
Abstract 
This study aimed to compare different address geocoding ser-

vices and their applicability to epidemiological surveillance using 
dengue as an example. We applied a cross-sectional, descriptive 
study based on case notifications in the Notifiable Diseases 
Information System (SINAN) for the Brazilian capital in 2014 that 
includes complete postal code (CEP) information identified in the 
National Address Database for Statistical Purposes (CNEFE), 
which is considered the ‘gold standard’ for accuracy analysis. For 
records without CEP, georeferencing was performed through link-
age of the original database with four geocoding tools: Google 
Maps, CNEFE, OpenStreetMap (OSM) and ArcGIS. Variables 
used for georeferencing were ‘street name’, ‘code for municipali-
ty/city of residency’ and ‘State’ using accuracy rate estimate and 
mean spatial error (MSE) of case locations. The two most accurate 
models were used for kernel density (KD) analysis which is valu-
able for identifying priority areas for intervention. There were 
18,206 dengue cases, 109 (0.6%) of which had correct CEP infor-
mation and geocoded using CNEFE bases. The linkage results 
showed that Google Maps application programming interface 
(API) had an accuracy of 17.6% (MSE: 178.89km), CNEFE 9.0% 
(MSE: 17.24km), OSM 7.1% (MSE: 564.19km), and ArcGIS 
3.7% (MSE: 2001.33km). Although overall accuracy values were 
modest, the best two models proven to be effective for KD analy-
sis revealed similar patterns between Google Maps and CNEFE 
results but choosing the preferable geocoding technique should 
also financial resources. This study recommends the use of 
Google Maps API for georeferencing, followed by CNEFE. 

 
 
 

Introduction 
Dengue, an arboviral disease primarily transmitted by the 

Aedes aegypti mosquito that is highly adaptable to urban environ-
ments, represents a global public health challenge estimated by the 
World Health Organization (WHO) to have reached 390 million 
cases in 2023, primarily in tropical and subtropical countries 
(WHO, 2025). In Brazil, the Ministry of Health (MoH) reports 
that dengue exhibits an endemic-epidemic pattern, with recurrent 
outbreaks that strain healthcare systems (MoH, 2025a, 2025b). In 
recent years, the increased number of cases has been attributed to 
factors such as climate change—expanding the suitable areas for 
vector reproduction—and sociodemographic aspects, such as 
unplanned population growth, rapid urbanization and unequal 
access to basic sanitation services (Seixas et al., 2024). In the 
Brazilian Capital – the Federal District, these factors create a sce-
nario of vulnerability that underscores the need for integrated 
strategies for disease control and monitoring. The region recently 
faced a dengue epidemic in 2024, with the Secretariat of Health of 
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the Federal District (SES-DF) recording over 284,000 probable 
cases and a cumulative incidence rate of 8685.9 cases per 100,000 
inhabitants, the biggest in the district’s history (SES-DF, 2024). 

The Federal District presents stark social contrasts. As reported 
by the Planning  Company of the Federal District (CODEPLAN), 
some areas present high Human Development Index (HDI) scores, 
while others suffer from limited access to sanitation, healthcare 
and infrastructure (CODEPLAN, 2020). Affected areas usually are 
distant one from another – which makes vulnerability an isolated 
problem. The lack of adequate sanitation, combined with substan-
dard housing and social inequality, creates a fertile ground for the 
spread of Ae. aegypti that has, consequently, led to increased 
dengue incidence (WHO, 2025). Therefore, it is essential to under-
stand the spatial distribution of cases—especially in micro-territo-
ries marked by high vulnerability—as this is needed for guiding 
and improving epidemiological surveillance efforts while enhanc-
ing health planning and contributing to dengue control. 
Epidemiological surveillance is a the key tool for dengue control 
and prevention in Brazil and it plays a critical role in ensuring the 
principles of equity within the Brazilian Unified Health System 
(SUS) (WHO, 2025; MoH, 2025b). Given that health surveillance 
is a continuous and systematic process of data collection, consoli-
dation and analysis of disease dissemination, the use of georefer-
encing techniques stands out as an ideal approach for this purpose 
(MoH, 2024). 

Geoprocessing refers to a set of techniques focused on manag-
ing spatial information, enabling the characterization of health-
related events (Fantin et al. 2021). It associates data with specific 
geographic locations using latitude and longitude data, facilitating 
the use of spatial analyses for the identification of spatial patterns 
(Barcellos el al., 2008). Geocoding is a georeferencing technique 
that converts address data into geographic coordinates (latitude 
and longitude) and enables the representation of these data on 
maps or spatial analysis systems. Geocoding can be performed 
through different computer methods, such as Application 
Programming Interface (API), local software or pre-mapped 
databases—each presenting advantages and limitations, particular-
ly in terms of precision and cost (Skaba, 2009; McDonald et al., 
2017). 

APIs are online services, such as Google Maps and 
OpenStreetMap (OSM), that retrieve and translate address infor-
mation into geographic coordinates. This approach is widely used 
due to its ease of integration and its ability to handle large data vol-
umes. However, it may involve associated costs and it depends on 
stable internet connections. 

Local software and pre-mapped databases employ locally 
installed programs that use algorithms to process addresses based 
on stored datasets. While they reduce reliance on external services 
and may avoid request limits and usage cost, this approach typical-
ly requires more infrastructure and software capability and may be 
limited by outdated databases (McDonald et al., 2017). 

Considering the limitations of each method and the need to 
integrate them within public health surveillance, this study aimed 
to describe and compare four different geocoding methods. The 
analysis focused on spatial distribution of georeferenced dengue 
cases, accuracy of API-based services, processing time, mean loca-
tion error and quality and completeness of the input data. 

 
 

Materials and Methods 
We applied a cross-sectional descriptive study on dengue case 

notifications recorded in 2014 by SINAN for Brasília, the capital 
of Brazil, located in  the Federal District (Figure 3). The study 
compared the performance of four geocoding tools: Google Maps 
(2025), ArcGIS, ESRI, Redlands, CA, USA), OSM and the 
Brazilian National Address Database for Statistical Purposes 
(CNEFE), a georeferenced address dataset produced by the 
Brazilian Institute of Geography and Statistics (IBGE, 2025). 
CNEFE was also used as the gold standard for comparison, as it 
provides precise latitude and longitude coordinates for addresses 
with correctly filled postal codes (CEP) in Brazil. 

Data processing and treatment 
Data processing and analysis were performed using the R pro-

gramming language within the R Studio environment (version 
4.2.1), employing the various application packages, such as ‘tidy-
verse’ (Wickham et al., 2019), ‘tidygeocoder’ (Cambon el al., 
2021) and shiny packages (Wickham, 2021). The methodology 
was structured into the following steps: 

Data cleaning and standardisation 
The fields for street name (NM_LOGRADO), state of resi-

dence (SG_UF), and country (PAIS) were linked together into a 
unified address field. 

Geocoding using API services  
Geocoding was performed using Google Maps, ArcGIS and 

OSM, converting textual addresses into geographic coordinates 
(latitude and longitude) for each record in the dengue dataset. 

Probabilistic geocoding  
Textual similarity between dengue dataset addresses and 

CNEFE records were compared by accounting for matching char-
acters and necessary transpositions making it effective for han-
dling minor typographical errors in street names, neighbourhoods 
and city names was computed using the Jaro-Winkler (JW) dis-
tance method (Jaro, 1989; Winkler, 1990) that calculates a similar-
ity score, with values ranging from 0 (completely dissimilar) to 1 
(identical) by the formula: 

 

                    Eq. 1  

where JW is the Jaro-Winkler similarity score, ranging from 0 
(completely dissimilar) to 1 (identical); J is the Jaro Similarity 
Score; l is the length of the common prefix at the beginning of the 
string; and p is a constant scaling factor indicating the weight given 
to the common prefix. Commonly, p=0.1. The 0.5 threshold was 
selected to balance the sensitivity of the geocoding process, allow-
ing the identification of a broader range of potential address 
matches as well as considering the frequent inconsistencies. In this 
context, more sensitive string-matching strategies were considered 
more appropriate to the study’s objective, which is to apply 
geocoding techniques to support health surveillance efforts. By 
using a lower threshold, we aimed to maximise the detection of 
meaningful spatial patterns of disease distribution, even at the cost 
of increasing the number of matches requiring manual or proba-
bilistic validation. 

Selection of the gold standard for comparison 
Gold standard coordinates were established by matching the 

CEP field in the SINAN database to the corresponding postal code 
in the CNEFE. Records with matching CEPs were considered to be 
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reliably georeferenced. Thematic maps were created to illustrate 
the spatial distribution of the generated coordinates. Charts were 
used to display the proportions of geocoded notifications for each 
API, allowing identification of spatial patterns related to dengue 
cases. 

Presentation of results 
Data were presented in an interactive dashboard developed 

using the ‘shiny package’ enabling the display of the number of 
matched addresses, the mean location error (in metres), the accu-
racy percentage, the distances calculated between the obtained 
coordinates vis-à-vis the gold standard. This allowed a side-by-
side comparison of the geocoding tools used. 

Accuracy 
To assess the precision of geographic coordinates generated by 

the different geocoding APIs, an accuracy test was conducted 
using CNEFE as the gold standard reference. The distances 
between the geocoded points and the gold standard were calculated 
using the ‘sf’ package in R. This package expresses the geodesic 
distances between two sets of points as latitude and longitude in 
the WGS84 coordinate reference system (EPSG:4326). The equa-
tion was implemented in the ‘st_distance’ function that accounts 
for the Earth’s curvature, ensuring greater accuracy in distance cal-
culations. The results were analysed based on the following met-
rics: i) number of matches: the count of point pairs where the cal-
culated distance falls within a defined threshold, based on match-
ing notifications from the APIs and the CNEFE dataset using a 
unique identifier (ID_UNICO); ii) mean distance: the average of 
the absolute distances measured in metres; iii) mean distance: the 
average distance converted from metres to kilometres; iv) accuracy 
(%): The proportion of observations where the distance between 
the API-geocoded point and the CNEFE reference falls within the 
predefined threshold (in metres), relative to the total number of 
observations, i.e. the number of points with distance 
≤threshold/total number of points x 100. 

 

                                               
Eq. 2 

 

where n is a total number of matched point pairs included in the 
calculation, i is index representing each individual matched pair of 
points (a geocoded point and its corresponding reference point in 
the gold standard - CNEFE), and distancei is the geodesic distance 
in metres between the geocoded point and its corresponding gold 
standard point (CNEFE). 

Data analysis 
The two geocoding methods with the best performance results 

were incorporated into a spatial analysis model using Kernel 
Density (KD) estimation, commonly known as a heatmap. It was 
conducted to identify areas with a higher concentration of georef-
erenced notifications and to enable a comparative evaluation of the 
different geocoding services analysed. This analysis was per-
formed using R Studio (version 4.2.1) along with the 
‘leaflet’,’leaflet.extras’ and ‘sf’ packages. 

The coordinates were structured in tabular format and convert-
ed into a spatial object called Simple Features (sf) with projection 
in the WGS 84 spatial reference system (EPSG:4326) using the 
‘st_as_sf ()’ function from the ‘sf’ package. 

The KD was calculated dynamically using the ‘leaflet.extras’ 
package, which enables the creation of interactive heatmaps, 
which is generated by the ‘addHeatmap()’ function, where each 
point contributes to the intensity of density in its surrounding area. 
The parameters used were: i) intensity = 1, used for assigning 
equal weight to all points; ii) blur = 20, used to control blur and 
smooth the areas of higher concentration; iii) radius = 15, used to 
define the radius influence of each point in the density calculation; 
iv) max = 0.05, that represents the maximum value of relative 
intensity. As a supporting element for interpretation, a shapefile 
containing the boundaries of census tracts in the Federal District 
was incorporated (Figure 3). This shapefile was obtained from the 
IBGE Census Tract Grid and imported using the ‘st_read()’ func-
tion. The boundary lines were added to the map using the 
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Table 1. Characteristics of the geocoding tools and the computational infrastructure used 

Geocoding software and database 
API                                                                    Free request                            Additional cost                                     Request/second 

Google Maps                                                                10,000/month                             US$ 20/5000 requests                                                   50  
OSM                                                                                Unlimited                                               Free                                                                   1  
ArcGIS                                                                            Unlimited                                               Free                                                                   1  
CNEFE                                                                            Unlimited                                               Free                                               Set by hardware capacity 
Hardware Specifications 
Hardware                                             Details 

Motherboard                                                 TUF GAMING B550M-Plus 
Processor                                                       AMD Ryzen 7 5700X 8-Core Processor (16 CPUs), ~ 3.4GHz 
RAM                                                             2x16GB Kingston Fury (32768MB RAM) 
Graphics card                                                NVIDIA GeForce RTX 3060 12 GB – INNO3D 
Internal storage                                             SSD 1TB Kingston 
Operating system                                          Windows 10 Pro 64 bits (10.0, Compilation 19045) 
API, application programming interface; RAM, random access memory; OSM, OpenStreetMap; CNEFE, Cadastro Nacional de Endereços para Fins Estatísticos (National address 
database for statistical purposes). 



‘addPolylines()’ function, configured to display the borders in 
black, with a line weight of 1 and an opacity of 0.8. Table 1 pre-
sents the main characteristics of the API services used in this study, 
including the number of free requests allowed the cost per thou-
sand additional requests, the request rate per second, and informa-
tion about the hardware setup. 

 
 
 

Results 
The dataset used in this study comprised 18,206 dengue notifi-

cations recorded at location. Among these, only 233 records 
(1.3%) contained a complete CEP. Of these, 109 records (46.8%) 
were geocoded directly via CEP using the CNEFE database and 
were used to define the gold standard. The results of the different 
geocoding approaches are detailed in Table 2, which details the 

proportion of geocoded cases, the time required for each method 
and the challenges associated with each tool. In terms of geocoding 
coverage, ArcGIS achieved 100% of geocoded notifications, close-
ly followed by Google Maps, which geocoded 99.3% of the 
records correctly. CNEFE returned 10,430 records with a string 
similarity score of ≤0.5. OSM showed the lowest coverage, 
geocoding only 26.3% of the notifications correctly (Table 1). 

When applying a threshold of 100 metres, only a small propor-
tion of records were correctly geocoded. Google Maps demonstrat-
ed the highest accuracy (17.6%) followed by OSM (7.1%). 
CNEFE achieved 6.4% accuracy at this level using the probabilis-
tic geocoding technique. The least accurate method was ArcGIS, 
with only 4 notifications (0.02%) falling within the threshold 
(Table 2). Figure 1 illustrates the number of matches across the dif-
ferent geocoding services highlighting cases that were incorrectly 
geocoded giving locations in other countries, states or municipali-
ties. In terms of processing time, Google Maps was the fastest 
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Table 2. Geocoding results by method. 

API                                   Notification no (%)            Accuracy no (%)                   Processing time (min)                        MDE (km) 

Google Maps                                 18,073 (99.3)                              19 (17.59)                                                  47                                                  178.89 
OSM                                                4,785 (26.3)                                4 (7.14)                                                  307                                                  564.00 
ArcGIS                                           18,206 (100)                                4 (3.64)                                                  119                                                 2001.33 
CNEFE                                           10,430 (57.3)                               6 (8.96)                                                   83                                                     17.24 
API, application programming interface; MDE, mean distance error; CNEFE, Cadastro Nacional de Endereços para Fins Estatísticos (National address database for statistical 
purposes): OSM, Open Street Map. 

 

Figure 1. Geocoding of dengue cases. Caption: OSM, OpenStreetMap; CNEFE, National Address Database for Statistical Purposes.



method, completing all records in 47 min. In contrast, OSM 
required the longest time, taking 307 min (>5hours). ArcGIS and 
CNEFE had intermediate processing durations; however, the 
extended runtime of OSM reflects its lower request-per-second 
capacity (Table 1). At 17.24 km, CNEFE demonstrated the lowest 
mean distance error (MDE), followed by Google Maps (178.89 
km) and OSM (564.19 km). Table 1 summarises the performance 
results of the geocoding APIs and the CNEFE database in compar-
ison with the gold standard. The indicators used include the num-
ber of matches, accuracy (percentage of matches within the 100-
metre threshold), and the mean distance in metres and kilometres. 
Figure 2 presents the spatial distribution of dengue notifications 
geocoded by each service (Google Maps, ArcGIS, OSM and 
CNEFE). The maps were used to visually evaluate the spatial cov-
erage and precision of each method in relation to the gold standard.  

The spatial distribution of cases geocoded using CNEFE data 
showed points overlapping with the gold standard in the regions of 
Ceilândia, Recanto das Emas and Asa Sul (Plano Piloto). 
Locations obtained by Google Maps also exhibited overlaps in 
Ceilândia, Guará and the Plano Piloto (Asa Sul, Asa Norte, and 
Lago Norte) (Figure 3). ArcGIS showed overlaps in Santa Maria 
and Asa Sul; however, a substantial number of records were widely 
dispersed, with some geocoded as located in other Brazilian states, 
even Mexico. Similarly, geocoding using OSM geocoding resulted 
in coordinates outside the Federal District, with locations distribut-
ed across other Brazilian states.  

To assess the applicability of geocoding techniques for public 
health services, Figure 4 presents a KD analysis of dengue cases 
reported in the Federal District, using points geocoded by Google 
Maps API and by probabilistic geocoding based on CNEFE data. 
Finally, an online dashboard was developed, enabling visualization 
of the previously described information. The platform enables 
users to compare the spatial distribution of cases across the differ-
ent geocoding methods and is available at: https://sanglard. 
shinyapps.io/Geocoding/ (Figure 5). 

 
 

Discussion 
The study underscored shortcomings in the address entry pro-

cess in notification forms (Skaba et al., 2004). The use of proba-
bilistic methods to identify similar texts responds directly to the 
vulnerability of data entry (Klaus et al., 2023). At present, SINAN 
does not support the capture of geographic coordinates (e.g., via 
smart devices), and the CEP field is frequently left blank, which 
highlights the need for improved professionals training and the 
incorporation of technological innovations into reporting tools to 
facilitate more accurate data collection and thereby improve 
geocoding processes (Miranda et al., 2013). This undertaking 
emphasizes the pressing need to enhance the process of address 
registration process in notification forms and their integration into 
health information system. The study therefore investigated short-

                 Article

[page 300]                                                             [Geospatial Health 2025; 20:1403]                                                                               

Figure 2. Spatial distribution of dengue cases geocoded in 2014 in Brasília, Federal District (DF). OSM, OpenStreetMap; CNEFE, 
National Address Database for Statistical Purposes.



comings in the address entry process in notification forms 
Previous research has described procedures for cleaning and 

standardising textual in Brazilian health information systems - not 
only for georeferencing purposes but also to enable better perfor-
mance from similarity algorithms (Skaba et al., 2004; Magalhães 
et al., 2014; Garcia et al., 2022; Garcia et al., 2023), and if data 
cleaning and standardization had not been performed, geocoding 
results would have been poorer. The extremely low proportion of 
cases with valid and complete postal code information (only 0.6% 
of all notifications) underscores a major limitation in Brazil’s rou-
tine epidemiological surveillance systems and reflects a broader 
structural challenge concerning the quality of data recorded in 
notification forms, particularly within SINAN.  The absence of 

detailed address information hinders the application of spatial 
analysis techniques—such as geocoding—and restricts the respon-
siveness and precision of public health interventions. This situation 
points to systemic underinvestment in the training of healthcare 
professionals responsible for case reporting, as well as a lack of 
robust quality control mechanisms during data entry. Bridging this 
gap is crucial for accuracy, usability and overall impact of surveil-
lance data in informing localised health interventions.  

With regard to accuracy, Google Maps geocoding presented 
the highest value among the methods evaluated, although it also 
showed a relatively high MDE, indicating moderate precision 
compared to CNEFE’s gold standard. CNEFE, ranking second 
showed greater spatial proximity compared to the other methods, 
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Figure 3. A) Administrative Regions of Brasília/Federal District; B) Census Tract Grid of Brasília, Federal District.



while OSM reflected a notable limitation in geocoding precision. 
ArcGIS, on the other hand, recorded the lowest performance, with 
both low accuracy and an extremely high mean error, a fact that 
either revealed substantial discrepancies in geocoded capacity or 
low address quality in the SINAN database. Given these results, 
the probabilistic geocoding technique using CNEFE addresses 
emerges as a viable alternative for federal and state-level applica-
tions, particularly in contexts where technological infrastructure 
and financial resources are limited, rendering commercial APIs 
less feasible. On the other hand, the limited performance of OSM 
highlights the need for improvements in its search engine, which 
restricts its large-scale applicability.  Nevertheless, being a free 
API makes it a viable alternative for municipalities and institutions 

with limited resources, particularly when combined with local or 
probabilistic methods to improve data quality. This reinforces the 
importance of complementing traditional approaches with proba-
bilistic techniques that are better suited to handling incomplete or 
inconsistent records. 

The comparison between the KD maps generated using Google 
Maps and CNEFE-derived coordinates highlighted an important 
finding for public health practice. Although the accuracy of indi-
vidual coordinates may vary between sources, the resulting spatial 
patterns of dengue case concentration were broadly similar. Both 
maps (Figure 4) reveal consistent hotspots in the south-western 
and northern parts of the Federal District, particularly in highly 
populated peripheral regions, which suggests that even geocoding 
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Figure 4. Kernel density analysis of dengue cases in Brasília, Federal District. 2014. OSM, OpenStreetMap; CNEFE, National Address 
Database for Statistical Purposes.



methods with lower precision can offer meaningful information. In 
contexts marked by incomplete or low-quality address data—as is 
the case with many Brazilian surveillance systems, employing 
multiple geocoding strategies may help mitigate data limitations 
whilst still guiding the spatial targeting of control actions and 
resource allocation. 

The choice of geocoding tool to be used must be guided by the 
financial constraints, and the operational reality of health services, 
particularly in municipalities with greater vulnerability (Battesini 
et al., 2017; Vieira, 2020). Google Maps demonstrated superior 
performance in terms of both accuracy and the number of geocod-
ed notifications. However, free usage of this tool is limited to 2,500 
requests, and the high costs beyond this threshold may be unfeasi-
ble for large-scale use in public health services and research insti-
tutions in Brazil, which often operate under tight budgetary con-
straints (Battesini et al., 2017; Silveira et al., 2017; Oliveira et al., 
2020; Quintans-Júnior et al., 2024). Conversely, the CNEFE 
method proved to be a more accessible and sustainable alternative, 
owing to the volume of geocoded matches, acceptable levels of 
accuracy, and satisfactory performance in spatial precision among 
the evaluated free services. 

The use of commercial tools such as Google Maps for geocod-
ing in public health surveillance raises critical concerns about 
equity, sustainability, and long-term integration into Brazil’s 

decentralised health system. Although these platforms offer high 
geocoding precision, they depend on continuous internet connec-
tivity, licensed API usage, and technical expertise that may not be 
uniformly available across all municipalities and states. Given the 
structural disparities in financial and human resource capacity 
across Brazil’s states, the adoption of such tools may inadvertently 
widen the gap between better- and less-resourced regions. 
However, relying exclusively on commercial solutions is neither 
sustainable nor equitable. An alternative lies in the strategic com-
bination of different geocoding methods—drawing on open-access 
government databases (such as CNEFE), probabilistic techniques 
and selective use of commercial APIs—to tailor the geocoding 
process to local capacities. This blended approach considers flexi-
bility, cost containment, and broader applicability, ensuring that 
even areas with limited infrastructure can still conduct meaningful 
spatial analyses to inform surveillance. Moreover, combining 
methods can enhance both sensitivity and geographic coverage, 
compensating for the limitations inherent in each individual 
source. While technically more complex, such a strategy can be 
adapted incrementally and scaled according to local context, ulti-
mately contributing to a more resilient and inclusive surveillance 
system. A previous study also examined geocoding for dengue in 
the Federal District between 2010 and 2015, utilising a significant-
ly larger number of cases. In that research, the geocoding rate 
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Figure 5. Online dashboard displaying geocoding results of dengue cases in Brasília, Federal District. Avaliable in: 
https://sanglard.shinyapps.io/Geocoding/



ranged from 77.2% and 89.4%, and only the Google Maps API was 
employed, with PHP as the programming language. That study did 
not compare different geocoding methods, nor did it consider the 
financial implications of relying on Google’s services (Lustosa, 
2017), but a separate study (Barcellos et al., 2008), reported the 
need for georeferencing across several Brazilian capitals, revealing 
efficiency variations between cities ranging from 40% to 90%. 
This wide disparity reflects the sensitivity of address data entry in 
disease or health event notifications (SINAN) and other national 
health databases. The collection of high-quality address informa-
tion is essential to enhance the effectiveness of these processes 
(Magalhães el al., 2014).  

Although the geocoding results from previous studies are high 
and broadly compatible with those observed in the present study , 
it is important to note that neither did these studies a gold standard 
for assessing accuracy, nor did they report distance error metrics in 
metres or kilometres. The absence of a reference benchmark in ear-
lier research enhances the methodological innovation of the cur-
rent study. The implementation of the interactive ‘Shiny dash-
board’ enhances decision-making for health managers by enabling 
real-time visualization of spatial case distribution and facilitating 
the comparison of different geocoding methods (Katapally et al., 
2023). This dashboard allows users to assess the quality of geocod-
ed notifications and identify priority areas, thereby improving the 
efficiency of resource allocation (Katapally et al., 2023). 

Potential limitations  
Despite the study’s contributions, certain limitations must be 

acknowledged. The reliance on complete and standardized data 
posed a challenge, as did the costs associated with commercial 
APIs, which may hinder their use in resource-constrained settings. 
Moreover, the requirement for adequate technological infrastruc-
ture and stable internet connectivity represents a critical success 
factors for remote geocoding. 

The choice of a Jaro-Winkler similarity threshold of 0.5 may 
have influenced the sensitivity and specificity of the geocoding 
process. While this lower threshold increases the likelihood of cap-
turing a larger number of true matches, it also raises the possibility 
of introducing false-positive pairs, which may have contributed to 
the error rates reported in the results. Nevertheless, this trade-off 
was considered appropriate given the study’s objective of support-
ing health surveillance practices. By adopting a more inclusive 
matching criterion, the analysis aimed to better detect spatial pat-
terns of case distribution—even in the context of incomplete or 
poorly standardised address data—thereby enhancing the targeting 
of public health interventions and resource allocation at the com-
munity and neighbourhood levels. This can be observed in the 
heatmap visualisations produced. 

 
 
 

Conclusions 
Georeferencing of dengue case notifications proved useful for 

identifying critical areas, thereby enhancing the efficiency of pub-
lic health planning and interventions. The integration of different 
territorial databases strengthens the robustness of spatial analyses 
and underpins health surveillance strategies. Although technically 
complex, combining geocoding methods is better suited to the spe-
cific demands and available resources in each context. The 
approach used in this study enabled an objective comparison 
between geocoded coordinates against a gold standard, providing 

robust evidence to support the integration of spatial analysis into 
public health practices. Although accuracy limitations were 
observed across all tested geocoding methods, their application 
remains practical and valuable for identifying priority areas and 
guiding targeted surveillance and control interventions. Geocoding 
effectiveness is heavily dependent on the quality of the address 
data recorded in notification systems. The low accuracy noted with 
certain geocoding services highlights an urgent need to enhance 
data-entry practices, particularly by ensuring the consistent record-
ing of postal codes, thereby facilitating more reliable spatial anal-
yses. To overcome these challenges, we recommend implementing 
standardised address data-entry protocols within SINAN and 
selecting geocoding tools that align with the financial and opera-
tional capacities of local health services. Moreover, we advocate 
integrating mobile-enabled georeferencing technologies into 
national surveillance systems. Equipping health professionals with 
the ability to capture geographic coordinates directly via smart-
phones or tablets would significantly improve data accuracy, 
reduce reliance on retrospective geocoding and enhance the time-
liness and efficacy of public health responses. Finally, sustained 
investment in health education initiatives—including training and 
sensitisation programmes focused on correctly completing notifi-
cation forms—is essential. Such measures not only enhance data 
quality but also cultivate a culture of surveillance awareness 
among healthcare workers, ultimately strengthening the strategic 
application of spatial data in preventing and controlling notifiable 
diseases. 
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