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Abstract 

Objectives  Although taxonomic variations in chicken gut microbiota have been previously documented, their func‑
tional capacity remain poorly understood. To gain a better understanding, we incorporated whole genome shotgun 
metagenomics to analyse microbial communities of two different organs: the caeca and the large intestine.

Results  Using 24 samples obtained from the caeca and the large intestine of commercial chickens, we assembled 
Metagenome-Assembled Genomes (MAGs) and characterise their functional profiles. Afterwards, using 8 samples, 
we integrated this sequencing data with chicken performance metadata body weight (BW), weight gain, feed intake 
(FI), feed conversion ratio (FCR) and age. MAGs belonging to specific families were found to be positively associ‑
ated with changes in performance parameters. Functional analyses suggest changes in nutrient geochemical cycles 
including hydrogen generation within the carbon-cycle. Furthermore, 108 CAZymes were identified for MAGs belong‑
ing to two major families – glycoside hydrolase (GH) and polysaccharide lyase (PL), which are important for break‑
down of dietary carbohydrates and fibres. A total of 13 polysaccharide lyases were identified functioning on day 20 
with enzymes were specific to organs. Overall, our results provide a deeper understanding of microbial-mediated 
metabolism concerning key performance parameters in chicken production.
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Introduction
The chicken gut microbiome is populated with a complex 
community of microorganisms such as bacteria, archaea 
and viruses. These microbes play an important role in 

chicken productivity [1, 2]. The chicken microbiota has 
a vital role in digestion and absorption of nutrients, 
immune system development, vitamin and amino acid 
production and inhibition of pathogen colonisation [3, 4]

We have previously performed a comprehensive day-
to-day microbiome analysis of the chicken caeca from 
day 3 to 35, highlighting changes in population structure 
[5]. However, this previous study was only performed for 
a single organ (caeca) and utilised 16S rRNA amplicon 
sequencing (V3–V4).

To obtain a deeper understanding of the changes of the 
chicken gut microbiome over time and its impact on the 
presence of pathogenic bacteria, we utilised resources 
from our previous study and incorporated shotgun 
metagenomics for two different organs: the caeca and the 
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large intestine. This approach allows for a more in-depth 
analysis through shotgun metagenomic sequencing, 
enabling the recovery of nearly complete Metagenome-
Assembled Genomes (MAGs) and their taxonomic anno-
tation and functional profiling.

Materials and methods
Genomic DNA, experimental design and shotgun 
metagenomic sequencing
For completion purposes, it is import to discuss the pre-
vious study [5], from which the design of this study arose. 
The study included caecum microbiome samples of 396 
chicken (Ross-308) provided by Moy Park (39 Seagoe 
Industrial Estate, Portadown, Craigavon, Co. Armagh, 
BT63 5QE, UK). The birds were allocated on 12 pens (33 
broiler chicks/pen). The birds under 250 g were euthan-
ised by dislocation of the neck whereas those over 250 g 
and up to 1 kg were euthanised by dislocation of the neck 
following anaesthesia using isoflurane. Birds over 1  kg 
were euthanised by an overdose of anaesthetic (isoflu-
rane) followed by dislocation of the neck. Anaesthesia 
was carried out using an anaesthetic mask fitted over 
the bird’s head to deliver the vapourised isoflurane with 
oxygen with death confirmed in all birds by the onset of 
rigor mortis. Following this, genomic DNA (gDNA) was 
extracted from the digesta of the caeca and large intes-
tine of broiler chicken, and analysed in the current study. 
For shotgun metagenomics, extractions of gDNA from 
broiler chickens were performed using the QIAamp DNA 
Stool Mini Kit according to the manufacturer’s instruc-
tions and stored in -20  °C freezers. The performance 
parameters were obtained previously(5) and included bird 
age, body weight (BW), body weight gain, feed intake (FI) 
and feed conversion ratio (FCR).

Of the days reported previously [5], days 12 to 20 were 
deemed important, and therefore, including day 22, and 
26, the metagenomic profiles were obtained for the days 
11, 15, 19, 20, 22 and 26, whilst also investigating multiple 
organs (Fig. 1). Quantification of gDNAs was performed 
using Qubit 3 and short-read shotgun metagenomics 
sequencing library was constructed using a modified 
Illumina DNA Prep tagmentation approach (Illumina, 
Inc., Cambridge, UK) described previously [6]. After 
library qualification, the library was sequenced using the 
sequencer (NextSeq 2000).

Bioinformatic analysis
Recovery of metagenomic‑assembled genomes (MAGs)
A total of 744,270,746 reads were produced from 
metagenomic sequencing of 24 samples. Reads were 
subjected to quality trimming using Sickle v1.200 [7]. 
Trimming involved removing reads where the average 
phred below 20 and retaining paired end reads with a 

post-trimming length exceeding 50  bp. Sixteen samples 
were excluded due to host contamination and lower DNA 
yield, resulting in a total of 8 samples which generated 
379,415,912 reads. To pre-screen for contaminants, we 
have used Phyloflash [8] that rapidly screens metagenom-
ics datasets for prokaryotic and eukaryotic species after 
assembling small-subset rRNA reads. We removed those 
samples where we did not get enough prokaryotic cov-
erage and the reads were predominantly selected as 18S 
rRNA reads with details provided in the Supplementary 
Data 1. We have initially sequenced four organs (as can 
be seen from the table: Small Intestine, Large Intestine, 
Caeca, and Duodenum. Majority of the contaminants 
were in Duodenum and Small Intestine, and therefore, 
in the publication, we have only proceeded with Caeca 
and Large Intestine comparison. Forward and reverse 
reads were then aggregated from all samples to obtain 
a single assembly (comprising of continguous regions) 
using MEGAHIT [9]. Assembly parameters used were 
–k-list 27,47,67,87 –kmin-1pass -m 0.95 –min-contig-
len 1000. This gave us a total of 395,830 contigs, with a 
total of 1,464,921,437 bases (bp), with the maximum con-
tig size of 214,917 bp, average length of 3,701 bp, and an 
N50 score of 5,371 bp. The contigs were then subjected to 
binning (clustering at genome level) via the MetaWRAP 
pipeline [10], wherein three algorithms were utilised, i.e., 
metabat2 [11] (260 MAGs recovered), MaxBin [12] (220 
MAGs recovered), and CONCOCT (221 MAGs, result-
ing in a total of 154 MAGs. We retained > 50% completed 
MAGs with < 10% contamination in MetaWRAP which 
internally uses CheckM to calculate the completion and 

Fig. 1  Overview of study design showing age of sampling gDNA 
from two organs caeca and large intestine followed by shotgun 
metagenomics sequencing and bioinformatics and statistical analysis
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contamination statistics [13]. For downstream statisti-
cal analyses, we have used high quality MAGs, retaining 
those with > 75% completeness and < 5% contamination, 
resulting in a total of 54 MAGs. This strategy was pre-
viously used [14] and offered reasonable results without 
biases associated with incompleteness or contamination. 
The summary statistics of the MAGs are provided in the 
Supplementary Table S1.

Taxonomic and functional annotation
For metabolic function and taxonomic assessment of 
each MAG, the METABOLIC pipeline was employed 
[15] Within its framework: taxonomic classification 
of MAGs was done using GTDB-TK [16]; functional 
annotations were recovered using Kyoto Encyclopedia 
of Genes and Genomes (KEGG) at coarser (modules) 
and finer (submodule) levels [17]; carbohydrate active 
enzymes (CAZymes) were recovered from dbCAN2 [18]; 
custom functions were recovered using customised hid-
den Markov model databases for nutrient cycles [19]; and 
proteases were recovered using MEROPS [20]. To obtain 
taxonomic coverages per sample, read coverages (mean 
number of reads aligned to MAGs on sample-wise basis) 
were calculated using CoverM (https://​github.​com/​
wwood/​CoverM). The coverage table was then multiplied 
with feature tables recovered from METABOLIC to give 
coverage of functional tables on sample-wise basis.

Phylogenetic tree generation
To construct a phylogenetic tree of MAGs, we used 
GToTree [21] that first recovers Single Copy Genes 
(SCGs) from MAGs and then aligns them together to 
generate a phylogenetic tree. In GToTree, we have used 
a pre-calculated 25 SCGs set covering the bacterial and 
archaeal domain. Note that for MAGs that had very few 
hits for these SCG were removed, resulting in a phy-
logeny recovery of a total of 32 MAGs. For assessment 
of novelty of MAGs, the Genome Tree Toolkit was uti-
lised [13], wherein phylogenetic gain (PG) for each MAG 
against all other MAGs was calculated and used as a 
proxy for novelty.

Statistical analyses
Statistical analyses are provided in Supplementary Infor-
mation.pdf.

Results
Performance parameters and their association with key 
microbes and functions
The majority of the MAGs were associated with four 
different phyla based on GTDB-TK V2.4.0 taxonomy 
with Firmicutes A indicated as the most dominant phy-
lum (Fig.  2) and were resolved at family level as shown 

in Fig. 2a. Furthermore, using CODA-LASSO algorithm, 
MAGS with positive associations to performance param-
eters were identified. These parameters included weight 
gain, age, FCR, FI, and BW (highlighted with different 
colours). Negative associations to the same parameters 
were also identified (highlighted in black). Phylogenetic 
Gain (PG) was also calculated using the phylogenetic 
tree, and was used as a proxy for novelty (calculated 
using genometreetk utilities from GTDTB-TK suite) [22]. 
Genome Database Taxonomy toolkit (GTDBTK) was 
performed where higher values represent novelty of a 
particular genome within the context of the phylogenetic 
tree. The 10 most novel MAGs are shown in Fig. 2b which 
came from four distinct phyla. bin.52 (Gammaproteobac-
teria Burkholderiales) was found to be the most novel bin 
followed by bin.36 (Bifidobacterium Bifidobacterium gal-
linarum). At family level, Oscillospiraceae, Ruminococ-
caceae, Borkfalkiaceae, Acutalibacteraceae were found 
to be positively associated with the parameters, age, BW, 
FI, G and FCR. Changes in the feeding regime resulted 
in changes in association to the dependent parameters 
for instance the genus Borkfalkia changed from positive 
association to G, FCR and BW into negative association.

At the genus level g__UBA5446 (Clostridiales bac-
terium) abundance was found positively associated 
with weight gain, g__UBA11940 (Borkfalkiaceae) with 
FI, BW and FCR, g__ UBA1417 with FI and BW and 
g__ CAG − 180 (Acutalibacteraceae) with weight gain 
and age, g__ AM07 − 15 (Ruminococcaceae bacte-
rium) with weight gain, Bifidobacterium gallinarum 
and g __ CAG − 822 to FCR and g__ CAG − 460 (Bacilli 
f__UBA660) with age. Meanwhile, the results showed a 
negative association of g__ UBA1375 s UBA1375 (Rumi-
nococcaceae), g__ UBA1390 s UBA1390 (Lachnospirales) 
and Lactobacillus crispatus with age. The results showed 
with advancing ages Ruminococcaceae; g__ UBA1409 
UBA1409 Bacilli g__ CAG − 460, f Anaerotignaceae; g__ 
UBA8514,

Ruthenibacterium, Acutalibacteraceae; g__ 
CAG − 180 CAG − 180 were abundant. Whereas Rumi-
nococcaceae; g__ UBA1375 UBA1375, Lachnospiraceae; 
g Lachnoclostridium_A, Lachnospirales; f UBA1390; 
g__ UBA1390 UBA1390, Bacilli; g__ UMGS1217 and 
Rubneribacter Rubneribacter badeniensis were nega-
tively associated with age. MAGs missing in the phy-
logenetic tree (by virtue of not finding enough single 
copy genes) are shown in Fig. 2c. Metabolic taxa diver-
sity was observed in terms of the alpha diversity in both 
organs represented by rarefied richness and Shannon 
entropy Fig. 2d & e. In addition, beta analysis was per-
formed using Bray–Curtis distance in Principal Coordi-
nate. Analysis showed different clusters for both organs 

https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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suggesting a difference in microbial composition and 
metabolic dbCAN2 differences between both organs 
Fig. 2f & g. The performance parameters and their asso-
ciation with key microbes and functions are provided 
in Supplementary Table S2.

Nutrient cycles and the role of hydrogen buildup 
in characterising the chicken gut microbiome
Using METABOLIC, we recovered major geochemi-
cal cycles at both MAGs and community level Fig.  3 
(carbon cycle) and Supplementary Fig. S1 (rest of the 
cycles) with MAGs-wise geochemical cycles provided 

Fig. 2  Performance parameters and their association with key microbes and functions. Major bacterial species colonising the chicken caeca 
and large intestine indicated in phylogenetic tree (a). Genomic GC content is shown using grey gradient, quality score (genome completion – 
5 × genome contamination), phylogenetic gain (PG) and sample abundances (heatmap; TSS + CLR) for each of the recovered MAGs. Families are 
shown in colours. Family’s positive associations to parameters (weight gain (WG), age, feed conversion rate (FCI), feed intake (FI) and body weight 
(BW) are colour coded, and the negative associations to parameters are shown in black. Phylogenetic gain (b) was calculated using GTDBTK 
toolkit with higher values representing novelty of a particular genome within the context of the phylogenetic tree; the 10 most novel MAGs are 
shown. MAGs not recovered in the phylogenetic tree shown in (c). Metabolic taxa diversity represented by rarefied Richness and Shannon entropy 
in both organs are shown in (d) and metabolic dbCAN2 diversity in (e). A PCA sample analysis represented by Dim1, dimension 1; Dim2, dimension 
2 shows taxa differences between both organs in (f) and differences in metabolic dbCAN2 are shown in (g)
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in Supplementary Data 2. All the recovered MAGs (53, 
100% coverage) contained pathways involved in carbon 
oxidation and fermentation (Step 1 and Step 6), with the 
figure showing the number of MAGs positively associ-
ated with weight gain, age, FCR, FI and BW were 12, 9, 
12, 10, and 6, respectively. For hydrogen generation (Step 
5), more MAGs (11, 7, 9, 8, 6) were positively associated 
with the weight gain, age, FCR, FI and BW, respectively, 
than those MAGs that were negatively associated (2, 2, 
1, 2, 1). For Hydrogen oxidation (Step 9), more MAGs 
(4, 9, 7, 8, 6) were negatively associated with the param-
eters weight gain, age, FCR, FI, and BW, respectively than 
those that were positively associated MAGs (5, 3, 2, 2, 0).

Overall nitrogen and sulphur cycles for the recov-
ered MAGs are shown in the Supplementary Fig. S1. 
For nitrogen fixation and nitrate reduction Steps 1 and 
4, more MAGs (7, 12, 8, 9, 8) were negatively associated 
with the weight gain, age, FCR, FI, and BW, respectively, 
than those that were positively associated (1, 0, 0, 0, 1). 
Similar patterns were observed for sulphur oxidation and 

sulphite reduction Steps 3 and 6 respectively. Further-
more, for pathways involved in arsenate reduction, more 
MAGs were positively associated with the parameters 
especially weight gain and FCR. For selenate reduction, 
more MAGs were negatively associated with the param-
eters especially age. The association of MAGs with the 
steps of nutrient cycles are provided in Supplementary 
Table S3.

Signature profiles and prediction of KEGG module 
abundance in association to parameters
Based on CODA-LASSO analysis, non-zero signifi-
cant β-coefficients for KEGG modules (using either of 
the parameters, weight gain, age, FCR, FI, and BW) are 
shown in Fig. 4 (age) and Supplementary Fig. S2 (rest of 
the parameters). The positive association to the param-
eters is represented in blue bars, whilst negative associa-
tions are represented in red bars. The most significant 
associations were M00260 (DNA polymerase III com-
plex, bacteria), M00335 (Sec (secretion) system), M00258 

Fig. 3  Geochemical cycles recovered from METABOLIC with the count showing the number of genomes that have a particular pathway, 
along with the coverage information for all genomes recovered in this dataset. Associations to parameters (WG, age, FCR, FI and BW), changes are 
indicated showing the number of genomes with positive association to parameters changes (red), and the number of genomes with negative 
associations to parameters changes (blue). The major steps involved in the carbon cycle are shown in this figure. The arrows represent those 
pathways that were substantially more abundant in the community after the changes. Other cycles (a-i) are shown in Supplementary Fig. S1. These 
associations are based on CODA LASSO analysis
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(Putative ABC transport system), M00179 (Ribosome, 
archaea), M00178 (Ribosome, bacteria). These modules 
were positively associated with FI, age, and BW, respec-
tively, and negatively associated with FCR. M00731 (Bac-
itracin transport system) was positive associated with 
weight gain, FI, age, and BW; and negatively associated 
with age. M00657 (VanS-VanR (VanE type vancomy-
cin resistance) two-component regulatory system), and 
M00442 (Putative hydroxymethylpyrimidine transport 
system) were negatively associated with FI, age, and BW. 
M00708 (Multidrug resistance, PatAB transporter) was 
negatively associated with weight gain, and age; M00652 
(Vancomycin resistance, D-Ala-D-Ser type) was nega-
tively associated with age whereas M00707 (Multidrug 
resistance, MdlAB/SmdAB transporter) and M00706 
(Multidrug resistance, EfrAB transporter) were positively 
associated with age. The association of performance 
parameters with the abundance of KEGG modules abun-
dance is provided in the Supplementary Table S4.

In addition, metabolic functions in both organs were 
explored. Enzymes including CAZymes are important 
for breakdown of dietary carbohydrates and fibres, and 
therefore, they play a vital role in the metabolism and 
reproduction of chickens. The association of perfor-
mance parameters with the abundance of CAZymes is 
provided in the Supplementary Table S5. We detected a 
total of 108 CAZymes belonging to two major families – 
glycoside hydrolase (GH) and polysaccharide lyase (PL), 
with the former being more dominant (Fig. 5). CAZyme 
families varied significantly in abundance for both organs 

for the selected age measured in this study [11, 15, 19, 
20, 22, 26]. The most common enzyme identified within 
both organs is GH013 which was detected in 17 bacte-
rial families in our study. GH093, GH076, and Pl001 
which metabolise hemicellulose, sugars/starch, and pec-
tin, respectively, were only found in the family Borkfalki-
aceae. GH077 and GH015 were only found in the caeca 
on day 11 whereas, GH104, GH108, GH102 and GH103 
were found in the large intestine on day 20. In the cur-
rent study: a total of 13 PLs were found on day 20; seven 
enzymes (PL033, PL027, PL012, PL034, PL017, PL008 
and PL035) were found in the large intestine; and six 
enzymes (PL001, PL009, PL022, PL011, PL026, PL002) 
were found in the caeca. None of the enzymes were 
shared in both organs.

Discussion
Poultry performance parameters such as BW, FI, FCR, 
and weight gain are indicators of good farming [4, 23]. 
Previously, using 16S rRNA sequencing, we highlighted 
that microbial variation over time is most likely influ-
enced by the diet of chickens whereby significant shifts 
in taxa abundances and beta dispersion of samples were 
often associated with changes in feed [5]. In this study, 
we used the same parameters, and performed shotgun 
metagenomics on the caeca and large intestine of chick-
ens. Our study corroborates the previous findings that 
age plays a key role in defining variation in taxonomic 
composition. These results are in agreement with Li 
et  al. [24] that examined the diversity of gut bacterial 

Fig. 4  CODA-LASSO regression of age regressed against KEGG modules abundances [17]. Non-zero β-coefficients returned from CODA-LASSO 
procedure are shown as two disjoint sets (those that are increasing with age (positive; green) and those that are decreasing with age (negative; red). 
The insets show prediction quality of fitting with the predictions from CODA-LASSO procedure shown on the x-axis and the actual values of age 
shown on the y-axis. Regressions of KEGG modules against other parameters (weight gain, FCR, FI and BW) are provided in the Supplementary Fig. 
S2
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communities in chickens, and showed that 90% of 
amplicon sequence variants belonged to Firmicutes and 
Proteobacteria. The chicken gut microbiota is primar-
ily colonised by facultative anaerobes, with a gradual 
transit from simple to complex and obligate anaerobes 
occurring with age and ultimately reaching a relatively 
stable dynamic state [25]. The recovered patterns fur-
ther substantiate that some facultative anaerobes are 
negatively associated with the age of bird such as Lacto-
bacillus crispatus. Nonetheless, with age, chickens will 
be predisposed to infectious diseases due to the ability 
of L. crispatus to interfere with pathogenic bacteria via 
colonisation, competitive exclusion and production of 
antimicrobial compounds [26].

Carbohydrates are the major content of chicken diet, 
which approximately include 70% starch, oligosaccha-
rides, and non-starch polysaccharides (NSP) such as 
cellulose, hemicellulose and pectin [27]. Dietary fibre is 
referred to as soluble or insoluble non-starch polysac-
charides (NSP) and lignin [28]. The lack of enzymatic 
capacity in chickens to digest NSPs allow NSPs to accu-
mulate, providing the opportunity to modulate the diges-
tive activity via interaction with the gut microbiome 
which possess a diverse range of CAZymes. This results 
in changes to the nutrient utilisation and growth perfor-
mance [29]. Our study revealed differences in function-
ing CAZymes in both caeca and large intestine especially 
on day 20 where different polysaccharide lyase enzyme 

Fig. 5  Carbohydrate-active enzymes (CAZyme) gene abundance recovered from Caeca and large intestine: (a) Mean normalised abundance 
of CAZyme gene IDs; Red and blue colour of heatmap cells indicates high and low abundance, respectively); in both organs. CAZyme IDs 
grouped according to (b) substrate/function based on the dbCAN2) across both organs. Number of MAGs containing CAZyme genes, grouped 
according to (c) phylum and (d) family taxonomic ranks, comparison of total glycoside hydrolase (GH) and polysaccharide lyase (PL) abundances 
across both organs
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activity was noted in both organs. Pectin was the pre-
ferred substrate by caecal microflora on day 20, whereas 
others were utilised as substrates in the large intestine. 
This may be due to the reduction of easily digestible 
growth substrates as they move down the gastrointestinal 
tract. Based on CAZymes, we hypothesise that the pre-
ferred substrates, such as starch and pectin, are digested 
in the upper intestines. Consequently, other glycans sub-
strates are utilised by caecal microbiota [14]. The work-
ing hypothesis is that bacteria in the lower intestine are 
often better at utilising feed components such as non-
starch polysaccharides, resistant starch or resistant pro-
tein [30]. Pectin has high water solubility and its ability to 
form a gel lends itself for easy fermentation by the intes-
tinal microflora [31]. These soluble components act as a 
source of energy for bacteria, allowing them to use other 
nutrients such as nitrogen as substrates for the produc-
tion of metabolites [27].

The breakdown of dietary fibres and other indigest-
ible compounds are necessary to create more accessible 
products such as SCFAs [32]. SCFAs contribute to the 
nutrition of the chicken and improve mineral absorption 
via lowering the pH which can inhibit the growth of acid-
sensitive pathogens [33]. As a fermentation byproduct, 
the production of SCFAs will generates large amounts 
of free hydrogen and the accumulation of hydrogen has 
the ability to inhibit fermentation [34] It is well estab-
lished that some species of bacteria and archaea found 
in the chicken gut microbiome are also able to provide 
the enzymes that assist hydrogen consumption, and this 
in turn allows intestinal fermentation to continue [33]. 
For example, Megamonas, Wolinella, Helicobacter, and 
Campylobacter (including C. jejuni) are able to produce 
nickel–iron hydrogenases. The acetyl-coenzyme A syn-
thase is produced by bacteria of the Lachnospiraceae 
family, and methyl-coenzyme M reductase is produced 
by methanogenic archaea [33]. We have also shown that 
variation in microbial composition resulted in a com-
munity with the ability of hydrogen generation and is 
positively associated with weight gain, age, FCR, FI and 
BW respectively, when compared to MAGs that were 
negatively associated with the mentioned parameters. 
The majority of the recovered genomes have hydrogen 
metabolism pathways which lend themselves to hydro-
gen consumption and thus the hydrogen sick hypothesis 
(Supplementary Data 2).

Conclusions
This study explores changes in microbial diversity (and 
their function) of chicken caeca and large intestine with 
respect to performance parameters.. Our study highlights 
association of metabolic pathways with the performance 
parameters emphasizing on hydrogen generation playing 

a pivotal role. Further interrogation with a larger sample 
size as well as controlled experimentation is needed to 
establish the importance of hydrogen cycling to improve 
health of chicken. This study advances understanding of 
the metabolic pathways that influence the type of bacte-
ria present in different organs, which will ultimately lead 
to developing intervention and control strategies against 
enteric pathogens.

Limitations
We acknowledge that the sample size in our study is a 
limitation. However, this did not hinder the recovery of a 
significant number of Metagenome-Assembled Genomes 
(MAGs) compared to other studies with larger sample 
sizes that recovered fewer MAGs [14, 35].
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