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Supplementary Figure 1 

 
Distribution of SNPs identified compared to the S. sonnei Ss046 reference genome.  
 
Y-axis corresponds to SNP counts per 10,000 bp window; red line indicates the average 
rate of 23 SNPs per 10,000 bp (or 1 SNP per 430 bp). 
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Supplementary Figure 2 
 
Maximum likelihood tree of the 132 sequenced S. sonnei genomes, rooted using non-S. 
sonnei outgroups.  
 
*Finished genome sequences (Ss046, NC_007384; 53G, accession pending). For each 
isolate is indicated the region of isolation, >10x coverage of pINV B, biotype, CRISPR 
spaces, isolate ID, year and country of isolation; according to inset legend. Gain (+) and 
loss (-) of genes on major branches are indicated with arrows; loss of gene function 
related to biotypes or CRISPR types are indicated in blue and red, respectively.  
 
Distribution of antimicrobial resistance-associated genes and GyrA SNPs conferring 
resistance to Nalidixic acid are indicated via heatmap, according to inset legend which 
reflects percentage coverage of each gene sequence. Resistance-conferring genes are 
labelled in red and the antimicrobials they confer resistance to are indicated (Tmp, 
trimethoprim; Str, streptomycin; Sul, sulfonamides; Amp, ampicillin; Chl, 
chloramphenicol; Tet, tetracycline; Cef, third generation cephalosporins; Nal, Nalidixic 
acid).  
 
Reference sequences for resistance elements are: Tn7/In2, Ss046 genes SSON_3891-
SSON_3897, NC_007384; spA, Ss046 plasmid spA, NC_009345; blaTEM-1, 
GQ983346; Tn21/In1, plasmid R100, NC_002134; In38/catA1 C. freundii transposon, 
AY162283; catB3, DQ321671; Tn10, J01830; dfrA5, X12868; dfrA8, U10186; dfrA14, 
Z50804; dfrA12, Z21672; aadA2, X68227; blaOXA-1, JN003856.1; blaOXA-10, 
DQ321671; blaCTX-M-15, DQ915953. 
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Supplementary Figure 3 

 
Year of isolation vs. root-to-tip distances extracted from maximum likelihood 
phylogeny.  
 
Linear regression lines and correlation coefficients are indicated separately for each 
lineage. Note the outlying red circle represents the reference genome S. sonnei Ss046 for 
which raw sequence reads were not available for SNP validation; hence it is possible that 
the long branch length reflects base call errors in the reference genome rather than true 
variation and this point was therefore excluded from linear regression. 



 
 

 

 

 

 

74369  2007  France
CS1  1997  Brazil

IB716  1981  Korea
IB717  1982  Korea

IB697  1982  Korea
IB748  1987  Korea

9810267  1998  Madagascar
20071599  2007  UK

CS8  2000  Brazil

IB3507  2003  Pakistan
IB3488  2003  Pakistan
IB3599  2003  Pakistan
IB3580  2003  Pakistan
IB3277  2002  Pakistan

20010007  2001  UK
CS7  2000  Brazil

CS14  2001  Brazil
CS20  2002  Brazil
IB3300  2002  Pakistan
20062313  2006  Nepal

IB2013  2001  Vietnam
IB2012  2001  Vietnam

IB1985  2002  Vietnam
IB1980  2002  Vietnam
IB1976  2002  Vietnam

20021122  2002  UK
IB3374  2002  Pakistan
20040924  2004  Kenya
IB691  1999  Korea
20062087  2006  Egypt/Tunisia
60108  2006  French  Guiana
20031275  2003  Iran
20011685  2001  UK
970044  1997  New  Caledonia
19904011  1990  UK

IB1987  2002  Vietnam
IB1990  2003  Vietnam
IB1993  2003  Vietnam
IB2018  2002  Vietnam

IB2004  2003  Vietnam
IB1970  2001  Vietnam

IB2024  2002  Vietnam

IB2000  2003  Vietnam
IB2008  2003  Vietnam
IB2015  2002  Vietnam

2073  1973  France

II

III

I

Europe

Middle East

Central Asia
Vietnam
Korea

Egypt
East Africa & Madagascar
North/West/Central Africa
South America
Caribbean/Central America

 

Supplementary Figure 4 

Bayesian (Maximum Clade Credibility) phylogenetic tree for S. sonnei virulence 
plasmid pINV B.  

Note that the plasmid is commonly lost during laboratory culture, this tree includes only 
those 46 isolates with >10x mean read depth across the plasmid. 
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Supplementary Figure 5 
 
Comparison of Bayesian estimates of nucleotide substitution rates for real and 
randomized tipdates.  
 
Filled circles indicate mean estimates, while bars indicate values of the 95% highest 
probability density interval. The estimate from the real tipdate associations is shown in 
red, and estimates from randomized associations are shown in black. All randomized 
data sets were analyzed in BEAST using identical model settings as used in the analysis 
of the real tipdate data, with all Markov chains run for 200 million generations. Note the 
y-axis is on the log scale. 



 
 

 

 

Supplementary Figure 6 
 
Gene content variation in S. sonnei.  
 
(A) Size of overlapping gene sets for S. sonnei lineages I, II and III.  Conserved genes 
(N=3,963, central area) were present in ≥90% of isolates from each lineage. (B) 
Frequency distribution of 2,795 non-conserved genes that were not associated with any 
specific lineage. 
 
 



 
 

Supplementary Tables 
 
 

Supplementary Table 1 – Details of Shigella sonnei isolates used in this study.  

Includes source; year and country of isolation; coverage information; lineage, biotype, 
CRISPR spacers; resistance phenotypes, gyrA SNPs and coverage of resistance-
associated genes. 

See separate Excel file 

 

 
Supplementary Table 2 – E. coli/Shigella outgroups used to root the ML tree. 
 

Serotype / species Strain GenBank Accession 

Shigella boydii 4 Sb227 NC_007613 

Shigella dysenteriae 1 Sd197 NC_007606 

Shigella flexneri 2a 2457T NC_004741 

Shigella flexneri 2a 301 NC_004337 

Shigella flexneri 5 8401 NC_008258 

E. coli OR:H48:K- (K12) MG1655 NC_000913 

E. coli O157:H7 Sakai NC_002695 
 

 

 
Supplementary Table 3 – CRISPR spacer sequences analysed in this study. 
 
Identifier Sequence 

A TCTAAGTGATACCCATCATCGCATCCAGTGCGTC 
27 ACCCTGACGCGCCGCAGTATTTATCTGCTCTGGC 
7 ACGGGTGCGTGTGGCTGCCAGTGCCGGAGAACGG 
10 TCTTACTGCTTGGTATGCGGAATCACACCCTGAA 



 
 

Supplementary Note 
 
SNP distribution and coding effects 
The coding effect of each SNP was determined by mapping the SNP coordinate and 
allele to the reference genome S. sonnei strain Ss046 and its annotation (NC_007384). 
The available sites for synonymous (S) and nonsynonymous (N) substitutions in the 
3,571 genes included in the analysis were obtained using the cusp (codon usage) tool in 
the EMBOSS package41, resulting in a N:S sites ratio of 3.2. Mean dN/dS values were 
then approximated for each gene by dividing the ratio of observed nonsynonymous (ng) 
and synonymous (sg) SNPs by the genome-wide N:S ratio of 3.2, i.e. 
dN/dS(g)=(ng/sg)/(N/S). This was possible only for the 1,455 genes with at least one 
synonymous and one nonsynonymous SNP. 
 
The number of SNPs observed per gene was closely correlated with gene length, with a 
mean divergence of 0.23% within coding sequences (using linear regression model of 
SNPs on length; R2 = 0.67, p < 2 x 10-16), same as the genome-wide mean divergence 
rate. Thus, SNPs were distributed randomly around the genome (Supplementary Fig. 1), 
randomly among genes and randomly across the length of genes. We therefore assumed a 
uniform distribution of SNPs along the chromosome with a mean nucleotide divergence 
of 0.23% and mean amino acid divergence of 0.16% (using linear regression model of 
nonsynonymous SNPs on gene length; R2 = 0.55, p < 2 x 10-16). However, observed 
divergence values ranged up to 2% nucleotide divergence and 5.5% amino acid 
divergence. We calculated the probability of observing each gene g’s divergence levels 
using a Poisson distribution function with mean length(g)*0.0023 (nucleotide 
divergence) or length(g)*0.0018 (amino acid divergence). To correct for multiple testing, 
we adjusted p-values using Benjamini-Hochberg correction. The two genes discussed in 
the text are those with adjusted p<0.05. 
 
As the S. sonnei genomes are closely related, sequences acquired by recombination 
would manifest as loci with a high density of SNPs16,42. Thus to screen for possible 
recombination events, we used the same statistical approach as above to detect regions 
with high SNP density, irrespective of coding consequence, within individual genomes 
(to reveal imports in each genome compared to the Ss046) and among SNPs defining 
each branch of the ML phylogenetic tree (to reveal imports into groups of strains that 
might include the reference Ss046, including recombination between S. sonnei strains or 
lineages). We detected clusters affecting five prophage sequences, six transposases or 
recombinases and one other locus. The latter involved a divergent copy of the sitABCD 
operon (SSON_1750-SSON_1753) in a single lineage III S. sonnei isolated in 2003 
(strain 31382). The region assembled into a single contig and shared 99.38% nucleotide 
identity with sitABCD from E. coli 042 (FN554766.1), compared to 97.89% identity with 
53G (lineage II) or Ss046 (lineage III). 
 
Characteristics of the major S. sonnei lineages 
The three main lineages of S. sonnei were defined by hundreds of SNPs (Supplementary 
Fig. 2). To determine whether they were also differentiated by the loss and acquisition of 
genes, we used a combined approach of read assembly and mapping to investigate gene 



 
 

content across the S. sonnei genomes (see Methods). We identified 6,852 genes in total, 
including 3,963 (58%) core genes that were present in ≥90% of isolates from each 
lineage (Supplementary Fig. 6A). Many accessory or non-core genes were present in less 
than half of isolates (N=2,459 genes, 85%) and very few genes were associated with 
specific lineages (Supplementary Fig. 6). Ongoing degradation of fimbrial genes 
complements was evident within lineages, including the loss of ybcQR, sfmFH and lpfD 
in lineage I and interruption of lpfC in lineage III. Lineages II and III shared the 
acquisition of a chromosomally encoded relB/yafQ toxin-antitoxin system and disruption 
of the xylose operon (deletion of xylFG) resulting in an inability to metabolise xylose. 
The acquisition of insertion sequences was also evident, with IS911 (SSON_3904) 
present in lineages II and III but not lineage I, and IS640 (SSON_1757) restricted to 
Lineage III. 
 
Correlation of S. sonnei phylogenetic lineages with existing subtyping schemes 
The genetically distinct lineages of S. sonnei were correlated with biotypes and CRISPR 
types used for subtyping S. sonnei populations9,10, and revealed some of the genetic 
mechanisms driving the differentiation observed by subtyping (Supplementary Fig. 2, 
Supplementary Table 1).  

Classical biotypes, based on breakdown of xylose, rhamnose and β-galactosidase 
(detected by cleavage of chromogenic substrate ortho-nitrophenyl-β-galactoside, 
ONPG)9, were closely associated with the three lineages (Supplementary Fig. 2, 
Supplementary Table 1). Most biotyped lineage I isolates were able to metabolise 
rhamnose and xylose (biotypes d, e) but a subclade was ONPG-, which could be 
explained by a deletion in lacZ (Supplementary Fig. 2). Inactivating mutations affecting 
lacZ were also observed in lineage II (biotype f, ONPG-) and lineage III (biotypes 
unknown) (Supplementary Fig. 2). All biotyped lineage II and III isolates where xylose 
negative (biotypes a, f, g), due to a deletion of part of the xyl xylose operon that was 
conserved in all lineage II and III genomes. The biotyped Lineage III isolates were also 
rhamnose negative (biotype g), likely explained by a conserved nonsense mutation in 
codon 130 of rhaR, the transcriptional activator of the rha rhamnose operon. 

The S. sonnei lineages also differed in their CRISPR types (Supplementary Fig. 2, 
Supplementary Table 1). We searched for four CRISPR spacer sequences (A, 27, 7, 10; 
Supplementary Table 3) by mapping to the CRISPR region of S. sonnei 53G. Loss of 
these spacer sequences was associated with inactivating mutations in CRISPR-associated 
genes cas3 or cse110 (Supplementary Fig. 2).  


