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Abstract
Background  Estimating the time since HIV infection (TSI) at population level 
is essential for tracking changes in the global HIV epidemic. Most methods for 
determining TSI give a binary classification of infections as recent or non-recent 
within a window of several months, and cannot assess the cumulative impact of an 
intervention.

Results  We developed a Random Forest Regression model, HIV-phyloTSI, which 
combines measures of within-host diversity and divergence to generate continuous 
TSI estimates directly from viral deep-sequencing data, with no need for additional 
variables. HIV-phyloTSI provides a continuous measure of TSI up to 9 years, with a mean 
absolute error of less than 12 months overall and less than 5 months for infections with 
a TSI of up to a year. It performs equally well for all major HIV subtypes based on data 
from African and European cohorts. 

Conclusions  We demonstrate how HIV-phyloTSI can be used for incidence estimates 
on a population level.
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Introduction
Accurate estimates of HIV incidence are critical for surveillance of HIV epidemics and to 
determine the effectiveness of prevention efforts [1]. HIV incidence, the rate at which new 
infections arise from the susceptible part of the population, tracks the leading edge of the 
epidemic, measuring transmission at a given moment in time. The traditional longitudi-
nal cohort approaches for measuring incidence are costly, and incidence derived from a 
cohort with many HIV prevention interventions is likely to give biased estimates [2–4].

A cross-sectional study design would be preferable for measuring incidence, and 
recent methodological advances have brought this possibility closer. Cross-sectional 
HIV incidence estimation is currently based on algorithms that use observable changes 
in the biomarker profile of individuals to class infections as recent or non-recent [4]. 
Identification of individuals with recent HIV infection allows one to estimate incidence 
by counting the number of such individuals within the population/cohort and adjusting 
for the time period associated with that recent state. Using the quality of the antibody 
response to HIV infection as a host biomarker, these methods have been used to esti-
mate HIV incidence at a country level [5], within specific risk groups [6], as the primary 
outcome of intervention trials, and have been considered for counterfactual incidence 
estimation to determine the effectiveness of Pre-Exposure Prophylaxis (PrEP).

An alternative to host response biomarkers is measurement of the genetic diversity 
of HIV sequences found in individual infections. It has long been recognised that in the 
absence of treatment, HIV viral genetic diversity increases with duration of infection in a 
single host [7, 8], and several studies have used measures of HIV genetic diversity to esti-
mate HIV incidence. These studies use several sequence-based and non-sequence-based 
parameters: nucleotide ambiguity [9, 10], Hamming distance—Q10 [11], generalized 
entropy [12], pairwise distances [13], time to most recent common ancestor (MRCA) 
[14] and high-resolution melting diversity assays [15]. However, no single approach has 
demonstrated sufficient precision for HIV incidence estimation.

In recent years, next-generation sequencing (NGS) data has shown promise for iden-
tifying recent infections from genetic sequence data alone. Puller et al. showed that a 
new NGS-based measure (3rd base ambiguity in the pol gene) can be used to estimate 
time since HIV-1 infection (TSI) many years after the infection, in contrast to most 
alternative biomarkers. The study was based on data from 42 patients in [16] and is yet 
to be validated in a larger population. TSI has also been estimated using average pair-
wise diversity [17], and a combination of pairwise sequence diversity and divergence in 
sub-sequences within pol and env in 30 individuals [18]. These studies also show that 
sequence methods have the potential to estimate TSI for the entire duration of infection, 
rather than classifying individuals as ‘recent’ or ‘non-recent’. A seminal study from 1999 
demonstrated that “DNA Distance”, or longest root to tip distance (LRTT), increased 
almost linearly with time since infection (TSI) [7, 8]. However, LRTT relies on multiple 
sequences from a single time point, which historically has been costly to compute and 
therefore seen as impractical for population studies. This is changing with the wide-
spread adoption of next-generation sequencing.

In this study, we present a new method for estimating TSI of all major HIV-1 subtypes 
from deep sequence data, using both LRTT and diversity: HIV-phyloTSI. HIV-phyloTSI 
employs a machine-learning algorithm, using data from four different cohorts represent-
ing 480 individuals with known approximate TSI as a training dataset. Performance was 
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evaluated in two ways: first, using a simulated dataset, and second, using a dataset from 
the HPTN-071 (PopART) Phylogenetics Ancillary study [19, 20] The output of HIV-
phyloTSI are continuous estimates of TSI, rather than a binary classification of samples 
as recent and non-recent, and the method is sufficiently accurate to estimate HIV inci-
dence in a cross-sectional cohort without use of additional demographic variables.

Results
Participants and datasets

HIV genome sequences were made available by the PANGEA and BEEHIVE consortia 
following consortium-specific guidelines for data access. PANGEA [21] is a network of 
collaborators from Africa, Europe and the United States (US) who have generated a large 
number of HIV NGS sequences from Eastern and Southern Africa. BEEHIVE [30] is a net-
work of HIV cohorts that collected HIV samples from HIV seroconverters across Western 
Europe (Finland, France, Germany, the Netherlands, Switzerland, United Kingdom) and 
in Uganda. The samples used for this study were collected in Uganda, Kenya and South 
Africa by MRC Uganda/UVRI [22–24] (MRC), the University of Washington International 
Clinical Research Centre programs [25–27] (UWP) and the Rakai Community Cohort 
Study [28, 29] (RAK), and the UK cohort from BEEHIVE (BEE). Participants in all studies 
were treatment-naive and viraemic at the time of sampling. Participants in all studies gave 
written consent and ethics approvals were granted to the institutions that generated the 
data. Participant characteristics for the different datasets are listed in Table 1.

Datasets were chosen to include participants with known seroconversion intervals 
(UWP and BEE) and participants with recent as well as participants with non-recent 
infections (RAK and MRC) (Fig.  1). Participants with long seroconversion intervals, 
which were almost entirely long-term infections, were retained to avoid model bias 
towards recent infections (class imbalance). No other pre-selection was made, but as 
only sequenced genomes were included, this of necessity implies detectable viral load 
(above 102 copies per ml). Cohorts from different geographical locations were included 
to ensure a representation of subtypes A, B, C, and D. In total, the training dataset 
consisted of 527 sequences from 480 participants (Table  1). Samples from the same 

Table 1  Participant characteristics in training dataset
UW clinical 
research centre 
programs

Rakai communi-
ty cohort study

BEEHIVE MRC-UVRI 
Uganda

(UWP) (RAK) (BEE) (MRC)
Participants 114 152 113 101
Samples selected from cohort 160 152 113 102
Age, median (range) 34.7 (21.9–55.5) 32.0 (17.0–50.0) 33.1 

(20.4–62.8)
30.2 
(17.0–75.4)

Proportion female 0.42 0.51 0.03 0.46
Years since infection, mean (range) 0.4 (0.0–1.4) 2.5 (0.6–17.9) 0.7 (0.1–2.1) 0.6 (0.1–21.0)
Proportion of infections <  = 12 months 0.84 0.24 0.6 0.59
 <  = 24 months 1.00 0.34 0.95 0.64
Predominant subtypes A1, D, C D, A1, C B, C, F1 D, A1, B
log10 viral load mean (range) 4.9 (3.4–6.8) 3.1 (0.0–6.4) 4.6 (3.1–5.6) 4.3 (2.9–5.2)
CD4 cell count mean (range) 503 (33–1664) 442 (15–1626) 501 

(140–1062)
623 
(197–1597)

* CD4 cell count data and viral load data obtained closest to the date of the sequencing sample were available for 84% of 
samples (443/527) and 58% of samples (308/527)
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individual were retained, as there was no significant difference in their pairwise similar-
ity across predictor metrics, compared with other samples from the same dataset and 
TSI range (0–1.15 years, median sampling interval 0.7 years; median Spearman correla-
tion 0.79 and 0.78 for samples from the same person vs matched unique samples).

HIV diversity and divergence increase with the duration of infection

Minor allele frequency (MAF) has been shown to increase over the course of an HIV 
infection and has previously been used to identify recent infections [9, 10, 16, 17, 31]. In 
this study, we split MAF into two variables, designated MAF12c for the first two codon 
positions and MAF3c for the third codon position, to allow for their different evolu-
tionary rates. Both MAF12c and MAF3c increased with TSI (Fig. 2), at rates that varied 
by HIV gene. The most rapid increase was observed for MAF3c in the gp120 and gp41 
regions; this is consistent with the high substitution rate in the env gene relative to the 
more constrained pol and gag genes. MAF3c was informative across the genome, par-
ticularly in gag, pol and gp120 (Figure S1), while MAF12c remained highly constrained 
in gag and pol, but was markedly more informative in gp120 (Figure S1). We hypoth-
esized that estimates could be improved by using more complex statistics derived from 
phylogenetic trees. We therefore constructed intra-host diversity trees in sliding win-
dows along the genome using phyloscanner [32] and tested if pairwise patristic distance, 
overall root-to-tip length or longest root-to-tip distance (LRTT) were predictors of TSI 
(Figure S2). LRTT performed best, and was included alongside MAF12c and MAF3c as 
a predictor in this study. LRTT was particularly informative in gp120 and for non-recent 
infections (Fig.  2). The performance of all three predictors was not influenced by the 
sequencing method used (amplicon-based or probe-based) (Figure S3).

To determine whether some genomic locations were particularly informative, we 
assessed the correlation of MAF12c, MAF3c, and LRTT values across the HIV genome 
with the known TSI (Figure S4). Informativeness was more variable for the MAF predic-
tors than for LRTT. MAF3c was most informative in the 3’ region of gag, the 5’ region of 
pol, and the 5’ region of gp120; MAF12c was most informative in the 5’ region of gp120; 
and LRTT was informative in all of gag, pol and gp120. The most informative windows, 
defined as having r2 over 0.3 for any predictor, were included as one of the feature com-
binations during model selection (LRTT_MAF3c_topwin). MAF3c alone was highly 
informative, but performance was improved by including other parameters.

In conclusion, LRTT adds a measure of TSI that is additive to MAF. Both predictors 
perform best in the gp120 region of the env gene, however, all regions of the genome are 

Fig. 1  Distribution of time since infection (TSI) and seroconversion intervals in the training datasets. Vertical lines 
show duration of the seroconversion interval, from three weeks prior to the last HIV-negative test to the date of the 
date of the first HIV-positive test. TSI was defined as the time in years between the sampling date and the midpoint 
of the seroconversion interval (circles)
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informative. A model should ideally aggregate information across all genomic regions to 
become more powerful.

CD4 cell counts and age are informative but are not essential for estimating TSI

Limited clinical data were available for the sequences in the training dataset. CD4 cell 
counts and viral load measurements obtained close to the date of the sequencing sample 
were available for 84% (443/527) and 58% (308/527) of the samples, respectively. Mean 
CD4 cell count and mean log10 viral load were significantly different between recent 
and non-recent infections (CD4 count, 543 v 451 cells/mm3; log10 viral load, 4.9 v 4.3; 
p < 0.001, Welch's t-test, with recency cut-off of 12  months) (Fig.  3A, B), but with high 
variance and substantial overlap between the distributions. In datasets where CD4 cell 
count data are available from the sample collection date, recency estimates may be fur-
ther improved by incorporating this variable. In the present dataset, gains were marginal 
(< 1 percentage point in r2). Age was informative in the two population cohorts (RAK and 
MRC), but not in the two cohorts enriched for seroconverters (UWP and BEE) (Fig. 3C). 
We opted against including age as a variable in the present study so as to keep the model as 
generally applicable as possible.

The estimates were not influenced by the presence of drug resistance mutations: in a 
conservative test, removal of all genomic windows containing positions of known drug 

Fig.  2  Genetic divergence (LRTT) and diversity (MAF3c, MAF12c) values along the HIV genome in samples 
grouped by time since infection. Lines show mean root-to-tip distance of the largest subgraph (LRTT), and mean 
minor allele frequencies at the third codon position (MAF3c) and first and second positions (MAF12c). MAF3c and 
MAF12c measures shown as mean per 250 bp window. The shaded area indicates the width of the 95% bootstrap 
confidence interval around the mean
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resistance mutations slightly decreased model r2 (< 2 percentage points), consistent with 
a limited contribution of these windows to the overall model. We also tested the effect of 
taking only the last sample for individuals with > 1 sample, and found no difference to the 
model r2. Given the dates of sampling, none of the participants was infected while using 
PreP.

Models based on diversity and divergence yield good accuracy and false recency rates

The chosen predictor variables—MAF12c, MAF3c and LRTT—were calculated for each 
window of 250 base pairs and then averaged separately across gag, pol, env gp120 and env 
gp41, as well as across the whole genome. In five samples, missing data meant that gene-
averaged values could not be derived for one or more genes; these were filled by imputa-
tion. The tested feature combinations are included as a supplementary file.

To select a regression method, we tested performance of three commonly used 
methods (ordinary least squares (OLS), gradient boosted regression, and random for-
est regression), using a subset of feature combinations to estimate the square-root 

Fig. 3  CD4 cell count, viral load and age can be informative. A Most recent CD4 cell count obtained closest to 
sequencing sampling date. B Viral load (log10 copies per mL) obtained closest to sequencing sampling date. C 
Distribution of age at sampling in different cohorts in the training data set
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transformed TSI. The square-root transformation helped the model accommodate 
greater uncertainty around the actual TSI values of non-recent infections, for which the 
ground truth was generally less precisely known in our training data (Fig. 1). Cross-val-
idated model scores (mean r2 values) were computed using tenfold cross-validation, in 
each iteration splitting the data randomly into 75% training and 25% test datasets and 
scoring model performance on the test data (Table S1).

OLS performed adequately for the simplest models, where a single feature was used in 
addition to the indicator variable for sequencing method, but was outperformed by gra-
dient boosted and random forest regression for larger feature sets. The cross-validated 
r2 scores were similar for gradient boosted and random forest regression, with random 
forest slightly outperforming gradient boosted regression on all feature combinations 
assessed (Table S1). Scatterplots of known versus estimated square root-transformed 
TSI for each of the feature combinations are shown in Figure S5. Random forest regres-
sion was selected for subsequent analyses.

To assess model performance with different combinations of features, we compared 
several metrics using 20-fold cross validation: mean r2 on test data (strength of correla-
tion with known TSI) (Fig. 4A), accuracy of predicting infections as having TSI below 
either 12 or 18 months (Fig. 4B), mean absolute error (MAE) (Figure S6A) and the false 
recency rate (FRR) (Figure S6B). Since our model predicted continuous TSI, we were 
able to obtain binary estimates (recent/non-recent) at any arbitrary recency cut-off after 
running the model. We compared this continuous approach to a ‘classification’ approach 
that uses a binary outcome throughout, based on a pre-decided threshold of recent ver-
sus non-recent infections. Specifically, we used the same feature sets to fit random forest 
classifier models, with recency defined as true TSI below either 12 or 18 months. For a 
TSI threshold of 12 months, regression with discretisation at 12 months outperformed 
classification for all feature sets (Figure S7). For a TSI threshold of 18 months, classifica-
tion showed an improvement for the most complex feature sets that included individual 
genomic windows (Figure S7B), but without a corresponding improvement in overall 
accuracy (Figure S7A). We used the regression approach in subsequent analyses.

Fig. 4  Model r2 and accuracy of identifying recent infections. Markers show mean and lines show 95% bootstrap 
CI over 20-fold cross-validation. A Model r2 score on test data. B Accuracy, defined as the proportion of samples 
having TSI correctly estimated as being below or above a cut-off of either 12 months (circles, blue) or 18 months 
(triangles, orange)
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Feature sets either used information from individual genomic windows (‘FULL’ in fea-
ture set name), or aggregated information from all windows covering a given gene or the 
whole genome (‘MEAN’ in feature set name). Feature aggregation resulted in a gain of 
power: models built with aggregated feature sets had higher r2 scores and accuracy than 
those built with individual genomic windows (Fig.  4). Accuracy varied depending on 
how genomic features were aggregated (Fig. 4). This was mostly due to missing data. For 
the same feature combinations, the best-performing aggregate-feature model MEANS_
feats_LRTT, which comprised ten aggregated features across gag, pol, gp120 and gp41 as 
listed in Table S2, had a cross-validated r2 score of 0.68 and accuracy of 0.89, while the 
best-performing individual-windows model FULL had an r2 score of 0.61 and accuracy 
of 0.84. The overall best performing models were generated by the feature set “MEANS_
feats_LRTT”, with the greatest proportion of variance explained by MAF and LRTT in 
the gag region, followed by LRTT in gp120 and pol (Figure S8). The indicator variable for 
the type of sequencing, is_mrc, carried relatively little importance, suggesting that the 
results remain robust to the type of sequence data (amplicon-based or capture-based).

In conclusion, random forest regression was chosen over OLS and gradient boosted 
regression, and a continuous regression over a binary classification. Models with aggre-
gated feature sets performed better than those using individual genomic windows. The 
best performing aggregated feature set, MEANS_feats_LRTT, was used to fit the final 
predictive model.

HIV-phyloTSI is suitable for population-level predictions

We evaluated the final model on the original dataset using a leave-one-out strategy on 
the original dataset (Fig. 5), on a simulated population (Fig. 6) and on an independent 
dataset (Fig. 7).

Fig. 5  HIV-phyloTSI is more accurate on population level. A TSI estimates compared with known midpoint TSIs, 
with point estimates indicated as crosses and seroconversion intervals as lines. Regression line shown in black with 
confidence interval as shaded grey area. The green line (overlapping with the black line) indicates equality
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Estimates of TSI were made for all 527 samples in a leave-one-out strategy, iterating 
over the full sample set, building a random forest model on the other 526 samples with 
the previously selected parameters, and obtaining a point estimate together with the 
full conditional distribution of estimates from the 1000 decision trees in the forest. The 
standard deviation of the conditional distribution was used to estimate 95% prediction 
intervals around the point estimates (Fig.  5). A separate random forest regressor was 
trained on the standard deviation of predictions to estimate prediction intervals for the 
final model.

Figure 5 shows the overall fit for the best performing model with feature set MEANS_
feats_LRTT, comparing known seroconversion intervals against TSI estimates and 

Fig. 7  HIV-phyloTSI is suitable for population-level predictions. Distribution of TSI estimates for members of the 
PopART Population Cohort (PC), by HIV status. ‘Baseline positive’ indicates individuals positive for HIV at enrol-
ment (1041 samples); ‘seroconverter’ indicates individuals who acquired HIV during the study period (204 samples). 
Boxes show extent of first quartile from the median (line); whiskers extend to 1.5*IQR

 

Fig. 6  HIV-phyloTSI can predict recency at different cut-offs in a simulated population. Number of recent infec-
tions in a simulated population of 1000 individuals where average time to treatment is 3 years, with the recency 
cut-off varied between 3 and 26 months. The blue line shows the true number; the orange line shows the number 
estimated by HIV-phyloTSI; the green line shows the subset of estimated recent infections that were falsely esti-
mated to be recent (i.e., were in truth non-recent)
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prediction intervals from the model. The overall regression line is close to the line of 
equality, indicating that over the majority of TSIs, recency and non-recency are mis-
classified to the same extent, despite a tendency to slightly overestimate TSIs below 
1  year, and underestimate the TSIs greater than 9  years (Figure S9). This implies that 
although precision is insufficient for an individualised clinical assay, population-level 
incidence estimates are likely to be accurate, at least in datasets with similar distribution 
of recency.

The suitability of HIV-phyloTSI for population analysis was tested by applying the 
model to a simulated population (Fig.  6, Table S2). One thousand people were drawn 
from a population with an average interval of three years from infection to treatment. 
The duration of infection of individuals in this population with TSI w was modelled as 
1−e−0.3w. The predicted fraction of infections with estimated TSI up to w in this popula-
tion, and the proportion of these that were incorrectly classified, were calculated using 
the false and true recency rates for the model at values of w between 3 and 36 months. 
Plotted is the number of recent infections out of the 1000 people depending on where 
the cut-off for recency is set. The model predictions (orange line) closely track the num-
bers expected from the simulated data (blue line).

Next, we applied the model to an independent dataset, namely the HPTN 071–02 
(PopART) Phylogenetics ancillary study [20] (Fig.  7). The study generated HIV1 
sequences from HPTN 071 trial participants in Zambia [33]. We sequenced samples 
from 204 participants who were HIV negative at enrolment and seroconverted both 
during the trial and less than one year after their last negative test, shown in orange, 
and 1041 participants who were positive at enrolment, shown in blue. Most, but not all 
of these participants were likely infected for more than a year before enrolment. HIV-
PhyloTSI results reveal a highly significant difference between the distribution of TSI 
for samples in the two groups (p <  < 0.001, Welch’s t-test). The median estimated TSI for 
baseline positives was 2.28 years (interquartile range 1.01–4.11) and for seroconverters 
0.74 years (IQR 0.47–0.94). Of the 204 seroconverters with known seroconversion inter-
vals, 7 (3.4%) were incorrectly predicted based on a lower TSI limit of over 12 months.

In conclusion, HIV-phyloTSI is able to predict recency with sufficient accuracy in pop-
ulation-level analyses.

HIV-phyloTSI is able to predict recency of infection for all subtypes

Recency assays based on MAAs have shown variable performance for different HIV-1 sub-
types [34]. We therefore tested whether the model performance showed bias in predic-
tions for any subtype. Our dataset included at least 100 samples for each of subtypes A-D 
(A1, 138; B, 101; C, 232; D, 147) as well as small numbers of other subtypes and circulat-
ing recombinant forms, which we grouped for this analysis (“Other”, 113). Adjustment for 
TSI was required since model error increases with TSI regardless of subtype (Fig. 8A and 
S9), and the over-representation of subtypes A1 and D among non-recent samples in our 
dataset would otherwise inflate the error range for these subtypes. After adjusting for TSI, 
there was no difference in bias for any of the subtypes (Fig. 8B and Table S3, p > 0.05 for 
every pairwise comparisons, Tukey’s range test), indicating that model performance was 
independent of subtype.
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Discussion
In this study, we present a method that uses viral genetic diversity (MAF) and divergence 
(LRTT) to estimate a continuous measure of time since infection (TSI) from a single HIV-1 
NGS sequencing sample per patient. Any value of TSI can be chosen as a threshold to give 
a binary recency assay, with an accuracy of up to 89%. Additional metadata can be used if 
available for a specific setting, but is not required to make predictions. The method works 
equally well on HIV-1 subtypes A-D and is accurate enough for population-level estimates 
of incidence.

HIV-phyloTSI is a generic method derived using samples from a range of populations 
in Western Europe and Eastern and Southern Africa. It was developed for population-
level analyses performed in the PANGEA-HIV consortium [21]. When used as a stand-
alone tool, it enables the inference of epidemiological information without requiring 
extra participant data. The model can be further extended to incorporate moderately 
informative variables such as CD4 cell count and viral load. For sequences obtained 
with veSeq-HIV, viral load estimates can be obtained directly from counts of uniquely 

Fig. 8  HIV-phyloTSI is unbiased with respect to subtype. A Model bias (difference between real and estimated TSI 
value) by square-root transformed time since infection, coloured by subtype. Circles indicate mean for groups of 
0–1, 2–4, 5–9 and 10–16 years since infection, and vertical bars indicate the 95% bootstrap confidence interval in 
each group, for all subtypes. Lines connect group means to aid visualisation. B Residuals from the linear model 
used to adjust for TSI of samples (Bias ~ TSI), shown by subtype, for subtypes with at least 5 samples in the dataset. 
Boxes extend to first quartile from the median (line) and whiskers to 1.5*IQR. Model bias increases with TSI for all 
subtypes, but is not significantly different between subtypes (p > 0.05 for pairwise comparisons, Tukey range test)
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mapped sequencing reads, offering an additional sequence-derived parameter without 
the need for additional testing [35, 36]. Although CD4 cell count and viral load provided 
no substantial gain in accuracy with our training dataset, these could offer higher gains 
for studies where these data are available from the same date as the sequencing samples. 
Lundgren et al. recently explored the use of biomarkers to augment phylogenetic TSI 
estimates [37].

There was a slight (< 1 percentage point in r2) improvement when the model was 
extended with the addition of age at sampling, but there are good reasons to avoid 
including demographic markers in a generic model, as this may bias the model towards 
the type of population used for training. In our case, the training data contained two 
large seroconverter cohorts (BEE, UWP) and the association with age was only evi-
dent in the population cohorts (RAK, MRC). Likewise, we did not include subtype in 
the model, to avoid spurious association with subtypes preferentially represented in the 
seroconverter cohorts and to maintain the generalisability of the model.

HIV-phyloTSI performs best when used for population-level predictions, where its 
accuracy is sufficiently high that the total number of infections identified with any given 
TSI corresponds closely with the expected number of infections at that TSI. The close 
correspondence between expected and observed population-wide estimates of recency 
is particularly useful, as it allows the identification of recent infections not only in grow-
ing epidemics in which recent infections are common, but also in declining epidem-
ics where recent infections are substantially outnumbered by non-recent infections. 
Although HIV-phyloTSI can be used to give an estimate of the duration of infection on 
an individual level, the uncertainty on individual level is likely to be too high for clinical 
applications. The level of intrahost diversity as a proxy for duration of infection however 
is informative on an individual level and might become relevant for clinical management 
and potential HIV cure once treatment goes beyond classical ART. The size of the viral 
reservoir is lower in recently infected individuals compared to those in the chronic stage 
of infection, and thus easier to eradicate the virus [38]. The utility of knowing the dura-
tion of infection at an individual level is useful for HIV cure protocols [39], and staging 
of individuals with recent infection is currently being used in clinical HIV cure trials 
[40].

The method has limitations. Any machine-learning model depends on how well clas-
sified the training data set is, and the large uncertainties in the seroconversion dates of 
non-recent samples in our training datasets necessarily limit the accuracy of the model. 
The training data was selected from different cohorts in sub-Saharan Africa, but valida-
tion is still needed to establish that the results are further generalisable. The method also 
requires sufficient virus from an infection to generate not only a consensus genome but 
also accurately represent intra-host diversity. Viral loads in this study (2–7 log10 copies 
per mL) are representative of the majority of viraemic individuals. However, in a real 
population in the era of universal testing and treatment, a substantial number of indi-
viduals will be virally suppressed, and a substantial proportion of these may be incident 
infections. At present, incidence surveys such as PHIA [41] assume that all virally sup-
pressed infections are non-recent, which tends to underestimate incidence in settings 
where ART may be initiated early in infection. Ideally, recency estimates from virae-
mic individuals would be combined with multi-assay algorithms (MAA) that generate 
recency estimates of individuals with viral suppression, to yield more robust population 



Page 13 of 21Golubchik et al. BMC Bioinformatics          (2025) 26:212 

estimates of incidence, as pioneered by Ragonnet-Cronin et al. [31]. We and others are 
currently working on methods to obtain full-length or near-full-length HIV-1 genomes 
from samples with a low viral load. Finally, the requirement for deep-sequence data car-
ries a substantial laboratory and computational cost. However, sequencing is rapidly 
becoming more available and affordable in low-income countries, and the cost of com-
putational power is declining.

We did not test HIV-phyloTSI on sequences obtained by proviral sequencing from 
individuals with natural or ART-induced viral suppression. The effects of ART on 
within-host HIV-1 diversification and divergence are not well studied, but it is to be 
expected that both will be profoundly reduced. A similar effect has been described for 
PreP in two small-scale studies, one in macaques and one in humans [42, 43]. Both stud-
ies find reduced diversity in the HIV viral population four and ten months after infection 
while taking PreP, respectively. More research is needed to adjust sequence-based meth-
ods for determining TSI in virally suppressed persons and for estimating HIV incidence 
in populations with high levels of viral suppression.

It will be important to test the performance of HIV-phyloTSI in different settings with 
different infection dynamics. If performance remains comparable to results obtained 
for the PopART Phylogenetics samples, the method could be used to measure HIV-1 
incidence in a new population using a relatively small-scale phylogenetic cross-sectional 
survey. By sampling at least 1000 participants in an area with medium-level prevalence 
and incidence, it should soon be possible to estimate incidence using a mathematical 
model taking into account the fraction of HIV-positive participants, the fraction of 
viraemic participants and the TSI for viraemic participants. This approach for measur-
ing incidence would require minimal data collection from participants and would be 
much less costly than measuring HIV incidence through repeated follow-up data collec-
tion in longitudinal cohorts.

In summary, HIV-phyloTSI is a powerful tool for estimating TSI, obtaining popula-
tion-level recency estimates and estimating population-level incidence. Further work is 
required, but if performance is maintained in different settings, an improved HIV-phy-
loTSI tool has the potential to become a stepping stone in transforming HIV epidemiol-
ogy in areas with generalised epidemics. This work would not have been possible without 
data contribution from multiple cohorts and consortia and highlights the importance of 
collaboration and data sharing in the area of HIV research.

Methods
Sample collection and sequencing

Samples were collected from venous blood of HIV-1 viraemic individuals, and 0.5  ml 
of plasma was used for sequencing. All samples were sequenced using veSEQ-HIV [35] 
except samples from MRC Uganda/UVRI which were generated by pooling four overlap-
ping PCR amplicons as described in Gall 2012 [45].

Bioinformatic processing

Sequence reads were filtered to remove human and bacterial sequences using Kraken 
[46], and assembled into contigs using SPAdes v3.10.1 (setting–meta) [47]. The resulting 
contigs were aligned to a curated alignment of 165 representative HIV genomes from 
the LANL HIV database [48] to identify HIV contigs and generate a consensus sequence, 
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followed by mapping the HIV reads onto the consensus. HIV genomes were assembled 
with shiver v1.3 [49], which generated a custom consensus sequence for each HIV sam-
ple. Shiver was run with Picard deduplication enabled [50], to eliminate duplicate reads 
that arise during the sequencing process. The final BAM files and base frequencies were 
coordinate-translated by shiver to bring them into alignment with the standard HXB2 
HIV reference genome, RefSeq accession NC_001802. The reference alignment and 
primer sequences are available from the shiver GitHub repository [51].

Estimation of within-host diversity (MAF)

Within-host diversity was estimated as the cumulative minor allele frequency (MAF) at 
each genomic position:

MAF = (depth − number of reads supporting the majority base) / depth

at each position, where depth was the number of unique (deduplicated) reads observed 
at that position. MAF values at first and second codon position were termed ‘MAF12c’, 
and MAF at third codon position was termed ‘MAF3c’.

Estimation of within-host divergence (LRTT)

To estimate the extent of within-host divergence, each individual’s HIV sub-popula-
tion was examined in a series of overlapping windows positioned every 10 bp along the 
entire length of the HIV genome, excluding the terminal repeat regions. For each 250 bp 
window, a maximum likelihood phylogeny was estimated using IQ-TREE [52] with the 
GTR + F + R6 model (generalised time reversible model with FreeRate with six catego-
ries of rate variation). Trees were processed in phyloscanner [32] with the settings -sks 
-ow -rda -swt 0.5 -amt -sat 0.33 -rcm -blr -pbk 15 -rtt 0.005 -rwt 3 -m 1E-5, and all 
statistics relating to the depth of the tree were extracted from the output of that pack-
age. Statistics related to tree depth and branch lengths were assessed for strength of cor-
relation with the known time since infection (TSI) of the training data. These included 
LRTT, reported by phyloscanner as the field ‘normalised.largest.rtt’ within its patStats.
csv output file; overall root-to-tip distance (‘normalised.overall.rtt’) and pairwise dis-
tance (‘subgraph.mean.patristic.distance’). The LRTT variable corresponds to the maxi-
mum evolutionary distance from the most recent common ancestor of the virus within 
the host, as observable in that window, normalised by genetic divergence at this genomic 
locus in the global HIV phylogeny. LRTT values at each window centre were collected 
for each sample. In addition, two other statistics that relate to the phylogenetic estimates 
were collected: ‘solo.dual.count’, representing the probability that the sample has come 
from a dual infection, and ‘tips’, representing the number of tips in the given window.

Generation of aggregate statistics (feature engineering)

MAF3c, MAF12c and LRTT were calculated for the centre of each 250 bp genomic win-
dow, excluding windows with known drug resistance mutations, and averaged for each 
major gene (gag, pol, gp120 and gp41) and across the whole genome. The mean number 
of tips was likewise calculated per gene and for the whole genome. A single genome-
wide measure of number of windows supporting dual infection was generated by taking 
the mean of phyloscanner variable ‘solo.dual.count’ over all genomic windows, for each 
sample.
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Imputation of missing data

Where data were missing, for example because there were insufficient reads to deter-
mine the tree for that window, we tested two imputation strategies: zero-filling (on the 
assumption that lack of variation resulted in absence of an LRTT value), versus a more 
complex strategy of using the K-nearest neighbours as implemented in TensorFlow, with 
the python package fancyimpute [53]. In order to enable robust calculation of Euclid-
ean distances by fancyimpute, the features were first standardised to a mean of zero and 
standard deviation of 1. To guard against over-imputing, which can cause model over-
fitting, we excluded windows where over 40% of samples had missing data, and excluded 
samples over 40% of windows had missing data. In addition, windows that included the 
position of the amplicon HIV-1 primers used for sequencing in the MRC cohort were 
excluded, as variation at these positions would be expected to be uninformative in 
the amplicon data. This resulted in a dataset containing 527 samples, with data at 820 
genomic windows. We found that both imputation strategies had performed similarly on 
these samples, and chose KNN as the more robust method for the final model.

Regression method selection

To select a regression method for predicting the midpoint time since infection (TSI), 
three different strategies were tested: ordinary least squares regression, gradient boosted 
regression, and random forest regression, as implemented in the scikit-learn package 
[54]. The midpoint is commonly used for estimating incidence, an alternative measure 
would have been a random-point estimate [55]. Models were fitted using combinations 
of the MAF3c, MAF12c and LRTT aggregated predictors (Table S1). For each combi-
nation of predictors, the dataset was split into 75% training: 25% test data, and perfor-
mance of each regression method was assessed as the r2 on the same fold of test data, for 
each combination of features. This procedure was repeated 10 times for cross-validation. 
Maximum depth of decision trees was constrained to 7 to prevent overfitting, and the 
random forest contained 1000 decision trees.

Identification of most informative windows

The LRTT, MAF3c and MAF12c values within all genomic windows were individu-
ally assessed in univariate OLS regression models for prediction of TSI. The LRTT and 
MAF3c values at the most informative windows, defined as r2 of 0.3 or above, were used 
as one of the feature combinations for model selection (‘LRTT_MAF3c_topwin’).

Feature selection

A table of possible feature combinations was generated for testing the predictive power of 
genome-wide values of MAF12c, MAF3c and LRTT, with or without the additional phy-
logenetic statistics of dual count and tip count. Feature combinations that used all or a 
subset of individual genomic windows were labelled as “FULL”, while aggregated features 
(averaged across each major HIV gene一gag, pol, gp120 and gp41一and for the whole 
genome) were labelled “MEANS”. A binary indicator variable for the sequencing method 
(amplicons or veSeq) was always included. For each feature combination, predictive power 
was assessed with k-fold cross-validation. Random forest regression models, set up as 
described in ‘Regression method selection’, were trained on 75% of the data, leaving 25% 
as the test dataset; this procedure was repeated 20 times for cross-validation, each time 
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assessing performance on the test dataset using the model r2 on test data, precision (width 
of 95% CI of the distribution of estimates returned from the 1000 decision trees within the 
forest), and mean absolute error (absolute difference between the expected and estimated 
TSI). Additionally, the expected accuracy and false recency rates were calculated, respec-
tively, as the proportion of decision trees in the model that correctly returned estimates 
that fell below/above 1 year, and estimates below 1 year when the known midpoint TSI was 
above 1 year. Feature sets were preferred if they had a higher r2, accuracy and precision; 
where values were similar, the feature set with the lower expected false recency rate was 
chosen. The final feature set (designated ‘MEANS_feats_LRTT’) comprised: mean LRTT 
in each of gag, pol and gp120, MAF3c in gag and gp41, MAF12c in gp41, and the mean 
number of tips in each of gag, gp41, and gp120.

TSI estimates for all samples

A leave-one-out strategy was used to obtain estimates of TSI for all samples, iterating 
over the full sample set, each time dropping the sample of interest, building a new ran-
dom forest regression model on the remaining samples using the MEANS_feats_LRTT 
feature set, and obtaining a point estimate together with the full distribution of estimates 
from each of the 1000 decision trees in the forest. A separate random forest regression 
model was trained on the mean absolute errors from the base model, to generate 95% 
prediction intervals around the point estimates.

Performance assessment by subtype

To check for evidence of subtype-dependent bias in model performance, we compared 
the mean absolute error (MAE) for all samples aggregated by subtype, after adjusting for 
TSI to account for the increase in MAE with increasing TSI. We fitted a linear model of 
MAE by TSI (MAE ~ TSI) and compared the residuals by subtype, using Tukey’s range 
test for multiple comparison of means as implemented in the Python statsmodels library 
(statsmodels.stats.multicomp.pairwise_tukeyhsd), with alpha set to 0.05.

Model performance in a simulated population

We simulated a population sample of 1000 HIV-infected individuals under the assump-
tions that the mean time to viral suppression in this population was 3 years. The dura-
tion of infection of individuals in this population with TSI w was modelled as 1−e−0.3w. 
The predicted fraction of infections with estimated TSI up to w in this population, and 
the proportion of these that were incorrectly classified, were calculated using the false 
and true recency rates for the model at values of w between 3 and 36 months.

Application to an independent dataset: PopART population cohort

The HPTN 071–02 Phylogenetics ancillary study to the HPTN 071 (PopART) trial col-
lected samples from HIV-positive study participants in nine communities in Zambia 
between 2014 and 2019 [20]. Unused samples from vials collected to assess the main trial 
outcome were sequenced using veSeq-HIV. Sequences were assembled using shiver, and 
MAF values generated in the same way as for the training data. Sequences were batched in 
randomly allocated groups of 100 to build trees and obtain LRTT values, which were then 
used as inputs for the HIV-phyloTSI predictive model. Model outputs were TSI and esti-
mated prediction interval. For the subset of 204 samples for which a last negative test date 
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was available, midpoint predictions from HIV-phyloTSI were compared with midpoints of 
the known seroconversion interval, as was done for the training data.
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