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OBJECTIVE AND METHODS: We have developed a novel Bayesian Linear Structural Equations Model (BLSEM) with variable
selection priors (available as an R package) to build directed acyclic graphs to delineate complex variable associations and
pathways to BMI development. Conditional on standard assumptions used in causal inference, the model provides interpretable
estimates with uncertainty for natural direct, indirect (mediated) and total effects.
RESULTS: We showcase our method using data on 4119 offspring followed from the pre-pregnancy period to age 46 years (y) in a
Finnish population-based birth cohort. The BLSEM enabled efficiently to analyse all available data over the long-time span,
identifying factors to distil potential causal pathways contributing to adult BMI development. All of the associations between early
childhood and adolescence variables with adult BMI at 46 y (BMI46) were indirect via multiple paths. For example, maternal
prepregnancy BMI, smoking and socioeconomic position are associated with BMI46 through 35, 31 and 26 paths. Another notable
feature was that the contribution of very early life factors, particularly prenatal, was captured by growth patterns along childhood,
which were the strongest early predictors of middle age BMI46 (the age at adiposity rebound (AgeAR), early growth parameters
between the AgeAR to 11 y). BMI and blood pressure measured 15 y earlier also predicted BMI46, all other factors held constant.
Genetic predisposition by the polygenic risk score for BMI showed an indirect effect that became apparent at AgeAR and thereafter.
CONCLUSIONS: The Bayesian approach we present and the BLSEM software developed advances methodologies for the analysis of
complex, multifaceted life-course data prior to the estimation of potential causal pathways. Our results, although exploratory in
nature, suggest that the effective interventions to tackle adverse BMI development could be designed throughout childhood,
though the period by AgeAR may be paramount. We feature the importance of integrated life-course analyses that help to
understand the contribution of life-stage factors of development.

International Journal of Obesity; https://doi.org/10.1038/s41366-025-01857-8

INTRODUCTION
Structural equation modelling (SEM) and path analysis are
powerful multivariate statistical techniques that provide a flexible
framework for analysing complex relationships among multiple
variables, which may influence one another reciprocally and are
intrinsically ordered over time, directly or indirectly through
mediator variables [1]. They can be particularly useful in analyses
of longitudinal information, where researchers need to identify
and interpret the relationships in complex systems that may
underlie disease development, ultimately aiming to make

inferences of a causal nature of relationships [2, 3]. Methodolo-
gically, we have an urgent need to move from traditional
statistical analysis in epidemiology to causal analysis of multi-
faceted data with emphasis on the assumptions that underlie
causal inferences, and the conditional nature of causal and
counterfactual claims [4]. Here, we showcase an exploratory
Bayesian approach to longitudinal data. We build directed acyclic
graphs (DAGs) for the variable relationships and start with a much
larger number of potential risk or protective factors in the model
than is usual in path analysis models. The method searches

Received: 15 August 2024 Revised: 23 June 2025 Accepted: 9 July 2025

1Department of Epidemiology and Biostatistics, MRC Centre for Environment Health, School of Public Health, Imperial College, London, UK. 2Department of Medical Statistics,
London School of Hygiene and Tropical Medicine, London, UK. 3Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland. 4MRC Integrative
Epidemiology Unit at the University of Bristol, Bristol, UK. 5Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. 6Frazer Institute, The University of
Queensland, Brisbane, QLD, Australia. 7Faculty of Health and Medical Sciences, School of Biosciences, University of Surrey, Guildford, UK. 8Institute for Molecular Medicine Finland,
Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. 9Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland. 10Department of Life Sciences,
College of Health and Life Sciences, Brunel University London, London, UK. 11These authors contributed equally: Alex Lewin, Marjo-Riitta Jarvelin.
✉email: m.jarvelin@imperial.ac.uk

www.nature.com/ijoInternational Journal of Obesity

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41366-025-01857-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41366-025-01857-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41366-025-01857-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41366-025-01857-8&domain=pdf
http://orcid.org/0000-0001-6064-1588
http://orcid.org/0000-0001-6064-1588
http://orcid.org/0000-0001-6064-1588
http://orcid.org/0000-0001-6064-1588
http://orcid.org/0000-0001-6064-1588
http://orcid.org/0000-0002-0889-8164
http://orcid.org/0000-0002-0889-8164
http://orcid.org/0000-0002-0889-8164
http://orcid.org/0000-0002-0889-8164
http://orcid.org/0000-0002-0889-8164
http://orcid.org/0000-0002-9228-0462
http://orcid.org/0000-0002-9228-0462
http://orcid.org/0000-0002-9228-0462
http://orcid.org/0000-0002-9228-0462
http://orcid.org/0000-0002-9228-0462
http://orcid.org/0000-0001-6681-6983
http://orcid.org/0000-0001-6681-6983
http://orcid.org/0000-0001-6681-6983
http://orcid.org/0000-0001-6681-6983
http://orcid.org/0000-0001-6681-6983
http://orcid.org/0000-0003-0081-7582
http://orcid.org/0000-0003-0081-7582
http://orcid.org/0000-0003-0081-7582
http://orcid.org/0000-0003-0081-7582
http://orcid.org/0000-0003-0081-7582
http://orcid.org/0000-0002-2149-0630
http://orcid.org/0000-0002-2149-0630
http://orcid.org/0000-0002-2149-0630
http://orcid.org/0000-0002-2149-0630
http://orcid.org/0000-0002-2149-0630
https://doi.org/10.1038/s41366-025-01857-8
mailto:m.jarvelin@imperial.ac.uk
www.nature.com/ijo


through all sets of variables’ associations, selecting the ones
supported by the data, i.e. not specified a priori. The Bayesian
(probabilistic modelling) approach includes uncertainty on the
estimated DAG, in the form of inclusion probabilities for each
arrow in the DAG, and provides interpretable estimates with
uncertainty for direct and indirect (mediated) effects.
To date, to the best of our knowledge, this is the first time that a

comprehensive model, Bayesian path analysis with variable
selection, is developed and tested for these purposes and applied
to explore simultaneously the interrelationships of a wide range of
potentially correlated genetic and environmental risk factors for
the development of BMI by middle age from the prenatal period.
We use BMI as a measure for obesity risk, one of the greatest

long-term public health challenges of the twenty-first century
[5, 6]. Bray et al. and the World Obesity Federation support defining
person’s obesity as a chronic relapsing disease [7, 8]. Although this
concept has sparked controversy in the last century, accepting it
can focus attention on successfully tackling obesity and reducing
the risk of declining life-expectancy and many of its associated
chronic disease co-morbidities, such as type 2 diabetes, cardiovas-
cular disease and certain cancers [9, 10]. Moreover, the association
between obesity and infectious diseases has received increasing
recognition over the last years e.g. due to the 2009 pandemic
influenza A (H1N1) and Coronavirus Disease (COVID-19) [11, 12].
An extensive number of multidimensional risk factors, poten-

tially age-dependent, e.g. genetic, molecular, social, environmen-
tal, are associated with obesity development. Understanding their
relationships but also how individuals may develop, grow and
change throughout their lives, from the prenatal period onwards,
is key to inform possible interventions. Observational and genetic
studies show that there are important postnatal age-related stages
for the development of diseases, such as periods around adiposity
peak (AP) in infancy, adiposity rebound (AR) at pre-school age and
puberty. During these stages, individuals may be more susceptible
to the impact of external factors, and the genetic influences of BMI
may vary [13–15].
We utilised the extensive follow-up of the Northern Finland

Pregnancy Birth Cohort 1966 (NFBC1966) [16] and its detailed data
on childhood growth, motivated by the consistent findings
reported in the literature that growth patterns at infancy,
childhood and puberty are related to later adiposity
[14, 15, 17, 18], to model growth patterns across the life-course
together with other essential data. We undertook the Bayesian
path analysis model (Bayesian Linear SEM, BLSEM) with variable
selection aiming to (i) develop and test life-course model methods
to explore the network of factors associated with BMI development
considering the time ordering, (ii) examine how growth over
childhood and adolescence, in particular specified growth para-
meters (age and BMI at the AP and AR) link with later BMI and (iii)
understand critical periods potentially for early intervention.

MATERIALS AND METHODS
Data description
The study population is part of the prospective, longitudinal, population-
based Northern Finland Pregnancy Birth Cohort 1966 (NFBC1966), which
represents a relatively genetically and environmentally homogeneous
sample with a high coverage of 96% of all births in the two
northernmost provinces of Finland in 1966. The NFBC1966 has been
described elsewhere [16].
Since birth, individuals have been followed up with postal question-

naires with questions on demographic, health, lifestyle and socio-
economic indicators and/or clinical examinations with blood samples
and anthropometric measurements at 1, 14, 31, and 46 years (y).
Information on the mothers was retrieved from structured self-
administered questionnaires completed at maternity clinics. Women
entered the antenatal communal care usually on average by the 16th
gestational week. Pre-pregnancy and course of pregnancy data were
collected by midwives in the clinics on the standard forms. These data

were further transferred into study databases. Birth data were collected
from the hospital records after each delivery. These data have been
supplemented with repeated childhood growth measurements (an
average of 20 weight and height measurements from early infancy to
late adolescence) collected by nurses at welfare clinics as part of the
national child-health screening programme that is free and available for all
children born in Finland (overall 100% attendance). Childhood growth data
have been used to derive growth parameters at AP around 9 months and
childhood AR point around 5.5 y [19].
For the present study, we included individuals with complete data on

growth parameter measurements at AP and AR. Though we imputed other
missing variables, we found there was not enough information in the data to
be able to impute missing values of the growth parameters within our model.
Excluding multiple births, a total of 4119 offspring, 2154 (52.3%) males and
1965 (47.7%) females were included in the analysis. Supplementary Fig. S1
shows the study flowchart and Fig. S2 study’s geographical location.
For the purposes of the path analysis model, variables (endogenous and

exogenous) are grouped into blocks, corresponding to life stages.
Endogenous variables appear in the model as intermediate outcomes at
one stage and explanatory variables at the next stage (blue boxes in Fig. 1)
whilst exogenous variables are explanatory variables in all stages (green
boxes in Fig. 1). Anthropometric and metabolic traits and growth
parameters are considered endogenous variables due to the well-
established evidence that they have been linked to obesity and other
health indicators in adult life [19–21]. The remaining genetic and lifestyle
variables are treated as exogenous exposures in this analysis. Table 1
introduces endogenous and exogenous variables by life stage, and Fig. S3
shows the correlation matrix between the variables in the analyses.

Endogenous variables (i.e. both life-stage-specific outcomes
and predictors)
Growth in utero was represented by birth weight, as this is a more accurate
measure than BMI at this stage, while considering gestational age. For
postnatal growth indices, we used BMI at AP and AR from fitted growth
curves and focussed on BMI between these phases and other important
periods of growth, including prepubertal (before 11 y) and pubertal
(11–15 y). The selection of 11 and 15 y cut points was based on the best
availability of data as well as biological growth. We calculated mean
growth velocities for BMI between (1) birth and AP, (2) AP and AR, (3) AR
and 11 y, (4) 11 and 15 y. BMI at AP and AR were selected (rather than BMI
at fixed ages in infancy and childhood) because previous evidence
suggests that these measures play an important role for relevant health
outcomes in adulthood [19, 21–24]. For adolescence, we used BMI at 14 y
of age (before age 15 y). The methods used for growth modelling of BMI
and age have been described in detail by Sovio et al. [19].
For early adulthood at 31 y, we used anthropometric (BMI, waist

circumference) and metabolic health (insulin, triglycerides, HDL- and LDL-
cholesterol) measurements. Moreover, we included a latent factor to
represent blood pressure based on diastolic and systolic blood pressure
measurements [25]. BMI at 46 y, an indicator of body mass and obesity in
later life, was taken as the distal outcome. Trained research nurses
performed the anthropometric measurements at the clinical examinations
at ages 31 and 46 y.

Exogenous variables (i.e. predictors only)
A Polygenic Risk Score (PRS) for adult BMI was used as an explanatory
variable in the model from birth onwards. The BMI PRS was calculated as a
weighted sum of BMI-increasing alleles at 591,827 single-nucleotide
polymorphisms (SNPs) across the genome. For the calculation of SNP
weights, we used the BOLT-LMM linear predictor [26] and estimated BOLT-
LMM SNP effects in the UK Biobank data [27, 28]. Full details of the
calculation of PRS can be found in previously published work [29].
Variables at prenatal period or at birth consisted of maternal pre-pregnancy

BMI, maternal age, smoking at the second month of pregnancy, hypertensive
disorders during pregnancy, marital status, residence, a latent factor for familial
socio-economic position, wealth index, paternal age, gestational age at birth,
mode of delivery and placental weight. A detailed description of all the
variables in the analysis is provided in Supplementary Table S1.
For adolescence at 14 years of age, we used self-reported information on

adolescent’s smoking habits (non-smoker/occasional-regular smoker) [30],
alcohol consumption (non-consumer/regular consumer) [31], physical
activity (less than once a week/once a week or more doing sports after
school hours) [32] and a latent factor for familial socio-economic status
(Table S1). For early adulthood at 31 y, we included smoking habits (non-
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smoker/occasional-regular smoker) [30], smoking pack years (number of
packs smoked in a day divided by 20 × years of smoking for current
smokers), alcohol consumption (grams/day) [33], diet score [34], physical
activity as metabolic equivalent (MET) hours/week [32] number of adults
and children in the household, a psychosocial latent factor reflecting
psychosocial wellbeing of the participant [25] and two latent factors for
own socio-economic status [25]. The latent factors were developed to
combine groups of highly correlated variables into composite variables.
Using these composite variables in place of the separate correlated
variables results in more stable and reliable estimates (in common with all
regression-based analyses).
For middle-age adulthood at 46 years, we used smoking habits (non-

smoker/occasional-regular smoker) [30], alcohol consumption (grams/day),
diet score [34] and a latent factor for own socio-economic status (Table S1).

Bayesian linear structural equations model (BLSEM)
We used a path analysis approach to model the longitudinal development
of BMI and other growth parameters over six life stages (from birth up to
middle life). We started by constructing a DAG connecting the six life
stages in chronological order (Fig. 1), with a set of endogenous variables
and a set of exogenous variables at each life stage (see Table 1 for full lists
of all endogenous and exogenous variables).
We used a Bayesian linear structural equations model (BLSEM) to model

the relations amongst all variables. An arrow present in the DAG in Fig. 1
pointing forward from a block to the next one means that in the BLSEM,
we allowed every variable in the former block to potentially appear as a
covariate in a regression model for every variable in the latter block.
Endogenous variables at earlier life stages were allowed to appear as
covariates in regressions for later life stages.
We used variable selection priors to find subsets of the covariates in

each regression model. Hence, whilst we started with a large number of

variables in the analysis, we ended up estimating a sparser DAG. Full
details of the model and estimation of potential causal pathways in the
model are given in the Supplementary material.

Imputation model
In the Bayesian modelling framework, missing values are treated as
unknown quantities; that is, they appear as parameters in the model, which
are predicted as part of the model estimation process. In our analysis, all
variables are assumed to be missing at random (MAR), i.e. missing values
can be predicted from observed data. Missing values in endogenous
variables are predicted from the posterior predictive distributions of the
regression models [35]. For missing exogenous variables, the imputation
model consists of a joint multivariate distribution over all exogenous
covariates. In our analysis, the joint model for exogenous variables is the
multivariate Normal/Probit, with categorical variables being modelled as
thresholded versions of latent Normal variables.

Model output
Using Bayesian estimation, we obtained the joint posterior distribution for
all parameters in the model, including both regression coefficients and
inclusion probabilities for each covariate in each regression in the BLSEM.
To summarise the posterior on the regression coefficients, we used mean
or median point estimates and posterior credible intervals. In order to see
how much of the variation in each endogenous variable is explained by
dependence on the exogenous variables, we obtain a Bayesian version of
R-squared for each endogenous variable. Details and formula for the
Bayesian R-squared are given in the Supplementary material.
For the variable selection, we used the marginal posterior probabilities

of inclusion (MPPI) for variable j in response k of block q. These are model-
averaged probabilities of association between variables j and k or
summaries of uncertainty about the strength of the association between

Fig. 1 Simplified conceptual directed acyclic graph (DAG) showing the model and the relationships between the variables. The arrows in
the model represent potential directions of the associations. Green boxes represent exogenous variables (i.e. predictors only) and blue boxes
represent endogenous variables (i.e. both life-stage-specific outcomes and predictors). Genetic and lifestyle variables are considered statistically
as exogenous, whilst anthropometric, growth and metabolic health variables are treated as endogenous. Endogenous and exogenous variables
are introduced in Table 1, whilst a detailed description of all variables in this analysis is provided in Supplementary Table S1.
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the two variables. To visualise the results, we constructed a simplified
graph as follows: if the MPPI is 0.5 or greater, we include an arrow from
variable j to variable k. The resulting graph is shown in Fig. 2.

RESULTS
Descriptives of the data
Table 2 summarises the distributions of the anthropometric,
growth and metabolic health variables by sex. Supplementary
Tables S1 and S2 describe in detail all the other variables in the
model.

Direct, indirect and total effects from the Bayesian LSEM
We report results from the analysis conducted on the whole study
sample. Analyses conducted separately for males and females
showed no indication of moderating effects by sex (data not
shown). All regressions in the model were adjusted for sex since
this is generally seen to be associated with the life-course
development of obesity [36].
The estimated path analysis diagram (DAG) for MPPI ≥ 0.5 is

illustrated for multiple paths in Fig. 2. More conservative thresh-
olds e.g. 0.8 (80%) or 0.9 (90%), may be used. We assumed no
interaction between exposure and mediator variables and

Table 1. Glossary table for BLSEM of endogenous variables that can be both life-stage-specific outcomes and predictors (in bold), as well as of
exogenous variables that are predictors only.

Life-stage (block in Fig. 2) Endogenous variables Endogenous (in bold) and exogenous variables

Prenatal (pre-pregnancy and
pregnancy), birth

Birth weight (BW) Maternal pre-pregnancy BMI (matBMI), maternal age (matAGE), socio-
economic status of the family or mother (matSEP), number of children
the mother has including this child (parity), maternal marital status at
birth (matMAR), maternal residence in city, small town or rural centre
(town), or in remote village(village), maternal smoking at the 2nd month
of pregnancy (matSMO), number of people in the household (houseN),
maternal wealth indicator (matWEALTH), gestational hypertension
(matGH), chronic hypertension (matCHP), pre-eclampsia & super-
imposed pre-eclampsia (matPE), systolic/diastolic blood pressure
elevated (matSBP, matDBP), hypertension not determined or not known
(matHPNA), paternal age (patAGE), polygenic risk score for BMI (PRSBMI),
gestational age (gestAGE), caesarean section (caesarean), placental
weight (placWHT).

At infancy (1 y) Age at Adiposity Peak (AgeAP),
BMI at AP (BMIAP),
Mean BMI velocity birth-AP
(BMIvelAP),
Peak height velocity (PHV)

matBMI, matAGE, matSEP, parity, matMAR, town, village, matSMO,
houseN, matWEALTH, matGH, matCHP, matPE, matSBP, matDBP,
matHPNA, patAGE, PRSBMI, gestAGE, caesarean, placWHT, BW.

At childhood (6 y) Age at Adiposity Rebound
(AgeAR),
BMI at AR (BMIAR),
Mean BMI velocity AP-AR
(BMIAPAR),
Mean BMI velocity AR-11y
(BMIAR11)

matBMI, matAGE, matSEP, parity, matMAR, town, village, matSMO,
houseN, matWEALTH, matGH, matCHP, matPE, matSBP, matDBP,
matHPNA, patAGE, PRSBMI, gestAGE, caesarean, placWHT, BW, AgeAP,
BMIAP, BMIvelAP, PHV.

At 14 y BMI at 14 y (BMI14),
Mean BMI velocity 11y-15y
(BMI11-15)

matBMI, matAGE, matSEP, parity, matMAR, town, village, matSMO,
houseN, matWEALTH, matGH, matCHP, matPE, matSBP matDBP,
matHPNA, patAGE, PRSBMI, gestAGE, caesarean, placWHT, BW, AgeAP,
BMIAP, BMIvelAP, PHV, AgeAR, BMIAR, BMIAPAR, BMI AR11.

At 31 y BMI (BMI31),
Blood pressure latent factor
(BPF31),
Insulin (INS31),
Waist circumference (WC31),
High-density lipoprotein
cholesterol (HDL31),
Low-density lipoprotein
cholesterol (LDL31),
Triglycerides (TRIGL31)

matBMI, matAGE, matSEP, parity, matMAR, town, village, matSMO,
houseN, matWEALTH, matGH, matCHP, matPE, matSBP, matDBP,
matHPNA, patAGE, PRSBMI, gestAGE, caesarean, placWHT, BW, AgeAP,
BMIAP, BMIvelAP, PHV, AgeAR, BMIAR, BMIAPAR, BMIAR11, BMI14,
BMI11-15, smoking (SMO14), alcohol use (ALCO14), physical activity
(PA14), socio-economic status (SEP14), smoking (SMO31), smoking pack
years (PACKYR31), alcohol use (ALCO31), diet (DIET31), physical activity
(PA31), number of adults in the household (ADULT31N), number of
children in the household (CHILD31N), socio-economic status latent
factor (SEPF31), socio-economic status (SEP31), psychosocial latent factor
(PSCF31).

At 46 y BMI (BMI46) matBMI, matAGE, matSEP, parity, matMAR, town, village, matSMO,
houseN, matWEALTH, matGH, matCHP, matPE, matSBP, matDBP,
matHPNA, patAGE, PRSBMI, gestAGE, caesarean, placWHT, BW, AgeAP,
BMIAP, BMIvelAP, PHV, AgeAR, BMIAR, BMIAPAR, BMIAR11, BMI14,
BMI11-15, smoking (SMO14), alcohol use (ALCO14), physical activity
(PA14), socio-economic status (SEP14), smoking (SMO31), smoking pack
years (PACKYR31), alcohol use (ALCO31), diet (DIET31), physical activity
(PA31), number of adults in the household (ADULT31N), Number of
children in the household (CHILD31N), socio-economic status latent
factor 1 (SEPF31), socio-economic status latent factor 2 (SEP31),
psychosocial latent factor (PSCF31), BMI31, BPF31, INS31, WC31,
HDL31, LDL31, TRIGL31, smoking (SMO46), alcohol use (ALCO46), diet
(DIET46), socio-economic status latent factor at 46 y (SEP46).

Abbreviations, mainly for figures, are shown in brackets per life stage (n= 4119). A detailed description of each variable is provided in Supplementary Table S1.

E. Tzala et al.

4

International Journal of Obesity



estimated direct, indirect and total effects. Table 3 shows the
standardised (in SD units) direct, total indirect and total effects,
together with the 95% credible intervals (CIs), and the number of
paths for every variable in the model linked to BMI46. The
standardised direct estimates (and 95% CI) on all endogenous
variables in the BLSEM are provided in supplementary Table S3.
Standardised effects are used to compare the relative importance
of the endogenous and exogenous variables since they describe
the change in the outcomes in SD units per a 1-SD change in the
continuous predictors and per the change from 0 to 1 in the
binary predictors, accounting for all factors in the model. Because
of some small standard effects, estimates are presented in 103

scale (Table 3).
43 out of the initial 59 variables were selected (MPPI ≥ 0.5), with

over 700 associations discovered by the model that illustrate the
demands for the study/data, complexity of modelling and
associations. Of prenatal factors, maternal BMI had amongst the
largest positive standardised effects, equal to 52.3 (41.7 to
63.0) × 10−3 SD units of BMI46 (corresponding to 0.08 (0.06 to
0.10) kg/m2), accounting for all possible mediation through
growth in the life-course (35 paths, subgraph in Fig. S4). Similarly,
maternal smoking was indirectly associated through 31 paths (Fig.
S5) with 22.5 (5.34 to 41.0) × 10−3 SD units (corresponding to 0.03
(0.008 to 0.06) kg/m2) higher BMI46 in the offspring of smoker
mothers compared with the offspring of non-smoker mothers.
Maternal SEP factor (smaller value higher SEP) had a small

negative indirect effect of −1.85 (−3.57 to −0.18) × 10−3 SD units
(equal to −0.01 (−0.02 to −0.001) kg/m2) on BMI46 through 26
paths, as SEP improves (Fig. S6).
Birth weight was indirectly positively associated with BMI46,

through 19 paths (Fig. S7) equal to 17.9 (5.5 to 29.3) × 10−3 SD
units corresponding to 1.5 × 10−4 (4.5 × 10−5 to 2.4 × 10−4) kg/m2.
In general, growth traits at infancy (1 y) and childhood (around 6 y)
until adolescence (14 y) mediated the associations between
prenatal variables and BMI46 (Fig. 2). Age at adiposity rebound
(AgeAR), BMIAR11 and BMIAP had the largest, in absolute
magnitude, indirect effects: AgeAR −174.0 (−219.0 to
−124.3) ×10−3 i.e. increasing AgeAR associates with lower
BMI46, BMIAR11 95.6 (39.1 to 158.0) ×10−3, BMIAP 53.1
(18.7–89.4) × 10−3 SD units. The corresponding values on their
original scales are: AgeAR −0.99 (−1.24 to −0.71) kg/m2, which
equals around 1 kg/m2 lower BMI46 by 11 months higher AgeAR,
BMIAR11 2.19 (0.89–3.61) kg/m2 i.e. around 2.19 kg/m2 higher
BMI46 by 0.21 kg/m2/year greater growth velocity between AgeAR
and 11 y, BMIAP 0.31 (0.11–0.53) kg/m2 i.e. 0.3 kg/m2 higher BMI46
by around 0.8 kg/m2 higher BMIAP in infancy. AgeAR and BMIAR11
were associated with BMI46 through 2 paths (Figs S8 and S9,
respectively, and one in each via blood pressure, BPF31) whilst
BMIAP through 8 paths (Fig. S10). While BMI growth velocity
between AR and 11 y mediated the association between early life
factors and BMI46, the later growth speed (11–15 y) did not likely
because of the impact of puberty.

Lifestages: 

Prenatal      Birth  Infancy    Childhood Adolescence Early adulthood Middle life

placWHT

caesarean

gestAGE

PRSBMI

patAGE

matHPNA

matDBP SEPF31

matPE PA14 ALCO31

matCHP SMO14 PACKYR31 SEP46

matGH SMO31

houseN

matSMO

village

town TRIGL31

matMAR

parity

matSEP PHV AgeAR

LDL31

HDL31

WC31

matAGE AgeAP BMIAR INS31

matBMI BMIAP BMIAR11 BMI14 BMI31

BW BMIvelAP BMIAPAR BMI11−15 BPF31 BMI46

Fig. 2 Directed acyclic graph (DAG) from the Bayesian path analysis model (BLSEM) on BMI46 thresholding for mean posterior
probabilities (MPPIs) ≥ 0.5 to illustrate multiple pathways across the life-course (n= 4119). A glossary for the variable names is provided in
Table 1 and further description of the variables in Supplementary Table S1. Table 3 shows standardised effect sizes (βs) × 103.
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The largest direct standardised effect on BMI46 was observed
for the temporally adjacent phenotype of BMI31: 539.3 (500.3,
577.90) × 10−3 SD units corresponding to 0.68 (0.62, 0.72) kg/m2

on the original scale by 1 SD (~3.9 kg) increase in BMI31. BPF31
(factor score) had the fourth largest standardised effect after
BMI31, AgeAR and BMIAR11: 80.4(46.1, 113.8) × 10−3 SD units
equal to 0.05 (0.03 to 0.07) kg/m2 on the original scale.
Genetic predisposition by PRSBMI had a moderate indirect effect

on BMI46 equal to 14.8 (2.66, 22.8) × 10−3 SD units, suggesting that
the genetic risk score may be capturing some of the genetic lifelong
causes of BMI development. Importantly, the indirect associations
through 6 paths showed that the genetic effect on adult BMI
becomes apparent from the period of AR onwards. Figure 3
illustrates the subgraph of PRSBMI pathways for BMI46. The graph
shows for example that increasing BMIPRS adversely decreases
AgeAR and increases BMI velocity from AR to 11 y.
The percentage of variance in BMI explained by the fitted

model, in terms of the Bayesian version of the R-squared, ranges
for example from a posterior mean R2 of 14.7% for BMI at AP, up to
58.1% for BMI at 14 years (34.6% for BMI46). Other endogenous
variables with high variance explained by the model include peak
height velocity in infancy, PHV, with a posterior mean R2 of 34.8%
and waist circumference with a posterior mean R2 of 24.0%.
(Supplementary Table 4).

DISCUSSION
We have taken a systematic life-course approach to explore
genetic and non-genetic factors associated with BMI development
from the prenatal stage until middle age in a large population-

based birth cohort study. The long follow-up, almost 50 years, of
the study enabled us to investigate how early-life shapes,
beginning with the intrauterine environment and continuing
through infancy, childhood and puberty, the trajectory of body
mass development throughout life.
One of the new observations is that the association of very early

life factors with adult BMI is captured and mediated by growth
patterns and other factors through childhood. We tested a large
number of pre- and perinatal factors on BMI46 and all of them
showed an indirect pattern, which is an important key finding. The
subgraphs also illustrate the complexity of associations and
help understand the mechanisms by which factors may work
(e.g. Fig. 3). In previous studies, maternal BMI, maternal smoking,
socio-economic status of the family and parity among others have
been associated with BMI development, but the pathways
through which they contribute have not been explored as in
our study [37–39]. The analytical approaches may explain some
variations between the associations in the studies, especially when
a full life-course approach was not feasible.
In terms of the magnitude of the adult effect sizes, BMI31, the

outcome of long-term development, is a dominating factor
associated with BMI46 fifteen years later. This suggests that most
people who have developed a high BMI by early adult life are
likely to have a high BMI in middle age [13]. The AgeAR, usually
occurring between ages 5 and 7 y, shows the second largest
(inverse) standardised association with BMI46, indicating that the
higher the age at AR, the lower the BMI46. Since an early AR
reflects accelerated growth, the period by AgeAR is paramount for
later BMI development and has potential for intervention. This is,
for example, supported by earlier work of De Kroon et al., who

Table 2. Characteristics of the anthropometric, growth and metabolic health variables, the so-called ‘endogenous’ variables, used in the present
analysis.

Males (N= 2154) Females (N= 1965) Total (N= 4119)

Characteristic Mean (SD) Mean (SD) Mean (SD)

BW at birth, kg 3.55 (0.53) 3.43 (0.50) 3.49 (0.52)

Age at AP, y 0.76 (0.03) 0.76 (0.03) 0.76 (0.03)

BMI at AP, kg/m2 18.20 (0.79) 17.80 (0.78) 18.01 (0.82)

Mean BMI velocity birth-AP, (kg/m2)/y 5.92 (1.73) 5.41 (1.70) 5.67 (1.73)

Peak height velocity, cm/y 54.35 (3.20) 50.82 (3.90) 52.60 (3.94)

Age at AR, y 5.68 (0.89) 5.54 (0.93) 5.62 (0.91)

BMI at AR, kg/m2 15.50 (1.03) 15.40 (1.14) 15.44 (1.08)

Mean BMI velocity AP-AR, (kg/m2)/y −0.54 (0.17) −0.50 (0.19) −0.52 (0.18)

Mean BMI velocity AR-11y, (kg/m2)/y 0.33 (0.21) 0.35 (0.22) 0.34 (0.21)

BMI at 14 y, kg/m2 19.23 (2.63) 19.50 (2.58) 19.36 (2.61)

Mean BMI velocity 11–15 y, (kg/m2)/y 0.58 (0.41) 0.71 (0.45) 0.64 (0.43)

BMI at 31 y, kg/m2 25.25 (3.39) 23.64 (4.25) 24.45 (3.93)

Mean systolic blood pressure at 31 y, mmHg,
SBPa

130 (13) 120 (12) 125 (13)

Mean diastolic blood pressure at 31 y,
mmHg, DBPa

80 (11) 75 (11) 78 (11)

Insulin at 31 y, μIU/mL 9.04 (5.12) 8.68 (7.21) 8.78 (4.95)

Waist circumference at 31 y, cm 89.07 (9.76) 79.11 (12.27) 84.14 (12.14)

HDL-C at 31 y, mmol/L 1.41 (0.33) 1.69 (0.38) 1.55 (0.38)

LDL-C at 31 y, mmol/L 3.24 (0.91) 2.81 (0.82) 3.02 (0.89)

Triglycerides at 31 y, mmol/L 1.34 (0.81) 1.07 (0.60) 1.21 (0.72)

BMI at 46 y, kg/m2 27.40 (4.39) 26.62 (5.17) 26.98 (4.84)

Endogenous variables are dependent variables that can also be independent in later life stages of the model.
BW birth weight, BMI body mass index, AP adiposity peak, AR adiposity rebound, HDL high-density lipoprotein cholesterol, LDL low-density lipoprotein
cholesterol.
aAnalysed as a combined latent factor score (BPF31, Table S1).
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Table 3. Results from the Bayesian path analysis model, BLSEM, for BMI46 (n= 4119).

Variables (unit/category) Direct effect (×103) and
95% CI

Total indirect effect (×103)
and 95% CI

Total effect (×103) and
95% CI

No of paths

Prenatal

Maternal pre-pregnancy BMI (kg/m2) 52.3 (41.7, 63.0) 52.3 (41.7, 63.0) 35

Maternal age (years) −6.66 (−25.3, 3.91) −6.66 (−25.3, 3.91) 27

SEP of the family (latent factor) −1.85 (−3.57, −0.18) −1.85 (−3.57, −0.18) 26

Parity −12.7 (−21.8, −2.49) −12.7 (−21.8, −2.49) 11

Maternal marital status at birth

Not married Referent

Married −31.6 (−206.1, 118.1) −1.79 (−24.3, 15.15) −33.4 (−205.0, 121.4) 4

Maternal place of residence

City Referent

Small town and rural centre 13.5 (−44.4, 77.1) 2.83 (−7.20, 11.2) 16.4 (−40.5, 81.8) 11

Remote village 19.4 (−4.53, 60.6) 19.4 (−4.53, 60.6) 37

Maternal smoking

Non-smoker Referent

Continued/stopped 22.5 (5.34, 41.0) 22.5 (5.34, 41.0) 31

Number of people in the household −19.3 (−29.7, −9.69) −19.3 (−29.7, −9.69) 22

Maternal hypertension

Normotensive Referent

Gestational hypertension 5.04 (−15.1, 25.0) 5.04 (−15.1, 25.0) 2

Chronic hypertension −1.31 (−4.98, 1.56) −1.31 (−4.98, 1.56) 20

Pre-eclampsia (PE) and Super-
imposed PE

−1.42 (−14.1, 17.2) −1.42 (−14.1, 17.2) 20

Diastolic BP elevated 7.44 (−34.1, 61.8) 7.44 (−34.1, 61.8) 1

Could not be determined/ Not
known

0.08 (−0.22, 0.58) 0.08 (−0.22, 0.58) 2

Paternal age (years) −19.0 (−58.1, 5.7) −19.0 (−58.1, 5.7) 1

At birth

BMI PRS 14.8 (2.66, 22.8) 14.8 (2.66, 22.8) 6

Gestational age 0.85 (−2.38, 5.37) 0.85 (−2.38, 5.37) 36

Operative managements in delivery

Vaginal, other Referent

Caesarean section 1.17 (−0.15, 7.53) 1.17(−0.15, 7.53) 1

Placental weight 5.95 (−21.8, 37.8) 4.02 (−1.32, 8.71) 9.97 (−18.0, 42.3) 32

Birth weight 17.9 (5.5, 29.3) 17.9 (5.5, 29.3) 19

At infancy (1 y)

Mean BMI growth velocity between
birth and AP

−1.11 (−3.75, 0.00) −1.11 (−3.75, 0.00) 1

BMI at AP 53.1 (18.7, 89.4) 53.1 (18.7, 89.4) 8

Age at AP 8.92 (0.00, 15.4) 8.92 (0.00, 15.4) 5

Peak height velocity 24.0 (−0.08, 37.9) 24.0 (−0.08, 37.9) 7

At childhood (6 y)

Mean BMI growth velocity between
AP and AR

28.4 (0.00, 63.1) 28.4 (0.00, 63.1) 1

Mean BMI growth velocity between
AR and 11 y

95.6 (39.1, 158.0) 95.6 (39.1, 158.0) 2

BMI at AR 4.46 (0.00, 9.19) 4.46 (0.00, 9.19) 2

Age at AR −174.0 (−219.0, −124.3) −174.0 (−219.0, −124.3) 2

At adolescence (14 y)

Smoking at 14 y 0.00 (−0.50, 0.48) 0.00 (−0.50, 0.48) 1

Physical activity at 14 y 22.6 (−52.6, 97.0) 1.75 (−28.0, 36.2) 24.3 (−54.1, 101.7) 2

BMI at 14 y 7.81 (0.00, 14.5) 7.81 (0.00, 14.5) 1
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show the mean age at AR in subjects with obesity was as early as
3 y, while for individuals without obesity it was 6 y [40].
We also newly discovered that the mean BMI growth velocity

later in childhood, between the age at AR to 11 y has a strong
independent association with BMI46 (on original scale 2.19 kg/m2

by 1 SD increase in growth velocity), with an additional path via
blood pressure. This is supported by our earlier analyses on blood
pressure, which showed that growth from AgeAR onwards had the
largest estimated effect on blood pressure in young adulthood,
promoting the view that early growth predicts well adult
metabolic health [41].
Although other studies have highlighted the importance of

early growth for later BMI development, the suggested critical
time points have differed. In our analyses, BMIAP was also strongly
associated with BMI46. Similar findings of strong positive effects of
weight gain between the ages of 6 and 12 months and later
obesity have been reported for other cohorts [15, 42–44]. Our
results overall illustrate that adverse BMI development starts in
early life, with growth parameters up to adolescence being good
predictors of BMI until middle age, and the growth parameters
themselves being affected by early environment. From an obesity

development point of view, a key is to follow up child’s growth, to
notify deviations from the expected measures and action.
We did not find a direct association of BW with later adiposity,

but did find a relatively weak indirect association. This may be
explained by a long timespan or the fact that the effects of BW are
captured by other mediating factors across the life-course, which
is also supported by a weak genetic correlation between BW and
BMI later in life [17]. BW as a risk factor for obesity has been
extensively studied with varying results, but this is the first time it
has been studied within a life-course model simultaneously with a
large number of potential contributors. In a review by Brisbois
et al., 25 out of the 43 studies reported an association between BW
and adult BMI [23]. Moreover, some studies show that low BW may
predispose to higher BMI later in life, meaning that the association
may not be linear. However, there was no indication of a U or
J-shape association in our data.
Genetic predisposition captured by the PRS, BMIPRS, has a weak

indirect positive association with BMI46 and only starts influencing
BMI from the time of AR onwards. Likewise, we observed that the
genetic factors influencing adult BMI were associated with BMIAR
and AgeAR, but their overlap with BMIAP was either absent or

0.539

0.051

BMI31 BMI46

Fig. 3 Subgraph of the directed acyclic graph (DAG) from the Bayesian path analysis model (BLSEM), showing all paths between PRSBMI
and BMI46 thresholding for mean posterior probabilities (MPPIs) ≥ 0.5. The pairwise standardised effects (βs) × 103 are presented on the
edges (n= 4119). Direct effect= 0; total indirect effect= 14.8 (95% CI: 2.66, 22.8) SD units of BMI46 per 1-SD increase of PRSBMI; 6 pathways.

Table 3. continued

Variables (unit/category) Direct effect (×103) and
95% CI

Total indirect effect (×103)
and 95% CI

Total effect (×103) and
95% CI

No of paths

At early adulthood (31 y)

Smoking pack years at 31 y −2.41 (−18.9, 9.39) −2.41 (−18.9, 9.39) 1

Alcohol use at 31 y 13.9 (−0.06, 35.4) 13.9 (−0.06, 35.4) 1

SEP latent factor-1 at 31 y 0.29 (−0.56, 2.26) 0.29 (−0.56, 2.26) 1

Blood pressure latent factor at 31 y 80.4 (46.1, 113.8) 80.4 (46.1, 113.8) 1

BMI at 31 y 539.3 (500.3, 577.9) 539.3 (500.3, 577.9) 1

Insulin at 31 y 25.5 (−8.20, 66.3) 25.5 (−8.20, 66.3) 1

Triglycerides at 31 y 10.4 (−15.6, 49.6) 10.4 (−15.6, 49.6) 1

At middle life (46 y)

SEP latent factor at 46 y −19.8 (−48.4, 7.00) −19.8 (−48.4, 7.00) 1

Effect sizes (βs) are reported in SD units of BMI (kg/m2) by exposure unit, SD or category. Analysis was adjusted for sex. Direct effects are reported for
associations with MPPI ≥ 0.5. Indirect effects are reported for paths through the DAG where every link on the path has MPPI ≥ 0. 5. Findings for MPPI < 0.5 are
not shown.
Growth velocities: kg/m2/year.
MPPIs mean posterior probabilities of inclusion, CI Credible Intervals, BMI body mass index, SEP socio-economic position, PRS polygenic risk score, AP adiposity
peak, AR adiposity rebound, WC waist circumference, HDL high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol.
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weak [17]. Similar findings are supported by candidate gene and
other smaller case studies [45, 46].
We conducted extensive sensitivity analyses to explore how the

Bayesian Path Analysis Model, BLSEM, behaved under different
scenarios i.e. fewer life stages or number of missing values. Given
the reassuring results of these analyses, i.e. meaningful mean
posterior regression coefficients and pathways, we feel that the
BLSEM is a flexible tool for longitudinal analysis yielding valid
results. An indication of successful selection of variables and
successful model fitting was the fact that the model explained
35% of the variation at BMI46 and 58% for BMI14.

Strengths and limitations
The major strength of this study is the life-course modelling
approach, considering all measured potential contributors across
the long timespan of the study. The Bayesian analytical method
we developed provides a comprehensive way of jointly modelling
all available information with no limit on the number of variables.
Additionally, it yields easily interpretable estimates for both direct,
indirect and total effects for each variable as well as uncertainty
estimates on the regression coefficients and the DAG itself.
Multiple missing values imputation is carried out simultaneously
with model fitting, allowing to use the data to their full potential,
thus maximising the statistical power of the study.
The main aim in choosing the comprehensive set of potential

risk factors in the model is to include as many confounders and
mediators as possible, in order to minimise the risk of unobserved
confounding. Our principle is that we start with a large set of
variables, which we hope will include all important risk factors and
confounders, though it may also include unnecessary (‘noise’)
variables as well. Our statistical model, however, performs
automatic variable selection, which removes the noise variables
and investigates how the influence of independent variables flows
through multiple mediators before having an impact on the distal
outcome.
We therefore start with an initial set of variables which includes

all known risk factors that are available for our cohort, along with
other potential risk factors and confounders which may have less
well-established a priori evidence. The statistical model will detect
which variables (potential risk factors and/or confounders) are
needed to explain the variability in the endogenous variables.
Therefore, our approach is both based on an a priori under-
standing of causal mechanisms and also uses a data-driven
approach to select the final model.
Another strength is the long follow-up of NFBC1966 with a high

attendance rate and the extensive growth data from birth until
adolescence, offering opportunities to use complex models to
obtain growth patterns more accurately [19, 21, 47].
Our study has certain limitations. The model requires the

assumption of no unobserved covariates, relying on the breadth
of measured potential covariates in NFBC1966. We used birth
weight, taking into account gestational age as a surrogate
measure of foetal growth, which does not fully capture
intrauterine growth patterns. Moreover, BMI is a measure of total
body mass and neither separates fat mass and fat-free mass nor
accounts for body fat distribution. The choice of the above
measures was made because of data availability and for
consistency among the different life stages. We do not have
enough information for adolescence, so we may have missed
additional growth velocities related to later life BMI development.
While the anthropometric data were directly measured, the
velocity parameters were determined by the fitted growth curves,
hence potentially resulting in less precise estimates of the
associations between infant, childhood and pubertal growth with
BMI46 than those between the BMI at each life stage. Life stages
were defined by the data collection time points, forcing us to use
11 and 15 y as puberty cut points while other ages might have
been more appropriate.

This study refers to a Finnish cohort and was initiated decades
ago, meaning that results are likely to be generalisable to
relatively high-income countries with similar characteristics and
may not be directly applicable to today’s children. Across the life-
course analyses always face this problem, having started half a
century ago; however, they are vital to understand the bio-
psycho-social interplay of different factors and to make inferences
about the future prospects of the populations. From a methodo-
logical point, the method currently allows the analysis of
continuous outcomes (dependent variables), but work is in
progress to accommodate binary variables.
In summary, our method provides a flexible exploratory

statistical tool with easily interpretable direct, indirect and total
effect estimates for the analysis of longitudinal epidemiological
data to formulate causal hypotheses for further investigation. This
may not otherwise be possible using traditional analytical
observational approaches [48, 49]. We acknowledge recently
applied causal inference methods, such as Mendelian randomisa-
tion, and took our approach to assess all available data together,
more than it has been possible to consider in the past, to get
insights into possible mediating mechanisms. Our proposed
approach, exploratory in nature, helps to get a better under-
standing of the pathways through which individuals may develop
a clinical outcome later in life, taking into account a number of
life-course determinants. Overall, this study illustrates that
intervention measures may be planned as a long-term effort
throughout childhood. However, further causal work on biological
mechanisms and the best target periods is necessary. The model
may be successfully adopted in other settings with fewer number
of variables, less life stages or shorter follow-up periods. In our
case study, the proposed method provides stable and consistent
findings with previous observations, as far as we can compare
those from less flexible and comprehensive analyses, suggesting
that our methods yield meaningful and robust results.
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