

In this case, Sauroleishmania should not be a separate genus, but rather a sub­

genus of Leishmania. 

Patterns of evolution in the sub-genus Leishmania 

Evolution of early L. (Leishmania) in the NW would have accompanied that of 

early rodents, probably simultaneously with that of sandflies with a preference for 

rodents. The rodent family Paramyidae was already spread in the northern 

hemisphere in the earliest Eocene and most other families would have appeared in 

the Eocene / Paleocene. It is quite probable that infected populations of rodents or 

sandflies dispersed or that L. (Leishmania) managed to 'jump' from host to host or 

vector to vector through the Northern hemisphere. Host transfer is the most likely, as 
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Leishmania are less host than vector specific. Separate migrations through either the 

Bering route or the Greenland route would have contributed to speciation, because 

Europe and Asia were separated by a shallow sea at the time. Diversification of 

rodents during the Miocene and ecosystem fragmentation due to aridification could 

have been a further speciation factor for Leishmania (Leishmania), especially around 

the Mediterranean. 

With the climate cooling during the Oligocene and Miocene, savanna like 

habitats, which are the main present day habitat of most hosts of sub-genus 

Leishmania would have become wider. During that time, Africa joined Eurasia which 

formed again a supercontinent and, in the Miocene, Africa permanently joined 

Eurasia (Cox and Moore, 2000). Populations of sandflies and rodents would have 

been pushed south to warmer climates to more or less the present distribution of OW 

and North American Leishmania. Ancient Leishmania distributions would have 

disappeared, thus making it more difficult to determine with exactitude the phylogeny 

of the sub-genus, which cannot be deduced from fossil records, by association with 

vector or host phylogenies. 

Current distribution and species of OW Leishmania are likely to reflect climatic 

changes of the last 20My, as well as host and vector history. During glacial and inter­

glacial periods, populations of parasites would have become isolated in climatic 

islands or expand, thus producing complicated evolutionary patterns. Speciation 

events of OW Leishmania seem to have occured in both Asia and Africa and some 

species have evident speciation patterns. The origin of the L. donovani complex is 

one of the most obscure, because different genetic groups have distinct hosts and 

vector associations. However, and as discussed before, this complex could have 

differentiated earlier by adaptation to higher temperatures and could have maintained 

a somewhat low degree of speciation. Some later branches became more host 

specific, like Indian strains which developed an anthroponotic cycle, and L. infantum 

which speciated with canids. Among CL species two major lines of evolution emerge. 

One has its hallmark in L. major. This species is widely distributed and infects several 

species of rodents, mainly gerbils, in Asia and Africa and it is considered to be very 

similar to L. mexicana, thus suggesting that L. major is the closest relative to L. 

mexicana like OW colonizers. Two related species, L. turanica and L. gerbilli, may 

have speciated by geographical isolation from a L. major population in gerbils, either 

from a common ancestor or independently from each other; L. gerbilli in China and L. 

turanica in Uzbekistan. Another line of evolution seems to be related to hyraxes 

(Hyracoidea). Leishmania killicki, which is very close to L. tropica is associated with 

Hyracoidea hosts. Leishmania aethiopica probably evolved in the Ethiopian region 
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upon isolation in a life cycle including Hyracoidea (hyraxes) and sandflies of the sub­

genus Larroussius. Although closer to L. major by lEA typing (Rioux et a/., 1990), this 

species was more related to L. tropica in a DNA sequence phylogeny of a repetitive 

sequence (Piarroux et a/., 1995). These uncertain phylogenetic relationships argue in 

favour of the development of a hyrax evolutionary branch upon colonization of the 

African continent by L. major like Leishmania, with an early separation of L. 

aethiopica and L. killicki. Leishmania tropica might have evolved from L. killicki, the 

closest species, by adaptation to a human cycle from the hyrax infecting ancestor. 

The present day distribution of Leishmania species in Africa follows a very 

clear pattern which also shows that OW Leishmania could not have emerged in 

Africa. Human associated species, such as L. tropica and the L. donovani complex, 

but also the generalist species L. major, can be found with higher or lesser 

prevalences, only in savanna like environments of Africa. Until the Miocene (23Mya) 

Africa was covered by forest (mostly tropical), with the exception of what is now the 

Sahara desert (www.scotese.com). Only at that time did critecid rodents (strongly 

associated with L. major) invade the continent, but also only then, did shrub and 

savanna like ecosystems appeare (Cox and Moore, 2000). The formation of the 

Great Rift Valley, from Central Asia to Mozambique, was accompanied by a rise of 

the surrounding land, which created a rain shadow to the East. Not only is this major 

event thought to have potentiated the development of bipedalism in hominids, and 

thus the emergence of human species, but it also created the arid environments 

prefered by OW Leishmania hosts and vectors and formed a barrier against migration 

of most species to the western tropical forests. Even today, leishmaniasis is more 

frequent in countries east of the Rift and only present in regions with similar climates 

and vegetation, either in Southern Africa or around the Sahara desert, probably due 

to human action. 

A second round of speciations within the L. (Leishmania) sub-genus might 

have occurred when North American rodents migrated to South America. Family 

Sigmodontinae is host to both L. mexicana and L. amazonensis, and is thought to 

have invaded South America 9 to 3.5 Mya (Engel, et a/., 1998). Other species of the 

L. mexicana complex, such as L. amazonensis, might have originated from L. 

mexicana migrants to South America after the establishment of the Panama Isthmus 

in the Pliocene - Pleistocene, 3-2Mya (Cox and Moore, 2000), and speciations might 

have occurred, for example, by association with another rodent group, the 

caviomorphs (such as L. enrietti in Cavia porcel/us), or habitat diversity. 
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Association of Leishmania to humans 

It is possible that most OW Leishmania species started infecting humans 

since the appearance of the first hominids. The same savanna regions where 

hominids were evolving probably were the habitat of the first Leishmania to colonize 

Africa and although most Leishmania species are zoonotic, humans can become 

infected in sylvatic environments. Some groups, such as L. donovani (india) and L. 

tropica may have acquired a human cycle, although probably maintaining the 

capacity to infect other hosts, whilst L. donovani (infantile) may have acquired a 

strong human dependent cycle but on domestic canids. Closer association with 

humans would be potentiated by sandflies developing anthropophylic feeding habits. 

African vectors could have followed hominids out of Africa, whilst new associations 

might have then developed. Leishmania braziliensis in the NW could have adapted to 

a simultaneously human and canid cycle upon the arrival of the first humans in 

America or even more recently. Speciation of some Leishmania in human or canine 

populations would have been facilitated by their gregarious habits (tribes or villages in 

humans and packs in wolves / dogs). These human associations, however, pose 

some phylogenetic problems. The association with human habitats suggests that 

speciation occurred very recently, within the last hundred of thousands of years for L. 

tropica and antroponotic L. donovani and only less than twenty thousands of years 

for L. braziliensis, but both of these species are very diverse, which would suggest a 

more ancient origin. It would be possible that those species were present in a wild 

reservoir (probably hyraxes for L. tropica and still uncertain rodents or carnivores for 

L. donovam), which disappeared or became secondary upon adaptation to humans. 

Domestication of the dog probably occurred within the last 20-10 000 years (Wayne, 

1993) and so, it is most likely that L. donovani (infantile) had adapted to wild canids 

before domestication of the dog. Until any unknown host is found, or until a reliable 

molecular clock is found, these questions will remain open. 
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8.5. Evaluation of the project 

The first objective of determining the phylogenetic relationships of L. chagasi 

within the L. donovani complex was completely achieved. Using a thorough RAPD 

analysis of several L. chagasi, L. infantum and L. donovani strains, it was shown here 

that it is not possible to separate a L. chagasi clade. Instead, all tested L. chagasi 

strains belonged to the L. infantum clade. Furthermore, the genetic diversity within 

the L. infantum / L. chagasi clade was far lower than that within L. donovani. 

Additionally, the partial sequence of the mspC gene was identical between the two 

named species, in contrast to the degree of sequence polymorphism present within L. 

donovani. Analysis of RFLP data fully supported a L. infantum / L. chagasi clade with 

low diversity, as did all previous and present isoenzyme analyses. The data pertinent 

to these objectives and gathered in this project have been published (Mauricio et at., 

1999) together with a molecular, epidemiological, clinical and historical defence of 

synonymy of L. chagasi with L. infantum (Mauricio et at., 2000). 

The second objective, of studying the genetic diversity within L. infantum in 

Portugal was accomplished but not in great detail. Although the Portuguese L. 

infantum strains were found to be polymorphic by RAPD analysis, the resolution 

power was low and may have prevented detection of clusters corresponding to foci. 

Indeed no such cluster was observed and if this result is confirmed by future work it 

means that Portuguese foci are not entirely isolated from each other, which may have 

important consequences for the control of kala-azar. More sensitive techniques, such 

as microsatellites may provide more reliable and sensitive markers of population 

genetics epidemiological studies of such closely related organisms. 

The third objective of studying the genetic diversity within the L. donovani 

complex was also achieved with the development of new techniques - mspC 

sequencing and RFLP of ITG/CS and ITG/L - and the adaptation of ITS and mini­

exon RFLPs and RAPD. Isoenzyme analysis was used as the reference method. The 

best typing methods were ITG/CS and ITS RFLPs and mspC sequencing, but neither 

ITG/L nor mini-exon RFLPs produced reliable results. 

Based on the different techniques, it was possible to define at least five 

clusters or clades within the L. donovani complex. These groups correlated with lEA 

typing and some of them also with geographical origin or host specificity. Some 

clades L. donovani were identified that might have arisen through allopatric 

speciation (india, infantile and red sea), and the contrast between generalist and 

specialised genetiC groups in the history of the complex also became apparent. 
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The few recently isolated strains present in the analysis indicated that results 

were valid, despite being based in a majority of older strains. It would however be 

interesting to broaden this analysis with the inclusion of more recently isolated strains 

and from more foci, for example from Central Asia, as much genetic diversity may 

have been missed. 

Definition of a sixth clade was tempting but not possible, due to lack of 

enough strains from China. A future analysis should include not only Chinese strains 

but also strains from Asian countries previously in the Soviet Union, and more strains 

from Near and Middle Eastern countries. 

There is still much to be resolved on the genetic diversity of the L. donovani 

complex. This project demonstrated that serious genetic diversity studies must 

include more than one method or technique and also include strains from different 

origins and phenotypes. Understanding of genetic diversity at the population level is 

still lacking and would benefit from intensive field studies and the development and 

application of microsatellite analysis. Importantly, this project has demonstrated that 

traditional classifications of species in the L. donovani complex are wrong. 

Leishmania chagasi is a synonym of L. infantum and traditional division of L. infantum 

/ L. donovani / L. archibaldi by lEA is not correct. These conclusions will change the 

design of specific diagnostic methods and the planning of epidemiological studies of 

the L. donovani complex. 

A modification for taxonomic nomenclature within the L. donovani complex is 

proposed. Instead of species, to consider the complex as one species, L. donovani 

with the genetiC groups defined here named in parentheses: L. donovani (india) for L. 

donovani s.s. or from India; L. donovani (infantile) for L. infantum (L. chagasl); L. 

donovani (sudan) for L. archibaldi (MON 82), MON 18 and MON 30; L. donovani 

(kenya) for those strains mainly from Kenya; L. donovani (red sea) for LON 42 / 52 

from coastal areas of the Red Sea; L. donovani (china) for MON 35 and other strains 

which may be found to belong to the same genetiC group. 

A model for evolution of Leishmania, and in particular of Old World 

Leishmania and Sauroleishmania, was developed, which can be tested against 

comprehensive molecular clock phylogenies of sandflies and Leishmania and in 

relation to landmarks such as continent separations and connections and host 

evolution. 
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8.6. Concluding remarks 

Situation 

• Visceral Leishmaniasis is a life threatening disease estimated to affect 0.5 million 

people world-wide caused by infection with protozoan parasites of the L. donovani 

complex. The three to four described species (L. donovani, L. infantum, L. chagasi 

and L. archibaldl) are not congruent by isoenzyme typing and epidemiological 

features and therefore require an extensive revision. 

Main achievements 

• This thesis clarified the genetic structure of the L. donovani complex through 

application of: newly developed (gp63 intergenic regions) and adapted (ITS and mini­

exon) PCR-RFLP; the DNA sequence of a single copy gp63 gene (mspC); RAPD and 

isoenzyme analysis. 

• It was here demonstrated that the number of species in the L. donovani complex 

should be greatly reduced. Leishmania chagasi and L. infantum are synonymous, 

whilst L. archibaldi (zymodeme MaN 82) is not a separate species since it did not 

form a clade of its own. Although the L. donovani complex comprised at least five 

coherent genetic groups (clades), one of which composed of Indian strains and 

another of L. infantum strains, it was considered that these clades should not be 

considered as species, but as identifiable genetic groups. 

• On a smaller scale, it was not possible to identify any kind of genetic structure 

within Portuguese L. infantum strains, suggesting that L. infantum may exist in the 

territory as a single population. 

Strains and techniques 

• All analyses included a large number of strains belonging to the three main 

species of the L. donovani complex (L. infantum, L. chagasi and L. donovam) or from 

Portuguese Leishmania strains. The chosen strains covered most known or inferred 

genetic diversity and geographical and host origins. 

• Isoenzyme typing was, in this thesis, the validation technique for DNA based 

typing methods. Isoenzymes generated some genetic diversity, particularly amongst 

L. donovani strains and differentiated between the genetic groups, but were not very 

useful to produce phylogenies. 

• RAPDs provided adequately sensitive data for detection and study of genetic 

diversity between related strain groups such as L. infantum and L. chagasi and within 

homogeneous groups such as Portuguese L. infantum strains. 
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• Sequence of the GP63 coding gene mspC provided a sound basis for 

phylogenetic analysis of the L. donovani complex. Two to three main lineages were 

identified within the complex, one with L. infantum, the other with zymodemes LON 

42/52 (Group E; Red Sea) and a third with the remainder L. donovani; the latter was 

subdivided in lesser lineages. 

• Through both phylogenetic and multivariate analyses of pooled data from PCR­

RFLPs of intergenic targets, but also through individual analysis of gp63 ITG/CS 

PCR-RFLP, the L. donovani complex was divided in at least five genetic groups. 

These five groups were also identified upon analysis of pooled RFLP and RAPD data 

and correlated with isoenzyme typing and mspC DNA sequences. 

• Phylogenies of the L. donovani complex were difficult to determine, because of 

the large genetic distance to the outgroups but also because of lack of outgroups in 

the PCR-RFLPs of gp63 intergenic regions. 

Re-evaluation of the L. donovan; complex 

• Leishmania chagasi and L. infantum are synonymous. Despite the geographical 

separation, L. chagasi is genetically indistinguishable from L. ;nfantum and, as 

discussed in this thesis, its introduction in the New World must have been very recent 

(within the last 500 years). 

• The Leishmania donovani complex comprises at least five genetic groups of 

strains at least as diverse as L. infantum and named as genetic groups of L. 

donovani: Leishmania infantum (L. chagasl) , named as L. donovan; (infantile); Indian 

strains, as L. donovani (india); 'Sudan' strains (MaN 18/30/82), as L. donovan; 

(sudan); 'Kenyan' strains, as L. donovani (kenya); and 'Ethiopian 1 Saudi Arabian' 

strains (LON 42/52), as L. donovani (red sea). A strain from China (Wangjie 1) might 

belong to a fifth group, named L. donovani (china) but more strains should be 

analyzed. It was not found appropriate that these groups should be given the species 

status, but their recognition may provide a better working basis for epidemiological 

studies of L. donovani and development of more effective diagnostic methods. 

• Characterization of the genetic groups within the L. donovan; complex has 

important implications to several aspects of leishmaniasis control. Specific diagnosis 

and strain typing, in particular to differentiate L. infantum, will benefit from a clear 

genetic definition of strain groups. For example, strains which have been considered 

as L. infantum until now, must be eliminated from specificity assays and researchers 

can be aware of those 'L. donovam" groups that are most likely to be confused with L. 

infantum. 
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Retrospective 

• In retrospect, it would have been interesting to adapt and analyse enzymes used 

for typing in Montpellier to achieve better correlation between the zymodemes 

determined here and those described by Rioux et al. (1990). Although those extra 

enzymes would have added more data to determine better the isoenzyme phylogeny 

of the L. donovani complex, the analyses done using the Montpellier isoenzyme data 

did not seem very robust and thus the effort might not have been worthwhile. 

• RAPD analysis might have been improved by increased annealing temperature or 

use of longer primers, and thus by increased specificity. Band scoring of RAPD 

profiles would have been more sound and accurate if homologous bands had been 

determined by probing Southern blots of RAPD profiles with selected RAPD bands. 

• Phylogenetic analysis of RFLP data could have been more accurate if variant 

peR products had been sequenced to identify restriction sites or the cause of 

fragment size differences. Use of DGGE, or other methods, would have also been 

helpful to determine the number of alleles present for each RFLP target. Those 

further analyses were not done because of the exaggerated extra work and cost. 

• Regarding the DNA sequencing of mspC, strain Wangjie 1 was not sequenced. 

Future work 

• Some open chapters on the L. donovani complex were closed in this thesis, but 

some new questions also arose, which will need to be addressed in the future. 

• In the future, the taxonomic position of Wangjie 1 will be clarified by analysis of 

the DNA sequence of the mspC gene. 

• Potential diagnostic targets emerged from this project, such as mspC single 

nucleotide polymorphisms, certain RAPD bands and RFLPs. It would also be useful 

to characterize certain L. infantum or L. donovani specific RAPD bands which could 

be used as probes or as peR targets for differential diagnosis or typing of strains 

within the L. donovani complex. Although sequencing is still expensive and time 

consuming, some single nucleotide polymorphisms were identified within mspC which 

could be typed using fast diagnostic methods such as TaqMan and molecular 

beacons or could form part of DNA microarrays for typing. 

• Having clarified the genetic diversity structure of L. donovani, it is necessary to 

investigate if the genetic groups of L. donovani, have biological or epidemiological 

significance. More specifically, if those genotypes correlate with differential 

pathogenicity, drug resistance or vector/host associations. 
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• This project raised the question of whether genetic recombination occurs 

undetected in the L. donovani complex. By using more sensitive typing methods, 

such as microsatellites, heterozygotes could be detected in natural populations, whilst 

by using defined markers, such as single nucleotide polymorphisms in mspC, 

hybridization events might be detected by experimental crosses in the laborarory. 

• The PCR-RFLP techniques and the DNA sequence of mspC (or other GP63 

genes) as used here, may contribute towards investigation of the origin and evolution 

of the sub-genus Leishmania in the New and Old Worlds, by application to a large 

range of strains from all Leishmania (Leishmania) species and by pooling with or 

comparing to other methods or genomic targets. 
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10. Annexes 

10.1. Annex 1 - peR 

10.1.1. Reaction Mixtures 

All PCR mixtures were prepared fresh from all reagents and in a master 

solution for the total amount of reactions in each series. Water was always milliQ 

(mQ), filtered sterilized through 0.2 ~m syringe filters and autoclaved. The 10x NH4 

buffer and MgCb solution were supplied with Taq DNA Polymerase (Bioline) and were 

used in all PCR reactions, except for ITS (670mM Tris HCI, pHS.S) and mini-exon 

(0.2M Tris-HCI, 2S0mM KCI, pHS.3) amplification. The reactions were prepared for a 

default total volume of 20~1. All PCR reactions had 1.2Sng/ul of genomic DNA unless 

stated otherwise. 
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Table XXXIII - Composition of optimised PCR and RAPD reactions. Only one primer is used in each RAPD. 

REAGENTS MgCI2 (mM) dNTPs (mM) Primer (f.1M) DMSO (%) BSA Tween20 Taq DNA polymerase 

(gil) (% VN) (U/100 f.11) 

RAPD 2.5 0.2 0.8 5 

ITSa 2.5 0.2 0.5 + 0.5 2.5 

ITSb 3.0 0.2 0.03 + 0.03 5 

ITG/L 2.5 0.2 0.5 + 0.5 5 5 

ITG/CS 2.5 0.2 0.5 + 0.5 10 5 

gp63 A 2.0 0.2 0.5 + 0.5 5 

B 4.0 0.2 0.5 + 0.5 5 5 

C 4.0 0.2 0.5 + 0.5 5 5 

mspC3 2.0 0.2 0.5 + 0.5 5 5 

Mini-exon a 1.5 0.225 1 + 1 10 0.1 0.5 12.5 

Mini-exon b 1.5 0.225 0.25 + 0.25 10 0.1 0.5 12.5 

NOTES: ITSb was optimised to amplify Leishmania DNA from blotted human biopsies. Mini-exon b was used to amplify 250ng of DNA in a 100 f.11 

reaction. 
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10.1.2. Amplification cycles 

Every peR was carried out in a Hybaid Omnigene thermal reactor. 

Table XXXIV - Thermal cycling conditions for RAPD, ITS and mini-exon. 

STEP RAPD ITS Mini-exon 

T time number T time number T time number 
(oC) (min) of cycles (oC) (sec) of cycles (OC) (min) of cycles 

denaturation 95 5 1 

denaturation 94 5 95 15 95 1 5 

annealing 37 1 1 58 30 37 45 0.5 

extension 72 1 72 90 65 1 

denaturation 94 1 95 1 35 

annealing 37 1 37 50 0.5 

extension 72 1 72 1 

extension 72 1 1 72 10 1 

T - temperature 
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Table XXXV - Thermal cycling conditions for gp63 peR amplifications. 

STEP gp631TG/L gp63/TG/CS mspC3A mspC3B&C mspC3 

T time number T time number T time number T time number T time number 
(oC) (min) of cycles (OC) (min) of cycles (oC) (min) of cycles (OC) (min) of cycles (oC) (min) of cycles 

denaturation 95 1 1 94 5 1 94 5 1 94 5 1 94 5 1 

denaturation 95 1 94 1 94 1 94 1 94 1 

annealing 70 1 35 65 1 30 55 1 30 65 1 5 55 1 30 

extension 72 1.5 72 2 72 1 72 1 72 1 

denaturation - - - - - - 94 1 - -
annealing - - - - - - - - - 60 1 25 - - -

extension - - - - - - 72 1 - -

extension 72 10 1 72 10 1 72 10 1 72 10 1 72 10 1 

T - temperature 
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10.2. Annex 2 - Data tables 

Table XXXVI - Binary and multistate ('sequence') coded data from isoenzyme profiles 

for analysed zymodemes. 
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Table XXXVII - Data matrices for RAPO of L. infantum and L. chagasi. 280 bands scored for 33 strains. 

Primer A2 

Strain M A T I 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 C5 C6 C7 C8 C9 C11C12 D D1 D2 D3 D4 
1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l' 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

total 5 5 2 7 7 8 7 8 8 8 8 8 8 7 5 7 8 7 7 8 7 6 8 8 7 8 7 8 7 9 7 6 8 
In order, from left to right: outgroup: L. major (M): 5-ASKH; L. aethiopica (A): L96; L. tropica (T): K27. L. infantum (1-117): IPT-1; L82; Pharoah; 

Lombardi; LEM75; IMPT104; IMT150; IMT152; IMT89; IMT124; IMT108; IMT193; Strain A; L53. L. chagasi (C-C12): PP75; WR285; C0910; 

M9702; M8270; M12727; M12734; M12337; M7633; M12085; M12084. L. donovani (0- 04): 008; HU3; MRC(L)3; MRC74; Patna1. 

259 



Primer A4 

Strain M A T I 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 CS C6 C7 C8 C9 C11 C12 D D1 D 2 D 3 D4 
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 
0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 
0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 
0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 
1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 
1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 

total 7 3 9 12 9 9 6 11 9 10 9 10 9 11 10 9 10 10 12 11 jO 6 10 10 9 9 9 9 10 12 11 11 
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Primer AS 

Strain MAT 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 D D1 D 2 D 3 D4 

000000000000000000000000000000110 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 

total 1 

261 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

1 0 

o 0 

1 0 

1 0 

1 0 

o 0 

o 1 

o 1 

o 1 

o 1 

o 0 

o 1 

o 0 

o 1 

o 0 

4 6 

00000000000000000000000000000 

01001111111111010011111110111 

00000000000000000000000000000 

00000000000000000000000000000 

00000000000000000000000000000 

00000000000000000011100000000 

11011111011000111010110100000 

10000001011000110000001110101 

01100101011000000000000100000 

11111111011000111010111110101 

00000000000000010000000000000 

11111111111111111111111111111 

00000000000000000000000000010 

11111111111111111111111111111 

00000000000000000000000000000 

56445657377333574264655752655 



Primer A6 

Strain M A T I 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 0 01 0 2 0 3 04 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

total 10 13 17 11 11 11 10 11 11 11 11 11 11 11 11 11 10 11 10 11 11 10 11 11 11 11 11 11 12 10 13 12 
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Primer D3 

Strain M A T I 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 C5 C6 C7 C8 C9C11C12 D D1 D2D3 D4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 1 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

total 7 4 8 6 7 6 7 6 6 6 6 6 6 6 6 6 6 6 7 6 7 7 6 6 6 7 6 6 8 6 9 6 8 
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Primer 08 

Strain MAT I 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 C5 C6 C7 C8 C9 Cll C12 0 01 02 03 04 
o 1 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 
101000000000000000000000000000000 
o 1 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 001 000 000 0 0 0 
100000000000000000000000000000000 
000100000110000111000010011010001 
11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 101 1 1 1 
0001111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 
111000000000000000000000000000000 
000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 1 0 
100000000000000000000000000000000 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 
011000000000000000000000000000000 
011000000000000000000000000000000 
1001111 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 111 
010000000000000000000000000000000 
101000000000000000000000000000000 
o 1 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 
0000000000000000000 0 0 0 0 0 0 000 1 0 0 0 1 
000000000000001000000000000010010 
111000000000000000000000000000000 
000111111111111111111111111111111 
101000000000000000000000000000000 
00011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 
001000000000000000000000000 000 000 
000111001111111011011111111110000 
000000000011101000000001101100111 
0001111 1 1 1 000 1 001 1 1 1 1 1 100 1 0 001 000 
000001000100010010001110010011001 
000111111 1 1 1 1 1 1 101 1 1 1 1 1 1 1 1 1 100 0 0 0 
o 0 0 001 000 1 000 1 000 1 101 1 1 001 0 000 0 0 0 
1111111111111111111 1 1 1 1 1 1 1 1 100 0 0 0 
100000000000000000000000000000000 
010000000000000000000000000000000 
0001111 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 
000000000000000000000000000000100 
0001111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 011 
011000000000000000000000000000000 
011000000000000000000000000000000 
000111111111111111111111111 111 1 1 1 
111000000000000000000000000000000 
o 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 _1 1 1 1 1 1 1 1 __ 1 __ 1_ 1 . t 1 1 1 1 1 

total 13 14 13 14 13 15 12 12 13 16 14 13 13 15 14 12 14 15 13 13 15 15 16 14 13 16 14 13 1311 10 12 13 
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Primer 010 

Strain M A T I 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 0 01 02 03 04 
0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 
1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 
0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

total 5 7 7 10 9 12 6 10 11 11 11 12 11 12 11 12 12 12 10 10 10 9 12 12 11 13 12 12 8 8 10 11 
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Primer H1 

Strain M A T I 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 C5 C6 C7 C8 C9 C11C12 0 0102 03 04 
0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

total 7 6 9 11 9 13 9 10 13 13 13 13 13 13 13 13 12 10 11 10 11 9 11 11 11 11 12 11 13 12 12 12 
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Primer H4 

Strain M A T I 11 13 14 15 16 18 19 110 111 112 113 116 117 C C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 D D1 D 2 D 3 D4 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

total 14 10 11 13 13 13 13 13 13 13 13 13 13 t3 13 13 13 13 13 13 11 12 13 13 13 14 11 13 1L13 13 12 11 
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Primer L2 

Strain MAT I 11 13 14 15 16 18 19 110 111 112 113116 117 C C2 C3 C4 C5 C6 C7 C8 C9 Cll C12 0 01 02 03 04 
100111111111111111111111111111111 
100111111111111111111111111111111 
001000000000000000000000000000000 
100000000000000000000000000000000 
001000000000000000000000000000000 
001000000000000000000000000000000 
010000000000000000000000000000000 
001000000000000000000000000000000 
000111111111111111111111111111111 
001000000000000000000000000000000 
000111111111111111111111111111111 
011000000000000000000000000001000 
001000000000000000000000000010000 
011000000000000000000000000000000 
000111111111111111111111111101110 
001000000000000000000000000000000 
10000000000000000000000 a a a a a 0 a 0 a a 
001111111111111111111111111111111 
0100000000000 a a 0 0 a a a a a a a a 0 a 0 a 0 a 0 a 
1000000 a 0 a a a a 0 0 a 0 a a a 0 a a a a a a a a 0 a 0 a 
00001111111110111011011111010 1110 
010111111111111111111111111111111 
0101000 a a 0 a a a a a a a a a 0 0 a a 000 000 a a 0 a 
1010000000000 00000 a a a a a a a a a a 0 a 0 a 0 
1000000 0000 a a a a a 0 a a a a 0 a a a a a a a a 0 a a 
001000000 a 0 a a 0 0 0 a a a a a a a 0 a a a a a a 000 
100000000 a a a 0 a 0 a a a a 0 a 000 a a 000 a a a a 
01100 000000 a a a 000 a a a a 0 a 000 a 011111 
100000000 a a a a 0 0 0 a a a a a a a a a 0 a a a a a a 0 
01000000000 a a a 0 0 0 0 a a a a a a 0 a a a a a a a a 
0110000000000 a 0 a a a a 0 0 a a a 0 a a a 0 a a a a 
001000000 00 a a 0 a 0 a a 0 a a a a a 0 a a a 0 a 000 
000111111111111111111111111111111 
1000000 0 a 0 0 a 0 a a 0 0 a a a a a a a a a 0 a 0 a a a a 
01100 a 0 a a a 0 a a a 0 a 0 a a a a 0 a a a 0 a a 0 a a a a 
010 000 a a 0 a 0 0 a 0 a a a a a 0 a 0 a a a a 0 a a a a a 0 
101111111111111111111111111111111 
111111111111111111111111111111111 
100111111111111111111111111111111 
o a 0111111111111111111111111111111 
00100 00 a a a a 0 a a a a ~ a a a a a a a a a a a a a a a 0 

total 13 12 19 13 13 13 13 13 13 13 13 13 13 12 13 13 13 12 13 13 12 13 13 13 13 13 12 13 13 15 14 14 12 
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Table XXXVIII - Data matrices for RAPO of Portuguese L. infantum. 280 bands 

scored for 33 strains. 

Primer A2 

strain MAD C I 11 16 18 19 110 111 112 113 118 120 121 122 123 124 125 126 127 129 130 
010000000000000000000000 
001010011000100011110011 
000000000000100011110000 
110111111111101111111111 
011111111111101110011100 
000000000000000011100000 
100000000000000000000000 
010000000000000000000000 
001111111111101111111111 
001011111101101111110011 
001111111111111111111111 
100000000000000000000000 
010000000000000000000000 
001111111111111111111111 
010000000000000000000000 
010000000000000000000000 
100000000000000000000000 

total 4 7 6 5 7 6 6 7 7 6 5 6 8 2 6 6 9 8 8 8 5 5 6 6 
In order, from left to right: Reference strains: M - 5-ASKH; A - L96; 0 - 008; C -

PP75; 1- IPT-1. Portuguese strains: 1- L82; 2 - IMT104; 3 - IMT150; 4 - IMT152; 5-

IMT89; 6 - IMT124; 7 - IMT108; 8 - IMT193; 9 - IMT160; 10 - IMT162; 11 - IMT161; 

12- IMT169; 13 - IMT170; 14 - IMT171; 15 - IMT172; 16 - IMT177; 17 - IMT191; 18-

IMT195. 
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Primer A4 

strain MAD C I 11 16 18 19 110 111 112 113 118 120 121 122 123 124 125 126127 129 130 
o 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 o 1 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
00100 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 o 1 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 1 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 1 1 110 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 o 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
00100 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
00100 000 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
10000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 0 0 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 1 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 1 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
00000 000 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
10000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 1 000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
00100 000 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
o 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
10000 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 0 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 100 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 
00011111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

total 6 7 8 1010109 8 9 8 9 9 9 10 10 10 11 11 12 12 12 11 11 11 

Primer A5 

strain M A D C I 11 16 18 19 110 111 112 113 118 120121 122 123 124 125 126 127 129 130 
o 1 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 1 1 0 0 000 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 
o 1 1 1 0 0 011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 0 1 1 1 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 0 0 0 000 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
o 0 0 0 1 1 111 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 
o 0 1 0 1 1 000 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 
o 0 0 0 1 0 010 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 
o 0 1 0 1 1 011 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 0 1 1 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 1 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

total 2 4 6 4 5 3 365 6 4 8 7 6 7 8 7 6 6 8 6 8 6 7 
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Primer A6 

strain MAD C I 11 16 18 19 110111112113118120121122123124125126127129130 
o 1 0 0 0 0 0 0 o 0 0 0 0 0 0 0 000 0 0 000 
100 0 0 0 1 1 1 1 1 1 1 0 1 000 0 1 1 o 1 1 
100 0 0 0 1 1 1 1 1 1 1 0 1 000 0 0 0 0 1 1 o 1 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 000 
o 0 1 1 0 0 0 0 o 0 000 0 0 0 0 0 0 0 0 000 
000 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o 1 1 
101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
100 0 0 0 0 0 000 000 0 0 0 0 0 0 0 000 
1 1 0 0 0 0 0 0 0000000 0 0 0 0 0 000 0 
100 0 0 0 0 0 o 0 0 000 0 000 0 0 000 0 
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
000 0 0 0 0 0 o 0 0 0 0 0 0 0 1 1 000 1 o 0 
1 000 0 0 0 0 o 0 0 000 0 000 0 0 0 000 
o 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 100 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 000 
o 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 1 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 000 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 1 0 0 0 0 0 0 o 0 000 0 0 000 0 0 0 000 
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 1 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 000 
o 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
100 0 0 0 0 o 0 0 0 0 0 0000000 000 0 

total 12 9 8 8 7 7 9 10 10 10 10 10 10 8 10 8 9 9 8 9 9 8 10 10 

Primer 03 

strain M A D C I 11 16 18 19 110111 112113118120121 122123124125126127129130 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 
0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

tctal Z 6 Z :1Q 8 6 Z 8 8 8 8 8 8 8 Z 8 8 8 8 8 8 8 8 8 
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Primer 08 

strain MAD C I 11 16 18 19 110111112113118120121122123124125126127129130 
100 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
000 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
000 0 0 0 0 0 0 1 00000 o 0 0 0 0 0 000 
000 0 0 0 0 1 1 o 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
000 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 0 0 0 0 0 o 0 0 0 0 0 o 0 o 0 0 0 000 
100 0 0 0 0 0 o 000 0 0 0 0 0 0 0 0 0 000 
000 0 0 0 1 0 o 000 1 o 0 0 0 0 0 0 0 000 
100 1 0 0 0 0 o 000 1 o 0 o 0 o 0 0 0 000 
001 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
000 1 0 0 1 1 1 1 1 1 1 0 1 1 1 o 0 1 o 0 1 0 
001 0 1 1 1 1 1 1 1 1 1 0 1 1 1 o 0 1 o 0 1 1 
o 0 1 1 0 0 0 0 1 000 1 0 1 1 1 o 0 1 000 0 
001 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

total 5 0 7 6 5 5 9 10 11 10 9 10 13 8 11 11 11 8 8 11 8 8 10 8 

Primer 010 

strain M A D C I 11 16 18 19 110 111 112 113 118 120 121 122 123 124 125 126 127 129 130 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 o 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

total 8 9 13 14 13 13 14 14 14 14 13 14 14 14 14 14 13 13 14 13 13 13 13 13 
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Primer H1 

strain M A D C I 11 16 18 19 110 111 112 113 118 120 121 122 123 124 125 126 127 129 130 
o 0 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 o 0 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 o 1 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 o 0 1 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 
o 0 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
o 0 1 1 0 0 0 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 
o 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
o 1 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 
o 0 1 1 0 0 1 0 1 1 1 1 0 - 1 1 0 0 0 0 0 0 0 1 
o 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
o 0 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 0 
1 0 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
o 1 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 
o 0 1 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
o 1 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 
o 0 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
o 0 0 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 0 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 0 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 
o 1 o 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 

total 9 11 16 151213 14 14 15 15 15 15 14 - 15 15 14 14 14 14 13 13 14 14 

Primer L2 

strain M A 0 C I 11 16 18 19 110111 112113118120121 122123124125126127129130 

1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 o 0 0 o 0 0 o 0 0 0 0 0 000 
0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 0 0 0 1 0 1 1 o 0 0 1 1 0 1 1 1 1 0 0 1 1 1 
1 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o 0 0 
0 1 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 000 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

total 3 3 3 4 3 3 4 5 544 4 5 5 4 5 5 5 544 5 5 5 
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Table XXXIX - Data matrices for RAPD amplification within the L. donovan; complex. 

Primer A2. 

strain 
M 
A 
C 
I 
D 
D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
D10 
D11 
D12 
D13 
D14 
D15 
D16 
D17 
D18 
D19 
D20 
D21 
D22 
D23 
D24 
D25 
D26 
D27 
D28 
D29 
D30 
D31 
D32 
D33 
D34 
D35 
131 
14 
116 
117 
125 
126 

bands 

1 1 0 0 0 0 0 1 0 1 1 000 1 0 
1001001110000100 
0000010110101001 
0001010110101001 
o 0 0 001 0 1 101 0 1 001 
o 0 0 0 0 1 0 1 101 0 1 001 
o 0 0 0 0 1 0 1 1 000 1 001 
o 0 0 0 0 1 0 1 1 000 1 001 
o 0 0 0 0 1 0 1 101 0 1 001 
o 0 000 1 0 1 101 0 1 001 
0001010110101001 
o 0 0 0 0 1 0 1 101 0 1 001 

000 1 0 0 0 0 0 0 1 0 1 001 
000 1 0 0 0 0 0 0 1 0 1 001 
o 0 0 0 0 0 0 0 0 0 1 0 1 001 
o 0 0 0 0 0 0 000 1 0 1 001 
o 0 0 0 0 0 0 0 001 0 1 001 
000 1 0 0 0 0 0 0 1 0 1 001 
000 1 0 0 0 000 1 0 1 001 
0001010110101001 
000 0 0 0 0 0 0 0 1 0 1 001 

0000010110101001 
000 1 0 0 0 0 0 0 1 0 1 001 
o 0 000 1 001 000 1 001 
000 1 000 000 1 0 1 001 
00101 0 0 0 0 0 0 0 1 100 
o 0 000 1 0 1 101 0 1 001 
o 0 0 0 0 1 0 1 101 0 1 001 
o 0 000 1 0 1 101 0 1 001 
00000 1 0 1 101 0 1 001 
o 0 000 1 001 0 1 0 1 001 
00000 1 0 1 101 0 1 001 
00000 1 0 1 101 0 1 001 

000 1 0 1 0 1 
000 1 0 1 0 1 
000 1 0 1 0 1 
000 1 0 1 0 1 
00010101 
000 1 0 1 0 1 
000 1 0 1 0 1 
00000 1 0 1 
o 0 000 1 0 1 
o 0 000 1 0 1 

10101001 
1010100 1 
1010100 1 
1010100 1 
10101001 
10101001 
1010100 1 
1010100 1 
1010100 1 
10101001 

total 

6 
6 
6 
7 
6 
6 
5 
5 
6 
6 
7 
6 

4 
4 
3 
3 
3 
4 
4 
7 
3 

6 
4 
4 
4 
4 
6 
6 
6 
6 
5 
6 
6 

7 
7 
7 
7 
7 
7 
7 
6 
6 
6 
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Primer A4. 

strain bands total 
M 1000001000010000100000116 
A 0001101000000000000000003 
C 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 10 
1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 10 
D 0 1 1 000 1 000 000 1 0 1 0 1 1 000 007 
D1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 9 
D2 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 7 
D3 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 9 
D4 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 5 
D5 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 9 
D6 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 7 
D7 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 7 
D8 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 7 
D9 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 7 
D10 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 8 
D11 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 5 
D12 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 8 
D13 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 8 
D14 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 8 
D15 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 6 
D16 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 7 
D17 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 6 
D18 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 9 
D19 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 6 
D20 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 7 
D21 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 8 
D22 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 8 
D23 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 5 
D24 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 8 
D25 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 8 
D26 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 7 
D27 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 7 
D28 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 7 
D29 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 5 
D30 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 8 
D31 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 10 
D32 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 8 
D33 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 6 
D34 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 6 
D35 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 6 
131 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 6 
14 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 9 
116 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 8 
117 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 8 
125 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 9 
126 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 9 
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Primer A5. 

strain bands total 
M 000000100000001002 
A 001101010000000004 
C 010000000000110014 
1 010000001111110018 
[) 0 1 0 0 000 0 1 101 1 100 1 7 
[)1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 6 
[)2 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 5 
[)3 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 4 
[)4 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 7 
[)5 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 4 
[)6 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 5 
[)7 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 5 
[)8 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 4 
[)9 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 5 
[)10 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 5 
[)11 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 4 
[)12 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 5 
[)13 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 5 
[)14 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 5 
[)15 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 5 
[)16 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 4 
[)17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 
[)18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 
[)19 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 6 
[)20 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 4 
[)21 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 3 
[)22 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 3 
[)23 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 
[)24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 
[)25 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 4 
[)26 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 3 
[)27 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 4 
[)28 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 4 
[)29 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 6 
[)30 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 4 
[)31 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 3 
[)32 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 6 
[)33 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 5 
[)34 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 3 
[)35 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 3 
131 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 4 
14 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 6 
116 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 4 
117 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 4 
125 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 7 
126 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 7 
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Primer A6 

strain bands total 
M 0 1 1 0 0 1 1 0 0 0 0 0 0 4 
A 0 1 0 0 1 0 0 1 0 0 0 0 0 3 
C 0 0 0 0 0 1 0 1 0 0 1 1 0 4 
I 0 0 0 0 0 1 0 1 0 0 1 1 0 4 
0 0 0 0 0 0 1 0 1 1 1 1 1 0 6 
01 0 0 0 0 0 1 0 1 1 1 0 1 0 5 
02 0 0 0 0 0 1 0 1 1 1 1 0 0 5 
03 0 0 0 0 0 1 0 1 1 1 1 0 0 5 
04 0 0 0 0 0 1 0 1 1 1 1 1 0 6 
05 0 0 0 0 0 1 0 1 1 1 0 1 0 5 
06 0 0 0 0 0 1 0 1 1 1 1 0 0 5 
07 0 0 0 0 0 1 0 1 1 1 1 0 0 5 
08 0 0 0 0 0 1 0 1 0 1 1 0 0 4 
09 0 
010 0 0 0 0 0 1 0 1 0 1 1 0 0 4 
011 0 0 0 0 0 1 0 1 0 1 1 0 0 4 
012 0 0 0 0 0 1 0 1 0 0 0 0 0 2 
013 0 0 0 0 0 1 0 1 0 0 0 0 0 2 
014 0 0 0 0 0 1 0 1 0 1 1 0 0 4 
015 0 0 0 0 0 1 0 1 0 1 1 0 0 4 
016 0 0 0 0 0 1 0 1 0 0 1 0 0 3 
017 0 0 0 0 0 1 0 1 1 1 0 0 0 4 
018 0 0 0 0 0 1 0 1 1 1 0 0 0 4 
019 0 0 0 0 0 1 0 1 0 0 0 0 0 2 
020 0 0 0 0 0 1 0 1 0 1 1 0 0 4 
021 0 0 0 0 0 1 0 1 0 0 0 0 0 2 
022 0 0 0 0 0 1 0 1 0 0 0 0 0 2 
023 1 1 0 1 0 1 0 1 0 1 0 0 1 7 
024 0 0 0 0 0 1 0 1 1 1 0 1 0 5 
025 0 0 0 0 0 1 0 1 1 1 1 1 0 6 
026 0 0 0 0 0 1 0 1 1 1 1 1 0 6 
027 0 0 0 0 0 1 0 1 1 1 1 0 0 5 
028 0 0 0 0 0 1 0 1 1 1 0 0 0 4 
029 0 0 0 0 0 1 0 1 0 0 1 0 0 3 
030 0 0 0 0 0 1 0 1 0 0 1 0 0 3 
031 0 0 0 0 0 1 0 1 1 0 1 0 0 4 
032 0 0 0 0 0 1 0 1 1 0 1 1 0 5 
033 0 0 0 0 0 1 0 1 1 0 0 0 0 3 
034 0 0 0 0 0 1 0 1 1 0 0 1 0 4 
035 0 0 0 0 0 1 0 1 1 0 0 1 0 4 
131 0 0 0 0 0 1 0 1 0 0 1 0 0 3 
14 0 0 0 0 0 1 0 1 1 0 1 0 0 4 
116 0 0 0 0 0 1 0 1 1 0 1 0 0 4 
117 0 0 0 0 0 1 0 1 1 0 1 0 0 4 
125 0 0 0 0 0 1 0 1 0 0 1 0 0 3 
126 0 0 0 0 0 1 0 1 1 0 1 0 0 4 
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Primer 08 

strain bands total 
M 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2 
A 0 0 0 0 1 0 1 0 0 0 0 0 0 0 2 
C 0 0 0 0 1 0 0 1 0 0 0 0 1 1 4 
I 0 1 0 0 1 0 0 1 0 0 0 0 1 1 5 
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2 
01 0 0 1 0 1 0 0 1 0 0 0 0 0 0 3 
02 0 0 1 1 1 0 0 1 1 0 0 0 0 0 5 
03 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
04 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
05 0 0 1 0 1 0 0 1 0 0 0 0 0 0 3 
06 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2 
07 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
08 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
09 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
010 0 0 1 0 1 1 0 1 1 0 0 0 0 0 5 
011 0 0 1 0 1 1 0 1 1 0 0 0 0 0 5 
012 0 0 1 0 1 1 0 1 0 0 0 0 0 0 4 
013 0 0 1 0 1 1 0 1 1 0 0 0 0 0 5 
014 0 0 1 0 1 1 0 1 1 0 0 0 0 0 5 
015 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
016 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
017 0 0 1 0 1 0 0 1 1 0 1 0 1 0 6 
018 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 
019 0 0 1 0 1 0 0 1 0 0 0 0 0 0 3 
020 0 0 1 0 1 0 0 1 0 0 1 0 0 0 4 
021 0 0 1 0 1 0 0 1 0 0 1 0 0 0 4 
022 0 0 1 0 1 0 0 1 0 0 0 0 0 0 3 
023 0 0 1 0 1 1 0 0 1 0 0 0 0 0 4 
024 0 0 1 1 0 0 0 1 0 0 0 0 0 0 3 
025 0 0 1 0 1 0 0 1 0 1 0 0 0 0 4 
026 0 0 1 0 1 0 0 1 0 0 0 1 0 0 4 
027 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
028 0 0 1 0 1 0 0 1 1 0 0 0 1 0 5 
029 0 0 1 0 1 1 0 1 1 0 0 0 0 0 5 
030 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
031 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
032 0 0 1 0 1 0 0 1 1 0 0 0 0 0 4 
033 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
034 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
035 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
131 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
14 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
116 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
117 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
125 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
126 0 0 1 0 1 0 0 1 0 0 0 0 1 0 4 
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Primer 010 

strain bands total 
M 0 0 0 0 0 1 0 0 0 0 1 0 2 
A 1 0 0 0 0 0 1 0 1 0 0 0 3 
C 0 0 0 1 1 0 0 0 0 1 0 1 4 
I 0 1 1 1 1 0 0 0 0 1 0 1 6 
0 0 0 0 1 1 0 0 0 0 1 0 1 4 
01 0 1 0 1 1 0 0 0 0 1 0 1 5 
02 0 1 0 0 1 0 0 0 0 1 0 1 4 
03 0 1 0 0 1 0 0 0 0 1 0 1 4 
04 0 0 0 1 1 0 0 0 0 1 0 1 4 
05 0 1 0 1 1 0 0 0 0 1 0 1 5 
06 0 0 0 1 1 0 0 0 0 1 0 1 4 
07 0 0 0 1 1 0 0 0 0 1 0 1 4 
08 0 0 0 1 1 0 0 0 0 1 0 0 3 
09 0 0 0 0 0 0 0 0 0 0 0 0 0 
010 0 0 0 1 1 0 0 0 1 1 0 1 5 
011 0 0 0 0 0 0 0 0 1 0 0 0 1 
012 0 1 0 1 1 0 0 0 0 1 0 1 5 
013 0 1 0 1 1 0 0 0 0 1 0 1 5 
014 0 0 0 1 1 0 0 0 0 1 0 1 4 
015 0 0 0 0 1 0 0 0 0 1 0 1 3 
016 0 1 0 0 1 0 0 0 0 1 0 1 4 
017 0 1 0 0 1 0 0 0 1 1 0 0 4 
018 0 0 0 1 1 0 0 0 0 1 0 1 4 
019 0 1 0 1 1 0 0 0 0 1 0 1 5 
020 0 1 0 1 1 0 0 0 0 1 0 1 5 
021 0 1 0 0 1 0 0 0 0 1 0 1 4 
022 0 1 0 1 1 0 0 0 0 1 0 1 5 
023 0 1 0 0 0 0 1 0 0 1 0 0 3 
024 0 1 0 1 1 0 0 0 0 1 0 1 5 
025 0 1 0 0 1 0 0 0 0 1 0 1 4 
026 0 1 0 1 1 0 0 0 0 1 0 1 5 
027 0 1 0 0 1 0 0 0 0 1 0 1 4 
028 0 1 0 1 1 0 0 0 0 1 0 0 4 
029 0 1 0 1 1 0 0 0 0 1 0 1 5 
030 0 1 0 0 1 0 0 0 0 1 0 1 4 
031 0 1 0 0 1 0 0 0 0 1 0 1 4 
032 0 1 0 1 1 0 0 0 0 1 0 1 5 
033 0 1 0 1 1 0 0 0 0 1 0 1 5 
034 0 1 0 1 1 0 0 0 0 1 0 1 5 
035 0 1 0 1 1 0 0 0 0 1 0 1 5 
131 0 1 0 1 1 0 0 0 0 1 0 1 5 
14 0 0 0 1 1 0 0 0 0 1 0 1 4 
116 0 0 0 1 1 0 0 0 0 1 0 1 4 
117 0 1 0 1 1 0 0 0 0 1 0 1 5 
125 0 1 0 1 1 0 0 0 0 1 0 1 5 
126 0 1 0 1 1 0 0 0 0 1 0 1 5 
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Primer H1 

strain bands total 
M 0 0 0 0 0 0 1 1 0 0 1 1 1 5 
A 0 0 0 1 0 0 1 0 1 1 0 0 0 4 
C 1 0 0 0 0 1 1 0 0 0 0 1 0 4 
1 1 1 0 0 0 1 1 0 0 0 0 1 0 5 
0 1 1 0 1 0 1 1 0 0 0 1 0 0 6 
01 1 0 0 0 0 1 1 0 0 0 1 1 0 5 
02 1 1 0 0 0 1 1 0 0 0 1 1 0 6 
03 1 1 0 0 0 0 1 0 0 0 1 1 0 5 
04 1 0 0 1 0 1 1 0 0 0 1 0 0 5 
05 1 1 0 0 0 1 1 0 0 0 1 1 0 6 
06 1 1 0 1 0 1 1 0 0 0 1 0 0 6 
07 1 0 0 1 0 1 1 0 0 0 1 0 0 5 
08 1 0 0 1 0 0 1 0 0 0 1 0 0 4 
09 0 0 0 0 1 0 1 0 0 0 1 1 0 4 
010 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
011 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
012 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
013 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
014 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
015 1 0 0 0 0 0 1 0 0 0 1 1 0 4 
016 1 0 0 0 0 1 1 0 0 0 1 1 0 5 
017 0 0 0 0 0 0 0 0 0 0 1 1 0 2 
018 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
019 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
020 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
021 1 1 0 0 0 1 1 0 0 0 1 1 0 6 
022 1 0 0 0 1 1 1 0 0 0 1 1 0 6 
023 0 0 1 1 0 0 0 0 1 0 0 0 0 3 
024 1 0 0 0 0 1 1 0 0 0 1 1 0 5 
025 1 1 0 0 0 1 1 0 0 0 1 1 0 6 
026 1 0 0 0 0 0 1 0 0 0 1 0 0 3 
027 1 1 0 0 0 0 1 0 0 0 1 1 0 5 
028 1 1 0 0 0 1 1 0 0 0 1 1 0 6 
029 1 0 0 0 0 1 1 0 0 0 1 1 0 5 
030 1 1 0 0 0 0 1 0 0 0 1 1 0 5 
031 1 1 0 0 0 1 1 0 0 0 1 1 0 6 
032 1 0 0 0 1 0 1 0 0 0 1 1 0 5 
033 1 1 0 0 1 0 1 0 0 0 1 1 0 6 
034 1 1 0 0 1 0 1 0 0 0 1 1 0 6 
035 1 1 0 0 1 0 1 0 0 0 1 1 0 6 
131 1 1 0 0 0 1 1 0 0 0 0 1 0 5 
14 1 0 0 0 0 1 1 0 0 0 0 1 0 4 
116 1 1 0 0 0 1 1 0 0 0 0 1 0 5 
117 1 1 0 0 0 1 1 0 0 0 0 1 0 5 
125 1 1 0 0 0 1 1 0 0 0 0 1 0 5 
126 1 1 0 0 0 1 1 0 0 0 0 1 0 5 
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Primer H4 

strain bands total 
M 0 0 1 0 0 0 0 0 1 1 1 0 0 4 
A 0 1 1 0 0 0 0 0 0 0 0 0 0 2 
C 0 0 1 0 0 0 1 0 1 0 0 0 1 4 
I 1 0 1 0 0 1 0 0 1 0 0 0 1 5 
D 0 0 1 0 0 1 1 0 1 0 0 0 1 5 
D1 0 0 1 0 0 1 1 0 1 0 0 0 1 5 
D2 0 0 1 0 0 1 1 0 1 0 0 1 1 6 
D3 0 0 1 0 0 1 0 0 1 0 0 1 1 5 
D4 0 0 1 0 0 1 1 0 1 0 0 0 1 5 
D5 0 0 1 0 0 1 1 0 1 0 0 0 1 5 
D6 0 0 1 0 0 1 1 0 1 0 0 0 1 5 
D7 0 0 1 0 0 1 1 0 1 0 0 0 1 5 
D8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D10 0 1 1 1 0 0 0 0 0 0 0 0 0 3 
D11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D12 0 0 0 0 0 1 0 0 1 0 0 0 0 2 
D13 0 0 1 0 0 1 0 0 1 0 0 0 0 3 
D14 0 0 1 0 0 1 0 0 1 0 0 0 0 3 
D15 0 1 1 1 0 0 0 0 1 0 0 1 0 5 
D16 0 0 1 1 0 0 1 0 1 0 0 1 1 6 
D17 0 0 1 0 0 0 0 0 1 0 0 0 0 2 
D18 0 0 1 1 0 1 0 0 1 0 0 0 1 5 
D19 0 0 1 0 0 1 0 0 1 0 0 0 1 4 
D20 0 1 1 1 0 1 0 0 1 0 0 0 0 5 
D21 0 0 1 0 0 1 1 0 1 0 0 1 0 5 
D22 0 0 1 0 0 1 1 0 1 0 0 0 1 5 
D23 1 1 1 1 1 0 0 1 0 0 0 0 0 6 
D24 0 0 1 0 0 1 1 0 1 0 0 0 1 5 
D25 0 0 1 1 0 0 1 0 1 0 0 1 1 6 
D26 0 0 1 1 0 0 1 0 1 0 0 1 1 6 
D27 0 0 1 0 0 1 0 0 1 0 0 1 0 4 
D28 0 0 1 1 0 1 1 0 1 0 0 0 1 6 
D29 0 0 1 1 0 1 1 0 1 0 0 0 1 6 
D30 0 0 1 1 0 1 1 0 1 0 0 1 1 7 
D31 0 0 1 1 0 1 0 0 1 0 0 1 1 6 
D32 0 0 1 1 0 1 1 0 1 0 0 0 1 6 
D33 0 0 1 1 0 1 1 0 1 0 0 0 1 6 
D34 0 0 1 1 0 0 1 0 1 0 0 0 1 5 
D35 0 0 1 1 0 0 1 0 1 0 0 0 1 5 
131 0 0 1 1 0 0 1 0 1 0 0 0 1 5 
14 0 0 1 1 0 0 0 0 1 0 0 0 1 4 
116 0 0 1 1 0 0 1 0 1 0 0 0 1 5 
117 0 0 1 1 0 0 1 0 1 0 0 0 1 5 
125 0 0 1 1 0 0 1 0 1 0 0 0 1 5 
126 0 0 1 1 0 0 1 0 1 0 0 0 1 5 
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Primer L2 

strain bands total 
M 1 0 1 1 0 1 1 0 0 1 6 
A 1 0 1 0 1 0 0 1 1 0 5 
C 1 1 0 0 0 0 1 1 0 0 4 
I 1 1 0 0 0 0 1 1 0 0 4 
0 1 1 0 0 1 0 0 1 0 0 4 
01 1 1 0 0 0 1 0 1 0 0 4 
02 1 1 0 0 0 1 0 1 0 0 4 
03 1 1 0 0 0 1 0 1 0 0 4 
04 1 1 0 0 1 0 0 1 0 0 4 
05 1 1 0 0 1 0 0 1 0 0 4 
06 1 1 0 0 1 0 0 1 0 0 4 
07 1 1 0 0 1 0 0 1 0 0 4 
08 1 1 0 0 0 0 1 1 0 0 4 
09 1 1 0 0 0 1 1 1 0 0 5 
010 1 1 0 0 0 1 1 1 0 0 5 
011 1 1 0 0 0 1 1 1 0 0 5 
012 1 1 0 0 1 0 1 1 0 0 5 
013 1 1 0 0 0 1 1 1 0 0 5 
014 1 1 0 0 0 1 1 1 0 0 5 
015 1 1 0 0 0 1 1 1 0 0 5 
016 1 1 0 0 0 1 0 1 0 0 4 
017 1 1 0 0 0 1 0 1 0 0 4 
018 1 1 0 0 0 1 1 1 0 0 5 
019 1 1 0 0 0 1 0 1 0 0 4 
020 1 1 0 0 0 1 0 1 0 0 4 
021 1 1 0 0 0 1 0 1 0 0 4 
022 1 1 0 0 0 1 0 1 0 0 4 
023 0 0 0 0 0 0 0 0 0 0 0 
024 1 1 0 0 1 0 0 1 0 0 4 
025 1 1 0 0 0 1 0 1 0 0 4 
026 1 1 0 0 0 1 0 1 0 0 4 
027 1 1 0 0 0 1 0 1 0 0 4 
028 1 1 0 0 0 1 0 1 0 0 4 
029 1 1 0 0 0 1 0 1 0 0 4 
030 1 1 0 0 0 1 0 1 0 0 4 
031 1 1 0 0 0 1 0 1 0 0 4 
032 1 1 0 0 0 1 0 1 0 0 4 
033 1 1 0 0 0 1 0 1 0 0 4 
034 1 1 0 0 0 1 0 1 0 0 4 
035 1 1 0 0 0 1 0 1 0 0 4 
131 1 1 0 0 0 1 0 1 0 0 4 
14 1 1 0 0 0 1 0 1 0 0 4 
116 1 1 0 0 0 1 0 1 0 0 4 
117 1 1 0 0 0 1 0 1 0 0 4 
125 1 1 0 0 0 1 0 1 0 0 4 
126 1 1 0 0 0 1 0 1 0 0 4 
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Table XL - Total number of bands scored per each RAPD primer for L. infantum and L. chagasi. 

Strain 

Primer M* A* T* 1* 11 13 14 15 16 18 19 110 111 112 113 116 117 C* C2 C3 C4 CS C6 C7 C8 C9 C11C12 0* 01 02 03 04 

A2 552778788888875787787688787879768 

A4 7 3 9 12 9 9 6 11 9 10 9 10 9 11 1 0 9 1 0 1 0 12 11 10 6 10 1 0 9 9 9 9 10 12 11 11 12 

AS 1 0 4 6 5 6 4 4 5 6 5 7 3 7 7 3 3 3 5 7 4 2 6 4 6 5 5 7 5 2 6 5 5 

A6 10 13 17 11 11 11 10 11 11 11 11 11 11 11 11 11 10 11 10 11 11 10 11 11 11 11 11 11 12 10 13 12 13 

03 7 4 8 6 7 6 7 6 6 6 6 6 6 6 6 6 6 6 7 6 7 7 6 6 6 7 6 6 8 6 9 6 8 

08 13 14 13 14 13 15 12 12 13 16 14 13 13 15 14 12 14 15 13 13 15 15 16 14 13 16 14 13 13 11 1 0 12 13 

010 5 7 7 10 9 12 6 10 11 11 11 12 11 12 11 12 12 12 10 10 10 9 12 12 11 13 12 12 8 8 10 11 11 

H1 7 6 9 11 9 13 9 10 13 13 13 13 13 13 13 13 12 10 11 10 11 9 11 11 11 11 12 11 13 12 12 12 13 

H4 14 10 11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 11 12 13 13 13 14 11 13 13 13 13 12 11 

L2 13121913131313131313131313121313131213131213131313 13 12 131315141412 

total 82 74 99 103 96 106 87 98 102107103106100108103 99 101 89 101102 98 89 106102100107 99 10310298 105 101 106 

A - L. aethiopica; C - L. chagasi; 0 - L. donovani; 1- L. infantum; M - L. major, T - L. tropica. * WHO reference strains. 
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Table XLI- Total number of RAPD bands scored per each primer and for all primers for Portuguese L. infantum. 

Strain 

primer M* A* 0* C* 1* 11 16 18 19 110 111 112 113 118 120 121 122 123 124 125 126 127 129 130 total 

A2 4 7 6 5 7 6 6 7 7 6 5 6 8 2 6 6 9 8 8 8 5 5 6 6 17 

A4 6 7 8 10 10 1 0 9 8 9 8 9 9 9 1 0 10 10 11 11 12 12 12 11 11 11 27 

A5 2 4 6 4 5 3 3 6 5 6 4 8 7 6 7 8 7 6 6 8 6 8 6 7 13 

A6 12 9 8 8 7 7 9 10 10 10 10 10 10 8 10 8 9 9 8 9 9 8 10 10 23 

03 7 6 7 10 8 6 7 8 8 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 22 

08 5 0 7 6 5 5 9 10 11 10 9 1 0 13 8 11 11 11 8 8 11 8 8 10 8 16 

010 8 9 13 14 13 13 14 14 14 14 13 14 14 14 14 14 13 13 14 13 13 13 13 13 24 

H 1 9 11 16 15 12 13 14 14 15 15 15 15 14 - 15 15 14 14 14 14 13 13 14 14 26 

L2 3 3 3 4 3 3 4 5 5 4 4 4 5 5 4 5 5 5 5 4 4 5 5 5 8 

total 56 56 74 76 70 66 75 82 84 81 77 84 88 0 84 85 87 82 83 87 78 79 83 82 176 

A - L. aethiopica; C - L. chagasi; D - L. donovani; I - L. infantum; M - L. major. * WHO reference strains. 
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Table XLII - Total number of RAPO bands scored per primer and all primers in the L. 

donovan; complex. 

Primer 
Strain A2 A4 AS AS D8 D10 H1 H4 L2 total 
M* 6 6 2 3 2 2 5 4 6 36 
A* 6 3 4 4 2 3 4 2 5 33 
C* 6 10 4 4 4 4 4 4 4 44 
1* 7 10 8 6 5 6 5 5 4 56 
0* 6 7 7 5 2 4 6 5 4 46 
01 6 9 6 5 3 5 5 5 4 48 
02 5 7 5 5 5 4 6 6 4 47 
03 5 9 4 6 4 4 5 5 4 46 
04 6 5 7 5 4 4 5 5 4 45 
05 6 9 4 5 3 5 6 5 4 47 
06 7 7 5 5 2 4 6 5 4 45 
07 6 7 5 4 4 4 5 5 4 44 
08 7 4 4 3 4 4 26 
09 4 7 5 4 4 4 5 33 
010 4 8 5 4 5 5 5 3 5 44 
011 3 5 4 2 5 1 5 5 30 
012 3 8 5 2 4 5 5 2 5 39 
013 3 8 5 4 5 5 5 3 5 43 
014 4 8 5 4 5 4 5 3 5 43 
015 4 6 5 3 4 3 4 5 5 39 
016 7 7 4 4 4 4 5 6 4 45 
017 3 6 2 4 6 4 2 2 4 33 
018 9 2 2 2 4 5 5 5 34 
019 6 6 6 4 3 5 5 4 4 43 
020 4 7 4 2 4 5 5 5 4 40 
021 4 8 3 2 4 4 6 5 4 40 
022 4 8 3 7 3 5 6 5 4 45 
023 4 5 2 5 4 3 3 6 32 
024 6 8 2 6 3 5 5 5 4 44 
025 6 8 4 6 4 4 6 6 4 48 
026 6 7 3 5 4 5 3 6 4 43 
027 6 7 4 4 4 4 5 4 4 42 
028 5 7 4 3 5 4 6 6 4 44 
029 6 5 6 3 5 5 5 6 4 45 
030 6 8 4 4 4 4 5 7 4 46 
031 10 3 5 4 4 6 6 4 42 
032 7 8 6 3 4 5 5 6 4 48 
033 7 6 5 4 4 5 6 6 4 47 
034 7 6 3 4 4 5 6 5 4 44 
035 7 6 3 3 4 5 6 5 4 43 
131 7 6 4 4 4 5 5 5 4 44 
14 7 9 6 4 4 4 4 4 4 46 
116 7 8 4 4 4 4 5 5 4 45 
117 6 8 4 3 4 5 5 5 4 44 
125 6 9 7 4 4 5 5 5 4 49 
126 6 9 7 4 5 5 5 4 45 
total 16 24 17 13 14 12 13 13 10 132 

A - L. aethiopica; C - L. chagasi; 0 - L. donovani; I - L. infantum; M - L. major. * WHO 
reference strains. 
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Table XLIII - Bands scored from ITS restriction. Scored 127 total band positions. 

Enz me Alul BstUl 
bp 372 396404412571 65369874 65 115118123130132134137144147154177186193280290300 327 360 402 515 530 

Strain 
M* 0 0 0 1 0 0 0 1 1 0 0 0 0 
A* 0 0 1 0 0 0 1 0 0 1 0 0 0 
T* 1 1 0 0 1 0 1 0 0 0 0 0 0 
C* 1 0 0 0 0 1 0 0 0 0 1 0 0 
C2 1 0 0 0 0 1 0 0 0 0 1 a 0 

C16 1 0 0 0 0 1 0 0 0 0 1 0 0 
C13 1 0 0 0 0 1 0 0 0 0 1 0 0 
C17 1 0 0 0 0 1 0 0 0 0 1 0 0 
C20 1 0 0 0 0 1 0 0 0 0 1 0 0 

1* 1 0 0 0 0 1 0 0 0 0 1 0 0 
13 1 0 0 0 0 1 0 0 0 0 1 0 0 
14 1 0 0 0 0 1 0 0 0 0 1 0 0 

116 1 0 0 0 0 1 0 0 0 0 1 0 0 
117 1 0 0 0 0 1 0 0 0 0 1 0 0 
125 1 0 0 0 0 1 0 0 0 0 1 0 0 
126 1 0 0 0 0 1 0 0 0 0 1 0 0 
131 1 0 0 0 0 1 0 0 0 0 1 0 0 
133 1 0 0 0 0 1 0 0 0 0 1 0 0 
0* 0 1 0 0 0 1 0 0 0 0 1 0 0 

o 1 001 100 0 1 001 0 0 0 0 
000 1 0 1 101 0 0 001 100 
10100010011000011 
10000001001001000 
10000001001001000 
10000001001001000 
10000001001001000 
10000001001001000 
1000000 1 0 1 100 1 0 a 0 
1000000 1 001 001 000 
1000000 1 001 001 000 
10000001001001000 
10000001001001000 
10000001001001000 
1000000 1 001 001 a 0 a 
10000001001001000 
1000000 1 a 1 100 1 000 
1000000 1 0 1 100 1 000 
1000000 1 0 1 100 1 000 

01 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 001 a 1 100 1 000 
02 0 1 0 0 0 1 0 0 0 a 1 0 o 1 0 0 0 0 001 0 1 100 1 000 
03 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 0 0 1 0 1 100 1 0 a a 
04 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 001 0 1 100 1 0 a a 
05 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 001 001 101 0 a 0 
06 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 001 001 101 000 
07 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 001 001 101 000 
08 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 001 001 101 a 0 a 
09 0 1 0 0 0 1 0 0 a 0 1 1 o 0 0 0 0 0 001 0 1 100 1 000 

010 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 001 0 1 100 1 000 
011 0 1 0 0 0 1 0 0 0 0 1 1 o 1 0 0 0 0 001 0 1 100 1 000 
012 0 1 0 0 0 1 0 0 0 0 1 1 o a 0 0 0 0 001 0 1 100 1 000 
013 0 1 0 0 0 1 0 0 0 0 1 0 o 1 0 0 0 0 0 0 1 0 1 100 1 0 a a 
014 0 1 0 0 0 1 0 0 0 0 1 1 
015 0 1 0 0 0 1 0 0 0 0 1 0 
016 0 1 0 0 0 1 0 0 0 0 1 0 
017 0 1 0 0 0 1 0 0 0 0 1 0 

o 0 0 0 0 0 001 0 1 100 1 0 a 0 
001 000 001 001 101 000 
001000001001101000 
001 000 001 001 101 000 

018 0 1 0 0 0 1 0 0 0 0 1 0 0 
019 0 1 0 0 0 1 0 0 0 0 1 0 0 
020 0 1 0 0 0 1 0 0 0 0 1 1 0 
021 0 1 0 0 0 1 0 0 0 0 1 0 0 
022 0 1 0 0 0 1 0 0 0 0 1 0 0 
024 0 1 0 0 0 1 0 0 0 0 1 0 0 
025 0 1 0 0 0 1 0 0 0 0 1 0 0 
026 0 1 0 0 0 1 0 0 a 0 1 0 1 
027 0 1 0 0 0 1 0 0 0 0 1 0 0 
028 0 1 0 0 0 1 0 0 0 0 1 0 0 
029 0 1 0 0 0 1 0 0 0 0 1 0 0 
030 0 1 0 0 0 1 0 0 0 0 1 0 0 
031 0 1 0 0 0 1 0 0 0 0 1 0 0 
032 0 1 0 0 0 1 0 0 0 0 1 1 0 
033 0 1 0 0 0 1 0 0 0 0 1 0 0 
034 1 0 0 0 0 1 0 0 0 0 1 0 0 
035 1 0 0 0 0 1 0 0 0 0 1 0 0 

(see page 287) 

100 a 0 001 001 101 000 
100 000 0 1 001 101 000 
100 a 0 001 0 1 100 1 000 
010 
1 0 0 
1 0 0 
o 1 0 
000 
o 1 0 
o 1 0 
100 
o 1 0 
o 1 0 
1 0 0 
010 
1 0 0 
1 0 0 

o 0 001 001 101 000 
00001001101000 
o 0 001 001 101 000 
o 0 001 001 101 000 
o 0 001 0 1 100 1 000 
00001001101000 
o 0 001 001 101 000 
o 0 001 0 1 100 1 000 
o 0 001 001 101 000 
o 0 001 001 101 000 
00001010001000 
o 0 001 0 1 100 1 000 
o 0 001 001 101 000 
00001001101000 
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(continued table) 

Enz me efol EcoRI 
bp 57 67 89 90 92 11213614314815217017318222326231132433636738038 201268273283304323445453765 

Strain 
M* 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
A* 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 
T* 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 
C· 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
C2 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 

C16 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
C13 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
C17 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
C20 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 

1* 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
13 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
14 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 

116 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
117 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
125 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
126 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
131 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
133 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
0* 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
01 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
02 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
03 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
04 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
05 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
06 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
07 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
08 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
09 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 

010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 
011 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 
012 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 
013 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 
014 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 
015 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
016 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
017 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
018 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
019 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
020 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 
021 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
022 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
024 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
025 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
026 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 
027 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
028 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
029 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 
030 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
031 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
032 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 
033 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
034 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 
035 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 

(see page 287) 
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(continued table) 

En~_meEcoRI HaellJ Msel 
bp 79583C 50 52 63 75 80 83 86 93 97100124137154242247252274292383392600635660 51 157220223229 

Strain 
M* 0 1 0 0 0 0 0 0 0 
A* 1 0 0 1 1 1 0 0 0 
T* 0 0 0 1 1 1 0 0 0 
C* 0 1 1 0 0 0 1 0 0 
C2 0 1 1 0 0 0 1 0 0 

C16 0 1 1 0 0 0 1 0 0 
C13 0 1 1 0 0 0 1 0 0 
C17 0 1 1 0 0 0 1 0 0 
C20 0 1 1 0 0 0 1 0 0 

1* 0 1 1 0 0 0 1 0 0 
13 0 1 1 0 0 0 1 0 0 
14 0 1 1 0 0 0 1 0 0 

116 0 1 1 0 0 0 1 0 0 
117 0 1 1 0 0 0 1 0 0 
125 0 1 1 0 0 0 1 0 0 
126 0 1 1 0 0 0 1 0 0 
131 0 1 1 0 0 0 1 0 0 
133 0 1 1 0 0 0 1 0 0 
0* 0 1 1 0 0 0 0 1 0 
01 0 1 1 0 0 0 0 1 0 
02 0 1 1 0 0 0 0 1 0 
03 0 1 1 0 0 0 0 1 0 
04 0 1 1 0 0 0 0 1 0 
05 0 1 1 0 0 0 0 0 1 
06 0 1 1 0 0 0 0 1 0 
07 0 1 1 0 0 0 0 1 0 
08 0 1 1 0 0 0 0 1 0 
09 0 1 1 0 0 0 1 0 0 

010 0 1 1 0 0 0 1 0 0 
011 0 1 1 0 0 0 1 0 0 
012 0 1 1 0 0 0 1 0 0 
013 0 1 1 0 0 0 1 0 0 
014 0 1 1 0 0 0 1 0 0 
015 0 1 1 0 0 0 0 1 0 
016 0 1 1 0 0 0 0 1 0 
017 0 1 1 0 0 0 0 0 1 
018 0 1 1 0 0 0 0 0 1 
019 0 1 1 0 0 0 0 0 1 
020 0 1 1 0 0 0 1 0 0 
021 0 1 1 0 0 0 0 0 0 
022 0 1 1 0 0 0 0 0 1 
024 0 1 1 0 0 0 0 0 1 
025 0 1 1 0 0 0 0 1 0 
026 0 1 1 0 0 0 1 0 0 
027 0 1 1 0 0 0 0 1 0 
028 0 1 1 0 0 0 0 0 1 
029 0 1 1 0 0 0 1 0 0 
030 0 1 1 0 0 0 0 1 0 
031 0 1 1 0 0 0 0 1 0 
032 0 1 1 0 0 0 1 0 0 
033 0 1 1 0 0 0 0 0 1 
034 0 1 1 0 0 0 0 0 1 
035 0 1 1 0 0 0 0 0 1 
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o 000 1 1 0 0 0 0 1 o 000 1 1 0 0 0 0 
000 1 0 1 000 0 
0010011000 
0010010001 
0010010001 
0010010001 
0010010001 
0010010001 
0010010001 
00100 1 000 1 
0010010001 
00100 1 000 1 
0010010001 
0010010001 

o 0 0 0 0 0 000 1 0 
000 1 000 000 0 
100 0 0 0 001 0 0 
1 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 001 0 0 
100 000 0 0 1 0 0 
1 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 001 0 0 
1 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 000 0 1 0 00010010001 

00010010001 
00010010001 
00010010001 
00010010001 
00010010001 
00010010001 
000 1 001 000 1 
00010010001 
00010010001 
000 1 001 000 1 
00010010001 
00010010001 
01110010100 
011 100 1 0 1 1 0 
01010010110 
01010010110 
011 100 1 0 1 1 0 
00010010110 
00010010001 
00010010001 
00010010001 
000 1 001 000 1 
000 1 001 000 1 
01010010110 
000 1 001 000 1 
00010010001 

1 0 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 1 0 
1 000 0 0 0 0 1 0 
o 1 0 0 0 0 0 0 1 0 
o 1 0 0 0 0 0 0 1 0 
o 1 0 0 0 0 0 0 1 0 
o 1 0 0 0 0 0 0 1 0 
o 1 000 0 0 0 1 0 
001 0 0 0 001 0 
o 1 0 0 0 0 0 0 1 0 
o 1 0 0 0 0 0 0 1 0 
o 1 0 0 0 000 1 0 
1 0 0 0 0 0 1 100 
1 0 0 000 1 100 
1 0 0 0 0 0 1 100 
1 0 0 0 0 0 1 000 
1 0 0 0 0 0 1 100 
1 0 0 0 0 0 1 000 
o 1 0 0 0 0 0 0 1 0 
o 1 0 0 0 0 0 0 1 0 
001 000 0 0 1 0 
001 0 0 0 0 0 1 0 
001 0 0 0 0 0 1 0 
100 000 1 1 0 0 
o 0 0 0 0 0 0 000 

1 0 001 0 0 000 
00100000100 
o 1 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 1 0 0 0 0 
o 1 000 000 1 0 0 
001 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 1 1 000 
o 1 0 0 0 0 0 0 1 0 0 
o 1 000 000 1 0 0 
100 0 001 100 0 
o 0 0 0 0 000 1 0 0 
001 0 0 0 0 0 1 0 0 
001 0 0 0 0 0 1 0 0 

0010010001 
0010010001 
0010010100 
00100 1 000 1 
0010010001 
1010010110 
0010010001 
0010010001 
1010010110 
0010010001 
0010010001 
0010010001 
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(continued table) 

Enzyme Msel Sphl Taql 
bp 267291667726755 98 198230327337337352631851128136144148150 154159162165168211233253288306315 

Strain 
M 0 1 001 
A 1 0 0 1 0 
TOO 1 0 0 
COO 1 0 0 
C2 0 0 1 0 0 
C16 0 0 1 0 0 
C13 0 0 1 0 0 
C17 0 0 1 0 0 
C20 0 0 1 0 0 
100 1 0 0 
13 0 0 1 0 0 
14 0 0 1 0 0 

116 0 0 1 0 0 
117 0 0 1 0 0 
125 0 0 1 0 0 
126 0 0 1 0 0 
131 0 0 1 0 0 
133 0 0 1 0 0 
o 0 0 1 0 0 
01 0 0 1 0 0 
02 0 0 1 0 0 
03 0 0 1 0 0 
04 0 0 1 0 0 
05 0 0 1 0 0 
0600100 
07 0 0 1 0 0 
08 0 0 1 0 0 
09 0 0 1 0 0 
010 0 0 1 0 0 
011 0 0 1 0 0 
012 0 0 1 0 0 
013 0 0 1 0 0 
014 0 0 1 0 0 
015 0 0 1 0 0 
016 0 0 1 0 0 
017 0 0 1 0 0 
018 0 0 1 0 0 
019 0 0 1 0 0 
020 0 0 1 0 0 
021 0 0 1 0 0 
022 0 0 1 0 0 
024 0 0 1 0 0 
025 0 0 1 0 0 
026 0 0 1 0 0 
027 0 0 1 0 0 
028 0 0 1 0 0 
029 0 0 1 0 0 
030 0 0 1 0 0 
031 0 0 1 0 0 
032 0 0 1 0 0 
033 0 0 1 0 0 
034 0 0 1 0 0 
035 0 0 1 0 0 
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1 0 0 0 0 0 1 1 0 
o 1 1 000 1 0 0 
o 1 0 1 0 0 000 
000011010 
00001 101 0 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
o 0 0 0 1 101 0 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
000011010 
00001 101 1 
000011010 
000011010 
o 0 001 101 1 
000011010 
000011010 
000011010 
o 0 001 101 0 
000011010 
o 000 1 101 0 
o 0 0 0 1 101 0 
o 0 0 0 1 101 0 
00001 101 0 
000011010 
o 0 001 101 0 
000011010 
o 0 0 0 1 101 0 
o 0 001 101 0 
000011010 
000011010 
o 0 001 101 0 
o 0 0 0 1 101 0 
o 0 0 0 1 101 0 
000011010 
000011010 

o 0 0 001 000 1 0 
1 0 0 0 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 0 1 
0010001 0 0 0 0 
001 000 1 0 0 0 0 
0010001 000 0 
001 000 1 0 0 0 0 
001 000 1 0 0 0 0 
001 000 1 0 0 0 0 
00100010000 
001 000 1 000 0 
001 000 1 0 0 0 0 
001 000 1 0 000 
001 000 1 0 0 0 0 
001 000 1 0 0 0 0 
001 000 1 0 000 
001 000 1 0 0 0 0 
001 000 1 0 0 0 0 
000 1 000 1 000 
000 1 000 1 000 
000 1 000 1 000 
000 1 000 1 000 
000 1 000 1 000 
o 0 0 0 1 000 1 0 0 
000 1 000 1 000 
000 1 000 1 000 
000 1 000 1 000 
000 1 000 1 000 
001 000 1 0 000 
000 1 000 1 000 
000 1 000 1 000 
001 000 1 0 0 0 0 
000 1 000 1 000 
000 1 000 1 000 
000 1 000 1 000 
o 0 0 0 1 000 1 0 0 
o 0 0 0 1 000 1 0 0 
00001 000 1 0 0 
0010001 000 0 
000 1 000 1 000 
o 0 0 0 1 000 1 0 0 
00001000100 
000 1 000 1 000 
001 000 1 0 0 0 0 
000 1 000 1 000 
o 0 0 0 1 000 1 0 0 
0010001 000 0 
000 1 000 1 000 
000 1 000 1 000 
001 000 1 0 0 0 0 
000 1 1 0 0 0 0 0 0 
00001000100 
o 0 0 0 1 000 1 0 0 

00010 
1 0 0 1 0 
o 1 0 1 0 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00100 
00101 
o 0 1 0 1 
o 0 1 0 1 
o 0 1 0 1 
o 0 1 0 1 
00100 
00100 
00100 
00100 
00100 
00100 
o 0 1 0 1 
00100 
00100 
00100 
00100 
o 0 1 0 1 
00100 
00100 
00101 
00100 
00100 
o 0 1 0 1 
00100 
00100 
00100 
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(continued table) 

Enz~me TagJ Alul SstUl efol EcoRI Haelll Msel Sphl Tagl bp 325 335 344 357 502 508 657 TOTAL 

Strain 
M* 0 0 0 0 0 0 1 27 2 6 3 2 4 3 3 4 
A* 0 0 0 1 0 0 0 33 2 6 3 2 4 3 3 4 
T* 0 0 0 0 0 0 0 32 2 6 3 2 4 3 3 4 
C* 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
C2 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 

C16 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
C13 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
C17 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
C20 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

1* 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
13 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
14 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 

116 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
117 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
125 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
126 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 
131 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
133 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
0* 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
01 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
02 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
03 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
04 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
05 1 1 0 0 0 0 0 32 2 6 3 2 4 3 3 4 
06 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
07 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
08 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
09 1 1 1 0 1 1 0 41 2 6 3 2 4 3 3 4 

010 0 1 0 0 1 1 0 45 2 6 3 2 4 3 3 4 
011 1 1 1 0 1 1 0 44 2 6 3 2 4 3 3 4 
012 1 1 0 0 0 0 0 37 2 6 3 2 4 3 3 4 
013 0 1 0 0 1 1 0 44 2 6 3 2 4 3 3 4 
014 1 1 0 0 0 0 0 35 2 6 3 2 4 3 3 4 
015 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
016 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
017 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
018 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 
019 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

020 1 1 1 0 1 1 0 45 2 6 3 2 4 3 3 4 

021 1 1 0 0 0 0 0 31 2 6 3 2 4 3 3 4 

022 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

024 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

025 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

026 1 1 1 0 1 1 0 38 2 6 3 2 4 3 3 4 

027 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

028 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

029 1 1 1 0 1 1 0 44 2 6 3 2 4 3 3 4 

030 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

031 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

032 1 1 1 0 1 1 0 44 2 6 3 2 4 3 3 4 

033 1 1 0 0 0 0 0 33 2 6 3 2 4 3 3 4 

034 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

035 1 1 0 0 0 0 0 34 2 6 3 2 4 3 3 4 

A - L. aethiopica; C - L. chagasi; 0 - L. donovani; I - L. infantum; M - L. majot, T - L. 

tropica. * WHO reference strains. a and b are, respectively, larger and shorter mini-

exon amplification products. 
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Table XLIV - Bands scored from mini-exon RFLP data within the L donovani 

complex. 

Enz me SstUl etal 
bp 53 56 59 64 66 81 86 90 93 112 116 120 137 47 51 58 65 75 78 80 82 88 115117 124140 

Strain 
M* 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 
A* 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 
T1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 
C* 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 
C2 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
C3 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
C6 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
C13 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
C17 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
C20 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
1* 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 
13 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
14 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 
116 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
117 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
125 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 
0* 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
01 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 
02 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
03 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
04 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
04a 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
05 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 
06a 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 
06b 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 
07 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 
08a 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 
08b 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 
09 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 
010 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 
011 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 
012 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 
013 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 
014 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 
015 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
016 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 
017 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 
018 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 

019 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 

020 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 

021 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 

024 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 

025 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 

026 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 

027 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 

028 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 

029 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 

030 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 

032 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 

033 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 

034 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 

035 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 

(see next page) 
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(continuation of table) 

Enzyme Haelll Mspl 
bp 55 58 62 75 87 93 102147154166 180 190200228 52 59 67 69 72 74 78 82 117180267 TOTAL 

Strain 
M* 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 13 
A* 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 10 
T1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 12 
C* 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 15 
C2 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 13 
C3 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 13 
C6 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 13 
C13 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 13 
C17 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 13 
C20 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 13 
1* 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 15 
13 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 13 
14 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 17 
116 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 15 
117 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 14 
125 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 21 
0* 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 15 
01 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 30 
02 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 14 
03 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 14 
04 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 15 
04a 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 14 
05 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 32 
06a 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 19 
06b 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 19 
07 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 19 
08a 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 19 
08b 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 19 
09 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 28 
010 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 30 
011 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 28 
012 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 28 
013 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 27 
014 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 28 
015 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 16 
016 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 16 
017 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 29 
018 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 32 
019 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 32 
020 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 20 
021 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 15 
024 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 20 
025 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 16 
026 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 16 
027 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 18 
028 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 20 
029 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 17 
030 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 16 
032 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 18 
033 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 19 
034 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 19 
035 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 23 

total* * 51 

A - L. aethiopica; C - L. chagasi; D - L. donovani; 1- L. infantum; M - L. major, T - L. 

tropica. * WHO reference strains. ** - Total band positions. a and b are, respectively, 

larger and shorter mini-exon amplification products. 
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Table XLV - Total number of bands scored for mini exon RFLP per strain and per 
enzyme. 

Enz~me 
Strain BstUl efol Haelll MSl2.1 TOTAL M* 3 3 4 3 13 A* 2 2 2 4 10 

T1 3 3 2 4 12 
C3 4 4 3 2 15 
C6 4 4 3 2 13 

C13 4 4 3 2 13 
C17 4 4 3 2 13 
C20 4 4 3 2 13 

1* 5 5 3 2 13 
13 4 4 3 2 13 
14 6 6 3 2 15 

116 4 4 3 4 13 
117 4 4 4 2 17 
125 7 6 4 4 15 
0* 4 4 4 3 21 
01 10 7 9 4 23 
02 4 4 3 3 15 
03 4 4 3 3 30 
04 4 4 4 3 14 

04a 4 4 3 3 14 
05 10 11 7 4 15 

06a 6 5 5 3 14 
06b 6 5 5 3 32 
07 6 5 5 3 19 

08a 6 5 5 3 19 
08b 6 5 5 3 19 
09 10 9 5 4 19 
09 9 9 8 4 19 

010 9 9 8 4 28 
011 10 9 5 4 30 
012 10 9 5 4 28 
013 7 9 7 4 28 
014 10 9 5 4 27 
015 4 4 5 3 28 
016 4 5 4 3 16 
017 11 10 4 4 16 
018 9 11 8 4 29 
019 10 10 8 4 32 
020 5 6 5 4 32 
021 4 4 4 3 20 
022 0 7 5 4 15 
024 4 7 5 4 20 
025 4 5 4 3 16 
026 4 5 4 3 16 
027 4 7 4 3 18 
028 4 7 5 4 20 
029 4 4 5 4 17 
030 4 5 4 3 16 
032 4 6 5 3 18 
033 4 7 5 3 19 
034 4 7 5 3 19 
035 6 8 5 4 14 

A - L. aethiopica; C - L. chagasi; 0 - L. donovani; I - L. infantum; M - L. major, T - L. 

tropica. * WHO reference strains. a and b are, respectively, larger and shorter mini-

exon amplification products. 
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A lui 87 1 1 
C12 C13 C17C20 1 13 16 
1111111 
0000000 
1111111 
1111111 
0000000 
1111111 
0000000 
1111111 

Strains 
116 117 126 131 133 D D1 D2 D3 D4 D5 D7 D8 D9 D10 

145 0 0 
160 1 1 
180 1 1 
190 0 0 
245 1 1 
305 0 0 
310 1 1 

BstUl 65 0 0 
70 1 1 
75 1 1 
80 1 1 
160 1 1 
190 1 1 
200 1 1 
245 1 1 
265 1 1 
320 1 1 
330 0 0 
396 0 0 

Cfol 60 1 1 
65 1 1 
70 1 1 
77 1 1 
125 1 1 
140 1 1 
145 0 0 
148 0 0 
149 1 1 
151 0 0 
160 1 1 
180 1 1 
185 1 1 
201 0 0 
320 1 1 
455 0 0 
506 0 0 

1 1 1 1 
o 0 0 0 
1 1 1 0 
1 1 1 0 
000 1 
1 1 1 1 
000 1 
1 1 1 0 

00000000001 
11111111111 
1111111111 1 

o 
1 
1 

111111 111 
111111 111 
111111 111 

1 1 
1 1 
1 1 
1 0 

1111111010 
0000000001 
1000000001 
1000000000 
011 111111 
111 111111 
0101111111 
1010000000 
01001 01 0 
11111 11 1 
1001111110 
1010001000 

111111111 
111111111 
1111 1111 
111111111 
000000000 
000000000 

1 
1 
1 
1 
o o 1 

000 

001 1 000 0 0 
1 1 111 1 1 1 1 
001 1 000 0 0 
111111111 
111111111 
o 0 000 0 0 0 1 
111111110 
110011111 

11 1111 1 
11 1111 1 
1111111 1 

1 
1 
1 

1111111 11 
1111111 11 

1 
1 
1 
1 
1 

11111111111 
00000000000 
00000000000 
11111111110 
00000000001 
11111111111 
11111111111 
11111111110 
00000000000 
11111111110 
00000000000 
00000000001 

1 
1 
1 
1 
1 

1 1 111 1 1 1 1 
011100000 
1 1 111 1 1 1 
1 1 111 1 1 1 
111111111 

1001100000 
0000000000 
0110000110 
1000011000 
0001100001 
1111111111 
1111111111 
1000000000 
0111111111 
1101110110 
0000000001 
0010001000 

1 
o 
o 
1 
o 

o 
1 
o 
o 
o 
1 
o 
1 
1 
1 
o 
1 
1 
1 
1 
1 
1 
o 
o 
o 
o 
1 
1 
1 
o 
1 
o 
1 
o 

Haelll 65 1 1 1 1 11111111111111111111 
00000000000100010000 
00000000001000101111 
11111111111111111111 
11111111010000000000 
00000000100110000000 

100 0 0 0 0 
120 0 0 0 0 
140 1 1 1 1 
145 1 1 1 1 
147 0 0 0 0 
180 1 1 1 1 
245 1 1 1 1 
250 1 1 1 1 

Mspl 125 1 1 1 1 
280 0 0 0 0 
2900000 
3001111 
517 0 0 0 0 
875 1 1 1 1 

Rsal 98 1 1 1 1 
137 1 1 1 1 
147 0 0 0 0 

Taql 95 1 1 1 1 
201 0 0 0 0 
210 0 0 0 0 
2200000 
2251111 
2300000 
315 0 0 0 0 
332 1 1 1 1 
345 1 1 1 1 

11111111111 11111111 
11111111 11 11111111 
11111111 11111111111 
11111111111111111111 
00000000000000000011 
00000000001100111111 
11111111111100111100 
00000000001111111111 
11111111110000000000 
11111111111111111111 
11111111010000000000 
000000001011111 0000 
11111111111111111111 
00000000101000011100 
00000000000011010001 
00000000000000000000 
11111110010100000000 
00000000000000000000 
00000000001100111110 
11111 11 111 11 101 
11111111110011000001 

total 40 40 40 40 40 40 40 40 40 40 40 39 38 40 36 38 37 37 36 38 35 36 33 36 
(continues next page) 
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(continuation of table) 

Size 
Strains Enz. bp 011012013014015016017018019020 021 022 024025026027028029030 031 032033034035 

A lui 87 1 1 1 1 1 1 1 1 1 1 a 1 1 1 1 a a 1 1 a a a a 1 145 1 1 1 1 a a a a a 1 a a a a a a a 1 a a a a a a 160 1 1 1 1 a a a a a 1 a a a a 1 a a 1 a a a a a a 
180 1 a a 1 a a a a a 1 a a a a a a a a a a a a a a 
190 a 1 a a 1 1 1 1 1 a 1 1 1 1 1 1 1 1 1 1 1 1 1 
245 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
305 a 1 a a 1 1 1 a a a 1 1 a 1 a a a a a a a a 1 1 
310 1 a 1 1 a a a 1 1 1 a a 1 a 1 1 1 1 1 1 1 1 a a 

BstUl 65 a a a a 1 1 a a a a 1 a a 1 a 1 a a 1 a a a a 
70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
75 a a a a 1 1 1 1 1 a 1 1 1 1 1 1 1 a 1 1 a 1 1 1 
80 a a a a a a 1 1 1 a a 1 1 1 a a 1 a 1 a a 1 1 1 
160 a a a a 1 1 a a a a 1 a a 1 a 1 a a 1 1 a a a a 
190 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
200 a a a a 1 1 a a a a 1 a a 1 a 1 a a 1 1 a a a a 
245 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
320 1 1 1 1 a a a a a 1 a a a a a a a 1 a a 1 a a a 
330 a a a a 1 1 1 1 1 a 1 1 1 1 1 a 1 1 a 1 1 1 
396 1 1 1 1 a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

etol 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
65 1 1 1 1 1 1 a a a 1 1 a a 1 1 1 a 1 1 1 a a a a 
70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
125 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
140 a a a a 1 1 a a a a 1 a a 1 a 1 a a 1 1 a a a a 
145 a a a a a a a a a a a 1 a a a a a a a a a a a a 
148 a a a a a a 1 1 1 a a a 1 a 1 a 1 a a a a 1 1 1 
149 1 a a 1 1 a a a a 1 a a a a a a a a a a a a a a 
151 a 1 1 a a 1 a a a a 1 a a 1 a 1 a 1 1 1 1 a a a 
160 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
180 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
185 a a a a a a a a a a a a a a a a a a a a a a a a 
201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
320 a a a a 1 1 a a a a 1 a a 1 1 1 a a 1 1 a a a a 
455 1 1 1 1 a a a a a 1 a a a a a a a 1 a a 1 a a a 
506 a a a a a a 1 1 1 a a 1 1 a a a 1 a a a a 1 1 1 

Haelll 65 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
100 a a a a a a 1 1 1 a a 1 1 a a a 1 a a a a 1 1 1 
120 1 1 1 1 a a a a a 1 a a a a 1 a a 1 a a a a a 
140 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
145 a a a a a a a a a a a a a a a a a a a a a a a a 
147 a a a a 1 1 a a a a 1 a a 1 a 1 a a 1 1 a a a a 
180 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
245 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
250 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Mspl 125 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
280 1 1 1 1 a a a a a 1 a a a a a a a 1 a a 1 a a a 
290 1 1 1 1 a a 1 1 1 1 a 1 1 a 1 a 1 1 a a 1 1 1 1 
300 a a a a 1 1 1 1 1 a 1 1 1 1 1 a 1 a 1 1 a 1 1 1 
517 1 1 1 1 a a 1 1 1 1 a 1 1 a 1 1 1 1 a a 1 1 1 1 
875 a a a a 1 1 a a a a 1 a a 1 a 1 a a 1 1 a a a a 

Rsal 98 1 1 1 1 1 a 1 1 1 1 a 1 1 1 1 1 1 1 1 1 1 1 1 1 
137 a a a a a a a a a a a a a a a a a a a a a a a a 
147 a a a a a 1 1 a a 1 a 1 1 1 a a 1 1 a 1 1 a 

Taql 95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
201 a a a a 1 a a a a a a a a a a a a a a a a a a a 
210 1 a 1 1 a 1 a 1 1 1 a 1 a 1 1 1 a a 1 1 a a 1 1 
220 a a a a a a 1 a a a 1 a a a a a a a a a 1 a a a 
225 a a a a a a a a a a a 1 a a a a 1 1 a a a 1 a a 
230 a a a a a a a a a a a a 1 a a a a a a a a a a a 
315 a a a a a a 1 1 1 a a 1 a a a a a a a 1 
332 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
345 1 a 1 1 1 1 a a a 1 1 a a 1 1 1 a 1 1 1 1 a a a 

Total 37 35 36 37 39 38 37 37 37 37 37 38 36 41 38 39 35 37 41 39 33 36 36 36 
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Table XLVII - Total number of fragments scored per strain and per enzyme for 

ITG/CS RFLP. 

Strains 
Enz. C C2 C12 C13 C17 C20 I 13 16 116 117 126 131 133 0 01 02 03 D4 05 07 08 09 010 
A lui 5 5 5 5 5 5 5 5 5 5 5 5 4 5 4 4 4 4 4 4 3 4 5 5 
BstUl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 7 7 8 9 8 8 8 8 6 6 
etol 11 11 11 11 11 11 11 11 11 11 11 11 10 11 9 10 11 11 9 9 9 9 9 10 

Haem 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 5 6 6 6 6 6 6 
Mspl 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 2 2 4 4 4 4 4 4 
Rsal 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 

Taql 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 3 5 4 4 2 4 

Enz. 011 012 013 014 015 01601 018019020021022024 025 026 027 028029030031032033034035 
A lui 6 6 5 6 4 4 4 4 4 6 3 4 4 4 5 3 3 6 4 3 3 3 3 4 
BstUl 6 6 6 6 9 10 8 8 8 6 10 8 8 11 7 10 8 6 11 10 6 8 8 8 

etol 10 10 10 10 11 11 9 9 9 10 11 9 9 11 10 11 9 10 11 11 9 9 9 9 

Haelll 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

Mspl 4 4 4 4 3 3 4 4 4 4 3 4 4 3 4 3 4 4 3 3 4 4 4 4 

Rsal 1 1 1 1 2 0 2 2 2 1 0 2 1 2 2 2 1 1 2 2 1 2 2 1 

Taql 4 2 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 
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Strains 
Enz. bp C C2 C6 C13 C17 C20 13 14 116 117 125 126 131 133 0 A lui 60 1 

170 1 
175 a 
201 1 
250 

BstUl 80 a 
87 1 
90 1 
103 0 
105 1 
113 1 
120 a 
126 a 
130 a 
180 1 
270 1 

Cfal 70 a 
72 a 
75 0 
78 1 
80 a 
85 1 
90 1 
100 1 
110 
124 0 
127 0 
135 1 

Haelll 60 1 
127 1 
150 1 
162 1 
207 a 
220 1 
240 1 

Mspl 122 1 
142 1 
146 0 
150 a 
154 a 
255 0 
260 a 
265 a 
270 a 
280 a 
298 1 
315 

Rsal 115 1 
510 a 
524 1 
737 a 
768 1 

Taql 90 1 
95 1 

Total 31 
A lui 4 
BstUl 6 
Cfal 6 
Haelll 6 
Mspl 4 
Rsal 3 
Taql 2 

1 
1 
a 

a 
1 
1 
a 
1 

a 
a 
a 
1 
1 
a 
a 
o 
1 
a 
1 
1 
1 
1 
a 
a 
1 

1 
a 
1 
1 

1 
1 
a 
a 
a 
o 
a 
o 
a 
a 

1 
a 

a 
1 

1 1 1 1 1 
1 1 1 1 1 
a a a a a 

1 

a 
1 
1 
a 
1 
1 
a 
a 
a 

a 
a 
a 
1 
a 

1 
a 
o 
1 

1 
1 
a 
1 
1 

1 
1 
a 
a 
o 
o 
o 
a 
a 
a 

1 
a 

a 
1 

a 
1 
1 
a 

a 
o 
a 
1 
1 

o 
o 
o 
1 
a 
1 
1 

a 
a 

1 
1 
o 

1 
1 
a 
a 
o 
a 
a 
a 
a 
a 

1 

1 
a 

o 
1 

1 
1 

a 
1 
1 
a 

1 
1 1 
a a 
1 1 

1 1 
a 0 

1 1 
1 1 

a 1 0 
000 
a a 0 

o 
o 

1 
1 1 
a 0 
o 0 

1 
o 0 

1 a 
a 

a a 0 

1 
1 
1 
a a 0 
000 
1 

1 
1 
1 
1 
a 

1 
1 
a 

1 
1 
1 
1 

1 
1 
1 
1 

a a 

1 
1 

1 

1 
1 

o a 
010 
a a 0 
a a a 
000 
a a a 
a a a 
a 
1 
1 

1 
a 
1 
a 

1 
1 

a a 

1 1 
a a 
1 1 
a a 

01 02 03 D4 05 06 07 08 09 
1 1 1 1 1 1 1 1 111111 11 
1 1 
a a 

1111111 
a a a 0000 

111111 11 
a a a a a a a a a 

o 0 a 0 
1 1 1 1 

1 1111111111 
111111 111111 

00000 00010000 
1111 11111111 

1 1 11 11111111 
a 0 0000001 111111 0 
1 

o 0 a 0 
o 0 a 0 
o 0 a 0 
1 1 

1 
o 0 
o 0 
o 0 
1 
o a 

o 0 
o 0 

1 
1 

1 1 
o 0 

1 

1 
1 

1 
1 

o 0 
o a 
o 0 
o a 
o a 
o 0 
a a 
a a 

1 
1 

1 1 
a a 
1 
a a 

1 
1 

1 

o 0 
o 0 
o 0 
1 
a a 

1 1 
o 0 
o 0 

1 
1 

o 0 

1 
1 1 
o a 
a a 
a 0 
o a 
o 0 
o 0 
o a 
a a 

1 
a 

a 

1 
a 
1 
a 
1 

1 
1 

1 1 1 1 1 1 
1 1111111 1 

00000100010000 
000000010 110 
o a 0100000 0000 

1 11111111111 
11 11111111111 
000 00000000000 
00 00000000001 
00 0011000001 
1 0000000001 
0000 1111 110 

111111 111 
1 1 11 111 
1 1 1 1 1 

1 1 1 1 
00000100010000 
0000000101110 

11111111111 
1 1 11 1111 
1 1 11 1111 

11 1111 11111 
1111111 1 1 
000 00000000000 

1 1 1 1 
1 1 1 1 

11111111111111 
11110000000001 
00000011000000 
a 01 000000000 
0000 1001 1110 
000 00000000001 
a 0 000000000001 
000000000011 0 
a a a 00000000000 
o a 000000000000 
1 1 1 1 
1 1 1 1 1 1 
111111111 
000001000 

111 
1 1 1 1 
a 000 

11 11011011 
000 00000000000 

1 
1 

1 1 1 1 1 1 
11111111111 
11111111111 

31 31 31 31 32 31 31 31 31 31 31 31 34 34 34 35 33 33 34 36 35 35 35 36 
444444444444444444444444 
6 6 6 6 7 6 6 6 6 6 6 6 6 7 8 9 7 7 8 10 8 8 8 6 
666656666666877777777778 
666666666666666666666666 
444454444444554444445557 
333333333333333333333333 
222222222222222222222222 
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(continuation of table) 

Size 
Enz. bp 010011012013014015016017 Strains 

018019020021022024025026027028029030031032033034035 
Alul 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

170 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ 1 1 ~ ~ 1 1 
1~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
201 1 1 0 0 0 0 0 0 0 0 0 0 0 

250 1 1 1 1 1 
1 1 1 1 1 1 1 1 

BstUl 80 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 
87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

o 000 0 

90 1 1 1 1 1 1 
103 0 0 0 0 0 1 1 1 0 0 1 
105 1 1 1 1 1 1 1 1 1 
113 1 1 1 1 1 1 1 1 1 

120 0 0 0 0 0 1 1 1 0 0 1 1 1 
1~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
130 0 0 0 0 0 1 1 0 0 0 0 
180 1 1 1 1 1 1 1 1 1 
270 1 1 1 1 1 1 1 1 1 

1 
1 

1 
o 

1 1 
1 
o 

1 1 1 
o 000 1 
1 0 0 0 
o 000 0 

1 1 

1 
o 
1 
1 

1 1 
o 0 

o 
1 

Ctol 70 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 
72 0 1 1 0 1 0 0 0 0 0 0 0 1 

1 
o 
o 

o 0 
1 1 

1 1 1 1 1 
000 0 1 1 

75 0 1 1 0 1 0 0 0 
78 1 1 1 0 0 0 0 0 

1 0 
o 0 

1 1 

8000000 000 
85 1 

o 0 
1 1 o 

o 0 
1 

90111111 1 
100 1 1 1 1 1 1 1 1 1 

o 
1 

1 

o 0 
o 

110 1 1 1 1 1 1 1 1 1 1 

1 o 0 
o 0 

o 0 0 
1 

124 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 
127 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
135 1 1 1 1 1 

Haelll 60 1 1 1 1 1 1 1 1 1 
127 1 1 1 1 1 1 1 
150 1 1 1 

162 1 1 1 1 1 1 1 1 1 1 
207 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 
2201 11 1 1 
240 1 1 1 1 1 1 1 1 1 1 1 

Mspl 122 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
142 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 
1~ 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
150 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
154 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 
2550100000000000000000000000 
2600100011000000000000000000 
26500000000000100 0100011000 
270 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
2800000000000000000000000 00 
298111 11 1 1 1 
315 1 1 1 1 1 1 1 

Rsal 115 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
510 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 
524 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
737 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 
768 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 

Taql 90 1 1 1 1 1 1 1 1 1 1 1 1 
95111 1111 1 11 11111 1 

Total 
A lui 4444444444444444444444444 
BstUl 6 6 6 6 6 9 9 10 10 9 6 7 9 10 9 8 9 10 7 7 7 6 9 10 8 
Cfol 7887888866888988798888987 
Haelll 6666677666676676766776666 

Mspl 4754577544574476755576545 
Rsal 3 3 3 3 333 3 3 3 3 3 3 333 3 3 3 333 3 3 3 
Taql 222 2 2 2 2 2 2 2 2 2 2 222 2 2 2 2 2 2 2 2 2 
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Table XXXII - Group assignment of L. donovani complex strains. 

Code WHO code Zym MspC RAPO ITS ITGI RFLP Group 
LON MON ILM ICS 

02 MHOM/KE/1967/MRC(L)3 - - 3 A1 A AB A A 03 MHOM/KE/1973/MRC74 51 - 1 A2 A AB A A A 015 MHOM/ET/1984/Addis 142 - - 3 - E AB A A (kenya) 016 MHOM/KE/1980/Ndandu 4A 44 - 3 A3 ® AB An A ILM 3 021 IMARlKE/1962/LRC-L57 44 37 3 A4 A AB An A 025 MCAN/KE/OOOO/02 45 - 8 A4 A AB An A Kenyal 027 MHOM/ET/OOOO/Ayele 8 56 - 3 AS A AB An A IEthiopia 030 MHOM/KE/OOOO/Neal R1 56 - 3 - A AB An A 031 MHOM/KE/1975/Mutinga H9 56 32 3 A1 - AB An -
0 MHOMIIN/1980/008t 41 2 1 B1 B AB B B 
04 MHOM/IN/1982/Patna 1 t 41 - 1 B B AB B B B 06 MHOM/IN/1977/Chowd Xt - - 1 B B AB - (india) -
07 MHOM/IN/1979/STL 1-79t - - 1 B B AB B B ILM 1 
08 MHOM/IN/1982/Nandi 1 t 41 - 1 - - AB B B India 
01 MHOM/ET/1967/HU3(LV9) 46 18 5 C GCQ) AB C C 
05 MMERlIRl1996/Mesh 17 50 - 6 - Fill) C C C C 
017 MHOM/LB/1984/Saiti 4 - - 5 C U C C C (sudan) 
018 MHOM/SO/OOOO/Khartoum 46 18 5 C - C C C ILM 
019 MHOM/SO/1985/A22 - - 7 C GCQ) C C C 5/617 
022 MARV/SO/1962/LRC-L64 48 - 7 - UCQ) C C -
024 MCAN/IT/1976/00ra 50 - 6 C FCID C C C Sudan 
028 MHOM/ET/1972/Gebre 1 * 50 82 6 C UCQ) C C C 
033 MHOM/SD/1982/Giiani 48 30 7 C C C C C L. archi-
034 MHOM/PT/1992/1MT 180 - 18 5 C C C C C baldi? 
035 ISERlPT/1993/1MT 188 - - 5 C C C C -
I MHOM/TU/1980llPT 1 49 1 9 0 0 0 0 0 
C MHOM/BRl1974/PP75a 

9 0 0 0 0 0 0 
14 MHOM/ES/1987/Lombardi - - 11 0 0 0 - - (infantile) 
116 MHOM/CN/1980/Strain A - 34 9 0 0 0 0 0 ILM 9 
117 MHOM/CY/1963/L53 - - 12 0 0 0 0 0 (ILM 11) 
125 IARI/PT/1989/1MT 171 - 24 11 0 0 0 - - L. infan-
126 IARIIPT/1989/1MT 172 - 24 11 0 0 0 0 0 tum 
131 MHOM/MT/1985/Buck 49 78 11 0 0 0 A -
09 MHOM/SAl1987NL23 - - 10 - - En E E 
010 MHOM/SAl1987NL29 - - 10 E E En E E E 
011 MHOM/SAl1987 NL6 - - 10 - E En E E (red sea) 
012 MHOM/ET/OOOO/Ayele 5 52 - 10 E E E E E ILM 10 
013 MHOM/ET/OOOO/Hussen 42 - 10 E E En E E 
014 MHOM/ET/1982/Bekele 42 - 10 - E E E E Ethiopia/ 

020 MHOM/SO/1987/UGX- - - 10 - E En E E /Saudi 
marrow Arabia 

029 MHOM/ET/1984/Addis 164 - 83 10 E U® En E E 

032 MHOM/SAl1981/Jeddah KA 42 31 10 - C Eh E E 

026 MHOM/CN/OOOOlWangjie 1 - 35 16 - U® En F (E) F? 
(china) 

C1 MHOM/PAl1980IWR341 14 - E? - - -- - -
MCAN/IQ/1981/Sukkar 2 43 13 1 U - - - -023 -

In parenthesIs are external affiliations to groups. U IS ungrouped and In parenthesIs, 

underlined, are majority consensus groups. * - L. archibaldi. In bold are strains 

suggested here as reference strains for their group. h are putative heterozygotes. a L. 

infantum (L. chagas/) alternative reference strain. 
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