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The interaction between multiple pathogens spreading on networks connecting a given set of nodes presents
an ongoing theoretical challenge. Here, we aim to understand such interactions by studying bond percolation of
two different processes on overlay networks of arbitrary joint degree distribution. We find that an outbreak of
a first pathogen providing immunity to another one spreading subsequently on a second network connecting the
same set of nodes does so most effectively if the degrees on the two networks are positively correlated. In that
case, the protection is stronger the more heterogeneous the degree distributions of the two networks are. If, on
the other hand, the degrees are uncorrelated or negatively correlated, increasing heterogeneity reduces the
potential of the first process to prevent the second one from reaching epidemic proportions. We generalize
these results to cases where the edges of the two networks overlap to arbitrary amount, or where the immunity
granted is only partial. If both processes grant immunity to each other, we find a wide range of possible
situations of coexistence or mutual exclusion, depending on the joint degree distribution of the underlying
networks and the amount of immunity granted mutually. These results generalize the concept of a coexistence
threshold and illustrate the impact of large-scale network structure on the interaction between multiple spread-
ing agents.
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I. INTRODUCTION

The view of a population as a set of individuals connected
by a social network has become the paradigm for studying
the spread of contagious processes in structured populations.
Work in this area has led to the development of a number of
techniques yielding insights on epidemic thresholds in such
networks �1–3�.

In many cases, two or more processes interact on two, not
necessarily equal networks connecting the same set of nodes.
Two different diseases using potentially different routes of
spread can interact through suppression of the immune sys-
tem by one to facilitate infection with the other or by one
granting partial immunity to the other �4–7�. Similar pro-
cesses can play a role for two competing strains of the same
disease �8,9� and the implications of such interactions
present an ongoing theoretical challenge.

The interest in overlay networks extends beyond the in-
teraction between only pathogens in the biological sense. Re-
cently, the interaction between epidemic networks of disease
spread and social networks of the spread of awareness
�10,11� or influence �12� has attracted greater interest. In a
computing framework, the interaction between mobile phone
viruses exploiting different routes of spread has been recog-
nized as a threat �13�. On the other hand, methods to mitigate
the spread of viruses using counterviruses have been sug-
gested �14�, in which case a carefully chosen network could
maximize the efficiency of such a strategy.

So far, studies of interacting pathogens have largely ig-
nored the impact of network structure. In a notable excep-
tion, a study has demonstrated the existence of a coexistence
threshold for the same pathogen being able to form two epi-
demics on the same network if those having experienced the
first infection are completely immune to the second one �15�.
For this to happen, the transmission probability must be high
enough for the process to be able to form an epidemic at all

�i.e., it must be greater than the epidemic threshold�, but also
low enough for the first wave to be able to leave a large
enough fraction of the network susceptible to the disease
�i.e., smaller than the coexistence threshold�.

In this contribution, we generalize the idea of a coexist-
ence threshold presented in �15� to allow us to determine
conditions for coexistence of two processes of different
transmissibility interacting on two networks of arbitrary
overlap. We study the effect of correlations between the two
networks of varying heterogeneity, as well as considering
situations where the two processes grant only partial immu-
nity or, conversely, facilitate infection with the other.

II. METHODS

In the stochastic susceptible-infected-recovered �SIR�
model on a network, an infected node can infect connected

susceptible nodes with an infection rate �̂. Once a node is
infected, it remains so for an exponentially distributed period
of average �−1, after which it recovers, and can neither be
infected nor infect others anymore. If the infection events are
taken to happen as independent Poisson processes of inten-

sity �̂, this is equivalent to saying that each possible infec-
tion between two connected nodes is realized independently

with probability T= �̂ / ��̂+��. This consideration includes
the SI �susceptible-infected� model, which does not allow for
recovery of infected nodes, as a special case of setting �=0,
so that T=1.

The distribution of outbreak sizes of the stochastic SIR
model on random networks of a given degree distribution
can be calculated by exploiting an isomorphism with the
distribution of connected component sizes in bond percola-
tion theory �1�. If edges on a random network of infinite size
are selected or “occupied” independently with probability T,
the resulting connected components of occupied edges �i.e.,
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subnetworks in which each node can be reached from each
other one by following only edges which have been selected�
have the same size distribution as outbreaks of the stochastic
SIR model on a random network of the same degree distri-
bution.

This method can be extended to interacting epidemics on
overlay networks where one epidemic grants immunity to the
other and the two spread on different networks connecting
the same nodes �see Fig. 1 for illustration�. Consider two
infinitely sized networks �1 and �2 which connect the same
sets of vertices. We first occupy edges on �1 independently
with probability T1. If T1 is greater than a critical probability
TC,1, a giant connected occupied component �GCOC�
emerges on �1, occupying a fraction S1�T1� of all nodes. This
is equivalent to an SIR epidemic on a random network with
the same degree distribution as �1, causing a large outbreak
with probability S1�T1� which, if it happens, infects a fraction
S1�T1� of the network �1�. We then remove all the nodes in
the GCOC of �1 from the network and occupy the remaining
edges on �2 with probability T2. In other words, we concen-
trate on the residual network of �1 on �2, that is the network
of nodes which are not part of the GCOC on �1, and which
are connected on �2. This is equivalent to the first SIR epi-
demic providing immunity to a second SIR process which

starts after the first has run its course, now spreading on a
network represented by �2, connecting the same nodes but
possibly forming different paths. We can then study the
emergence of a GCOC on �2 and calculate the corresponding
probability of a large outbreak as a function of T1 and the
structure of the two networks. We will begin with the sim-
plest case of two networks with a joint degree distribution
which do not overlap, but later will extend this to more gen-
eral cases.

Note that we here only consider the impact of large out-
breaks of one process on the other, where the second one
starts at a random location not affected by the first. This is
because in the limit of networks of infinite size the size of
small outbreaks, and therefore the probability for the two
epidemics to meet in nodes not in the GCOC, tends to zero.
There can, however be a local interaction if the two are as-
sumed to start at the same location, and if there is overlap
between the two networks �see �10��. In that case, one needs
a dynamic approach and the static approximation taken here
is of little use.

Let us consider the general case where the degrees k1 and
k2 of the nodes which are connected by the two graphs are
distributed with a joint degree distribution p�k1 ,k2� as gen-
erated by the joint �J� generating function

G0
J�x,y� = �

k1

�
k2

p�k1,k2�xk1yk2, �1�

and marginal degree distributions p1�k1� and p2�k2� generated
by

G0,1�x� = �
k1

p1�k1�xk1 = �
k1

�
k2

p�k1,k2�xk1,

G0,2�x� = �
k2

p2�k2�xk2 = �
k1

�
k2

p�k1,k2�xk2. �2�

Furthermore, we for now assume that the two networks do
not have any common edges and that the processes mutually
exclude each other, i.e., any node can be infected with only
one of the two processes and once infected with one is im-
mune to the other.

If T1�TC,1, with TC,1 given by

TC,1 =
�k1�

�k1
2� − �k1�

, �3�

or, analogously, R0�1, with the basic reproductive number
R0 of the network given by �16–19�

R0 = TC,1��k1� − 1 +
Var�k1�

�k1�
	 , �4�

the GCOC of �1 occupies a fraction S1�T1� �1�

S1�T1� = 1 − G0,1�u1;T1� , �5�

where u1 is the solution of

u1 = G1,1�1 − T1 + T1u1� , �6�

G1,1�x� is the generating function of the excess degree of a
node at the end of a randomly selected edge on �1,

dc

ba

FIG. 1. The method we use to study interacting epidemics on
overlay networks. �a� We start with a set of nodes connected by two
random networks �1 �solid lines� and �2 �dashed lines�. �b� We then
select or “occupy” edges on �1 independently with probability T1.
If T1 is large enough, a giant connected component of occupied
edges emerges �thick solid lines�, representing a large outbreak and
occupying a fraction S1�T1� of the nodes �white dots�. �c� The nodes
in that component �gray dots� are considered immune and removed
from �2, leaving the residual network of �1 on �2 �black dashed
lines�. �d� Edges on that network are then occupied with probability
T2, with a giant connected component of occupied edges �thick
dashed lines� emerging if T2 is larger than a threshold which de-
pends on T1 and the structure of �1 and �2. If the immunity granted
by the first epidemic is only partial the gray nodes are not removed
in step c, but edges connecting to them on �2 �gray dashed lines�
are assumed to be occupied with a reduced probability.
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G1,1�x� =
1

�k1� �
k1=0

�

�
k2=0

�

�k1 + 1�p�k1 + 1,k2�xk1. �7�

and G0,1�x ;T1� is the probability generating function �pgf�
for a random node to have n of its edges occupied �1�,

G0,1�x;T� = G0,1�1 + �x − 1�T� . �8�

To distinguish the generating functions G·,·�x ;T� which con-
cern occupied edges from those G·,·�x� which concern all
edges, with the two connected to each other by relations such
as Eq. �8�, note that the T is separated by a semicolon, a
convention which we will follow throughout this manuscript.

Denoting with �k1
�T1� the probability of a randomly cho-

sen node of degrees k1 and k2 to be part of the GCOC on �1,
we have �1�

P�not in gcoc of �1
k1� = 1 − �k1
�T1� = �1 − T1 + T1u1�k1.

�9�

At the same time, the probability for m of the k2 neighbors
on �2 of a randomly selected node not in the GCOC of �1
not to be part of the GCOC on �1 either is

P�connected to m not in gcoc of �1
k2�

= �k2

m
	w1

m�1 − w1�k2−m, �10�

with w1 given by

w1 =
1

�k2� �
k1,k2

p�k1,k2�k2�1 − T1 + T1u1�k1

=
1

�k2�
�

�y
G0

J�1 − T1 + T1u1,1� , �11�

where � � denotes the average on the network, understood to
be operating on the joint degree distribution p�k1 ,k2�

�f�k1,k2�� = �
k1,k2

p�k1,k2�f�k1,k2� . �12�

w1 is the probability of a node arrived at following a random
edge on �2 to be part of the GCOC on �1, and it takes into
account the fact that the probability of finding a node of
degree k2 following a randomly selected edge on the second
network is proportional to k2p�k1 ,k2�.

The probability of a node of degree k1 on �1 and k2 on �2
not to be part of the GCOC on �1 and to be connected to m
nodes that are not part of that GCOC either is obtained by
multiplying Eqs. �9� and �10�, and it is generated by

g0
r�x;k1,k2� = �

r

�1 − T1 + u1T1�k1�k2

m
	w1

m�1 − w1�k2−mxm

= �1 − T1 + u1T1�k1�1 − w1 + w1x�k2. �13�

The generating function G0,2
r �x� of the residual degree distri-

bution of �1 on �2 is then found by averaging Eq. �13� over
all probabilities p�k1 ,k2� which, normalized to G0,2

r �1�=1,
gives

G0,2
r �x� =

1

G0,1�u1;T1��m
�

�
k1

�

�
k2

�

p�k1,k2��1 − T1 + T1u1�k1�k2

m
	

�w1
m�1 − w1�k2−mxm

=
1

G0,1�u1;T1��k1

�

�
k2

�

p�k1,k2�

��1 − T1 + T1u1�k1�1 − w1 + w1x�k2

=
G0

J�1 − T1 + T1u1,1 − w1 + w1x�
G0

J�1 − T1 + T1u1,1�
. �14�

Analogously to �20�, it can be shown that the generating
function for the number of edges occupied on �2 connected
to a random vertex on the residual network of �1 is

G0,2
r �x;T2� = G0

r�1 − T2 + T2x� , �15�

The equations for G1
r�x� and G1,2

r �x ;T2� for the generating
functions of the excess degree distribution and the number of
occupied edges connected to a vertex at the end of a random
edge on the residual network follow accordingly by weigh-
ing the summands in Eqs. �14� and �15� with k2.

III. RESULTS

Using the methods developed in the last section, we now
derive results for different scenarios of network overlap and
immunity.

A. Nonoverlapping networks

Equipped with all the relevant generating functions, we
can proceed just as on a single network to calculate epide-
miologically relevant quantities. Since part of the network is
shielded from the epidemic on �2 because it is already part
of the GCOC on �1, the critical transmission probability TC,2
of the second network will be higher than on the first one,
which led �15� to call it a second, or coexistence threshold in
the special case where two processes spread on the same
network, and with the same transmission probability T. If the
transmission probability T2 is greater than TC,2 a GCOC will
emerge on the second network and the two processes can
coexist. As only a fraction S1�T1�=1−G0,1�u1 ;T1� of all
nodes in the network are part of the residual network of �1
on �2, the size of the GCOC S2�T2� as determined by apply-
ing Eq. �5� to �2 using Eq. �15�, needs to be multiplied with
this fraction to give the fraction S2�T2� of all nodes being
part of the GCOC in the second network

S2�T2� = G0,1�u1;T1��1 − G0,2
r �u2;T2�� . �16�

The basic reproductive number of the second process spread-
ing on �2 is

R0,2 =� �G1,2
r �x;T2�

�x
�

x=1
= T2G1

r��1�

= T2
�k2�k2 − 1��1 − T1 + T1u1�k1�

�k2�
. �17�

The threshold for the second process to have a GCOC is the
transmission probability at which R0,2=1
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TC,2 =
�k2�

�k2�k2 − 1��1 − T1 + T1u1�k1�
. �18�

If the degrees on the two networks are independently distrib-
uted with p1�k1� and p2�k2�, we have that p�k1 ,k2�
= p1�k1�p2�k2� and can rewrite Eq. �14� to

G0
r�x� =

1

G0,1�u1;T1��m
�

�
k1

�

�
k2

�

p1�k1�p2�k2��k2

m
	

�w1
m�1 − w1�k2−m�1 − T1 + T1u1�k1

=
G0,1�1 − T1 + T1u1�G0,2�1 − w1 + w1x�

G0,1�1 − T1 + T1u1�

= G0,2�1 − w1 + w1x� , �19�

with the other generating functions again following analo-
gously. The basic reproductive number of the second process
in this case becomes

R0,2 =� �G1,2
r �x;T2�

�x
�

x=1
= G0,1�u1;T1�T2

�k2�k2 − 1��
�k2�

.

�20�

Equation �20� is the standard expression for the basic repro-
ductive number on a single network as given by Eq. �4�,
multiplied by G0,1�u1 ;T1�, the probability of a randomly cho-
sen node not to be part of the GCOC on the first network.
Analogously, the critical transmission probability TC,2 is

TC,2 =
1

G0,1�u1;T1�
�k2�

�k2�k2 − 1��
. �21�

We can use the above relations to study the effect of different
types of correlation between degrees on both networks. Fig-
ure 2 illustrates the impact of a first spreading process on the
critical transmission probability TC,2 of a second which the

first one provides immunity to, for networks of a varying
amount of heterogeneity in their degree distribution, gener-
ated using a method outlined in the Appendix. If the degrees
are distributed independently, TC,2 decreases as heterogeneity
increases, making it easier for the second process to invade
the population with the first one already established. This
effect is amplified if the correlation between degrees is nega-
tive, i.e., if nodes with a high degree on �1 tend to have
small degree on �2 and vice versa. This is because the nodes
which have a high degree on �1, and therefore have a high
probability of being in the GCOC, are not hubs on �2 and
therefore not so relevant for the formation of a GCOC on �2.
If, on the other hand, the correlation is positive, i.e., the
nodes with high degree on one network tend to have high
degree on the other, it becomes harder for the second process
to invade as heterogeneity increases because the second pro-
cess finds its hubs already occupied by the first. Figure 2 also
shows comparisons of the results obtained using our
percolation-based method with critical transmission prob-
abilities estimated from stochastic simulations on finite net-
works, with particularly good agreement on networks of rela-
tively low heterogeneity.

B. Networks of arbitrary overlap

If the networks are not completely disjunct, in the sense
that some vertices are connected by an edge on both net-
works, the degree distribution of the residual network G0,2

r

changes. For a node connected to kb other nodes on both �1
and �2, the probability of being connected to n of them on
the residual network of �1 on �2 is �15�

�kb

n
	�u1�n��1 − T1��1 − u1��kb−n, �22�

which is the probability u1 of each of the m nodes arrived at
following an edge on �1 not to be part of the GCOC times
the probability �1−u1��1−T1� of each of the remaining nodes
to be part of the outbreak, �1−u1�, but without the edge
being occupied, �1−T1�. The probabilities of Eq. �22� are
generated by

g0,2
r,b�x;kb� = �

n
�kb

n
	�u1�m��1 − T1��1 − u1��kb−nxn

= �
n
�kb

n
	�xu1�n��1 − T1��1 − u1��kb−n

= ��1 − T1��1 − u1� + xu1�kb. �23�

Remembering that the generating function of the sum of two
independently distributed random variables is the product of
the corresponding generating functions �21�, we obtain the
generating function for being connected to m nodes of the
residual network of �1 via edges of �2 only and n nodes on
that same network via edges shared by both networks by
multiplying g0,2

r �x ;k1−kb ,k2−kb� of Eq. �13� with g0,2
r,b�x ;kb�

of Eq. �23�,

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

T C
,2

increasing heterogeneity -->
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independent

FIG. 2. The critical transmission probability TC,2 as a function
of heterogeneity for TC,1=0.25, expressed as the standard deviation
in the degree distribution for an average of �k�=6, for positive
�squares�, negative �circles�, and no �triangles� correlation between
degrees of nodes on both networks. The critical transmission as
determined from simulations of the dynamic SIR model on a finite
network of N=10 000 nodes is shown for comparison �open sym-
bols�. Where only a filled dot can be seen, the open one is in the
same position. Details on how the networks were generated, and
how the critical transmission probabilities estimated from simula-
tions, can be found in the appendix.
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g0,2
overlap�x,y ;k1,k2,kb� = �1 − T1 + T1u1�k1−kb�1 − w1 + xw1�k2−kb

� ��1 − T1��1 − u1� + u1y�kb, �24�

and the generating function for being connected to a sum
m+n via either is obtained by setting x=y,

g0,2
overlap�x;k1,k2,kb� = g0,2

overlap�x,x;k1,k2,kb�

= �1 − T1 + T1u1�k1−kb�1 − w1 + x1w1�k2−kb

� ��1 − T1��1 − u1� + u1x�kb. �25�

Now, we could obtain the generating function for a joint
degree distribution p�k1 ,k2 ,kb� by averaging over k1, k2, and
kb. Instead, we here choose to make an approximation to
quantify the amount of overlap between the two networks.
Let us assume that each pair of vertices connected by an
edge on �2 has independent probability q1
2 of being also
connected on �1. Likewise, each pair of vertices connected

by an edge on �1 has independent probability q2
1 of being
connected on �2 as well. For consistency reasons, we then
have

q1
2�k2� = q2
1�k1� . �26�

Now, for each of the k2 neighbors of a randomly selected
node, there is a probability q1
2 that it is also connected to
that node on �1. The probability of having kb of those edges
shared with �1 is therefore

�k2

kb
	q1
2

kb �1 − q1
2�k2−kb. �27�

Using Eqs. �25� and �27�, we can then obtain the generating
function of the residual degree distribution of �1 on �2 for
partially overlapping networks by averaging over p�k1 ,k2�
and summing over all possible kb,

G0,2
r �x� = �

k1,k2

p�k1,k2� �
kb=0

k2 �k2

kb
	q1
2

kb �1 − q1
2�k2−kb�1 − T1 + T1u1�k1−kb�1 − w1 + x1w1�k2−kb��1 − T1��1 − u1� + u1x�kb

= �
k1,k2

p�k1,k2��1 − T1 + T1u1�k1�q1
2
�1 − T1��1 − u1� + u1x

1 − T1 + T1u1
+ �1 − q1
2��1 − w1 + w1x�k2

. �28�

Note that in this approximation, p�k1 ,k2� is constrained by the value of q1
2, for example if q1
2=1 we must have p�k1 ,k2
�k1�=0 because all nodes connected by a node on �2 are connected on �1, too.

In the limit of q1
2=0 �no overlap�, we recover our previous result of Eq. �14�, whereas if q1
2=1 �complete overlap�, we
have

G0,2
r �x� = �

k1,k2

p�k1,k2��1 − T1 + T1u1�k1/k2��1 − T1��1 − u1� + u1x�k2, �29�

which, if p�k1 ,k2�= p�k1��k1k2
, i.e., if the networks are completely equal, recovers the result presented in �15�.

The basic reproductive number for partly overlapping networks is

R0,2
overlap =� �G1,2

r �x;T2�
�x

�
x=1

= T2�q1
2
u1/w1

1 − T1 + T1u1
+ �1 − q1
2�	 �k2�k2 − 1��1 − T1 + T1u1�k1�

�k2�

= �q1
2
u1/w1

1 − T1 + T1u1
+ �1 − q1
2�	R0,2, �30�

and the critical transmission rate

TC,2
overlap =

1 − T1 + T1u1

q1
2u1/w1 + �1 − q1
2��1 − T1 + T1u1�
�k2�

�k2�k2 − 1��1 − T1 + T1u1�k1�
=

1 − T1 + T1u1

q1
2u1/w1 + �1 − q1
2��1 − T1 + T1u1�
TC,2.

�31�

The aforementioned constraints on the degree distribution,
given the value of q1
2, make it necessary to distinguish the
impact of network overlap from correlations in the degree
distributions. We can do this by focusing on the multiplica-
tive factors modifying the original values for nonoverlapping
networks, R0,2 and TC,2 in Eqs. �30� and �31�, given a joint
degree distribution p�k1 ,k2� and overlap q1
2. The factor
modifying TC,2,

1 − T1 + T1u1

q1
2u1/w1 + �1 − q1
2��1 − T1 + T1u1�
, �32�

is equal to 1 if q1
2=0, and equal to �1−T1+T1u1�w1 /u1	1,
if q1
2=1 �full overlap, where u1
w1 because p�k1 ,k2�k1�
=0�. Between these, it is strictly decreasing with q1
2. This
means that for a fixed joint degree distribution, invasion for
the second process becomes easier if there is more overlap
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between the two networks because random nodes outside the
GCOC on �1 have a higher tendency to be connected to
other nodes outside �1 on �2 if the two networks overlap.

However, it is difficult to separate the impact of overlap
from the joint degree distribution, which will usually change,
too, with different levels of overlap. This becomes clear, for
example, if we consider networks of power-law degree dis-
tributions �often called scale-free networks�. Such networks,
distributed with pk�k−�, are often used as proxy for highly
heterogeneous networks and their degree distribution has in-
finite variance for �	3, causing the epidemic threshold on
single networks to drop to zero because the second moment
diverges in Eq. �3�. In our case of overlay networks, if the
degrees are independently distributed �p�k1 ,k2��k1

−�k2
−��

with �	3, and the networks do not overlap �q1
2=0�, Eq.
�31� yields that TC,2=0 independent of the value of T1, so
that the first process cannot stop the second one. If, on the
other hand, degrees are fully positively correlated �p�k1 ,k2�
��k1k2

k1
−�� with �	3 and the networks overlap �q1
2=1�, we

get that TC,2=1, so that it becomes impossible for the second
process to spread. Just as in Fig. 2, this is because the nodes
of high degree are occupied by the first process and prevent
the second one from spreading.

C. Partial immunity

Not in all cases that we mentioned in the introduction is
the mutual exclusion of the two processes perfect. Some-
times infection with one process gives only partial immunity
to the other and a reduced chance of transmission remains. In
some cases, the probability of infection is even increased,
and one of the two processes makes individuals more sus-
ceptible to the other.

We now consider the case where infection with one of the
two processes does not make the nodes completely immune
to the other, but only modifies their transmission probabili-
ties to T2 with 0�	1 /T2. This includes the cases of
complete immunity �=0�, no interaction �=1�, as well as
the case when infection with the first process facilitates in-
fection with the second ��1�.

In this case, we cannot focus on the residual network
anymore, because nodes in the GCOC of �1 can have their
edges occupied on �2, too, with modified probability T2. To
compare this scenario with the ones studied before, we con-
centrate on clusters on �2 which contain at least one node in
the residual network of �1. This is equivalent to saying that
our second SIR epidemic starts with an individual unaffected
by the first outbreak.

Let us write down G0,2
partial�x ,y�, the pgf of a random node

on the residual network of �1 to be connected to m nodes on
�2 which are not in the GCOC of �1 and k2−m nodes within
that GCOC,

G0,2
partial�x,y� = �

m,n
�k2

m
	w1

m�1 − w1�k2−mxmyk2−m

= �y�1 − w1� + xw1�k2. �33�

Analogously to Eq. �15�, we then have

G0,2
partial�x,y ;T2� = G0,2

partial�1 − T2 + T2x,1 − T2 + T2y� ,

�34�

as the generating functions for a random node to have s of its
m edges on �2 linking to nodes not part of the GCOC in �1
and t of the k2−m others occupied. The generating function
for the total number of edges occupied on �2 starting from a
random node on the residual network of �1 on �2 is then

G0,2
partial�x;T2� = G0,2

partial�x,x;T2� . �35�

Now we have to distinguish between nodes arrived at follow-
ing one of the m edges not connected to nodes in the GCOC
of �1 and ones arrived at following one of the k2−m con-
nected to nodes within that GCOC. The probability of a node
of degree k1 on �1 to be part of the GCOC on that network is
�k1

, as of Eq. �9�. Therefore, the probability of arriving at a
node of degree k2 if it is has been selected following an edge
connected to a node in the GCOC of �1 is proportional to
p�k1 ,k2�k2�k1

, and it is proportional to p�k1 ,k2�k2�1−�k1
� if it

has been selected following one of the m others. For the
nodes arrived at from a randomly selected node, we then
have two different generating functions G1,2

+ and G1,2
− for the

number of excess occupied edges, depending on whether that
node is in the GCOC on �1 or not, and similarly we can
define H1,2

+ and H1,2
− for the generating functions for the size

of connected occupied clusters.
The generating function for the occupied cluster size on

�2 of a randomly selected node on the residual network of �1
is then

H0,2
partial�x;T2� = G0,2

partial�x;T2��H1,2
− �x;T2�,H1,2

+ �x;T2�� .

�36�

The generating functions H1,2
− and H1,2

+ fulfill the consistency
relations

H1,2
− �x;T2� = G1,2

− �H1,2
− �x;T2�,H1,2

+ �x;T2�� ,

H1,2
+ �x;T2� = G1,2

+ �H1,2
− �x;T2�,H1,2

+ �x;T2�� . �37�

Using the relations �36� and �37�, we can use numerical ap-
proximation methods to determine u1

−=H1,2
− �1;T2� and u1

+

=H1,2
+ �1;T2� and proceed as usually to determine, for ex-

ample S2�T2�=1−H0�1;T2� from Eq. �36�. While it is pos-
sible to derive an analytical expression for TC,2 and R0,2 in
terms of u1

− and u2
− following the same steps as in the cases

outlined above, such an endeavor is tedious and provides
little opportunity for interpretation, and we prefer here to just
present numerical results. Quite intuitively, relaxing the im-
munity to one process granted by the other one will make it
easier for that one to invade the population. This can be seen
in Fig. 3, where a second process which would not spread
under total exclusion can infect a significant portion of the
network if �0.

D. Mutual cross immunity

In the bond percolation model presented here, we can also
study a scenario where not only one process is inhibited by
not being able to spread to nodes which have any of their
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edges occupied by the other, but also vice versa. That is, we
can study situations where both outbreaks have an influence
on another. To do so, we search for solutions u1 ,u2 of the
system where the GCOC of either network emerges on the
residual degree distribution of the other �compare Eq. �14��,

G0,1
r �x� =

1

G0,2�u2;T2��k1

�

�
k2

�

p�k1,k2�

��1 − T2 + T2u2�k2�1 − w2 + w2x�k1,

G0,2
r �x� =

1

G0,1�u1;T1��k1

�

�
k2

�

p�k1,k2�

��1 − T1 + T1u1�k1�1 − w1 + w1x�k2, �38�

with w2 the probability of finding a node in the GCOC of �2
by following an edge on �1, analogously to w1 in Eq. �11�.
We can solve system �38� numerically under various sce-
narios of joint degree distribution, partial immunity, and net-
work overlap. Remembering that we assumed large out-
breaks always to happen if they are possible, the solutions
u1 ,u2 then correspond to the probabilities for nodes not to be
part of outbreaks of SIR epidemics on �1 and �2, respec-
tively, where both these epidemics interact with each other,
and solutions where both u1	1 and u2	1 indicate situations
where the two processes can coexist.

Depending on the networks and the values of the trans-
mission probabilities T1 and T2 with regard to their critical
probabilities T1,C and T2,C, we find qualitatively different
types of possible solutions to Eq. �38�. Generally, either of
the two processes can always form a GCOC if its transmis-
sion probability is greater than its critical transmission prob-
ability T1/2,C as determined from the marginal degree distri-
bution using Eq. �3�, i.e., ignoring the presence of the other
network. Only if both T1 and T2 are below their critical val-
ues, there can be completely nonepidemic solutions, i.e., so-
lutions where neither of the two processes form a GCOC. If,
on the other hand, one of them is above the critical value

whereas the other is not, only the one with its transmission
probability T1/2 greater than its critical transmission probabil-
ity T1/2,C will form a GCOC.

The most interesting situation arises if both T1 and T2 are
greater than their respective critical values. In that case, we
observe three different cases, depending on the transmission
probabilities and network properties. In one case there is
only one solution to system �38� with one of the two pro-
cesses forming a GCOC whereas the other one remains con-
fined to small clusters. A second case again yields only one
solution, but this time the two processes can coexist and both
form a GCOC. This corresponds to a situation of pure coex-
istence, where, even if one of the two processes forms a
GCOC, there is always still enough of the network left in the
residual network for the other one to form a GCOC, too.
Lastly, there can be situations where there are three solutions
to Eq. �38�, one of coexistence and two more with either of
the two processes forming a GCOC exclusively, the other
one being confined to small clusters. In that case, if one
process forms a GCOC without interference from the other
one, there will not be enough of the network left in the re-
sidual network for the other one to form a GCOC, too. How-
ever, there is also the possibility that both processes limit
each other to leave enough of the network for both to form a
GCOC.

How does the analogy with the SIR model work in this
case? If both processes do not form a GCOC, no large out-
break happens on either SIR process, whereas if only one can
form a GCOC, the corresponding SIR process forms a large
outbreak. Where there is exactly one solution to Eq. �38�
with a GCOC both on �1 and �2, both SIR epidemics cause
a large outbreak, and they coexist on the network. Lastly,
where there are three solutions to Eq. �38�, three different
scenarios can occur. Either one of the two processes causes a
large outbreak and occupies a sufficient part of the network
to prevent the other one from spreading, or both cause a large
but smaller outbreak, leaving a large enough part of the net-
work for the other process to spread, so that the two coexist.
The percolation model does not tell us anything about which
of these situations will actually occur in a single run of a
stochastic SIR model and this will partly depend on the rela-
tive velocities of the two epidemics, more specifically on
whether one of them spreads fast enough with respect to the
other to occupy a sufficient fraction of the network to sup-
press it.

Figures 4 and 5 show regions of possible coexistence for
different joint degree distributions, where both networks
have the same marginal degree distribution. In that case, we
see that coexistence is always possible if T1�T2, and they
are both greater than their critical transmission probability
TC. For independently distributed degrees and complete mu-
tual immunity, with increasing heterogeneity there is a grow-
ing region around T1/2�TC in which there is always coexist-
ence, i.e., both processes always form a GCOC, although this
is not the case if the degrees of individual nodes on the
network are positively correlated.

When, on the other hand, T1 or T2, approach one, and both
processes grant complete immunity to each other, there is
always a solution with either of the two processes occupying
such a large part of the network that the other cannot spread,
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FIG. 3. The critical transmission probability �solid line� and
fraction of nodes in the GCOC �long dashes� for a process running
on a random network with T2=0.66 after a previously running pro-
cess with T1=0.33 has granted partial immunity in the sense that
nodes in the GCOC of the first process have their edges occupied by
the second with probability T2.
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in addition to a potentially existing solution of coexistence.
This changes if the immunity granted mutually is only par-
tial, where we see that there is always coexistence for T1 and
T2 sufficiently large. Only if both networks have little het-
erogeneity �or if they are regular�, and T1 and T2 are close to
TC there can be solutions where either of the two processes
can form a GCOC large enough to prevent the other one
from spreading, in addition to the possibility of coexistence.

IV. CONCLUSIONS

In conclusion, we have developed a framework for the
study of interacting epidemics on overlay networks of arbi-
trary joint degree distribution, amount of overlap and
strength of immunity. If one process spreads to grant protec-
tion to another one spreading subsequently, such as aware-
ness of a disease might do to a disease, or a pathogen to a
similar one �see the contemporary work of �22��, the protec-
tion is more effective if the degrees of nodes on the two
networks are positively correlated. In that case, the protective
effect is stronger if there is greater variance in the degree
distribution. If, on the other hand the degrees are uncorre-
lated or even negatively correlated, increasing heterogeneity
makes it more and more difficult to contain the second epi-
demic.

This generalizes the notion of a coexistence threshold in-
troduced in �15� to situations where the two pathogens do not

spread on the same network or where the network changes
between subsequent outbreaks, and where they do not have
the same transmission probability. If, on the other hand, we
do apply these conditions to our model, the coexistence
threshold emerges as a special case.

If both processes mutually affect each other, the param-
eter regions of possible coexistence can be quite small, espe-
cially if the transmission probabilities are close to the respec-
tive thresholds. If both grant only partial immunity to each
other, this effect becomes even stronger. If the transmission
probabilities are relatively high, on the other hand, partial
immunity excludes dominance of one process because either
one can always establish itself even with the other one al-
ready occupying parts of the system.

The method applied here is static in nature and fails to
predict the dynamical interaction of two processes in compe-
tition. This is done more naturally using models based on
differential equations, as done, for example, in �7�. These
models, however, often fail to account for the influence of
population structure. To capture dynamical features of the
interaction of two processes competing over some part of a
network, other approaches such as the generation-based
method recently introduced in �23� might hold more promise.
Still, the results presented here show the wide range of pos-
sible impacts of large-scale network structure on the interac-
tion between multiple spreading agents, highlighting once
more that network structure and interplay can affect the pat-
terns of concurrent spread of two processes, whether it be
rumors, pathogens or others.
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FIG. 4. �a� and �b� Regions of possible coexistence for two epidemics spreading with transmission probabilities T1 and T2 and complete
mutual immunity on nonoverlapping overlay networks with independently distributed degrees of average degree �k1�= �k2�=6 with standard
deviation �a� s=2.5 and s=8 �b�. Regions where none of the two processes can form a GCOC are black and ones where only one can form
a GCOC are white, with the number inside the area indicating which of the two processes is able to do so. In regions of dark gray, there can
be coexistence, but also exclusion of either process by the other, whereas in areas or light gray, there is always coexistence. �c� Regions of
possible coexistence for T1=T2 as a function of standard deviation in node degree for complete mutual immunity on nonoverlapping overlay
networks with independently distributed degrees of average degree �k1�= �k2�=6.

0.1

0.5

0 0.2 0.4 0.6 0.8 1

no epidemic

coexistence
coexis-

tence/

exclusion

c

T
=
T

1
2

0.1

0.5

0.1 0.5

2

1

a

2
T

T1

0.1

0.5

0.1 0.5

1

2

b

2
T

T1 s

FIG. 5. �a� and �b� The effect of partial immunity =0.5 �a� and mutual facilitation =1.5 �b� on the regions of possible coexistence for
the network used in Fig. 4�a� �average degree �k1�= �k2�=6 with standard deviation s=2.5�. �c� Regions of possible coexistence for T1

=T2 as a function of partial immunity  in the same network.

SEBASTIAN FUNK AND VINCENT A. A. JANSEN PHYSICAL REVIEW E 81, 036118 �2010�

036118-8



ACKNOWLEDGMENTS

This research was funded by the UK Engineering and
Physical Sciences Research Council through standard re-
search grant number EP/D002249/1.

APPENDIX

The overlay networks used to create the figures were cre-
ated in the following way: single networks of N=10 000
nodes and average degree �k�=6 and standard deviation in
the degree s=0, s=2.5, and s=9 were created using the al-
gorithms of �24–26�, respectively. Single networks with in-
termediate heterogeneity were generated by randomizing a
fraction of the edges in these networks.

Joint degree distributions for overlay networks with inde-
pendently distributed degrees, if both networks are to have
the same marginal degree distribution, can then be generated
by setting p�k1 ,k2�= p�k1�p�k2�, where p�k� is the degree dis-
tribution of the single network. The corresponding overlay
networks for simulations can be generated by starting from
the single network to represent �1 and randomly reshuffling
the vertices of a second single network representing �2 be-
fore adding its edges.

To generate overlay networks with positive or negative
degree correlations, we used a rewiring method based on the
Metropolis algorithm �see, e.g., �27,28�, for similar ap-
proaches� with a Hamiltonian defined by

H��� = − J�
v=1

N

k1,vk2,v, �A1�

where � denotes the overlay network, and the sum is over all
vertices and k1,v and k2,v are the degrees of vertex v on the
network �1 and �2, respectively. A positive �negative� value
of the constant J will favor positive �negative� degree corre-
lations in the edge swap algorithm described in the follow-
ing.

Starting from the overlay network with independently dis-
tributed degrees, we select two distinct random vertices v1
and v2, and propose an edge swap between the two, in the
sense that v1 receives all links v2 has on �2 and vice versa,
subject to not creating overlapping edges, but they both keep
their links on �1. Denoting the original overlay network with
� and the network which would result from the edge swap
with ��, the swap is then accepted with probability

min�1,exp�− �H���� − H������ . �A2�

If we measure the degree correlation using the Pearson
product-moment correlation coefficient �29�

r =

�
v

�k1,v − �k1���k2,v�k2��

���
v

�k1,v − �k1��2�
v

�k2,v − �k2��2� , �A3�

we can stop rewiring once we have obtained the desired cor-
relation r. In the text, positive correlation indicates r=0.7
and negative correlation r=−0.7.

To approximate TC from the dynamical SIR model on
random networks of size N=10 000 in Fig. 2, we ran
individual-based simulations on the networks created using
the method outline above. In these simulations we first ran an
outbreak of the first epidemic with transmission probability
T1, and removed all nodes infected in the outbreak from the
population. We then ran the second epidemic on the remain-
ing network and tracked the average number of individuals
infected by infected individuals of the second generation,
i.e., those who were infected by the very first infected case of
the second epidemic. This average number is our R0,2. By
calculating this for different values of T2 we got a relation
between T2 and R0,2 which should be linear. We then fitted a
straight line to this relation and took the value of T2 which
yielded R0,2=1 to be the critical transmission probability
TC,2.
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