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Abstract

Heat-related morbidity and mortality are increasing due to climate change, emphasizing
the need to identify vulnerable areas and people exposed to extreme temperatures. To
improve heat stress impact assessment, we developed a replicable machine learning model
that integrates remote sensing, ground station, and geospatial data to estimate daily air
temperature at a spatial resolution of 100 m × 100 m across the region of Tuscany, Italy.
Using a two-stage approach, we first imputed missing land surface temperature data
from MODIS using gradient-boosted trees and spatio-temporal predictors. Then, we
modeled daily maximum and minimum air temperatures by incorporating monitoring
station observations, satellite-derived data (MODIS, Landsat 8), topography, land cover,
meteorological variables (ERA5-land), and vegetation indices (NDVI). The model achieved
high predictive accuracy, with R2 values of 0.95 for Tmax and 0.92 for Tmin, and root mean
square errors (RMSE) of 1.95 ◦C and 1.96 ◦C, respectively. It effectively captured both
temporal (R2: 0.95; 0.94) and spatial (R2: 0.92; 0.72) temperature variations, allowing for the
creation of high-resolution maps. These results highlight the potential of integrating Earth
Observation and machine learning to generate high-resolution temperature maps, offering
valuable insights for urban planning, climate adaptation, and epidemiological studies on
heat-related health effects.

Keywords: air temperature; MODIS; Landsat 8; machine learning; remote sensing; urban
heat island
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1. Introduction
The impacts of non-optimal temperatures on mortality and morbidity have been well

established, with findings showing an increased risk at both high and low temperatures [1–3].
Non-optimal temperature is a leading health burden, which is projected to further increase
with a warming planet [4–6]. The World Meteorological Organization confirmed 2024
to be the warmest year on record, with global temperatures measuring at 1.55 ◦C above
pre-industrial levels [7]. Besides contributing to an intensification in natural disasters, the
climate crisis has exacerbated extreme temperature events with severe heat days increasing
in intensity, duration, and frequency.

Until recent years, environmental health studies investigating the association between
temperature and human health have typically estimated exposures at the city or national
level based on the air temperature (also known as ambient temperature or near-surface
temperature) measured at one or a limited number of available monitoring stations [4].
Monitoring stations offer convenient access to continuous meteorological data, which
makes them a commonly used source in large-scale epidemiological studies. Despite this
advantage, reliance on data from these stations may introduce systematic biases, as such
measurements often lack the spatial resolution necessary to capture fine-scale temper-
ature variations. This limitation is further exacerbated by the fact that meteorological
stations are often unevenly distributed across urban and regional areas and are commonly
located outside densely populated zones (e.g., at airports). As a result, the representa-
tiveness of exposure estimates may be compromised, potentially leading to exposure
misclassification [8].

In recent years, climate reanalysis products have been increasingly used as an al-
ternative data source for comprehensive background information in climate conditions.
These products are obtained by running a series of global or regional weather forecasting
models under observationally constrained scenarios via data assimilation [9]. Compared
to in situ measurements, climate reanalysis products offer the advantage of delivering
consistent historical records of numerous meteorological variables at various spatial and
temporal resolutions across the entire globe. These datasets show good validity on the
estimates for health-temperature associations, allowing for the assessment of heat-related
health impacts at country or global level [9,10]. However, these global models, such as
the ECMWF ERA5-land with a resolution of 10 km × 10 km, are too coarse to capture
intra-urban temperature variability.

This limitation is particularly relevant because urban areas frequently experience
temperatures several degrees higher than surrounding rural areas, especially at night,
primarily due to the built environment absorbing and storing heat during the day and
releasing it at nighttime. This phenomenon, called the urban heat island (UHI), can
lead to an average temperature difference between urban and rural areas of 2–4 ◦C [11].
Contributing factors include the prevalence of impervious surfaces, lack of vegetation,
and anthropogenic heat emissions from transport systems and industry [12,13]. Also,
the urban population tends to be more vulnerable to heat stress, due to factors such as
population density and socio-economic inequalities [14]. In addition to global warming and
synergistic effects with high air pollution, aging populations and increased urbanization
are conducive to future susceptibility to non-optimal temperatures [11,15]. Assessing these
vulnerabilities requires a detailed understanding of how temperature varies within cities,
which is strongly influenced by the complex interactions between atmospheric dynamics
and city-specific characteristics.

At finer spatial scales, such as microscale (<2 km) and building scale (<100 m), temper-
ature exposure estimates have been derived using numerical or statistical models. Among
the numerical approaches, the UrbClim model has been applied to analyze the urban
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UHI effect at a 100 m resolution in 100 European cities [16]. UrbClim is based on a soil–
vegetation–atmosphere transfer scheme, extended to incorporate the physical properties of
urban surfaces. Using this framework, Lauwaet et al. [16] generated hourly temperature
data for a ten-year period (2008–2017). Numerical models can ensure physical consis-
tency and allow for the evaluation of future scenarios or mitigation strategies; however,
they require detailed input data and are computationally intensive, which may limit their
application over very large areas or extremely long periods.

The alternative approach, statistical models, includes methods that calibrate land
surface temperatures (LST) measurements with observations from monitors using a set of
spatio-temporal predictors such as large-scale meteorological data and land use inventories.
Spatially continuous observations of climate variables, especially LST, are available through
satellite-based measurements. LST can be retrieved from polar-orbiting satellite platforms
such as MODIS (Terra and Aqua) and Landsat. Despite offering superior spatial coverage
and resolution, LST is less accurate than air temperature in representing the actual condi-
tions to which individuals are exposed. Nevertheless, due to the strong correlation between
the two, LST data are widely used to estimate daily air temperature. Statistical models
are highly flexible, adaptable to different regions, and less computationally demanding
than numerical models, and they can capture complex microclimatic patterns related to
topography and intra-urban variability. However, their reliance on satellite and ground
observations makes them sensitive to data gaps.

The first attempts of these methods used regression-based statistical models to ob-
tain air temperature levels at up to 800 m resolution [17–21]. Recent studies used new
approaches by applying machine learning methods to predict daily near-surface air tem-
perature [22–31]. Two studies were even able to produce air temperature maps at a finer
(200 m or 100 m) resolution [23,24].

Bussalleu et al. [31] produced Europe-wide daily 1 km × 1 km resolution models for
mean, minimum, and maximum ambient temperature for the period of 2003–2020. Daily
temperature maps for 6 years at a 1 km × 1 km resolution for Italy have been previously
created for correlating vertical ground movements [32] and are available as open data [33].
In Tuscany, a high-resolution LST downscaling has also been applied specifically to the
urban context of Florence [34].

This study aims to provide refined tools for the exposure assessment in studies in-
vestigating associations of short- and long-term exposure to temperature and health, and
to better characterize areas more vulnerable to extreme temperatures and temperature
variability in the Tuscany region. We aim to develop 100 m × 100 m resolution models of
minimum and maximum ambient temperature in Tuscany for the year 2022. We used a
two-stage machine learning framework that integrates remote sensing and ground station
data and ensembles Extreme Gradient Boosting with Multivariate Adaptive Regression
Splines, combined with high-resolution Landsat-derived LST and a wide set of spatial and
spatio-temporal predictors, to enhance both temporal accuracy and spatial detail.

This work can help inform mitigation strategies and improve urban planning to reduce
the exposure in cities and vulnerabilities in the population.

2. Materials and Methods
2.1. The Study Area

The study area consists of the entire territory of Tuscany (Figure 1), the fifth-largest
region in Italy by surface area, encompassing approximately 22,993 km2. Tuscany features
a remarkable variety of topographic characteristics, ranging from predominantly hills with
about 66.5% of the total surface area, to 25% mountainous area and 8.5% plains [35]. The
main mountain ranges include the Tuscan-Emilian Apennines in the northeast, with peaks
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exceeding 2000 m, such as Monte Cusna (2121 m), and the Apuan Alps in the northwest.
Tuscany also features a coastal area of 633 km, including seven islands of the Tuscan
archipelago [36]. The climate in Tuscany varies significantly due to its diverse topography.
Coastal areas experience a Mediterranean climate, while the inland areas, particularly the
hills and mountains, receive a more continental climate with colder winters and hotter
summers. Tuscany had twelve cities with more than 50,000 inhabitants in 2022: Firenze
(Florence), Prato, Livorno, Arezzo, Pisa, Pistoia, Lucca, Grosseto, Massa, Viareggio, Siena,
and Carrara. These cities accounted for approximately 38.2% of the region’s population,
while occupying 9.1% of its total land area [37].

Considering the Tuscany boundaries, we created a 100 m × 100 m grid, with a total of
2,306,665 cells (with irregular boundary cells following the boundaries of the polygon).

2.2. Data
2.2.1. Meteorological Observations

The source of near-surface air temperature data was the database of the “Servizio Idro-
logico Regionale” (Regional Hydrological Service, SIR) [38]. This institution is responsible
for the collection of quantitative meteorological–hydrological, groundwater, and tidal data
through regional networks. The archived data undergo various quality check procedures
before publication in the shared database. The current network consists of approximately
440 stations, 162 of them cover various areas of Tuscany (Figure 1) with meteorological
data for the year 2022 [38]. Twenty-four of the 162 monitoring stations were classified
as urban as they are located in the 12 cities with more than 50,000 inhabitants. For each
monitoring station, we considered the daily minimum (Tmin) and maximum (Tmax) air
temperatures. There were 4317 (7.3%) missing measurements for both Tmax and Tmin in a
total of 54,813 daily measurements for all the monitors during the 365 days of 2022.

Figure 1. Distribution of the 162 active meteorological monitoring stations (red dots) in 2022 in
Tuscany, Italy.
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2.2.2. Land Surface Temperature Data

We used version 6 of the Moderate Resolution Imaging Spectroradiometer (MODIS)
daily 1 km land surface temperature (LST) and emissivity product from the Terra and
Aqua satellites (MOD11A1 and MYD11A1, respectively). Each satellite provides a spatial
resolution of 1 km × 1 km and orbits Tuscany twice per day, with overpass times at
approximately 10:30 a.m. and 10:30 p.m. for Terra and 1:30 p.m. and 1:30 a.m. for
Aqua (local solar time). Data for 2022 were obtained from the corresponding MODIS tile
h18v04 from Google Earth Engine using the R library “rgee” (v1.1.3) [39,40]. Four variables
were derived for each cell, representing values measured by MODIS during daytime
(LST_ModisAD, LST_ModisTD) and nighttime (LST_ModisAN, LST_ModisTN) from the
Aqua and Terra satellites. We used the quality assessment band to exclude pixels with an
LST error of >2 K.

To characterize the seasonal spatial distribution of LST at a fine scale (100 m × 100 m)
resolution, we used Landsat 8 satellite data from the United States Geological Survey [41].
Landsat 8 satellites have acquired images since 2013 with a frequency of 16 days. From
the Google Earth Engine product “USGS Landsat 8 Level 2, Collection 2, Tier 1”,
we used band 10 (ST_B10 surface temperature) to calculate LST with the formula
LST = ST_B10 × 0.00341802 + 149 − 273.5, with a geometric resolution of 100 m × 100 m
pixel size. Cloud mask and cloud filtering were implemented using the CFMASK algorithm,
as well as a per-pixel saturation mask. Finally, for each season (winter, spring, summer, au-
tumn), we composed all applicable LST retrievals. This yielded the LST_Landsat8 variable
representing the median LST of each cell in each calendar season.

2.3. Spatial and Spatio-Temporal Predictors

We developed a harmonized geo-database combining Earth Observation (EO) satellite
data and spatio-temporal predictors for Tuscany for the year 2022. The spatio-temporal pre-
dictors considered different characteristics associated with ambient temperature, including
topography, sun geometry, meteorological variables, land cover, vegetation, population,
and road network. The full list of predictors is reported in Table 1 with the temporal and
spatial resolutions of the original data. The different features were available at different spa-
tial resolutions ranging from 25 m × 25 m for topographic characteristics to 31 km × 31 km
for planetary boundary height. For each day, the different products were harmonized into
the Tuscany grid’s 100 m × 100 m resolution using area-weighted interpolation (function
exact_extract of the R package exactextractr, v0.9.1) [42]. In the paragraphs below, each
predictor is described in more detail.

We considered EU-DEM v1.0 (European digital elevation model) from the Copernicus
Land Monitoring Service for elevation, slope, and aspect [43]. Slope identifies the steepest
slope (in degrees) between the cell and its neighboring cells. Aspect depicts the downslope
direction of the steepest slope (in degrees from 0 to 359.9, clockwise starting north). The sky
view factor, a measure of the visible sky based on the digital terrain model, was calculated
using the SAGA tool Sky View Factor in QGIS 3.4.4 [44–46]. Top-of-atmosphere diffusion
and direct solar radiation, along with day length and sun altitude, were estimated for each
grid cell using the “solrad” package in R (v1.0.0) [47]. The package uses day of the year,
coordinates, slope, aspect, and elevation to estimate the potential diffusion and direct solar
radiation in Watt per square meter, day length in hours, the solar azimuth angle, and solar
altitude in degrees. Day length and solar azimuth angle were chosen as seasonal indicators.
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Table 1. Spatial and spatio-temporal predictors included in the harmonized geocode database.

Dimension Variable
(Acronym) Description

Unit
of

Measurement

Spatial or
Spatio-

Temporal

Original
Spatial

Resolution

Temporal
Resolution Stage

Topography

Elevation
(DEM) Digital Elevation Model m Spatial 25 m ×

25 m
Constant

(2016) 1;2

Slope
(SLP) Steepest slope Degree

(angle) Spatial 25 m ×
25 m

Constant
(2016) 1;2

Aspect
(Aspect)

Direction of the steepest slope, clockwise
starting north

Degree
(angle) Spatial 25 m ×

25 m
Constant

(2016) 1;2

Skyview
(SVF) Ratio of the visible sky (sky view factor) Proportion Spatial 25 m ×

25 m
Constant

(2016) 1;2

Sun
geometry

SunAltitude
(SUNALT) Sun altitude Degree Spatio-

temporal
100 m ×

100 m
Daily

(constant through years) 1

Azimuth
(Azimuth) Azimuth Degree Spatio-

temporal
100 m ×

100 m
Daily

(constant through years) 1

DayLength
(DAYL) Day length h Spatio-

temporal
100 m ×

100 m
Daily

(constant through years) 1;2

DiffuseSunRadiation
(DIFSUNRAD) Diffuse solar radiation W

m2
Spatio-

temporal
100 m ×

100 m
Daily

(constant through years) 1

DirectSunRadiation
(DIRSUNRAD) Direct solar radiation W

m2
Spatio-

temporal
100 m ×

100 m
Daily

(constant through years) 1

Meteorological
Variables

Precipitations
(PREC) Total precipitation m Spatio-

temporal
9 km ×

9 km Daily 2

RelativeHumidity
(RH) Relative humidity Percentage Spatio-

temporal
9 km ×

9 km Daily 2

WindSpeed
(WINDS) Wind speed ms−1 Spatio-

temporal
9 km ×

9 km Daily 2

WindDirection
(WINDD) Wind direction Degree

(angle)
Spatio-

temporal
9 km ×

9 km Daily 2

SurfacePressure
(PA) Surface pressure Pa Spatio-

temporal
9 km ×

9 km Daily 2

PlanetaryBoundaryHeight
(BLH) Planetary boundary height m Spatio-

temporal
31 km ×

31 km Daily 2
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Table 1. Cont.

Dimension Variable
(Acronym) Description

Unit
of

Measurement

Spatial or
Spatio-

Temporal

Original
Spatial

Resolution

Temporal
Resolution Stage

Land
cover

ImperviousBuildup
(IBU) Impervious build-up Proportion Spatial 100 m ×

100 m
Constant

(2018) 2

Continuous-
UrbanFabric

(CLC: Continuous
Urban fabric)

Proportion of area covered by continuous
urban fabric (from Corine Land Cover) Proportion Spatial 100 m ×

100 m
Constant

(2018) 2

Discontinuous-
UrbanFabric

(CLC: Discontinuous
Urban fabric)

Proportion of area covered by
discontinuous urban fabric (from Corine

Land Cover)
Proportion Spatial 100 m ×

100 m
Constant

(2018) 2

Industrial/Commercial
(CLC: Industrial/

Commercial)

Proportion of area covered by
industrial/commercial (from Corine Land

Cover)
Proportion Spatial 100 m ×

100 m
Constant

(2018) 2

Vegetation
(CLC: Vegetation)

Proportion of area covered by vegetation
(from Corine Land Cover) Proportion Spatial 100 m ×

100 m
Constant

(2018) 2

Agriculture
(CLC: Agriculture)

Proportion of area covered by agriculture
(from Corine Land Cover) Proportion Spatial 100 m ×

100 m
Constant

(2018) 2

NDVI NDVI (NDVI) Normalized difference vegetation index Ratio
(−1;1)

Spatio-
temporal

250 m ×
250 m

Every
16 days 1;2

Population and density

Population (POP) Population Persons/
Area Spatial 1 km ×

1 km
Constant

(2018) 2

NightTimeLight Nighttime light nW
m2 Spatial

15 arc seconds
(~500 m × 500 m

at the equator)

Constant
(2022) 2
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Table 1. Cont.

Dimension Variable
(Acronym) Description

Unit
of

Measurement

Spatial or
Spatio-

Temporal

Original
Spatial

Resolution

Temporal
Resolution Stage

Road
network

UrbanRoad
(RDS: Urban Road) Length of urban roads m Spatial - Constant

(2020) 2

LocalRoad
(RDS: Local Road) Length of local roads m Spatial - Constant

(2020) 2

ExtraUrbanSecondaryRoad
(RDS: Extra

UrbanSecondary Road)
Length of extra urban secondary road m Spatial - Constant

(2020) 2

ExtraUrbanPrincipalRoad
(RDS: Extra

UrbanPrincipal Road)
Length of extra urban principal road m Spatial - Constant

(2020) 2

Motorway
(RDS: Motorway) Length of motorway m Spatial - Constant

(2020) 2

OtherRoad
(RDS: Other Road) Length of other road m Spatial - Constant

(2020) 2

Land
surface

temperature

LST_ModisAD Land surface temperature from MODIS
aqua day K Spatio-

temporal 1 km × 1 km Daily 2 Tmax

LST_ModisTD Land surface temperature from MODIS
terra day K Spatio-

temporal 1 km × 1 km Daily 2 Tmax

LST_ModisAN Land surface temperature from MODIS
aqua night K Spatio-

temporal 1 km × 1 km Daily 2 Tmin

LST_ModisTN Land surface temperature from MODIS
terra night K Spatio-

temporal 1 km × 1 km Daily 2 Tmin

LST_Landsat8 Land surface temperature
from LANDSAT8 K Spatio-

temporal 30 m × 30 m Every
16 days 2
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Meteorological variables selected for the analysis included daily levels of relative
humidity (2 m above the surface), 10 m horizontal wind speed and direction, total precipi-
tation (Earth surface level), and surface pressure. We retrieved meteorological data from
the Copernicus ERA-5 Land with a latitude–longitude grid size of 0.1◦ × 0.1◦, roughly
translating to a 9 km × 9 km grid [48]. Specifically, we extracted daily averages for temper-
ature and dew temperature (2 m above the surface), 10 m U wind component, 10 m V wind
component, surface pressure, and total precipitation. We calculated relative humidity (RH)
from temperature and dew point temperature using the R “humidity” package (v0.1.5) [49]
and the 10 m horizontal speed and direction from 10 m U and V wind components using
the R “rWind” package (v1.1.7) [50,51].

We also considered the boundary layer height, which is the depth of air next to
the Earth’s surface. This parameter is most affected by the resistance to the transfer of
momentum, heat, or moisture across the surface. The boundary layer height can be as
low as a few tens of meters for cooling air at night, or as high as several kilometers over
the desert in the middle of a hot sunny day. The boundary layer height was obtained
from ERA-5 with a latitude–longitude grid size of 0.25◦ × 0.25◦, roughly translating to a
31 km × 31 km grid at the equator.

We considered impervious build-up (percentage share of build-up) as a contributor to
anthropogenic heat. This indicator, at a resolution of 100 m × 100 m, was extracted from
high-resolution layer (HRL) imperviousness data (for the year 2018) provided by the Coper-
nicus Land Monitoring Service [52]. Land use data (also for the year 2018) were additionally
extracted at a 100 m × 100 m resolution from the Corine Land Cover dataset provided
by the Copernicus Land Monitoring Service [52]. The different land use categories were
recoded into five main categories (Continuous_urban_fabric, Discontinuous_urban_fabric,
Industrial_or_commercial_units, Vegetation, Agriculture).

To account for the spatial and temporal variation of vegetation, the normalized differ-
ence vegetation index (NDVI) was used as a proxy for greenness. The NDVI is measured
daily by the MODIS instrument on board the Aqua and Terra satellites. The MODIS IV
products (MOD13) are available at a 250 m × 250 m resolution. Monthly NDVI values were
obtained from the MOD13Q1 V6.1 product for 2022 [53].

For the population and nighttime light, we used the 1 km × 1 km gridded popula-
tion from Eurostat (JRC-GEOSTAT 2018) and the annual global Visible Infrared Imaging
Radiometer Suite (VIIRS) Nighttime Lights (NTL) v2.2 dataset, provided by the Payne
Institute for Public Policy at the Colorado School of Mines [54–56]. The NTL data for 2022
are available in raster format with a spatial resolution of 15 arc seconds (~500 m × 500 m
at the equator) and represent nighttime light levels in nanowatts per square meter. The
dataset containing the road network in Tuscany was sourced from the open data portal of
the Tuscany Region [57]. The data, capturing road geometries and attributes, were provided
in vector format and were last updated on 13 October 2022. The road network was used to
characterize transportation infrastructure; for each cell, the length (in meters) of each road
type (urban roads, local roads, urban secondary road, urban principal road, motorway and
other roads) was calculated.

2.4. Statistical Methods

A two-stage modeling approach was used to estimate daily near-surface air tempera-
ture (Tmin, Tmax) at a fine spatial resolution (Figure 2).

In the first stage, we used the Extreme Gradient Boosting algorithm (XGB) for the
imputation of missing MODIS (Terra and Aqua) satellite data. We imputed missing values
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by building four models for each day, using four variables (LST_ModisAD, LST_ModisTD,
LST_ModisAN, LST_ModisTN), for grid cell i and day j, as described in Equation (1):

LST_Modisi,j = XGB


Elevationi,j, Slopei,j, Aspecti,j, Skyviewi,j,
SunAltitudei,j, Azimuthi,j, DayLengthi,j,

Di f f useSunRadiationi,j, DirectSunRadiationi,j,
NDVIi,j,

 (1)

We selected features related to topography (elevation, slope, aspect, sky view factor),
seasonality (sun altitude, azimuth, day length, sun radiation), and vegetation (NDVI).
We did not consider meteorological variables at this stage as they are related to the main
outcome of the study, i.e., ambient temperature. After preliminary analysis, the XGB
hyper-parameters were set as following: eta = 0.1, gamma = 0.01, min.child.weight = 100,
max.depth = 10, subsample = 0.7, colsample_bytree = 0.7. The performance of the models
was assessed using statistics based on out-of-bag (OOB) samples with a 5-fold cross-
validation (CV) procedure. To this end, five random groups of observations were defined,
and the complete outcome series in each group was predicted using a model fitted on the
other four. Performance was evaluated using the R2, the root mean square error (RMSE),
and the mean absolute error (MAE).

Figure 2. Two-stage modeling approach to estimate daily near-surface air temperature at a fine
spatial resolution.
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In the second stage, we applied the ensemble of two machine learning algorithms
to predict the maximum and minimum ambient temperature for grid cell i and day j. In
particular, we used the Extreme Gradient Boosting algorithm and the Multivariate Adaptive
Regression Splines (MARS) model. The MARS model implements automatic selections
(e.g., backward or forward) of non-parametric terms (e.g., splines) and their interaction [58].

XGB and MARS models, predicting daily ambient temperature for 2022, were sepa-
rately developed for Tmin and Tmax using the predictors in Equation (2), as for example
for Tmax:

Tmaxi,j = f



Elevationi,j, Slopei,j, Aspecti,j, Skyviewi,j,
UrbanRoadi,j, LocalRoadi,j, ExtraUrbanSecondaryRoadi,j,
ExtraUrbanPrincipalRoadi,j, Motorwayi,j, OtherRoadi,j

ImperviousBuildupi,j, ContinuosUrbanFabrici,j, DiscontinuousUrbanFabrici,j

Industrial/Commerciali,j, Vegetationi,j, Agricolturei,j

Populationi,j, NightTimeLighti,j, DayLengthi,j,
Precipitationsi,j, RelativeHumidityi,j, WindSpeedi,j, WindDirectioni,j,

Sur f acePressurei,j, PlanetaryBoundaryHeighti,j, NDVIi,j,
LST_ModisADi,j, LST_ModisTDi,j,

LST_Landsat8i,j,



(2)

For Tmin, a similar set of predictors was chosen, but we considered variables derived from
nighttime overpasses of the Terra and Aqua satellites: LST_ModisANi,j, LST_ModisTNi,j.

The Extreme Gradient Boosting model parameters were set as follows: eta = 0.1,
gamma = 0.01, min.child.weight = 100, max.depth = 10, subsample = 0.7, colsample_bytree = 0.7.
For the MARS models, we considered a linear spline parametrization with one internal knot
and no interaction with a stepwise forward selection based on 5-fold cross-validation procedure.
We further considered an ensemble model averaging the predicted values using the XGB and
MARS algorithms.

Similar to the first stage, the performance of the models and their ensemble combina-
tion in the second stage was assessed using statistics based on out-of-bag (OOB) samples
with a 5-fold cross-validation (CV) procedure based on monitoring stations. Five random
groups of locations with monitoring stations were defined, and the complete outcome
series in each group were predicted using a model fitted using data from the monitoring
stations in the remaining four groups. This validation procedure offers a measure of the
true predictive ability of the models in locations where no ground data are available. Mea-
sures of performance were generated using predicted values on the observed series left
out in each of the five runs, and computing the R2, root mean square error (RMSE), and
mean absolute error (MAE). These statistics were computed using the whole set and then
separated into spatial and temporal contributions. The former was computed using the
averages of predicted and observed values across the entire series and offers a measure of
performance in capturing long-term average ambient temperature values. The latter was
computed as daily deviations from the averages and quantified the temporal variability
explained by the model. Measures of performance of the ensemble model were also calcu-
lated for the four seasons and in the areas covered (urban) or not covered (non-urban) by
the 12 biggest cities.

Once we assessed the validity of the XGB and MARS models and their ensemble
combination, they were applied for each day in 2022 considering all grid cells in Tuscany to
obtain the predicted ambient temperature Tmin and Tmax values.
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3. Results
3.1. Stage 1

Table 2 shows the percentage of missing Modis-LST data for the different satellites,
overpasses and seasons, which was mainly caused by cloud cover. The stage 1 XGB models
explained large parts of the variation in the LST data (Table 2). The annual stage 1 models
achieved an R2 over 0.99 and an RMSE between 0.13 ◦C and 0.46 ◦C. Figure 3 illustrates
the LST_ModisAD data before (a) and after (b) stage 1 for the Aqua daytime overpass
on 1 March 2022. The stage 1 model imputed the missing clear sky LST_ModisAD data,
resulting in a complete “gap-filled” Aqua day.

Table 2. Performance measures of the stage 1 XGB models, by different satellites, overpasses,
and seasons.

Variables Observation Period Number of Days
with 100% NA % NA RMSE (◦C) R2 MAE (◦C)

LST_ModisAD

All Year 35 76.8 0.317 0.992 0.221
Winter 3 83.2 0.229 0.993 0.158
Spring 24 84.6 0.344 0.992 0.241

Summer 1 67.0 0.461 0.992 0.330
Autumn 7 73.0 0.278 0.992 0.199

LST_ModisAN

All Year 42 78.9 0.162 0.994 0.113
Winter 6 76.3 0.162 0.995 0.111
Spring 25 90.2 0.173 0.994 0.120

Summer 0 65.8 0.159 0.993 0.110
Autumn 11 78.7 0.160 0.995 0.114

LST_ModisTD

All Year 33 81.4 0.250 0.994 0.174
Winter 3 82.2 0.181 0.995 0.123
Spring 6 82.5 0.285 0.993 0.201

Summer 3 77.6 0.358 0.994 0.253
Autumn 21 84.3 0.206 0.994 0.150

LST_ModisTN

All Year 44 82.1 0.148 0.995 0.101
Winter 15 82.5 0.133 0.996 0.093
Spring 15 87.0 0.147 0.995 0.102

Summer 0 82.2 0.143 0.995 0.097
Autumn 14 76.8 0.155 0.994 0.110

  
(a) (b) 

Figure 3. Daytime LST from Aqua MODIS before (a) and after (b) imputation on 1st March 2022 in
Tuscany, Italy.
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3.2. Stage 2

The feature importance of the Tmax and Tmin models from the XGB algorithm are
shown in Figure 4. LST from MODIS was the most important predictor both for Tmax
and Tmin. For Tmax, LST from Landsat was also an important predictor in addition to
day length, meteorological variables, and topographic conditions. A similar pattern was
observed for Tmin, for which LST from Landsat was a less important predictor. The only
land use-related feature, modifiable by urban planning, was the NDVI, which ranked 8th
for Tmax and 14th for Tmin.

(a) (b) 

Figure 4. Feature importance (XGB) on modeling Tmax (a) and Tmin (b).

A complementary set of information was observed for the MARS model, where MODIS
and Landsat measurements remained important predictors along with meteorological and
topographic variables. However, vegetation as measured by NDVI, became a key predictor
for Tmax, while nighttime light emerged as an important predictor for Tmin (Figure 5).

(a) (b) 

Figure 5. Feature importance (MARS) on modeling Tmax (a) and Tmin (b). On the x-axis, there is the
residual sum of squares difference between the models containing and not containing the variable.
On the y-axis, the number of “subsets” in which the variable is included is represented. A subset is a
model with a smaller number of terms than that determined by the optimal model.

The validity (R2, RMSE, and MAE) of the stage 2 models on the hold-out validation
set predicting daily Tmax and Tmin is shown in Table 3. For Tmax, the stage 2 model
performed well, with an R2 and RMSE equal to 0.97 and 1.46 ◦C for the XGB algorithm
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and 0.88 and 2.99 ◦C for the MARS algorithm. Combining the information from the two
models in the ensemble prediction yielded an R2 of 0.95 and an RMSE of 1.95 ◦C, with
spatial and temporal R2 values of 0.92 and 0.95, respectively. For Tmin, the stage 2 model
achieved similar performance, although with slightly lower accuracy: the XGB algorithm
reached an R2 of 0.94 and an RMSE of 1.72 ◦C, while the MARS algorithm obtained an R2

of 0.86 and an RMSE of 2.56 ◦C. The two algorithms showed a similar spatial R2, while the
XGB showed a higher temporal R2. Integrating the two models in the ensemble prediction
resulted in an R2 of 0.92 and an RMSE of 1.96 ◦C, with a spatial and temporal R2 of 0.72
and 0.94, respectively.

Table 3. Validation of performance of XGB, MARS and ensemble models in stage 2 for predicting
Tmax and Tmin.

Variable Model RMSE (◦C) R2 MAE (◦C) Spatial R2 Temporal R2

Tmax
XGB 1.458 0.972 1.098 0.915 0.954

MARS 2.991 0.881 2.329 0.906 0.880
Ensemble 1.954 0.950 1.518 0.915 0.954

Tmin
XGB 1.715 0.938 1.314 0.715 0.941

MARS 2.559 0.858 2.030 0.679 0.878
Ensemble 1.961 0.920 1.530 0.715 0.941

Table 4 shows the validity measures of the ensemble models by season. For Tmax,
a lower R2 and RMSE were observed in winter and summer, while for Tmin, winter and
summer days were solely characterized by a lower R2.

Table 4. Performance measures of the stage 2 ensemble models in different seasons.

Variable Season RMSE (◦C) R2 MAE (◦C)

Tmax

Winter 1.704 0.752 1.274
Spring 2.306 0.896 1.839

Summer 1.790 0.769 1.401
Autumn 1.958 0.908 1.561

Tmin

Winter 2.024 0.757 1.592
Spring 2.187 0.850 1.719

Summer 1.723 0.647 1.350
Autumn 1.883 0.845 1.465

The performance of the ensemble model for Tmax, assessed exclusively in the
12 biggest cities (urban areas), was comparable to those measured in the rest of Tuscany
(non-urban area) (Table 5). For Tmin, a tendency toward higher R2 values was observed in
urban areas.

Table 5. Performance measures of the stage 2 ensemble models in urban and non-urban areas.

Variable Area RMSE (◦C) R2 MAE (◦C)

Tmax
Urban 2.001 0.944 1.577

Non-urban 1.938 0.952 1.504

Tmin
Urban 1.863 0.935 1.464

Non-urban 1.959 0.919 1.528

Figure 6 shows the predicted and observed daily Tmax and Tmin for the year 2022.
Predicted daily values closely followed the measured observations. The mean difference
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between the observed and predicted daily ambient temperature values was 0.28 ◦C for
Tmax and 0.19 ◦C for Tmin.

Figure 6. Predicted (orange) and observed by monitoring stations (blue) daily averaged Tmax and
Tmin in Tuscany, Italy. Year 2022.

Figures S1 and S2 in the Supplementary Materials present boxplots of monthly ambient
temperature Tmax and Tmin values, with lower average values in December and higher
average values in July (Table 6).

Table 6. Average predicted monthly ambient temperature Tmax and Tmin.

Month Tmax (◦C) Tmin (◦C)

January 10.6 2.4
February 12.6 3.4

March 14.6 2.9
April 17.9 6.3
May 23.9 12.1
June 30.1 16.9
July 32.8 18.8

August 30.0 18.1
September 23.4 14.0

October 21.2 12.1
November 15.3 7.3
December 11.4 6.5

Figures 7 and 8 show example maps of the predicted minimum and maximum tem-
perature for all four seasons at a 100 m × 100 m resolution. As expected, more variability
was observed in hotter seasons for Tmax, and higher temperatures were observed in the
northwest regions, including the main cities of Florence and Pisa, and in the south in the
Maremma plain land. Interestingly, some thermal inversion phenomena can be seen for
Tmin in winter (15 January 2022), with lower temperatures in the east-oriented valley.
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(a) (b) 

  
(c) (d) 

Figure 7. Predicted Tmax in days in the four different seasons: (a) winter, (b) spring, (c) summer,
(d) autumn, for Tuscany, Italy.

For a more detailed analysis of the spatial distribution of the predicted temperatures,
we performed a qualitative assessment considering the city of Florence and the surrounding
area within a 30 km buffer as an example (Figure 9). There are 28 monitoring stations in
the selected area: seven in an urban setting (red dots) and the others in non-urban settings
(black dots), such as small villages, vegetation, or crop fields (Supplementary Table S1).
The stations located in non-urban settings are located at a higher altitude than the urban
stations (388 m versus 58 m). Comparing the observed maximum temperatures in the
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urban and non-urban stations, we detected a 2.37 ◦C difference. Our model estimated a
similar difference of 2.34 ◦C with the predicted values. The difference is slightly higher
than expected at 2.15 ◦C due to the altitude difference between cells containing urban and
non-urban monitoring stations. Similar urban vs. non-urban differences (1.73 ◦C) were
observed for the minimum temperature, while a difference of 1.85 ◦C was estimated with
predicted model values.

  
(a) (b) 

  
(c) (d) 

Figure 8. Predicted Tmin in days in the four different seasons: (a) winter, (b) spring, (c) summer,
(d) autumn, for Tuscany, Italy.
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Figure 9. Placement of the 28 meteorological stations within the study area surrounding Florence
(30 km circular buffer). Red dots represent urban stations and black dots represent non-urban stations.
A corresponds to the University station in Florence and B to the station in Pontassieve.

For Tmax, the bias (difference between measured and predicted temperature values)
was comparable between cells containing urban monitors (0.11 ◦C) and cells contain-
ing non-urban monitors (0.17 ◦C). Similar biases were estimated for Tmin, with a bias
of 0.14 ◦C in cells containing urban monitors and a bias of 0.03 ◦C in cells containing
non-urban monitors.

Station B (Pontassieve) was chosen to represent a rural location near Florence. This
station at an altitude of 230 m is surrounded by crop fields. For the urban reference, station
A (Università), which is located near the university at an altitude of 80 m, was selected. The
average daily observed difference between the urban and rural stations was 0.64 ◦C, which
was comparable to the estimated 0.61 ◦C average daily difference calculated using predicted
Tmax values, with a bias of 0.03 ◦C and an RMSE equal to 0.96 ◦C. This difference could be
explained by the altitude difference between the two monitoring stations. Interestingly, a
higher difference was observed for Tmin using observed values (1.54 ◦C) and predicted
values (1.80 ◦C), with a bias of −0.26 ◦C and an RMSE equal to 0.77 ◦C. The seasonal
difference was higher during warm months, suggesting a higher urban–rural difference
during nighttime (Figure 10).
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Figure 10. Observed (blue) and predicted (orange) differences in Tmin between urban and rural cells
in the study area surrounding Florence over the year 2022.

The predicted Tmax and Tmin values for one day (15 July 2022) in the study area are
represented in Figure 11. The Tmax distribution is characterized by higher values in the
“Piana Fiorentina”, an intermontane basin of alluvial origin with high level of urbanization,
transport infrastructure, and economic activity encompassed by urban areas pertaining to
the provinces of Firenze, Prato, and Pistoia in the heart of Tuscany’s largest metropolitan
area. As expected, this distribution was similar (correlation coefficient of 0.72) to the
distribution of the summer LST retrieved by Landsat (Supplementary Figure S3). The
impact of urbanization was evident in the distribution of Tmin, with a hot spot in Florence
and Prato.

  
(a) (b) 

Figure 11. Predicted Tmax (a) and Tmin (b) in area surrounding (30 km) Florence (dashed circle),
Italy (15 July 2022).
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4. Discussion
We developed temperature maps for the Tuscany region by integrating satellite data

(MODIS and Landsat), topography, urban, and climate factors with local weather stations,
and employing advanced machine learning techniques.

Several studies have provided high-spatial- and temporal-resolution maps of near-
surface air temperature [16,24,59–68]. Most of them used numerical simulation models,
such as MUKLIMO-3 [62,67], ENVI-met [59,60], COSMO [64], Weather Research and Fore-
casting (WRF) [63,65], and the ADMS-Urban model [61] to characterize and quantify the
urban heat island effect. Given the high computational time, these simulations frequently
estimate the urban temperature within a single city during a specific time period (e.g.,
during heat waves events) at a fine geographical scale (4.5 m to 300 m). Notably, within this
class of numerical simulation models, Lauweat et al. [16] estimated hourly temperatures at
a spatial scale of 100 m for 100 cities in Europe 2008–2017 using the UrbClim models. In re-
cent years, statistical based models integrating remote sensing and monitor measurements
with land cover and topographic spatio-temporal predictors were able to estimate daily air
temperature at fine scale (10–30 m for the city of Oslo [68], 100 m for Switzerland [23] and
200 m for France [24]).

Our approach was built upon previous statistical-based models by mapping tempera-
ture at a high resolution of 100 m × 100 m. The main differences with those models are
the broader spatial coverage with respect to Venter et al., which considers only the city of
Oslo [68], and the finer spatial resolution with respect to Hough et al. [24]. In comparison
with the model proposed by Flückiger et al. [23], we included Landsat as a predictor and
considered an additional ML algorithm (MARS) to capture spatial heterogeneity. To our
knowledge, no other study has produced temperature maps at this resolution for the Tus-
cany region. The methodology could be extended to produce high-resolution near-surface
air temperature maps for other regions in Italy.

Building on the approach of previous studies, we relied on weather station networks
to model temperature patterns. Hough et al. [24] and Flückiger et al. [23] achieved high
accuracy in temperature mapping by combining MODIS data with weather station mea-
surements. Similarly to Hough et al. [24], we integrated Landsat-derived land surface
temperature at a 30 m × 30 m resolution. This finer granularity provides a more detailed
representation of urban heat distribution by enhancing spatial detail and capturing intra-
urban variations more effectively than the 1 km × 1 km resolution of MODIS. The analysis
of variable importance revealed that MODIS-derived LST was the most influential predictor
for both maximum and minimum temperatures, which was also recognized as a key pre-
dictor by Flückiger et al. [23]. Landsat thermal data also played a significant role, but their
influence was primarily limited to the estimation of maximum temperature. Topographic
variables, such as elevation and solar geometry (e.g., day length) were additional factors
that contributed to temperature modeling and have been widely used in past research
to refine temperature estimates [25,26]. Meteorological conditions, including humidity
and precipitation, were also integrated into the models, further supporting findings from
prior studies [25]. The only land use-related feature that could be modified by urban
planning is NDVI. This confirms the relationship between vegetation and temperature and
the importance of considering the impact of green spaces on the temperature distribution
when considering the relationship between temperature and health [69,70].

This study employed a hybrid modeling approach integrating machine learning
with regression-based smoothing to enhance temperature prediction accuracy. Machine
learning has been widely applied in temperature modeling, with Random Forest being the
most frequently used method [23,25,27,28]. Some studies such as Zheng et al. [27] have
explored alternative machine learning techniques, including histogram-based gradient
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boosting, extremely randomized trees, and deep belief networks. However, only one
previous study incorporated XGBoost (XGB) within an ensemble framework [25]. To
our knowledge, our study is the first to assess the performance of Multivariate Adaptive
Regression Splines (MARS) for temperature modeling. The combination of XGB and MARS
provides complementary advantages: XGB appears to better capture temporal structures
by achieving a higher R2 in the temporal domain, while MARS captures more spatially
related variability, with a higher spatial R2 especially for Tmax. Notably, this result was
achieved without including temperatures from nearby stations. By integrating these two
approaches, we aimed to enhance both the temporal consistency and the spatial granularity
of temperature predictions.

In terms of model performance, our results showed an R2 of 0.95 for Tmax and 0.92
for Tmin, with corresponding RMSE values of 1.95 ◦C and 1.96 ◦C, respectively. These
values are comparable to other studies in the literature. For instance, Flückiger et al. [23]
reported an R2 between 0.94 and 0.99 and an RMSE ranging from 1.05 ◦C to 1.86 ◦C, while
Hough et al. [24] achieved an R2 between 0.92 and 0.97 and an RMSE between 1.3 ◦C and
1.9 ◦C at a 1 km × 1 km resolution. Nikolaou et al. [26] reported an R2 between 0.91 and
0.96 with RMSE values ranging from 1.41 ◦C to 2.02 ◦C, whereas Jin et al. [25] obtained an
R2 of 0.98 for an ensemble model with an RMSE of 1.38 ◦C. These comparisons indicate that
our ensemble approach, combining XGBoost and MARS, performs at a level comparable
to the best performing methods in the field, while offering a finer spatial resolution of
100 m × 100 m. In contrast with the work by Gutiérrez-Avila et al. [29], we observed a
higher validity in temporal dimension compared to the spatial one. The R2 was 0.96
and 0.88 for Tmax and 0.95 and 0.72 for Tmin in the temporal and spatial dimensions,
respectively. We observed a tendency for lower R2 in winter and summer days for both
Tmax and Tmin. These results could be explained by narrower temperature ranges in
winter and summer. In autumn and spring, higher temperature variability could influence
(with higher values) the correlation coefficient (square root of R2). This interpretation is
supported by similar if not lower values of RMSE and MAE in summer and winter days.

One of the main limitations of this study is the location of the monitor network not
allowing for a quantitative assessment of the urban heat island effect. In each of the
12 large cities with more than 50,000 inhabitants, there are one to three monitoring stations.
However, this monitoring network allowed us to gain some information on the spatial
distribution of the temperatures predicted by our model. The results performed in the
Florence area with 28 monitoring stations show that the spatial distribution of the maximum
and minimum temperature follows an urban–rural pattern with higher air temperatures
in urban areas. These observed urban–rural differences were similar to those estimated
by our model, with a comparably low level of bias in urban and rural areas. There is a
more evident temperature difference between urban and rural areas for the minimum
temperature, with hot spots located in the cities of Florence and Prato.

An additional limitation of our study is the quality and reliability of satellite data.
Cloud cover often obstructs land surface temperature retrieval, necessitating the use of
imputation techniques [1]. While our approach leverages machine learning for data in-
terpolation, uncertainties could remain, particularly in areas with persistent cloud cover.
Additionally, the explicit consideration of temporal and spatial autocorrelation could fur-
ther improve the model’s performance. Future work could explore the integration of these
components into machine learning algorithms, for example, by using spatially aware mod-
els such as Random Forest with spatial and temporal lagged predictors. This may better
account for temporal patterns, or considering feature extraction model based on graph
neural network (GNN), namely the spatio-temporal estimation model (ST-GAT) recently
proposed for PM2.5 concentration estimation [30]. Lastly, we did not specifically consider
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the uncertainty related to predictions that could be included in epidemiological research,
but the validity measures we provided can be used to correct association measures [71].

Despite these limitations, the high-resolution temperature maps generated in this
study offer valuable insights for multiple applications. First, they enable the precise delin-
eation of urban heat islands, which is critical for urban planning and climate adaptation
strategies. Second, the data facilitate the development of vulnerability indices, allowing
policymakers to assess heat exposure risks more effectively. These maps can, for example,
help analyze the impact of extreme heat events on vulnerable populations, particularly
in densely populated cities. Furthermore, our results have direct applications in epidemi-
ological research. In particular, the high validity in the temporal domain supports case
cross-over or time series studies that investigate the short-term effects of temperature on
health outcomes. In this context, while mortality remains the most extensively investigated
health outcome linked to non-optimal temperatures [72–74], previous studies have also doc-
umented associations with a wide range of morbidity outcomes. These include increased
risks of cardiovascular events such as myocardial infarction and heart failure [75–77],
stroke, neurodegenerative diseases, mental health diseases [78], dehydration, respiratory
conditions, and other heat-related illnesses [77]. Another important direction for future
work would be the comparison of statistical and numerical models over the same areas,
which could help validate both approaches and lead to more reliable applications in urban
planning and health impact assessments.

5. Conclusions
This study presents a novel statistical modeling framework that integrates remote

sensing and meteorological monitoring station data with land cover and topography
information to predict high-spatial-resolution (100 m × 100 m) daily ambient Tmax and
Tmin for 2022 in Tuscany. The statistical modeling framework was based on integrating
two machine learning algorithms, XGB and MARS, and showed overall good performance
under cross-validation strategies. By considering a spatial resolution of 100 m × 100 m,
we were able to investigate the spatial distribution of Tmax and Tmin in a study area
surrounding Florence. The predicted air temperature showed urban–rural differences,
especially during nighttime, a pattern that could be explained by the urban heat island
effect. This framework can be extended to other urban or non-urban regions in Italy.
The modeled ambient temperatures can be used to describe the spatial distribution of
near-surface air temperature and provide a valuable addition for epidemiological research
investigating the health effects of heat.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs17173052/s1, Figure S1: Tmax by Month, Tuscany, Italy. Year 2022;
Figure S2: Tmin by Month, Tuscany, Italy. Year 2022; Figure S3: LST from Landsat8 (Summer 2022);
Table S1: Monitors stations in the Florence buffer (30 km) area.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Aqua Day
AN Aqua Night
BLH Planetary Boundary Layer Height
CLC Corine Land Cover
CV Cross-Validation
DAYL Day Length
DEM Digital Elevation Model
DIFSUNRAD Diffuse Solar Radiation
DIRSUNRAD Direct Solar Radiation
EO Earth Observation
GNN Graph Neural Network
HHAP Heat Health Action Plans
IBU Impervious Build-up
LST Land Surface Temperature
MAE Mean Absolute Error
MARS Multivariate Adaptive Regression Splines
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
NTL Nighttime Light
OOB Out-of-Bag
PA Surface Pressure
PM2.5 Particulate Matter < 2.5 µm
POP Population
PREC Total Precipitation
RDS Road Network Dataset
RH Relative Humidity
RMSE Root Mean Square Error
SLP Slope
ST-GAT Spatio-Temporal Graph Attention Network
SUNALT Sun Altitude
SVF Sky View Factor
TD Terra Day
Tmax Maximum Temperature
Tmin Minimum Temperature
TN Terra Night
UHI Urban Heat Island
WINDD Wind Direction
WINDS Wind Speed
XGB Extreme Gradient Boosting
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