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Abstract: The creation of the ICH E9 (R1) estimands framework has led to more precise spec-
ification of the treatment effects of interest in the design and statistical analysis of clinical trials.
However, it is unclear how the new framework relates to causal inference, as both approaches
appear to define what is being estimated and have a quantity labelled an estimand. Using
illustrative examples, we show that both approaches can be used to define a population-based
summary of an effect on an outcome for a specified population and highlight the similarities and
differences between these approaches. We demonstrate that the ICH E9 (R1) estimand frame-
work offers a descriptive, structured approach that is more accessible to non-mathematicians,
facilitating clearer communication of trial objectives and results. We then contrast this with the
causal inference framework, which provides a mathematically precise definition of an estimand,
and allows the explicit articulation of assumptions through tools such as causal graphs. Despite
these differences, the two paradigms should be viewed as complementary rather than competing.
The combined use of both approaches enhances the ability to communicate what is being esti-
mated. We encourage those familiar with one framework to appreciate the concepts of the other
to strengthen the robustness and clarity of clinical trial design, analysis, and interpretation.
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1 Introduction

There has been widespread adoption of the estimands framework by the pharmaceutical industry
following the publication of ICH E9 (R1) [1–3]. There has also been some use of the framework in
academia [4]. The purpose of the framework is to provide context and clarity on what is being estimated
in a clinical trial by formally defining a quantity labelled an estimand that has five components:
Population, Treatments, Endpoint, Summary Measure, and Intercurrent Events (with strategies chosen
to address them). The framework was designed to provide a common language for different stakeholders
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to discuss and define effects of interest in clinical trials [5]. It was also, in part, an acknowledgment
that to gain a full understanding of an effect targeted in randomized clinical trials (RCTs), we often
need to consider how post baseline events impact the outcomes of interest.

Although the framework is a positive step forward in the design, analysis and reporting of clinical trials,
a potentially confusing factor is that the term “estimand” has been used to describe a similar idea in
the Causal Inference literature for many years [6]. A further complication is that what is labelled an
estimand in each approach appears to partially overlap, and both relate to effects on patient outcomes
under different treatment conditions.

Previous work has explored the links between the estimands framework and causal inference [7–12].
Scharfstein (2019) provided a critique of the draft version of ICH E9 (R1) with high-level links to
causal concepts. Lipkovich et al. (2019) used the terminology and principles of causal inference as
a framework for defining estimands. Other authors have discussed the linkages to health technology
assessments [11] and targeting estimands with hypothetical IE strategies via instrumental variables [12].

In this paper we review how ICH E9 (R1) and the causal inference literature define what effect is being
estimated in the context of a randomized trial. We discuss the origins of the two approaches, how
they relate, and provide examples derived from real trials to illustrate how estimands are defined from
both approaches. Although there are pros and cons to both approaches, they share the overall aim of
providing clarity on what is being estimated, and we suggest that it can be beneficial to use aspects
from both when defining the treatment effect targeted in clinical trials. We also show that, although
not explicitly referenced, the ICH E9 (R1) estimands framework relies on concepts developed as part of
causal inference methodology. Finally, we discuss our interpretation of some more ambiguous aspects
of ICH E9 (R1) which are arguably not clear and comment on some recent opinions in the causal
inference literature about the utility of the estimand framework.

This paper is organised as follows: in section 2 we outline some examples of clinical trials describing
potential effects that could be targeted, section 3 gives a brief history and outline of the ICH E9 (R1)
estimands framework, section 4 reviews relevant aspects of causal inference. Section 5 illustrates how
the example effects from section 2 could be formulated using both approaches. Section 6 contrasts and
discusses several aspects of both the estimands framework and causal inference and finally we provide
a conclusion in section 7.

2 Example Clinical Trials

Randomised clinical trials provide a rigorous basis for comparing groups of patients assigned differ-
ent pre-specified treatments. With complete follow-up, randomization guarantees that the observed
treatment effect on the outcome is, aside from random error, due to the treatment each individual
was assigned. However, this effect of assignment is a combination of the effect of taking the assigned
treatment plus any subsequent effects from other events that occur after assignment, for instance,
treatment discontinuation or use of additional (or rescue) medications. In many clinical trials, this
effect of assignment may not be the most relevant clinical question of interest to all trial stakeholders
and other questions are often important, including the effects attributable to specific treatments (or
combinations of treatments).
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Events such as treatment discontinuation or use of additional medication can affect the value and
interpretation of the outcome measured. For some clinical questions of interest, this can lead to
difficulty using the recorded outcome measures directly to address the research questions in the trial
and it is typically necessary to provide more information about how these events are reflected in the
effects being targeted.

We present four examples based on real clinical trials that exhibit some of the issues discussed above.
We do not discuss the trials in detail but use some aspects as motivation to aid the discussion of the
similarities and differences between the causal inference and ICH E9 (R1) approaches to defining what
is to be estimated.

2.1 Diabetes

The PIONEER 1 trial compared oral semaglutide to placebo in adult patients with type 2 diabetes,
with a primary endpoint of change from baseline HbA1c [13]. During the trial, patients could dis-
continue assigned treatment and/or receive rescue medication if they did not maintain acceptable
glycaemic control, both of which would likely change their HbA1c. Overall, more placebo patients
needed rescue medication compared to semaglutide, creating a differential impact between the groups.
Therefore, comparing change in HbA1c values at the end of the trial considers the combined effect of
the semaglutide taken plus any rescue taken and does not address the treatment effect caused by or
attributable to taking only semaglutide itself for the duration of the trial versus only placebo for the
duration of the trial.

2.2 Nasal Polyps

The SYNAPSE trial compared mepolizumab and placebo in chronic rhinosinusitis with nasal polyps
after 52 weeks [14]. The co-primary endpoints were nasal polyps score and nasal blockage score at the
end of the trial. A post baseline event was surgery for nasal polyps and treatment with mepolizumab
was intended to reduce the number of patients having to undergo surgery. Although surgery is likely
to improve subsequent nasal scores, it represents a failure of randomised treatment. A key question
is how to reflect this adverse outcome of nasal surgery in the comparison of treatments. Comparing
nasal polyps scores without regard to surgery would ignore this important outcome and not address
the causal effect of treatment on the overall clinical outcome.

2.3 COVID19

In a COVID-19 vaccine trial [15] participants at high risk for SARS-CoV-2 infection or its complications
were randomly assigned to receive two intramuscular injections of the mRNA-1273 vaccine or placebo
28 days apart. The primary end point was prevention of COVID-19 illness (defined as onset at least 14
days after the second injection) in participants who had not previously been infected with SARS-CoV-
2. Of the 30,351 participants who received at least one dose of either the active vaccine or placebo, 941
participants were excluded from the primary analysis, mainly because of failure to take the second dose
or not taking the second dose in the appropriate time window. Clinical interest centred on answering a
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causal question of the treatment effect of receiving both doses in the appropriate time window, versus
placebo.

2.4 Arthritis

In a safety trial [16], patients at increased cardiovascular risk that use nonsteroidal anti-inflammatory
drugs (NSAIDs) for osteoarthritis or rheumatoid arthritis were randomly assigned to receive celecoxib,
ibuprofen, or naproxen. The goal of the trial was to assess the noninferiority of celecoxib with regard to
the composite outcome of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke. Of
the 24,081 patients randomized, 68.8% stopped taking their assigned study drug, and 27.4% withdrew
from study follow-up. An important question given the safety aims of the trial was the cardiovascular
safety of patients while receiving the drugs under study. Given the large percentage of patients that
stopped taking treatment, this should be reflected in any estimate of cardiac risk attributed to each
treatment.

3 The ICH Estimands Framework

The impetus for developing the estimands framework and revising ICH E9 originated from the seminal
2010 report by the US National Research Council (NRC) on the prevention and treatment of missing
data in clinical trials [17]. The report raised issues with the standard practice at the time for the design
and analysis of clinical trials in regard to how missing data were handled. Importantly the report
emphasised the role of the trial estimand, stating that “Estimation of the primary (causal) estimand,
with an appropriate estimate of uncertainty, is the main goal of a clinical trial”. In addition, there was
a continuing concern that “per-protocol” type analysis which only includes the patients who complied
fully with the trial protocol risked creating groups that were no longer similar and may not reflect a
valid causal comparison [18–21]. As a result of these concerns, regulators led a working group to develop
the estimands framework to be included as a revision to ICH E9.

ICH E9 (R1) was finalised in 2019 and we only give an outline for the purposes of our discussions. In
brief, the guidance defines a process that starts by determination of the trial objective and associated
clinical question of interest. Once this has been agreed, a population-based quantity called “an esti-
mand” (which we label ICH estimand) should be defined to address the clinical question of interest.
Once this ICH estimand has been defined, an appropriate estimator can be selected. The guidance
defines an ICH estimand to have five components:

• Population – the group of patients the treatment(s) are designed to benefit.

• Variable – the outcome measure used to assess the benefit for each patient.

• Treatments – the specific treatment(s) assigned to each group of patients and any comparisons
of groups to be made.

• Summary – the population-level summary of the variable of interest.

• Intercurrent Events (IEs) and strategies – the post baseline events that could impact the value
or interpretation of the variable measured and how these events are accounted for if they occur.
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The framework specifies that all five components are required to define “the estimand” and
taken together, they provide enough context to fully understand what effect is being estimated. The
guidance defines five basic strategies to address IEs. These strategies provide clarity about how the
occurrence of IEs are reflected in the estimand being defined. Again, in brief the strategies can be
understood as:

1. Treatment Policy – Any effects resulting from the occurrence of IEs are included in the overall
effect of interest. If this strategy is applied to all the identified IEs, then this corresponds to the
effect of treatment assignment.

2. Hypothetical – Any effects resulting from the occurrence of the IE are removed from the effect
of interest. This targets an effect in the absence of these IEs occurring.

3. Composite – The occurrence of the IE is considered an informative but (generally) poor outcome
for the patient and the outcome variable’s definition is somehow re-defined so its value changes
if the IE occurs.

4. While on Treatment – The focus of interest is the variable measure until the particular IE occurs.
The label of this strategy is arguably ambiguous and in general it can be thought of as “while
the IE has not occurred”.

5. Principal Stratum – generally, this targets an effect in a group of patients that would (or would
not) have had the IE if they had been assigned to one, or either (or any) of the treatments in
the trial. This attempts to consider effects in a group of patients where the occurrence (or not)
of the IE does not depend on their treatment assignment.

Most ICH estimands defined in later stage trials (Phase IIb and III) will have two or more IEs.
The most frequent IEs in general are discontinuation of assigned treatment and/or use of additional
(sometimes rescue) medication. Death may be an important IE in trials where it is not the outcome,
but depending on the disease may occur infrequently. In trials measuring time to a particular type of
event, failures from competing events, or death, may be IEs.

The ICH estimand framework itself has very little mathematical content and relies on text descriptions
to communicate concepts and scientific research questions. The text has evolved in two basic forms:
a table listing each of the five components explicitly, or a paragraph that incorporates each of the
five components [22]. The details for the IE strategies are also either explicitly stated, or alternatively
incorporated into the definitions of treatment, population, or variable attributes. Different opinions
exist for which of these approaches provides the most clarity. Some feel strongly that all IEs should be
incorporated directly into the other attributes relevant to the handling strategy used. Others suggest
that explicitly listing all IEs is clearer. We provide both a table and paragraph description for all ICH
Estimands in this paper, but we choose not to incorporate every IE into the other attributes.

ICH E9 (R1) provided minimal guidance on estimation but did emphasise the importance of ensuring
any estimand that is defined can be reliably estimated. It also stressed the need to assess the sensitivity
of conclusions to statistical assumptions. Regression modelling and missing data approaches such as
multiple imputation and inverse probability weighting may be useful but given the complex definitions
of what effect an ICH estimand targets, estimation is an evolving field with many opportunities for
novel methods [23–31]. In particular, some estimators from causal inference are being explored [32].
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4 Estimands in Causal Inference

While there are actually multiple causal inference frameworks [33–35], they all share the aims of providing
a language to clearly define causal quantities of interest and to spell out the assumptions under which
these quantities would be correctly estimated. Within the causal inference literature, the potential
outcomes (counter-factual) framework [33] is arguably the most popular and is the methodology we
use for comparison with the ICH estimands framework. This framework was devised by Rubin and
expanded by Hernan and Robins [6], among others [35]. Pearl (2022), Robins (2022) and Rubin (2022)
have provided a thorough discussion of the history of causal inference [36–38]. In order to discuss
estimands defined in causal inference, we give a brief description of the potential outcomes paradigm.

4.1 Potential Outcomes Framework

We consider the simple setting with individual patients that have a particular illness, and we wish to
assess any benefit they might receive from a new drug in comparison to a control. In order to measure
the benefit, we use an outcome measure Y and consider the existence of two potential outcomes for
Y in the theoretical scenarios where the individual is assigned the control or new drug. For ease
of notation, we define the actual treatment assignment variable for an individual as A = 0, 1 and a
particular (theoretical) treatment assignment as a superscript a = 0, 1 above the outcome. We then
have two potential outcomes Y (a = 0) and Y (a = 1) which correspond to the outcomes the individual
would experience if they were assigned the control or new drug respectively. The theoretical causal
effect of the new drug on the individual could then be considered as the difference in these potential
outcomes Y (a = 1) − Y (a = 0).

The potential outcomes framework relies on imagined worlds where different treatments are assigned to
the same individual, but in reality, only one world is observed where the individual is assigned a single
treatment. This means we cannot directly estimate individual causal effects. However, under certain
conditions, we can estimate average effects in the population of individuals such as the difference in
expected potential outcomes for individuals under each treatment E[Y (a = 1)] − E[Y (a = 0)] which is
equal to the average of the individual level causal effects. The basic conditions that need to hold in
order to estimate this are referred to in the causal inference literature as: Consistency, Positivity and
Exchangeability. We only give a very basic idea of these assumptions for the purpose of this work. For
a thorough discussion see “What If” by Hernan and Robins [6]:

• Consistency – this means that the observed outcome under the treatment an individual is actually
assigned corresponds to the individual’s potential outcome if assigned that treatment.

• Positivity – this means that there is a non-zero chance that the individual could have received
both (or any) of the treatments being compared.

• Exchangeability – this means the chance of a patient being assigned each treatment is independent
of the two potential outcomes.

In randomized trials, these assumptions typically hold as randomization ensures a non-zero chance
of being independently assigned to each treatment, so in addition to consistency, both positivity and
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exchangeability are satisfied. Under these assumptions, the expected values of the potential outcomes
are equal to the expected values for the groups of individuals assigned to each treatment in the trial.
Specifically, E[Y (a=1)] = E[Y |A = 1] (and similarly for control). This means the difference in expected
potential outcomes E[Y (a=1) − Y (a=1)] can be estimated using E[Y |A = 1]−E[Y |A = 0]. When the
treatment effect of interest can be expressed in terms of the observed data quantities, it is said to be
identifiable.

In observational studies where assignment is not random by design, the positivity and exchangeability
assumptions are often not satisfied. The exchangeability assumption can be weakened to a conditional
version, which says that treatment assignment is independent of potential outcomes conditional on
confounders. In this case the effects are only identifiable if the estimation methods account for all
the assumed confounders W using methods such as outcome regression models, or inverse probability
weighting with propensity scores.

In more complicated settings, more complex causal ideas, notation, and assumptions are needed. As an
example, in trials with longitudinal follow up, a patient’s treatment may change over time and there are
different potential treatment sequences they could experience. Expanding our previous set up to include
a variable Dj = 1, 0 which corresponds to the situation of a patient receiving their treatment correctly
at visit j, we create a vector of indicators D = [D1, . . . , DJ ] that represent a treatment sequence. For
example, with four visits, an imposed sequence of d = [1, 1, 0, 0] would indicate a theoretical scenario
where a patient receives their assigned treatment for the first two visits, but not the final two visits.

Although repeated follow up increases the complexity, for each potential treatment assignment A and
sequence D we are still able to define potential outcomes Y (A, D) for a patient and consider these
potential outcomes under specified (sometimes referred to as intervened) treatment assignment and
sequences Y (a, d). These types of treatment sequences are known as so-called “static regimes”. More
recent work in causal inference has expanded on this to “dynamic regimes” where the treatment of a
patient can depend on time-varying follow up measures [39].

A tool developed in the causal inference literature to communicate the assumed structural relationships
between the outcome, assignment process, and other factors are causal graphs. There are different types
of causal graphs, developed for the different causal frameworks, but we consider the most popular which
is the directed acyclic graph (DAG) [40]. In general, these graphs have arrows to indicate assumed causal
effects which help practitioners visualize and communicate how different variables affect each other.
We include a simple example of a DAG in Figure 1, but for brevity, we do not illustrate DAGs further
in this paper.
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Figure 1: A simple directed acyclic graphs showing one possible causal structure of a clinical trial
where baseline factors W and treatment assignment at randomization A have a causal effect on the
outcome Y but also have a causal effect on patient discontinuation from randomized treatment D
which also impacts the outcome.

A wide variety of estimation methods have been developed within the causal inference literature,
but they can generally be grouped as matching, inverse probability weighting and the so called “G-
methods”, which includes G-formula and G-estimation. Combinations of these methods can also be
used to create “doubly robust” approaches. All methods usually involve some form of (semi) parametric
regression model. For a description of these methods see “What If” [6].

4.2 Causal Estimands

In the causal inference literature, an estimand (which we call a causal estimand) is a mathemat-
ical expression to represent a summary comparison of potential outcomes under spec-
ified treatment conditions for a given population of individuals. It represents a compar-
ison of quantities that exist for a population and does not depend on which estimation method is
used. The most basic example of a causal estimand is the difference in expected values for two treat-
ments: E[Y (a=1)]− E[Y (a=0)], but other simple examples include the risk difference for two treatments:
P(Y (a=1) = 1)− P(Y (a=0) = 1) or the risk ratio for two treatments P(Y (a=1) = 1) / P(Y (a=0) = 1). An
example of a simple estimand in the repeated follow up setting discussed could be the difference in
the expected values of outcome at the final follow-up between two treatments if they were correctly
administered across all visits, specifically: E[Y (a = 1, d = [1,...,1]

J ]− E[Y (a = 0, d = [1,...,1])
J ].

5 Examples Revisited

We now revisit the examples discussed in section two and illustrate how these effects of interest could
be specified in both the ICH estimand and causal inference frameworks.
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5.1 Example 1 - Diabetes

For this example, we only concentrate on the comparison of the 14 mg daily dose of semaglutide and
placebo. We consider a situation where the objective of PIONEER 1 might have been to answer these
two different clinical questions:

1. What is the effect of being assigned semaglutide vs placebo on HbA1c values after a year.

2. What is the effect of semaglutide vs. placebo if patients were treated continuously for one year.

During the PIONEER 1 trial, a number of patients stopped taking the treatment they were assigned.
A number also received rescue medication for glycaemic control. Both of these post baseline events
are likely to impact the HbA1c efficacy measure.

5.1.1 Estimands Framework

In the estimands framework discontinuing assigned treatment and initiation of rescue medication would
be considered IEs. These would then be included as the fifth component of the ICH estimand together
with handling strategies that align with the clinical question of interest above. We provide potential
ICH estimands for each question below:

ICH Estimand 1.1
Difference in mean change from baseline HbA1c at week 26 for adult patients with type 2 diabetes
assigned to 14 mg daily oral semaglutide or placebo including any subsequent effects of discontinuation
of assigned treatment or initiation of rescue medication.

Population Adult patients with type 2 diabetes
Treatment 14 mg daily oral semaglutide or placebo, including any subsequent discontin-

uation or initiation of rescue medication
Variable Change from baseline HbA1c at week 26
Summary Measure The difference in means
IEs (Handling) Discontinuation of assigned treatment (Treatment Policy)

Initiation of rescue medication (Treatment Policy)

ICH Estimand 1.2
Difference in mean change from baseline HbA1c at week 26 for adult patients with type 2 diabetes
between 14 mg daily oral semaglutide and placebo if participants take their assigned treatment for the
duration of the treatment period and rescue medication was not available.

Population Adult patients with type 2 diabetes
Treatment 14 mg daily oral semaglutide or placebo taken throughout the full follow-up

period
Variable Change from baseline HbA1c at week 26
Summary Measure The difference in means
IEs (Handling) Discontinuation of assigned treatment (Hypothetical)

Initiation of rescue medication (Hypothetical)
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5.1.2 Causal Inference

In the causal inference approach, we could consider an individual and define their possible treatment
assignment at randomization as A = 0, 1 representing placebo or semaglutide respectively. We then
define their change from baseline HbA1c values as repeated measures Yj at visit j = 1, , J with the
final change from baseline HbA1c as the outcome of interest YJ . We also define Dj = 0, 1 with value
1 for discontinuation of assigned treatment at visit j and create a vector over the trial visits as
D = [D1, . . . , DJ ]. Similarly, we also define use of rescue therapy as Rj = 0, 1 and R = [R1, . . . , RJ ].
This allows the creation of potential outcomes of Y (A, D, R)

J . Using this notation, we could also create a
DAG to illustrate our assumptions about the causal relationships between the randomized assignment,
treatment discontinuation, use of rescue, and the post-baseline HbA1c values. In some cases, it may also
be necessary to consider other post baseline (time-varying) factors. Finally, we can specify the causal
estimands that we are interested in via the following mathematical statements about the potential
outcomes.

Causal Estimand 1.1

E[Y (a = 1, D, R)
J ]− E[Y (a = 0, D, R)

J ] = E[Y (a = 1)
J ]− E[Y (a = 0)

J ]

As D and R are not intervened on in this estimand, we can simplify the notation by removing them
(last expression). This estimand is then the difference in expected values for a patient assigned to
semaglutide vs placebo without regard for discontinuation or use of rescue medication.

Causal Estimand 1.2

E[Y (a = 1, d = 0, r = 0)
J ]− E[Y (a = 0, d = 0, r = 0)

J ]

Where 0 = [0, . . . , 0] corresponds to a 1× J vector of zeros. In words, this is targeting the difference
in expected outcomes for a patient assigned to semaglutide vs placebo if they received their assigned
treatment for the duration of the trial and do not initiate rescue medication. This type of estimand
can also be interpreted as a controlled direct effect the from causal mediation literature, where the
effect is controlled to have no discontinuation from assigned treatment and no initiation of rescue [41].

5.2 Example 2 - Nasal Polyps

For this example, we only concentrate on the first co-primary endpoint and consider a situation where
part of the objective for the SYNAPSE trial was to answer the clinical question:

1. What is the effect of being assigned mepolizumab vs placebo on nasal polyp score at the end of
the trial where nasal polyp surgery is considered a poor outcome.

A key issue in the clinical question is how best to represent nasal polyp surgery in terms of the outcome
measure nasal polyp score. As requiring surgery is a bad outcome for patients, it is informative about
the efficacy provided by either assigned treatment. In this example one option to reflect surgery
occurring would be to consider those patients as having the worst possible nasal polyp score.
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5.2.1 Estimands Framework

In the estimand framework discontinuing assigned treatment and nasal polyp surgery would be con-
sidered IEs. These would then be included as the fifth component of the ICH estimand together with
handling strategies that align well with the clinical question of interest above. We provide a potential
ICH estimand for the clinical question below:

ICH Estimand 2.1 Difference in mean nasal polyp Score at 52 weeks for adult patients with chronic
rhinosinusitis assigned to 100 mg mepolizumab every four weeks or placebo including any subsequent
effects of discontinuation of assigned treatment and considering nasal polyp surgery as a poor outcome
reflected as the worst possible nasal polyp score.

Population Adult patients with chronic rhinosinusitis
Treatment 100 mg Mepolizumab every four weeks or placebo, including any subsequent

discontinuation
Variable Nasal polyp score at 52 weeks or the worst possible Nasal polyp score if nasal

polyp surgery occurs during the 52 weeks.
Summary Measure The difference in means
IEs (Handling) Discontinuation of assigned treatment (Treatment Policy)

Nasal polyp surgery (Composite)

5.2.2 Causal Inference

In the causal inference approach, we use the same notation as the first example for outcome, assignment,
visit and discontinuation of assigned treatment. We also define an individual having nasal polyp
surgery by visit j as Sj = 0, 1. This allows the creation of two sets of potential outcomes, one for the
nasal score Y

(A, D)
J , and also another for surgery prior to visit J as S

(A, D)
J . We could also create a

DAG to communicate our assumptions about the causal relationships between randomized assignment,
treatment discontinuation, surgery, and the post-baseline nasal polyp scores. Finally, with notation
defined we can describe the following estimands.

Causal Estimand 2.1
For this estimand, there are two components to the effects of interest, first, any direct effect of as-
signment on the nasal polyp score and second, any indirect but informative effect of assignment on
nasal polyp surgery. To reflect this, we construct a new outcome Y ⋆

J that is a mixture of nasal score
potential outcomes for patients when no nasal polyp surgery is performed, and the value chosen to
reflect the poor outcome for patients where nasal polyp surgery would be performed. Again, as with
causal estimand 1.1, there is no condition applied to D and therefore it is not included, and the new
outcome becomes:

Y
⋆ (A)
J = I

(
S

(A)
J = 0

)
· Y (A)

J + I
(
S

(A)
J ̸= 0

)
· θ

Where I (·) are indicators of the condition contained in the brackets and θ is the value chosen for the
individual to represent the poor outcome.

In the SYNAPSE example, we consider a case when an exact value of worst possible nasal polyp score
is defined as the value to represent a poor outcome in both arms (θ is set as a score of 4 in each nostril
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making a value of 8) and so our resulting estimand at the final timepoint J is:

E[Y ⋆ (a=1)
J ] − E[Y ⋆ (a=0)

J ] = E
[
I
(
S

(a=1)
J = 0

)
· Y (a=1)

J + I
(
S

(a=1)
J ̸= 0

)
· 8
]

− E
[
I
(
S

(a=0)
J = 0

)
· Y (a=0)

J + I
(
S

(a=0)
J ̸= 0

)
· 8
]

Applying the expectations leads to:

E[Y ⋆ (a = 1)
J ] − E[Y ⋆ (a = 0)

J ] =
[
P
(
S

(a = 1)
J = 0

)
· E

[
Y

(a = 1)
J | S (a = 1)

J = 0
]
+ P

(
S

(a = 1)
J ̸= 0

)
· 8
]

−
[
P
(
S

(a = 0)
J = 0

)
· E

[
Y

(a = 0)
J | S (a = 0)

J = 0
]
+ P

(
S

(a = 0)
J ̸= 0

)
· 8

]
In words, this estimand is the difference in expected combined nasal polyp score for a patient assigned
to mepolizumab vs placebo without regard to treatment discontinuation. The expected combined nasal
polyp score under each treatment is the weighted combination of the expected nasal polyp score among
those who do not need surgery and the worst possible nasal polyp score, with weights determined by the
proportion of patients who need surgery under the assigned treatment. The weighting of the expected
values builds in any causal difference in the probability of requiring surgery from being assigned to
mepolizumab or placebo.

As discussed in Keene 2019 [42], the penalty value used for estimand 2.1 (defined using ICH or causal
inference) is somewhat arbitrary. It also has the consequence of creating an effect that is specific to
the θ value(s) used as the penalty term(s). This can make it difficult to compare these types of effects
across trials if there is not general agreement on the penalty value.

Importantly, this example also shows that a clinical question of interest may require an estimand that
uses different strategies for different IEs.

5.3 Example 3 - COVID-19

For this example, the primary endpoint was occurrence of symptomatic COVID-19 with onset at least
14 days after the second injection and we focus on the key issue that some participants failed to
receive two doses of assigned treatment. (Occurrence of symptomatic COVID-19 within 14 days of
randomisation represents another relevant issue that we will not discuss here). We consider a situation
where the objective was to answer these two different clinical questions:

1. What is the effect of being assigned mRNA-1273 vaccine compared to placebo on COVID-19
prevention if all participants were treated correctly.

2. What is the effect of being assigned mRNA-1273 vaccine compared to placebo on COVID-19
prevention for the participants that would receive treatment correctly when assigned to either
treatment.

This example illustrates the subtle difference between interest in an effect on all participants in a
hypothetical setting where the IE would not occur for any participants, and an effect specifically for
participants where the IE would not have occurred after being assigned either treatment. The former is
an effect relating to the whole population, whereas the latter is an effect in a reduced set of participants
from the original population.
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Although a variety of approaches have been used to derive vaccine efficacy, we concentrate on using a
relative risk based measure for vaccine efficacy [43]

5.3.1 Estimands Framework

In the estimand framework failure to receive two doses of assigned treatment in the correct time window
would be considered an IE. This would then be included as the fifth component of an ICH estimand
together with a handling strategy that aligns with the clinical questions of interest above. We provide
potential ICH estimands for each question below:

ICH Estimand 3.1
The percentage vaccine efficacy (derived from a risk reduction ratio) at 120 days for COVID-19 infection
when assigned two 100 mcg mRNA-1273 vaccine injections or placebo in adults with no known history
of COVID-19 who are in circumstances that put them at risk of COVID-19 infection assuming that
they all received two doses of their assigned treatment in the correct time window.

Population Adults with no known history of COVID-19 in circumstances that put them
at risk of COVID-19 infection

Treatment Two 100 mcg mRNA-1273 vaccine injections or placebo, in the correct time
window

Variable COVID-19 infection occurring more than 14 days after receiving treatment.
Summary Measure Vaccine Efficacy at 120 days calculated as percentage risk reduction ratio

(V E% = 100 · (1−RR)%)
IEs (Handling) Failure to receive two doses of assigned treatment in the correct time window

(Hypothetical)

ICH Estimand 3.2
The percentage vaccine efficacy (derived from a risk reduction ratio) at 120 days for COVID-19 infection
when assigned two 100 mcg mRNA-1273 vaccine injections or placebo in adults with no known history
of COVID-19 who are in circumstances that put them at risk of COVID-19 infection that would receive
two doses of assigned treatment in the correct time window if assigned to either treatment.

Population Adults with no known history of COVID-19 in circumstances that put them at
risk of COVID-19 infection that would receive two doses of treatment assigned
to them in the correct time window

Treatment Two 100 mcg mRNA-1273 vaccine injections or placebo.
Variable COVID-19 infection occurring more than 14 days after receiving treatment.
Summary Measure Vaccine Efficacy at 120 days calculated as percentage risk reduction ratio

(V E% = 100 · (1−RR)%)
IEs (Handling) Failure to receive two doses of assigned treatment in the correct time window

(Principal Stratum)

5.3.2 Causal Inference

In the causal inference approach, we use the same notation as the previous example for outcome,
however we note COVID-19 infection is now a binary outcome. We also define a dosing indicator
C = 0, 1 where C = 1 corresponds to receiving the two doses of assigned treatment in the correct
time window and this allows the creation of binary potential outcomes Y (A, C) which take the value
1 if the individual had an infection in the time window of 14 days after receiving treatment A. We
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could also create a DAG to communicate our assumptions about the casual relationships between the
randomized assignment, treatment discontinuation, and COVID-19 infection. With notation defined
we can describe the first causal estimand.

Causal Estimand 3.1

100 ·
(
1− E[Y (a = 1, c = 1)]

E[Y (a = 0, c = 1)]

)

In words, this estimand is a percentage reduction of infection calculated using risk ratio of infection
if participants were assigned mRNA-1273 vaccine or placebo assuming all participants received both
doses of assigned medication in the correct time window. Again, similar to casual estimand 1.2, this
type of effect can be interpreted as a controlled direct effect from casual mediation literature, where
the effect is controlled to have no dosing irregularities [41]

Causal Estimand 3.2
For this estimand we extend our dosing notation C to create a potential outcome C(A) for correct
dosing under each treatment assignment. This allows us to classify participants into groups based on
their potential to receive the two doses correctly after being assigned to each treatment. This creates
four potential types (or strata) of participants: Participants that would not receive two doses in the
correct time window if assigned to either treatment, participants that would receive two doses in the
correct time window if assigned to one treatment, but not the other, and finally, participants that
would have received two doses in the correct time window if assigned to either treatment. The last
type are the participants forming the principal stratum of interest.

With the notation extended to create the classifications we can write down the second causal estimand.

100 ·
(
1− E[Y (a = 1) | C(a = 0) = C(a = 1) = 1]

E[Y (a = 0) | C(a = 0) = C(a = 1) = 1]

)

In words, this effect is the expected percentage reduction in risk of COVID-19 infection for participants
assigned mRNA-1273 vaccine or placebo that are members of the stratum that would receive both doses
of their assigned treatment regardless of assignment. We note that the definition of this effect is in
terms of potential outcomes that cannot both be observed. Therefore, it is only possible to estimate
this effect using strong and untestable assumptions. We also note that different opinions may exist
on the clinical importance of particular strata. For instance, it could be argued that a stratum of
“participants that would receive the mRNA-1273 vaccine correctly” may be considered more relevant.
Currently within the literature there are differing opinions of the utility of the principal stratum
approach [44,45]. The strategy also does not exist in all casual ontologies [46] and therefore using this
strategy remains controversial [47,48].

This example contrasts the difference between effects that apply to the entire population (estimand
3.1) and effects that apply to a reduced number of participants from the original population (estimand
3.2).
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5.4 Example 4 - Arthritis

For this example, we concentrate on the comparison of celecoxib and naproxen at the specific doses of
100-200 mg bid and 375-500 mg bid respectively. We focus on the issue of large numbers of patients
discontinuing assigned treatment and consider a situation where part of the objective for the trial was
to answer the clinical question:

1. What is the difference in cardiac risk when taking celecoxib vs taking naproxen.

The main outcome related to cardiovascular risk was a composite outcome of cardiovascular death,
nonfatal myocardial infarction, or nonfatal stroke using the event measure ”Antiplatelet Trialists Col-
laboration (APTC) composite CV endpoint” (APTC-CV). As the clinical focus was the cardiac risk
attributable to the treatments in the trial, and a large number of patients discontinued their assigned
treatment, it is natural to consider the APTC-CV events occurring while the patients are receiving the
treatment. In many cases, this period may include time after the patient has actually stopped taking
the medication to reflect the time for clearance of the treatment.

5.4.1 Estimands Framework

In the estimand framework discontinuation of assigned treatment would be considered an IE. This
would then be included as the fifth component of an ICH estimand together with a handling strategy
that aligns with the clinical questions of interest above. We provide a potential ICH estimand below:

ICH Estimand 4.1
Difference in proportion of patients with the Antiplatelet Trialists Collaboration (APTC) composite CV
endpoint (APTC-CV) in adult patients with osteo or rheumatoid arthritis that have concomitant or
increased risk of cardiovascular disease that are assigned to celecoxib 100-200 mg bid or naproxen 375-
500mg bid while on assigned treatment (defined as randomization up to 30 days after discontinuation
from assigned treatment)

Population Adult patients with osteo or rheumatoid arthritis that have concomitant or
increased risk of cardiovascular disease.

Treatment Celecoxib 100-200 mg bid compared to Naproxen 375-500 mg bid
Variable Occurrence of Antiplatelet Trialists Collaboration (APTC) composite CV end-

point while on assigned treatment (defined as randomization up to 30 days
after discontinuation).

Summary Measure Proportion of patients experiencing APTC-CV while on randomized treat-
ment.

IEs (Handling) Discontinuation of assigned treatment (While on Treatment).

5.4.2 Causal Inference

In the causal inference approach, we use the same notation as the previous examples for treatment
assignment. We define the outcome of APTC-CV occurring before time t as Y (t), the time of dis-
continuation from assigned treatment as TD, and the (fixed) length of the trial as tmax. To include
the clearance of treatments, TD is defined as 30 days after the actual time a participant discontinues
assigned treatment. With notation defined we can describe the causal estimand below.
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Causal Estimand 4.1
For this estimand there are two components to the effect of interest, any direct effect of assignment
on the risk of patients experiencing APTC-CV events, and any indirect effect on the time spent at
risk of APTC-CV events due to discontinuation of assigned treatment. To reflect this, we create a
binary potential outcome for experiencing an APTC-CV event before time t as Y (A)(t) and the time
to discontinuation of randomized treatment or end of follow up time as T (A) = min(T

(A)
D , tmax). The

estimand is then defined as:

E[ Y (a = 1)
J (T (a = 1)) ]− E[ Y (a = 0)

J (T (a = 0)) ]

In words this estimand is the difference in expected proportion experiencing an APTC-CV event while
on assigned treatment for patients assigned to Celecoxib compared to Naproxen.

This estimand has clear interpretation when the time to discontinuation of randomized treatment is
similar in the two arms (as was the case in the example trial). However, if the discontinuation rates
were to differ according to treatment assignment, the interpretation becomes more complex due to the
differential time ‘at-risk’ between the arms. In these scenarios a clearer estimand could be formed where
the number of APTC-CV events is considered relative to the assigned treatment exposure time [49,50].

6 Discussion

6.1 Comparing the ICH and Causal Paradigms

The examples above demonstrate how both the estimand framework and causal inference methodology
can be used to define estimands. Both approaches allow clinical teams flexibility in defining the specific
effect of interest and facilitate the discussion about which overall effect is being considered in light of
various complicating factors. The ICH estimand is explicit with five components that must be defined,
whereas the causal estimand is the result of defining the ‘treatment’ variables and potential outcomes
to be compared and the assumed causal structures impacting the outcome (often via a DAG).

For causal estimands, factors such as treatment assignment, stopping treatment, and using additional
or rescue medication are specified in the algebra which contains a considerable amount of information
in a very subtle way. It is precise, but the concepts it relies on, and subtleties of specification may
be harder to comprehend. This mathematical expression, together with a well-defined population and
detail on the outcome of interest, provides the same overall information as an ICH estimand. Further,
the use of DAGs allows the assumed causal structure of the outcome, assignment, and other factors to
be communicated to guide the estimation of the effect targeted.

In contrast, the ICH estimand is not mathematical and is expressed either in a formal table or a single
dense paragraph of text. This is likely to be more accessible to clinical trialists without formal causal
and mathematical training. However, because the text is not as precise as the causal algebra, it is
important to define the ICH estimand using detailed statements.

As demonstrated in our examples, the concept of an intercurrent event (IE) and strategies to address
them borrow ideas and concepts from causal inference. It is reasonably intuitive to consider the concept
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of an IE to be the same as post-baseline mediator or time varying treatment developed as part of the
causal inference literature.

In hindsight, given the causal inference and biostatistics literature overlap heavily, and the term es-
timand has existed for many years, it might have been helpful for ICH E9 (R1) to have discussed
linkages to causal inference terms and concepts explicitly. We think the creation of the ICH estimands
framework was needed to provide clarity on what is estimated in clinical trials, and all five components
are required to gain the understanding of what is being estimated, but the lack of discussion linking
it to established causal concepts has created some confusion.

Finally, the examples demonstrate that what is called an estimand in the two paradigms may only
partially overlap but are essentially both targeting the same thing: a population-based summary of a
causal effect on an outcome in a particular population.

6.2 General Comments on Causal Inference

In this work we included a description of the specific elements of causal inference required to compare
causal and ICH estimands in the context of RCTs. The field of causal inference is much broader than
the areas introduced in this paper and developed mainly in the context of analysis of observational data,
where careful consideration of confounding (and other complicating factors) is required to enable sound
analytical conclusions. The complex nature of observational data inspired the development of methods
like the potential outcomes framework and DAGs, which in turn led directly to the development of
other areas such as target trial emulation [51], Single World Intervention Graphs (SWiGs) [52], and
causal discovery [53].

The causal inference community have also improved the standard of clinical trial methodology; exam-
ples include highlighting the need to distinguish between conditional and marginal treatment effects [54]

and warning about interpretational subtleties that can arise when using hazard ratios [55–57].

When applying causal inference to clinical trials in drug development, generally only two treatment
effects of interest have commonly been identified: (i) the effect of assignment to the intervention and
(ii) the effect of adhering to the intervention as specified in the trial protocol [58–60]. The latter is
often described as the per protocol effect, specifically “...the causal effect of treatment that would have
been observed if all individuals had adhered to their assigned treatment as specified in the protocol of
the experiment.” [6,59]. The term “per-protocol effect” may be confusing to non-statisticians in drug
development since it is often interpreted incorrectly as an analysis of a per-protocol population [61].
Similarly, the term “adherence” is sometimes ill-defined and can refer to continuing to take a medication
or to some formal measure of compliance. It is also unclear in the causal inference literature how events
such as use of rescue medications or surgery are accounted for when discussing adherence, particularly
in trials where these additional interventions are indicated in the protocol.

While “assignment” or “adherence” effects may answer important scientific questions, there are other
research questions that a multi-stakeholder trial would regularly aim to answer and contrary to this
perceived dichotomy, causal inference allows the definition of effects that are not purely from assignment
or perfect protocol compliance. Therefore, suggestions that the assignment and adherence effects are
the only important questions is unhelpful [61].
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6.3 General Comments on on ICH E9 (R1)

Although finalized in 2019, ICH E9(R1) still contains some ambiguity on certain points. As a result,
further work has been published suggesting ICH estimands should have certain additional proper-
ties [62]. We comment on some aspects of the addendum in general below and would welcome further
discussion with regulators.

In general, the label of “treatment policy” is not particularly accurate when this strategy is used for
handling discontinuation of assigned treatments. In many diseases, when the randomized treatment
fails, the actual treatments participants receive would be at the discretion of the physician and would
typically contain new treatments or no treatment at all. Any follow-on treatments could also vary
substantially depending on factors such as geographical region or the trial time. In these cases, there
is not a well-defined “treatment policy” and the strategy itself would be better labelled as the assessing
the effect of assignment.

A potentially confusing aspect of the addendum relates to the principal stratum strategy. ICH E9(R1)
emphasises that this strategy did not just correspond to an analysis of a post baseline subgroup,
specifying: “It is important to distinguish “principal stratification” (see Glossary), which is based on
potential intercurrent events (for example, subjects who would discontinue therapy if assigned to the test
product), from sub setting based on actual intercurrent events (subjects who discontinue therapy on their
assigned treatment).” However, when an intercurrent event is not affected by treatment assignment,
Kahan et al. [63,64] state that valid estimates for a principal stratum can be obtained by comparing
randomised groups that exclude those who experienced the intercurrent event (i.e. comparing post
baseline subgroups). In many cases, it may not be plausible to assume the randomized treatment has
no effect on intercurrent events and this analysis approach would then not be justified.

There are also contrasting opinions on the clinical relevance of the principal stratum strategy as
individual membership cannot be identified at baseline [44,45].

Although the hypothetical strategy can be viewed as the effect if the IE had not occurred [3], non-
statisticians sometimes find the term “hypothetical” problematic. This is because the term suggests
something is being estimated that is different from factual evidence and, for this reason, the strategy
can be viewed as irrelevant to use of the medicine in clinical practice [65]. However, applying this
strategy to IEs in many cases, attempts to assess the causal effect of the medicine itself and this effect
may be relevant to patients and prescribers. An effect described in the product description (label) for
a medication based on a treatment policy approach will reflect a mixture of results from participants
taking a range of possible treatments. Clear identification of the causal effect of the treatment itself
would be helpful for patients that are considering whether to take the medication.

A potential approach to addressing this is the attributable estimand described by Darken et al. [65].
In this approach, events that are considered to be adversely related to randomised treatment (e.g.
discontinuation of treatment due to adverse events or lack of efficacy) are considered attributable and
handled with a composite strategy (hence become part of the endpoint of interest), while a hypothetical
strategy is used for intercurrent events not considered to be related to randomised treatment (e.g.
treatment discontinuation due to administrative reasons such as loss to follow-up). Estimates of
treatment effect from an attributable estimand may be of more use to patients and prescribers than
the common practice of providing estimates based on a treatment policy strategy.
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7 Conclusion

We have discussed estimands as defined in ICH E9 (R1) as part of the “estimand framework” and
causal inference field. We provided a brief commentary on where both concepts of an estimand origi-
nated and used real trial examples with clinical questions of interest to illustrate how both ICH and
causal estimands could be formulated. We then compared the similarities and differences between the
approaches.

We conclude both can be used to quantify a population-based summary of a target effect on an outcome
for a given population. Both paradigms rely on assumptions that underpin causal inference, and
both have their use in the field of clinical trials. The ICH estimand is a description-based definition
which is likely to be more accessible to non-mathematicians. The causal estimand is more precise
due to its mathematical nature but may be harder to grasp for people without the causal training
to mathematically define the target of inference and communicate their assumptions through causal
graph diagrams.

Although we have presented both interpretations of estimands side by side for understanding and
comparison, we would encourage practitioners to consider them as complementary and not competing
frameworks. Both approaches have attractive features and combining them allows the trialist more
options for communicating what is being estimated in clinical trials. We encourage people familiar
with the estimands framework to use causal inference and vice versa.
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