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Background: When making international comparisons of cancer survival, it is essential reported differences are real effects and
not an artefact of potential errors in cancer registration.

Methods: We use simulation methods to assess the impact of various cancer registration errors on commonly reported outcomes
of cancer survival (1-, and 5-year relative survival estimates). We draw two samples of patients diagnosed with cancer from one
population and introduce potential registration errors in one of the sample populations under various assumptions. We
investigate the effect of errors individually as well as the composite effect when combined with other registration errors.

Results: The results indicate that high levels of cancer registration errors are necessary to make a noticeable effect on commonly
reported metrics of cancer survival. Differences of up to 3 percentage units in the 5-year relative survival proportion are seen under
plausible scenarios.

Conclusion: This study is a comprehensive assessment of cancer registration errors and the consequent impact on commonly
reported survival statistics. We show that under plausible scenarios, it is very unlikely that these biases are large enough to explain
the variation in international comparisons of cancer survival. Registration errors will also impact on other metrics reported from
registry data, such as incidence.

Comparisons of cancer survival statistics between countries,
regions and differing groups within a given population (e.g.
socio-economic) are frequently performed. International
comparisons of cancer survival statistics have become increasingly
common (Sant et al, 2009, Møller et al, 2010, Coleman
et al, 2011). It is important when making these comparisons
and drawing conclusions that affect health policies, the
differences that are reported are real effects and not artefacts of
differences in data collection processes and errors in cancer
registration.

Cancer registration is important for measuring the burden of
cancer in a population. Many countries around the world have
established cancer registries to record and collect data on incidence
of cancer. However, the process of cancer registration varies from
country to country and the various processes are each susceptible

to the introduction of potential errors, which may in turn bias the
survival measures.

One possible error relating to cancer registration is to miss the
earliest possible date that the cancer registration ‘could have been
made’ (see the Definition in Box 1 from the United Kingdom
association of cancer registries (UKARC, 2011)). If the cancer
registration process in a given country allows registrations to be
recorded from a variety of sources, it is possible that the
registration may be made at a later point in time than the
objective date of tissue diagnosis. The registration date could then
be recorded as, for instance; a date of a follow-up visit for the
treatment or assessment of the cancer or a date of recurrence of the
disease. The key point is that the consequent survival time that
would be recorded for this patient will be too short. In some cases,
a cancer patient may be completely missed and thus omitted from
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the cancer register. This will have important implications in the
incidence statistics that are reported from the registry. It may also
be the case that those patients that are missed entirely are different
in some way in terms of survival outcomes to those that are caught
by the registration process. Under this scenario, the survival
estimates obtained from the incomplete data will also be biased.

Robinson et al (2007) investigated the effect of incomplete
cancer registration and the presence of death certificate only
(DCO) cases on the estimates of 5-year survival. The authors made
adjustments to the UK Thames Cancer Registry data under
plausible assumptions based on the DCO proportions and the
estimates of the incompleteness of the registry based on the
method of Bullard et al (2000). The authors conclude that it is
important to take differences in DCO proportions and varying
levels of completeness into account when making comparisons
between populations.

A simulation to address questions over errors in the UK cancer
registry data has recently been conducted (Woods et al, 2011) in
response to a Beral and Peto editorial (Beral and Peto, 2010).
Adjustments were made to the UK cancer registry data under two
key scenarios based on the major criticisms of the UK data given in
the editorial. First, the UK registry data was supplemented with
long-term survivors of varying proportions to assess the impact on
1-, and 5-year relative survival. Second, a proportion of the patients
had their survival time artificially inflated in order to counter the
assumption that for some patients the date of recurrence is
recorded rather than the original date of diagnosis. Again, the
impact on 1 or 5-year relative survival was considered. The authors
conclude that massively unrealistic errors would be necessary to
reproduce the differences that are seen in international compar-
isons with, for instance, Sweden.

Another recent publication (Møller et al, 2011) used the
Hospital Episode Statistics data from England to assess the
completeness of case ascertainment achieved by the UK cancer
registries. The analysis conducted was a response to the criticisms
levelled at the UK data by the BMJ editorial by Beral and Peto
(2010). The paper concludes that survival outcomes are biased by
incomplete case ascertainment in the UK; however, this bias is of
trivial magnitude.

If the date is properly recorded at diagnosis for a given patient, it
is common for a cancer registry to link information with a national
death register in order to ascertain whether the patient is still alive.
When a patient dies, the link to the death register then provides

information on how long the patient lived after their cancer
registration; this is the recorded survival time, which is a
commonly used measure for evaluating cancer treatment and care.
If the link to the death register fails, this results in the patient being
recorded as still alive beyond their date of death. Failure to correct
this error results in inflated survival times for the patients in
question. Brenner and Hakulinen (2009) performed a study based
on failure to ascertain when a registered case has died comparing
overall and relative survival for a range of scenarios. They observe
that if deaths are missed then the effect of long-term survival can
be quite substantial, particularly if the cancer type under study is
associated with a poor prognosis.

Often registries want to directly compare their obtained outcome
measures with those of other registries (either nationally or
internationally). For this reason, estimates of relative survival are
often favoured; these estimates are intended to be independent of the
background risk of death in a given population while also not relying
on accurate cause of death information. If the data quality is
different between two compared populations, then this may in turn
lead to difficulty in making a fair comparison between the estimates.
Wide-scale international comparisons of relative survival statistics
are regularly undertaken (Sant et al, 2009, Coleman et al, 2011).

In this paper, we report a study using entirely simulated data
based on real-life scenarios. Using simulation methods ensures that
the true answer is known and provides the best method for
quantifying and understanding bias. It is also possible to assess
which of the potential errors has the largest impact on the survival
outcome measures that are commonly reported by cancer
registries. Starting from completely simulated data rather than
making alterations to existing registry data allows a true assessment
of the impact of the various errors that are introduced and ensures
that there is an appropriate comparison to the ‘perfect’ cancer
registry. The fact that we rely on entirely simulated data also means
that it is possible to investigate the effect of each registration error
individually as well as the composite effect when combined with
other errors in the registration process.

MATERIALS AND METHODS

Outline of simulation. The simulation involves a comparison
between a ‘perfect’ cancer registry (Population 1) and a registry
that suffers from various cancer registration errors (Population 2).
The simulation strategy is outlined below (further technical details
of the simulation strategy are contained in the Appendix):

� Draw two samples of patients diagnosed with cancer of equal
size from the same underlying population. A survival time is
generated for each patient that is dependent on age and that
accounts for competing risk mortality from other causes.

� Adjust one of the sample populations (Population 2) according
to the error process using realistic parameter values (see
Figure 1); e.g., percentage of individuals missed at diagnosis.

� Compare the survival of the adjusted population to the sample
with no adjustment in terms of key survival quantities, i.e. 1-,
and 5-year age-standardised relative survival.

� On the basis that the effects of the various biases may vary
over follow-up time, comparisons can also be made by
calculating a time-dependent excess hazard ratio (Population 2
vs Population 1) to directly compare the two populations.

To ensure a comparison that is valid across a range of cancer
types, three different true populations will be used with varying
levels of relative survival. The survival of the true population was
varied by changing the parameter values in the data generation
process of the survival distribution according to the method set out

Box 1. Definition—Date of Diagnosis.

The date of the first event (of the six listed below) to occur chronologically

should be chosen as the incidence date. If an event of higher priority occurs

within 3 months of the date initially chosen, the date of the higher priority

event should take precedence.

Order of declining priority:

(1) Date of first histological or cytological confirmation of this malignancy

(with the exception of histology or cytology at autopsy). This date should

be in the following order:

(a) date when the specimen was taken

(b) or date of receipt by the pathologist

(c) or date of the pathology report

(2) Date of admission to hospital because of this malignancy.

(3) When evaluated at an outpatient clinic only: date of first consultation at

the outpatient clinic because of this malignancy.

(4) Date of diagnosis, other than (1), (2) or (3).

(5) Date of death, if no information is available other than the fact that the

patient has died because of malignancy.

(6) Date of death, if the malignancy is discovered at autopsy.
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by Bender et al (2005). Full details of the data generation process
are given in the Appendix.

Cancer registration errors. Various forms of cancer registration
error were considered as part of the simulation. However, each of
the simulated errors stem from the initial ‘miss’ of the first true
date of diagnosis (point (1) of Figure 1). This date has an
important role in the simulation and will be defined as the date at
which, under normal circumstances (following the rules given in
Box 1), a cancer registration would be made. This differs from the
onset of the disease and provides an achievable date of registration
for each patient that may well be ‘missed’ due to various factors
associated with how cancers are registered. Two assumptions can
be made further to having missed the initial date of diagnosis (see
Figure 1). Either, the patient is registered at a later date (a delayed
cancer registration—see point (3) of Figure 1), or the cancer
patient dies having not had a cancer registration made. For those
patients that have a delayed cancer registration, we assume that the
delayed date of diagnosis is a maximum of 2 years after the true
date of diagnosis. This means that those patients with a survival
time of 42 years had a uniform chance of a recorded date of
diagnosis across the first 2 years of their follow-up. For those
patients who died within the first 2 years, the recorded date of
diagnosis could occur uniformly across their follow-up time.

Death certificate-initiated (DCI) cases (see point (2) of Figure 1)
are often subject to tracing back through medical records in order
to establish the date of diagnosis if that patient is not already in the
cancer register. We will refer to this process as traceback and it will
be assumed for a large proportion of the conducted simulations. As

we simulate cause of death (see Appendix), we know what each
simulated individual died from. Therefore, those patients that are
missed initially, but who die from their cancer can be assumed to
be subject to a successful traceback procedure, or there could be
assumed to be an error in a proportion of these cases where a
misspecification of the true date of diagnosis occurs instead.

Figure 1 shows a flow chart that explains how the introduction of
the error process was undertaken for Population 2. Varying
parameter values were chosen for the likelihood of any given patient
progressing down any arm of the flow chart. The parameter values
that can be varied and the range of values that were used are
detailed in the list below. The numberings in the list given below are
related to those given at the junctures of the flow chart in Figure 1.

Population characteristics

� Shape and scale parameter for Weibull:

– Low relative survival (l¼ 1, g¼ 0.5), medium relative
survival (l¼ 0.5, g¼ 0.5), high relative survival
(l¼ 0.02, g¼ 0.5).

� Effect of age (p44, 45–54, 55–64, 65–74, X75):

– Excess hazard ratio values: 0.8, 0.9, 1, 1.2, 1.4,
respectively

Registration errors

(1) Initial miss proportion

� Percentage missed at diagnosis:
– 10%, 20%, 30%

Cancer
diagnosis

Cancer
registration

from
diagnosis?

Yes

Patient still
alive at
analysis

Patient dies
before

analysis date.

Linked to
death register

at patients’
date of death.

No link to
death register

Record later
date-wrong

date.

Later date of
diagnosis.

Miss later
date as well.

(2)

Caught
registration at

death. DCI.

Missed
entirely from

register-is
cancer on DC?

(3)

No

No other date
of diagnosis.

Patient still
alive at

analysis-not
in register

Patient dies
before

analysis date.

If yes, only need
linkage to death
register. If no,
when will it be

recorded,
if at all?

Potential to
miss patients

altogether-what
about long-term
survivors who

are
‘missed’?

Can trace-back
from death

certificates be
used to find

patients missed
at diagnosis?

DCO (cannot be
included in
analyses).

Date of
recurrence

found instead.

Correct date
of diagnosis

found.

Is the cancer
diagnosis

recorded at the
registry at the
first potential

date of
diagnosis?

(1)

Figure 1. Flow chart showing the process used for the simulation.
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(2) Traceback

� Is DCI traceback allowed?
– Yes, No

� Percentage of DCI cases that find the true date:
– 90%, 95%, 100%

� DCI: If not true date, what date?
– Uniform over 2 out of 3 years.

(3) Delayed diagnosis

� Percentage of patients who have a second chance of
diagnosis:
– 0%, 85%, 90%, 100%

� When is the second chance of diagnosis recorded?
– Restricted to a maximum of 2 years.

The flow chart indicates the parameters that need to be set in
order to simulate the error process for the data. The shape and
scale parameters selected for the three Weibull distributions
represent three cancer-relative survival curves. The high survival
curve has an age-standardised 5-year relative survival estimate of
95.4%, the medium survival curve has an age-standardised value of
5-year relative survival of 31.6%, whereas the low survival curve
has an age-standardised 5-year relative survival value of 10.4%.

A number of different scenarios for the values contained in
Figure 1 were considered. First, to understand the direction of the
respective biases, the errors were introduced one at a time (firstly
error (1) alone, then error (1) in combination with error (2), and
then error (1) in combination with error (3)). Following this,
plausible levels of error were applied to attempt to understand the
joint effect of all of the biases; some of the biases cancel each other
out at certain points in follow-up, whereas others act in the same
direction causing a more severely biased estimate of the outcome
measures of interest. For the plausible scenarios, we used two sets
of estimates that we felt were suitable for the UK cancer registry

data. In scenario (A), we assumed that 15% of patients missed the
true date of diagnosis, and that 85% of those patients who missed
this date had a delayed cancer diagnosis by up to a value of 2 years.
For those patients that died of cancer in this scenario before being
registered, we allowed them to be traced back from their death
certificates; however, in 10% of these cases we assumed that the
date was mis-specified. In scenario (B), we assumed that 30% of
patients missed the true date of diagnosis, and that 90% of those
patients who missed this date had a delayed cancer diagnosis by up
to a value of 2 years. For those patients that died of cancer in this
scenario before being registered, we allowed them to be traced back
from their death certificates; however, in 5% of these cases we
assumed that the date was mis-specified.

Model fit and methods of comparison. It is likely that the biases
introduced through the cancer registration errors have a varying
impact over the time since diagnosis. Assuming a proportional effect
for the comparison between the populations masks the time-
dependent nature of the effect. A time-dependent excess mortality
rate ratio between the populations informs where in follow-up the
various biases have the largest impact. Therefore, flexible parametric
excess mortality models (Royston and Parmar, 2002, Royston and
Lambert, 2011) are used as the modelling framework due to the ease
in which the model can incorporate time-dependent effects. We use
a common lifetable for populations 1 and 2 to obtain the relative
survival estimates. Simulation techniques allow a direct comparison
with a ‘true’, unbiased population, which can highlight at which
point in follow-up the errors are likely to have the largest impact.
This can then be translated to a comparison between the standard
outcome measures that are reported by the cancer registries (1-, and
5-year relative survival).

The overall sample size for the simulations was chosen to be a
cohort of size 25 000 over a 5-year diagnosis period. The
simulations were run 100 times and the average of the excess
mortality rate ratio over time for the 100 simulations will be
reported. All of the analyses were carried out using the statistical
software package Stata (StataCorp, 2011 Sata Statistical Software:
Release 12, College Station, TX: SataCorp LP (2011).
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Figure 2. Combined figure for scenarios. The three subfigures relate to scenarios with 10% missing at diagnosis. The figures show the excess
mortality rate ratio with associated 95% confidence interval comparing Population 2 (with the introduced errors) to Population 1. The plotted
lines are an average over the 100 simulations. (A) The effect with no traceback from DC and no facility for delayed registration. (B) shows the effect
with traceback from DC with no facility for delayed registration. (C) The effect where each patient that is missed initially has a delayed date of
registration within a 2-year period.
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RESULTS

Missed individuals initially, no facility for a delayed date of
diagnosis, no traceback employed; (‘No Traceback’—Error (1)
only). Figure 2A shows the excess mortality rate ratio for the
medium survival scenario comparing the two populations if 10% of
registrations are missed at diagnosis, and there is no facility of
capturing those registrations at a later date (i.e., a 0% probability of
making a diagnosis at a later available date and traceback being
disallowed). The missingness was assigned at random in the
population; this leads to the relative comparison between the two
being unbiased (although there is a small increase in uncertainty). The
likelihood of no information becoming available (later hospital visits,
information on death certificates) is unlikely in a population-based
registration setting. However, this highlights that provided the data is
missing at random, little effect is had when comparing across
populations in terms of the relative effects and the absolute estimates of
relative survival. The incidence statistics will of course still be biased for
the population with the 10% of patients missed at diagnosis.

The ‘No Traceback’ row of Table 1 shows the estimated bias in 1
and 5-year relative survival for three values for the proportion of
individuals who have a missed date of diagnosis (10%, 20% and
30%). The table also contains information on the three different
true populations that have varying severity of disease (labelled low,
medium and high relative survival). There is negligible bias
introduced for the survival estimates even when the proportion of
patients missed in Population 2 is increased to 30% (average
percentage unit bias of � 0.03, 0.02 and � 0.02, respectively, for
the three levels of survival; low, medium and high). If the patients
are missing at random, then this has very little impact on the
estimated survival estimates for the population with an introduced
error structure. These results are in line with the excess mortality
rate ratio represented in Figure 2A, which shows an excess
mortality rate ratio comparison between the two populations over
follow-up that differs little from 1.

Missed individuals initially, no facility for later (delayed)
diagnosis, traceback employed; (‘Traceback’ –Error (1) and (2)
combined). Figure 2B highlights the impact of having a
perfect traceback system from DCI cases in the case where 10%
of initial diagnoses are missed. This can be compared with
Figure 2A where traceback from death certificates was not
employed. The fact that only cancer deaths are introduced when
using the traceback from death certificates introduces a bias when
comparing back to the complete population. It is only possible to
begin the traceback procedure if cancer is mentioned on the death
certificate. This is also likely to be associated with prognosis; with
those who survive a shorter time more likely to have cancer
mentioned on the death certificate. This is accounted for in the
simulation because perfect cause of death information is simulated.
However, in reality cause of death registration errors will occur and
lead to further biases. In addition, the inability to perform the
traceback procedure perfectly could also introduce further biases
for the survival time estimates. However, the traceback system is of
benefit for reducing the bias in the incidence statistics that are
reported by cancer registries.

The ‘Traceback’ row of Table 1 shows the estimates
of the percentage difference in survival between the true
age-standardised values and the average estimated values
for the population that has a proportion of the patients missing
(Pop 2). In these simulations a perfect traceback procedure
has been employed for those patients that died of cancer. This
ensures that those patients that are missed initially but then
die of their cancer, have their correct date of diagnosis recorded,
whereas those patients who do not die of cancer will still be missing
from the register. This introduces a bias in the compared estimates
across the two populations, which is in contrast to the
results displayed in the ‘No Traceback’ row of Table 1. For
example, there is a downward bias for 5-year age-standardised
relative survival of 1.6, 3.5 and 5.3 percentage units, respectively,
for 10%, 20% and 30% of subjects initially missed for the medium
survival scenario.

Table 1. The average percentage unit bias in age-standardised relative survival for Population 2 is given for all scenarios at both 1 and 5 years

Low relative survivala Medium relative survivalb High relative survivalc

Missing at diagnosis Missing at diagnosis Missing at diagnosis

Scenario Years (RS) 10% 20% 30% 10% 20% 30% 10% 20% 30%

No traceback

1 � 0.033 �0.008 �0.030 0.013 0.001 0.015 �0.019 �0.006 �0.023
5 � 0.012 �0.025 �0.019 �0.006 � 0.009 0.051 �0.018 �0.004 �0.041

Traceback

1 � 0.511 �0.981 �1.457 �1.022 � 2.139 � 3.365 �0.230 �0.491 �0.781
5 � 0.618 �1.255 �1.884 �1.642 � 3.451 � 5.332 �0.496 �1.018 �1.679

Delayed diagnosis

1 � 1.058 �1.923 �2.691 �1.058 � 2.158 � 3.311 �0.251 �0.509 �0.779
5 � 0.278 �0.593 �1.012 �0.476 � 1.275 � 2.364 �0.307 �0.673 �1.106

The values are given for the three scenarios, the three values for missing percentage at diagnosis, and for the three Weibull distribution values for varying the severity.
aTrue values: 1 year¼ 35.66, 5 year¼ 10.39.
bTrue values: 1 year¼ 57.79, 5 year¼ 30.52.
cTrue values: 1 year¼ 97.58, 5 year¼ 94.99.
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Missed individuals initially, facility for later (delayed) diagnosis
for all missed patients; (‘Delayed diagnosis’—Error (1) and (3)
combined). Figure 2C shows the excess mortality rate ratio
comparing the two populations if 10% of registrations are missed
at diagnosis, and 100% of registrations are caught at a later date
(the later date is uniformly spread across a 2-year period, or
uniformly across the patient’s follow-up time if they survive for
o2 years). The early effect on the excess mortality rate ratio is
greater because the delayed diagnosis only has an impact in the
short-term. However, it is clear from Table 1 that the long-term
effects are also seen for survival estimates because survival is a
cumulative measure. Traceback from the death certificates does not
have a role in this scenario because 100% of patients who are
missed are caught at a later date in follow-up. Therefore, the
impact on the excess mortality rate ratio and relative survival seen
in Figure 2C and Table 1 is solely due to a delay in a proportion of
cancer registrations up to a period of 2 years.

The ‘delayed diagnosis’ row of Table 1 shows a comparison
between the true value and the population when a proportion of
the cancer registrations are delayed (10%, 20% and 30%) by up to
2 years. It is clear that this leads to bias in the estimates of relative
survival. The bias is increased as the proportion of patients that are
missed is increased. The table also shows the effect on three levels
of cancer survival; which are labelled as low, medium and high.
A bias of over 3 percentage units for 1-year relative survival for the
medium survival scenario is seen when the proportion missing at
diagnosis is 30%.

Combining errors; ‘Plausible’ parameter values. Table 2 shows a
comparison between the two populations when a combination of
registration errors have been introduced. The results of the two
plausible scenarios are given graphically as excess mortality rate
ratios in Figure 3A and B. The values selected for the scenarios
presented in Table 2 have been chosen to represent plausible levels
of error in the cancer registration process. It is clear that the bias in
the age-standardised relative survival is modest for the less extreme
scenario (labelled (A)) but becomes more substantial for the
second scenario (B).

Other methods to show differences. Figure 4A shows the
difference in excess mortality between the two populations per
1000 person-years for the first plausible scenario (A). Plotting the
results as a difference in excess mortality rates gives a measure of

absolute risk, compared with the relative risk estimates given in
Figure 3A. The difference in the excess mortality rate is much
higher early in follow-up under this scenario.

Figure 4B shows the difference in age-standardised relative
survival between the two populations as a function of time for
the same plausible scenario (A). The data given in Table 2 for the
difference in 1-, and 5-year relative survival is a subset of the
information contained in this figure. Most of the change in the age-
standardised relative survival between Population 2 and Population
1 occurs early on follow-up.

DISCUSSION

Although there have been various publications looking at errors in the
cancer registration process, few of the publications have looked at the
consequent impact on the reported survival estimates (Robinson et al,
2007, Møller et al, 2011). Through the use of simulation techniques, it
has been possible to assess this impact by using realistic parameter
values. Using this methodology, it is also possible to assess the level of
errors that are required in order to produce a set level of observed
difference between two populations in terms of commonly used
metrics in population-based cancer research.

The key feature of the simulation is providing realistic
inputs for the parameter values. Realistic estimates can be
approximated by using cancer registry data and expert input.
However, it is also of interest to try the extremes of the range
of possible values in order to answer the question ‘What is the
maximum impact that data registration errors can have?’ on any
given output.

International comparisons of cancer survival statistics are
becoming increasingly common (Sant et al, 2009, Møller et al,
2010, Coleman et al, 2011). As has been highlighted in a recent
publication, the cancer registration errors necessary to explain
differences that are seen between the ‘best’ European countries
and the UK would need to be of an unrealistic magnitude (Woods
et al, 2011). The simulation carried out by (Woods et al, 2011)
made modifications to pre-existing data to illustrate the point.
Here, we have concentrated on entirely simulated data; this results
in having a direct comparison with a truth in order to assess levels
of bias that are introduced. However, the conclusions from the two
approaches were likely to be similar and this proved to be the case.

0.90

1.00

1.10

1.20

1.30
E

xc
es

s 
m

or
ta

lit
y 

ra
te

 r
at

io

0 2 4 6 8 10
Time since diagnosis (years)

0.90

1.00

1.10

1.20

1.30

E
xc

es
s 

m
or

ta
lit

y 
ra

te
 r

at
io

0 2 4 6 8 10
Time since diagnosis (years)

Figure 3. Excess mortality rate ratios comparing Population 2 to
Population 1. (A) 15% missed initial diagnosis, 85% delayed
registration (of those initially missed), 10% mis-specified diagnosis date
when DCI (bias uniform over 2 years). Traceback from DC allowed. (B)
30% missed initial diagnosis, 90% delayed registration (of those initially
missed), 5% mis-specified diagnosis date when DCI (bias uniform over
2 years). Traceback from DC allowed.
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Figure 4. Graph highlighting different measures to show differences
for the scenario with 15% missed initial diagnosis, 85% delayed
registration (of those initially missed), 10% mis-specified diagnosis
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allowed. (A) The excess mortality rate difference between Population 2
and Population 1 per 1000 person-years. (B) The percentage point
difference in age-standardised relative survival between Population 2
and Population 1. Note that the scales and units of the two subfigures
are different.

BRITISH JOURNAL OF CANCER Assessment of cancer registration errors

696 www.bjcancer.com | DOI:10.1038/bjc.2013.12

http://www.bjcancer.com


A modification on the method that has been outlined here
would be to alter both of the compared populations in order to
account for different levels of error between two comparison
populations. This would allow a direct estimate of the differences
that can occur between two populations purely due to differences
in cancer registration processes. Both of the compared populations
are drawn from the same overall population; therefore, any
observed differences (beyond random variation) are purely due to
the introduction of error into the cancer registration process.

The concept of the ‘date of diagnosis’ is a key element in cancer
registration and public health monitoring of cancer occurrence and
survival. The date of diagnosis establishes the calendar period for
incidence reporting, and provides the starting point for popula-
tion-based survival analysis. There is no clear analogue in clinical
medicine where occurrence of disease is usually replaced by
provision of service, and where survival analyses typically start at
the time of an intervention rather than at disease occurrence. A
clear definition of date of diagnosis is required in order to give
meaning to the idea of a ‘later than true’ diagnosis date.
The definition that we have used given in Box 1 allows the
distinction between the date of diagnosis that would be used as
standard by the cancer registry at the earliest possible occurrence of
the cancer compared with a date that is later than that specified in
this definition.

In this analysis, we concentrate on the effect of registration errors
on cancer patient survival. Registration errors also have an impact on
other measures that are reported using registry data, such as
incidence and prevalence estimates. Although the impact on survival
estimates is shown to be modest in this analysis, it is also important
to consider that any ‘missed’ case will have an impact on the
incidence and prevalence estimates reported by the registry.

In summary, cancer registration errors can have an impact on the
survival statistics that are reported by cancer registries. Therefore, it is
important to make considered judgements when evaluating the
results of international comparisons. However, for UK data and
countries with established cancer registration systems it is unlikely
that registration errors will have a major impact on survival statistics.
The results of the simulation indicate that modest errors in
registration do not lead to large survival differences.
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APPENDIX

In order to simulate relative survival, each individual was simulated
a time to death due to cancer, and a time to death due to other
causes; the minimum value from these two was then taken as the
value for the time to death for that individual. The simulation of
the all-cause survival time estimates is similar to previously
published work (Rutherford et al, 2012). The data simulation was
carried out as follows:

� Times of death due to cancer were generated from a
Weibull distribution according to the method set out by
Bender et al (2005). Different shapes for survival curves
were generated by altering the parameter values of the
Weibull distribution, referred to as the scale and shape
parameters, commonly denoted l and g, respectively. A value
of 0.5 was used for g, and l was varied over 1, 0.5 and 0.02 for
each scenario.

� Time to death due to other causes was calculated by using a
population mortality file and using an exponential distribution
for each attained age during follow-up.

� Overall time to death was calculated by taking the minimum of
the cancer-specific time to death, and the expected (background)
time to death.

� An age distribution was simulated from a normal distribution
with a given mean (60), and s.d. (13).

� The effect of age was simulated by using preselected excess
hazard ratios (0.8, 0.9, 1, 1.2, 1.4) for the defined age groups
(o45, 45–54, 55–64, 65–74, 474) with the central age group as
the reference.

The simulation approach outlined above was used for each of
the two populations. One of the populations was then modified in
line with the error process introduced for each scenario. The
simulation was repeated 100 times for each scenario, with a sample
size of 25 000 over a 5-year diagnosis window.
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