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Summary
Background Small islands developing states in the Caribbean are exposed to increasingly frequent and intense 
extreme climatic events, which can exacerbate outbreaks of climate-sensitive infectious diseases. Few forecasting 
tools incorporate the compound and cascading effects of multiple delayed climatic indicators on disease outbreak 
risk. We aimed to create an impact-based modelling framework that employs interactions between climatic 
predictors to forecast the probability of a climate-sensitive infectious disease outbreak 3 months ahead, and to 
investigate the compound and cascading effects of temperature and long-lag and short-lag standardised 
precipitation index (SPI) on dengue outbreak risk in Barbados.

Methods We developed a modelling framework to predict the probability of a dengue outbreak in Barbados with a 
3-month lead time. We assessed the relationships between dengue incidence and interacting long-lag and short-
lag hydrometeorological predictors with confirmed cases from 1999 to 2022 and a Bayesian hierarchical 
framework accounting for seasonal and interannual variation. With this long–short-lag interaction model, we 
piloted a dengue early warning system in Barbados for the International Cricket Council Men’s Twenty20 World 
Cup in June, 2024, as a real-world prospective example.

Findings We found that a three-way interaction between the 3-month averaged mean temperature anomaly lagged by
3 months, 6-month SPI (SPI-6) lagged by 5 months, and SPI-6 lagged by 1 month best predicted dengue outbreak 
risk in Barbados. Our findings showed that long-lag dry (lagged by 5 months), mid-lag hot (lagged by 3 months), 
and short-lag wet (lagged by 1 month) conditions led to the greatest dengue risk. During cross-validation from 
2012 to 2022, the model exhibited a true positive rate (TPR) of 81% and a false positive rate (FPR) of 29%, 
outperforming a baseline model representing standard practice with a TPR of 68% and an FPR of 48%. For the 
Twenty20 World Cup, the model predicted a 95% outbreak probability due to epidemiological and climatic 
conditions, which was shared with the Barbados Ministry of Health and Wellness ahead of the tournament.

Interpretation Our impact-based modelling framework with long-lag and short-lag interactions explicitly accounted 
for the compound and cascading effects of drought, heat, and excessively wet conditions on dengue outbreak risk 
in Barbados. The model is being implemented in a national dengue early warning system with ongoing 
monitoring and evaluation to ensure its reliability and usefulness in operational contexts. Future work could 
explore the applicability of this methodology to modelling or predicting climate-sensitive infectious diseases in 
other endemic settings.
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Introduction
Caribbean small island developing states (SIDS) are highly 
vulnerable to the direct and indirect impacts of anthropo-
genic climate change on human health, in part due to fre-
quent exposure to extreme climatic events. 1–5 Over the past 
15 years, Caribbean SIDS have experienced explosive and 
concurrent outbreaks of arboviral diseases, such as dengue, 
chikungunya, and Zika virus infection. 6–8 In 2023, the 
region experienced its largest recorded dengue epidemic 
with over 97 000 cases, exceeding the previous peak in

2020 by nearly 20%. 9 Historically, Barbados reported the
highest global age-standardised dengue incidence rate 
(DIR) per 100 000 population between 1990 and 2017. 10 In 
addition to case burdens, arboviruses also carry substantial 
economic impacts. In 2016, the estimated annual cost of 
dengue infection in the Latin American and Caribbean 
region was US$1⋅73 billion. 11 One study reported a 14-fold 
increase in the economic impact of Aedes-borne diseases 
between 1975 and 2020, 12 which has probably further 
increased due to explosive outbreaks in the past 5 years.
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The changing nature of climatic hazards is likely to 
aggravate the risk of climate-sensitive infectious diseases 
via multiple pathways. 3,13 Increasingly intense floods and 
tropical cyclones can damage or destroy crucial water and 
sanitation infrastructure, leading to the contamination of 
water and spread of water-borne diseases. 14 Protracted 
flooding can leave stagnant pools of water, which become 
mosquito breeding sites, increasing vector populations and 
the likelihood of disease transmission. 15 Concerning den-
gue, the ambient temperature, humidity, and availability of 
standing water influence the lifecycle, reproduction, sur-
vival, and biting rates of the mosquito vector, Aedes aegypti, 
alongside viral replication rates and host susceptibility, 
exposure, and behaviours. 15,16 Heatwaves and droughts 
can affect water storage behaviour, which can inadvert-
ently create vector breeding sites close to homes, 
increasing the risk of exposure to infected vectors. 17,18 

Furthermore, the interaction of successive extreme cli-
matic events can create cascading pathways that cause 
economic instability, deepen inequality, and alter envir-
onmental conditions not only in the immediate aftermath 
of a shock but cumulatively over time, resulting in 
increased vulnerability to outbreaks. As we improve our 
understanding of the impacts of extreme climatic events 
on disease, developing early warning systems that can help 
predict outbreak occurrence becomes possible, allowing

the public health sector to take early actions to reduce 
adverse health outcomes.
Impact-based forecasting provides actionable informa-

tion that helps decision makers prepare for, mitigate, 
prevent, or respond to a disaster, with a focus on early 
action to enhance resilience and protect communities, 
infrastructure, and resources. 19 A global study on the 
economic burden of Aedes-borne diseases found that 
costs of damages and losses were 10-times higher than 
investments in disease management, highlighting sub-
stantial human and economic benefits of anticipatory 
approaches. 12 Timely forecasts can guide emergency 
efforts in preparation or response to hazards from tropical 
cyclones, such as Hurricane Beryl, which caused devas-
tation across the Caribbean in 2024. 20 These approaches 
can also be embedded into climate-informed dengue early 
warning systems by using hydrometeorological drivers of 
disease incidence to predict when, and sometimes where, 
disease outbreaks are likely to occur. 21 These tools enable 
public health authorities to mobilise resources effectively, 
prepare and train relevant personnel, carry out vector 
control activities, and communicate risks to the public in 
advance.
We aimed to cocreate an impact-based modelling 

framework that employs interactions between climatic 
predictors to forecast the probability of a climate-sensitive
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Research in context

Evidence before this study
We searched PubMed on Oct 28, 2024, with the terms “dengue”, 
“risk”, “drought”, “climate” and “model”, and subsequently 
included an additional term “interaction”. No language or 
publication date restrictions were applied. Our search yielded 
three studies in Barbados, Brazil, and China, published between 
2018 and 2023, all of which employed Bayesian models to 
examine the impact of drought on dengue risk. These studies 
confirmed the role of hydrometeorological extremes in driving 
dengue infections across multiple endemic settings. However, 
none employed an interaction model to investigate the 
compound or cascading effects of multiple predictors 
representing climatic extremes (such as droughts, heat, and 
excess rainfall) on dengue outbreaks in any location. Furthermore, 
these studies did not explicitly explore how disease risk drivers 
could be operationalised into a dengue prediction model within 
an early warning system.

Added value of this study
Our research outlines an impact-based modelling framework 
that integrates interacting long-lag and short-lag 
hydrometeorological predictors to forecast infectious disease 
outbreaks, capturing the compound effects of climatic conditions 
on disease risk. Focusing on dengue infection in Barbados, we 
show that the synergistic effect of long-lag drought, mid-lag heat, 
and short-lag excess rainfall leads to the greatest risk of 
dengue. Within our Bayesian prediction model, we leverage

close-to-real-time dengue case data to dynamically redefine the 
disease season to better account for interannual variation. This 
interaction model will be implemented in a dengue early warning 
system, codeveloped with national and regional health and 
meteorological agencies. We piloted the early warning system in 
advance of a mass sporting event, the Twenty20 Cricket World 
Cup, in June, 2024. This study details a prediction framework that, 
with further validation, could support the development of other 
climate-informed disease early warning systems.

Implications of all the available evidence
This study highlights the potential value of incorporating 
interaction terms in prediction models to account for the 
compound and cascading effects of climate on disease risk, which 
could enhance model explainability and predictive performance. 
As the framework was applied to predict dengue outbreak risk in 
Barbados, its broader use for epidemic preparedness across other 
endemic settings or climate-sensitive infectious diseases requires 
further testing and validation. However, the model’s integration 
into a national early warning system, including its use in advance 
of a major international event, shows a proof of concept that 
might be adaptable to other contexts. In Barbados, ongoing 
monitoring and evaluation of the early warning system, once 
operationalised, will be essential to assess the real-world 
effectiveness, reliability, and sustainability of the system in 
practice.
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infectious disease outbreak 3 months in advance. To ach-
ieve this aim, we explicitly investigated the compound and 
cascading effects of temperature and long-lag and short-lag 
standardised precipitation index (SPI) on dengue outbreak 
risk in Barbados. Among other Caribbean SIDS, Barbados 
has been actively developing climate-informed disease 
prediction models and early warning systems, which seek to 
support public health decision making to prevent or miti-
gate the risk of future climate-sensitive infectious disease 
epidemics. 21–24

Methods
In this study, we developed an impact-based modelling 
framework to forecast dengue outbreak risk in Barbados
3 months ahead using interactions between predictors 
representing hydrometeorological extremes. To enhance 
the consistency, quality, and reproducibility of the predictive 
framework, we followed the EPIFORGE 2020 guidelines for 
epidemic forecasting research. 25

Study area and dengue data
Barbados is a Caribbean SIDS with a population of over 
281 000 people across 11 parishes (appendix p 9). 26 We 
obtained monthly confirmed dengue cases reported at the 
national level, spanning from January, 1999, to December, 
2022, from the Epidemiology Unit in the Barbados 
Ministry of Health and Wellness. Cases were confirmed 
either by IgM and IgG ELISA, dengue virus-specific real 
time RT-PCR assays, or the dengue virus non-structural 
protein 1 antigen test. Annual population estimates 
were obtained from World Bank Open Data to calculate 
the dengue DIR per 100 000 people. 27

Meteorological data
Monthly meteorological indicators were provided by the 
Caribbean Institute for Meteorology and Hydrology 
(CIMH) from January, 1981, to December, 2022, for two 
weather stations, the Grantley Adams International Airport 
(GAIA) and CIMH station (appendix p 9). For each 
meteorological variable, we calculated the mean across both 
weather stations. We collated monthly and 3-monthly 
averaged mean, minimum, and maximum temperatures, 
and 1-month, 3-month, 6-month, and 12-month SPI values 
per month. SPI represents the total precipitation in units of 
standard deviation from the historical average over a given 
period, assuming a γ-fitted distribution, and characterises 
excess dryness (negative SPI) or excess rainfall (positive 
SPI) at different timescales. Temperature anomalies were 
calculated by subtracting the mean of each variable from 
June, 1981, to May, 2022.

Model formulation
During model fitting, a dengue year was defined from June 
to May. We specified a Bayesian hierarchical model with 
monthly dengue case counts from June, 1999, to May, 2022, 
as the response variable. Dengue cases were assumed to 
follow a negative binomial distribution to account for

potential overdispersion. Annual population data were 
used as a model offset to account for changing population 
size. Temporal random effects were included to capture 
seasonal and interannual variation in dengue incidence not 
explained by the climate covariates. We formulated three-way 
interaction models with temperature anomalies (lagged by 
0–6 months), long-lag SPI (lagged by 4–6 months), and short-
lag SPI (lagged by 1–3 months) to quantify both the indi-
vidual and compound effects of climate predictors on dengue 
risk (appendix pp 1–2, 11). An additional fixed-effect term 
that captures the log-transformed DIR lagged by 4 months 
was also included. All interaction models were compared 
with a baseline model that included only the seasonal ran-
dom effect, representing standard surveillance in Barbados, 
and a mixed-effects model with lagged DIR and no climate 
covariates.

Model selection criteria
Exploratory analysis and goodness-of-fit metrics, such as 
the deviance information criterion (DIC), Watanabe– 
Akaike information criterion (WAIC), mean absolute 
error (MAE) and R 2 LR likelihood ratio for mixed-effects 
models, were used for model selection. First, we com-
pared the goodness of fit across groups with different 
combinations of interacting long-lag and short-lag SPI 
variables to identify which timescales performed best 
overall. For the best-performing SPI combination, we 
selected up to ten candidate models for cross-validation on 
the basis of three criteria: maximised goodness-of-fit met-
rics compared with the baseline and DIR models; decreased 
random effects (ie, tending towards zero); and greater fixed 
effect sizes, ideally with 95% credible intervals (CrIs) that 
did not contain zero.

Cross-validation scheme
We evaluated the predictive performance of each candidate 
model with a rolling-origin cross-validation approach and a 
3-month lead time, simulating real-world prediction 
(appendix p 12). For each forecast target month, we exclu-
ded all subsequent data from the time series along with case 
counts between and including the forecast issue and target 
months to account for lead time. We simulated out-
of-sample predictions on the last 10 years of data, from 
June, 2012, to May, 2022, with all available data from 
June, 1999, until the forecast issue. In our cross-validation 
scheme, we redefined the dengue year for each simulated 
prediction to ensure that the forecast target month repre-
sented the final month of the season. This approach meant 
that the yearly random effect was consistently informed by
8 months of case counts.
The outbreak threshold was set as the month-specific 

population-adjusted 75th percentile of cases, calculated 
with the historical DIR up to the forecast issue, multiplied 
by the annual population per 100 000 for the forecast target 
year. By drawing 1000 samples from the posterior distri-
bution, we calculated the probability of exceeding this out-
break threshold and compared this value with observed

See Online for appendix

For World Bank Open Data see 
https://data.worldbank.org
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dengue cases. The receiver operating characteristic (ROC) 
curve identified the optimal trigger threshold (ie, min-
imum outbreak probability to trigger an alert) by max-
imising the true positive rate (TPR; sensitivity) and 
minimising the false positive rate (FPR; 1 – specificity). We 
evaluated each model’s predictive performance with the 
continuous rank probability score, area under the ROC 
curve (AUC), TPR, and FPR.

Combined contribution of climatic variables
To assess the compound effect of climatic variables on 
dengue outbreak risk, we evaluated the combined contri-
bution of different temperature, long-lag SPI, and short-lag 
SPI values on the response, log(ρ t ), where ρ t is the DIR, 
for the selected model—denoted as log(RR CC )—ie, the

logarithm of the relative risk of dengue attributable to cli-
mate covariates. We tested log(RR CC ) under two different 
temperature scenarios, cool (ie, the 10th temperature per-
centile from 1981 to 2022) and warm (ie, the 90th per-
centile), across all combinations of long-lag and short-lag 
SPI values from –2⋅5 (excessively dry) to 2⋅5 (excessively 
wet) in 0⋅25 increments. For each climate scenario, we 
generated 1000 estimates of log(RR CC ) by sampling the 
posterior distributions of climatic coefficients in the model. 
We report the mean log(RR CC ) and associated 95% CrIs 
to assess the credibility of the effect.

Early warning system framework
We codeveloped a climate-informed early warning system 
framework with the Ministry of Health and Wellness (MHW),
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Figure 1: Goodness-of-fit metrics for models that include a three-way interaction between 3-month average mean temperature anomaly, long-lag SPI-6, and 
short-lag SPI-6 at different lag times
(A) DIC, where lower values indicate better model balance between goodness of fit and complexity. (B) WAIC, where lower values indicate better out-of-sample predictive 
performance. (C) MAE, where lower values represent smaller errors compared with observed case data. (D) R 2 LR likelihood ratio for mixed-effect models, where higher 
values represent a larger proportion of variation in the dengue incidence rate explained by the model compared to an intercept-only model. For each metric, darker 
colours represent improved goodness of fit. The SPI-6 lag combination is marked as (long lag)⋅(short lag). For example, 5⋅1 indicates the combination of SPI-6 lagged by
5 months and SPI-6 lagged by 1 month. DIC=deviance information criterion. MAE=mean absolute error. SPI-6=6-month standardised precipitation index. 
WAIC=Watanabe–Akaike information criterion.
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Barbados Meteorological Services (BMS), CIMH, and 
Caribbean Public Health Agency (CARPHA) to provide 
monthly probabilistic forecasts of dengue outbreak risk
3 months ahead. The forecast lead time was selected to be 
optimal for carrying out preparedness actions while 
maintaining seasonal climate forecast skill. For predic-
tion, the model integrates recent dengue cases, observed 
and forecasted meteorological variables based on lagged 
associations, and annual population estimates. The den-
gue year was redefined such that the forecast target month 
represented the final month of the season. Outbreak 
probabilities were categorised into risk levels 
(low, medium, high, and very high) reflecting the model’s 
confidence in predicting an outbreak due to epidemio-
logical and climatic conditions. The trigger threshold

derived from the ROC curve informed the low–medium 
risk boundary. The remaining risk categories were calibrated 
to ensure consistent probability ranges (appendix pp 3–4). We 
applied this early warning system framework to predict 
the dengue outbreak risk in Barbados in June, 2024, during 
the International Cricket Council Men’s Twenty20 (T20) 
World Cup 2024 with a 3-month lead time.

Role of the funding source
The funders of this study had no role in the study design, 
data collection, data analysis, data interpretation, or writing 
of the report.

Results
From June, 1999, to May, 2022, there were 7681 confirmed 
dengue cases in Barbados, with a mean monthly DIR of
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Figure 2: Evaluation of the selected model after performing rolling-origin cross-validation from June, 1999, to May, 2022
(A) Monthly predicted dengue cases for the selected interaction model (the solid orange line indicates the mean and the orange shading indicates the 95% CrI) compared 
with observed dengue cases (solid black line). (B) Probability of an outbreak (%) each month categorised as low (green), medium (yellow), high (orange), and very-high 
(red) risk levels compared with observed outbreaks (indicated by a cross). (C) ROC curve for both the selected interaction (orange) and baseline (blue) models, which are 
displayed with 95% CIs (shading). The ROC curve can statistically establish the best probability trigger (indicated by a circle) by maximising the true positive rate (ie, 
specificity) and minimising the false positive rate (ie, 1 – sensitivity). The AUC measures the prediction accuracy, where 1 represents a perfect system such that the true 
positive rate=1 and the false positive rate=0. AUC=area under the ROC curve. CrI=credible interval. ROC=receiver operating characteristic.
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10⋅2 cases per 100 000 people. During model selection, 
models with the 3-month averaged mean temperature 
anomaly, long-lag SPI-6, and short-lag SPI-6 best satisfied 
all selection criteria. Figure 1 shows the DIC, WAIC, MAE, 
and R 2 LR likelihood ratio for the 54 models that employ a 
three-way interaction between these variables at different 
delays. These results indicate an improved goodness of fit 
with temperature lagged by 3 months or more, SPI-6 lagged 
by 5–6 months, and SPI-6 lagged by 1–2 months. From all 
goodness-of-fit criteria, we found that the best model 
employed a three-way interaction between the 3-month 
average mean temperature anomaly lagged by 3 months, 
long-lag SPI-6 lagged by 5 months, and short-lag SPI-6 
lagged by 1 month. A comparison of the goodness-of-fit 
metrics for the best interaction model with models of 
reduced complexity is provided in the appendix (p 21). The 
selected interaction model accounted for 69% of the vari-
ation in the DIR, exceeding the baseline model, which 
accounted for only 17%. The selected model showed 
improved goodness of fit compared with all other model 
formulations (appendix p 21).
Figure 2 illustrates the predictive performance of the 

selected model after performing rolling-origin cross-
validation. Figure 2A represents the time series of both 
observed and predicted dengue cases from June, 2012, to 
May, 2022. Figure 2B displays the outbreak probabilities 
categorised by risk level, compared with observed outbreaks. 
Ideally, outbreak probabilities associated with medium, 
high, or very-high risk correspond with observed outbreaks.

The optimal trigger threshold was calculated as 29% from 
the ROC curve (figure 2C). The two ROC curves represent 
the predictive performances of the baseline and selected 
models at all trigger thresholds. The selected model showed 
an AUC of 0⋅80 (95% CI 0⋅72–0⋅88), a TPR of 81%, and an 
FPR of 29%, which outperformed the baseline model, which 
had an AUC of 0⋅60 (95% CI 0⋅48–0⋅72), a TPR of 68%, and 
an FPR of 48% (table; figures 2; 3). Additionally, the inter-
action model outperformed the additive model with an AUC 
of 0⋅75 (95% CI 0⋅67–0⋅84), a TPR of 77%, and an FPR of 
37% (table; figure 3), indicating that the selected model could 
better discriminate an outbreak from no outbreak compared 
with the baseline and additive models. Furthermore, we 
confirmed that the climate variable effect sizes were stable 
across the 10-year validation period (appendix p 14).
For the selected model, we explored how the log(RR CC ), ie 

the compound contribution of climate on the DIR, varied 
under different climatic conditions (figure 4). Figure 4A 
presents the forecast schematic under two distinct scenarios 
that contribute to higher and lower dengue outbreak risk. 
Our results indicate that long-lag dry (lagged by 5 months), 
mid-lag hot (lagged by 3 months) and short-lag wet (lagged by
1 month) conditions lead to the highest dengue outbreak 
risk, whereas cool and extended dry conditions lead to the 
lowest risk. This was shown through two temperature sce-
narios with historical 3-month average mean temperature 
values, cool (ie, 25⋅7 ◦ C; 10th percentile; figure 4B) and 
warm (ie, 27⋅7 ◦ C; 90th percentile; figure 4C), for different 
combinations of long-lag and short-lag SPI-6 values.

Equation CRPS AUC (95% CI) Probability
trigger
threshold

True
positive
rate

False
positive
rate

Models with only random effects 
Seasonal effect (baseline) α + δ m(t) 11⋅500 0⋅60 (0⋅48–0⋅72) 0⋅28 0⋅68 0⋅48
Seasonal effect + interannual effect α + δ m(t) + γ a(t) 10⋅588 0⋅69 (0⋅59–0⋅78) 0⋅31 0⋅77 0⋅43
Models with only covariates
DIR α + ηlog(ρ t-4 + 1) 9⋅925 0⋅60 (0⋅48–0⋅71) 0⋅37 0⋅55 0⋅37
Temperature + long SPI-6 + short SPI-6 α + β T X T + β L X L + β S X S 13⋅090 0⋅64 (0⋅52–0⋅77) 0⋅35 0⋅58 0⋅29
Temperature * long SPI-6 * short SPI-6 α + β T X T + β L X L + β S X S + β T,L X T X L + β T,S X T X S + β L,S X L X S

+ β T,L,S X T X L X S
13⋅523 0⋅65 (0⋅53–0⋅78) 0⋅33 0⋅65 0⋅38

Models with mixed effects (excluding DIR)
Seasonal effect + interannual effect + temperature + long 
SPI-6 + short SPI-6

α + δ m(t) + γ a(t) + β T X T + β L X L + β S X S 9⋅441 0⋅74 (0⋅65–0⋅83) 0⋅19 0⋅81 0⋅40

Seasonal effect + interannual effect + temperature * long 
SPI-6 * short SPI-6

α + δ m(t) + γ a(t) + β T X T + β L X L + β S X S + β T,L X T X L + β T,S X T X S +
β L,S X L X S + β T,L,S X T X L X S

7⋅960 0⋅76 (0⋅68–0⋅85) 0⋅24 0⋅81 0⋅36

Models with mixed effects (including DIR)
Seasonal effect + interannual effect + DIR α + δ m(t) + γ a(t) + ηlog(ρ t-4 + 1) 10⋅416 0⋅70 (0⋅61–0⋅80) 0⋅41 0⋅65 0⋅29
Seasonal effect + interannual effect + temperature + long
SPI-6 + short SPI-6 + DIR

α + δ m(t) + γ a(t) + β T X T + β L X L + β S X S + ηlog(ρ t–4 + 1) 7⋅994 0⋅75 (0⋅67–0⋅84) 0⋅25 0⋅77 0⋅37

Seasonal effect + interannual effect + temperature * long
SPI-6 * short SPI-6 + DIR

α + δ m(t) + γ a(t) + β T X T + β L X L + β S X S + β T,L X T X L + β T,S X T X S +
β L,S X L X S + β T,L,S X T X L X S + ηlog(ρ t–4 + 1)

7⋅348 0⋅80 (0⋅72–0⋅88) 0⋅29 0⋅81 0⋅29

Temperature is the 3-month average mean temperature anomaly lagged by 3 months, long SPI-6 is the 6-month SPI lagged by 5 months, short SPI-6 is the 6-month SPI lagged by 1 month, and the DIR is the logarithm 

of the DIR plus 1, lagged by 4 months. Asterisks indicate interactions, whereas plus symbols indicate additive effects. α=intercept. AUC=area under the ROC curve. β T =temperature coefficient. β L =long-lag SPI coefficient.
β S =short-lag SPI coefficient. β T,L =temperature-long SPI coefficient. β T,S =temperature-short SPI coefficient. β L,S =long-short SPI coefficient. β T,L,S =temperature-long SPI-short SPI coefficient. CRPS=continuous rank
probability score. δ m(t) =monthly random effect. DIR=dengue incidence rate. γ a(t) =yearly random effect. η=lagged DIR coefficient. ρ t–4 =DIR-lagged 4 months covariate. ROC=receiver operating characteristic. 
SPI=standardised precipitation index. X T =temperature covariate. X L =long-lag SPI covariate. X S =short-lag SPI covariate.

Table: Cross-validation outputs for models of increasing complexity
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We applied the interaction model framework to predict 
the dengue outbreak risk in June, 2024, during the T20 
Cricket World Cup in Barbados with a 3-month lead time 
(figure 5). Due to epidemiological and climatic conditions, 
the model predicted a 95% outbreak probability corre-
sponding with very-high risk (figure 5A). Figure 5B repre-
sents the probability density function of the posterior 
predictive distribution of dengue cases, with a mean pre-
diction of 108 cases (95% CrI 8–332 cases) and an outbreak 
threshold of 13 cases. This forecast was used to inform 
further public health actions to mitigate or prevent a 
potential outbreak during the mass sporting event, 
including further checks and retreatments of known 
mosquito breeding sites around the cricket grounds and 
surrounding communities (appendix pp 6–7).

Discussion
In this study, we present an impact-based modelling 
framework that employs interacting long-lag and short-lag 
meteorological variables to forecast the risk of a climate-
sensitive infectious disease outbreak 3 months in 
advance. This long–short-lag interaction approach captures 
the synergistic effects of compound and cascading climatic 
conditions on disease incidence, such as the combined

effect of two variables (eg, long-term dry and short-term wet 
conditions) and three variables (eg, long-term dry, mid-
term hot, and short-term wet conditions), providing a 
more nuanced interpretation of the climatic drivers of 
dengue outbreaks in Barbados. We found that the optimal 
forecasting model applied a three-way interaction between 
the 3-month average mean temperature anomaly lagged by
3 months, SPI-6 lagged by 5 months, and SPI-6 lagged by
1 month.
Previous research employing a distributed lag non-linear 

model (DLNM) has highlighted the delayed impact of 
hydrometeorological extremes on dengue risk in Barbados, 22 

with reported outbreak risk increasing 4–5 months after 
drought events and 0–2 months after excess rainfall events. 
These results are consistent with the findings presented in 
this study, which show that temperature, drought, and 
excess rainfall are positively associated with increased den-
gue incidence. We opted to use temperature anomalies to 
ensure all meteorological predictors were on a similar scale 
with both positive and negative values, aiding the inter-
pretability of compound effects and better accounting for 
extreme heat or cold events that exceed historically observed 
limits. The 3-month average mean temperature values in 
this study (26⋅9 ◦ C [range 24⋅7–28⋅3]) are often within the 
optimal temperature range for arboviral transmission 
(ie, 26–29 ◦ C). 16 However, as Barbados has experienced 
notable increases in extreme temperature and precipitation 
events over the past few decades, 28 further changes could 
impact future dengue dynamics.
Interactions between climatic and socioeconomic factors 

have been shown to influence dengue outbreaks across 
endemic settings. In southern Taiwan, outbreaks were 
affected by short-term or cumulative rainfall combined 
with older housing infrastructure. 29 In Brazil, the relation-
ship between dengue incidence and long-lag and short-lag 
drought severity varied when interacted with urbanisa-
tion. 30 In southern Viet Nam, dengue risk was shown to be 
affected by interacting hydrometeorological variables 
and water supply coverage. 31 In this study, we show the 
importance of interacting interdependent climatic drivers 
in modelling dengue risk in Barbados. Our findings indi-
cate that the compound effects of long-lag dry, mid-lag hot, 
and short-lag wet conditions lead to the highest dengue 
outbreak risk. This interplay of climatic variables can 
influence dengue transmission by creating optimal con-
ditions for mosquito breeding and virus spread at different 
timescales. Droughts can exacerbate water scarcity, leading 
to increased water storage in containers close to homes. 
These containers, if not covered or regularly treated with 
larvicide, can become breeding sites for A aegypti mosqui-
toes. 17,18 As water availability increases, the urgency for 
active management of stored water might decrease, 
potentially leading to neglected containers that perpetuate 
vector reproduction. Warmer temperatures might further 
accelerate vector development and activity, alter human 
behaviour, and shorten viral incubation. 16,18 Collectively, 
these sequential climatic events could synergistically
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elevate the risk of dengue outbreaks by optimising 
conditions for the virus, vectors, and hosts.
During cross-validation, we evaluated the predictive per-

formance of multiple model formulations. Interaction 
models consistently outperformed baseline and additive 
models, indicating that the inclusion of interaction terms 
can enhance predictive skill without needing additional 
data inputs. Performance was also consistently improved 
with the inclusion of lagged DIR and random effects that 
account for unknown seasonal and interannual variation. 
These unmeasured drivers might reflect vector control 
interventions, disasters (eg, hurricanes), population suscep-
tibility and immunity, dominant serotype switching, or dis-
ease importation. 32–34 In a prediction framework, modelling 
interannual variation presents challenges, often requiring

real-time case data, case estimations, or prior assumptions 
regarding the year ahead. 22,35 In a dengue forecasting model 
for Viet Nam, cases were estimated by a generalised linear 
mixed-effects model and propagated through log-linear and 
yearly effect terms at multiple lead times. 36 In contrast, the 
DLNM for Barbados treated the year as unknown during out-
of-sample predictions, meaning the yearly random effect had 
a mean value of zero. 22 In this study, close-to-real-time case 
data were used to forecast dengue risk 3 months ahead. We 
redefined the dengue season for each prediction month, 
ensuring that the yearly effect was consistently informed by
8 months of case counts, and log-transformed the 4-month 
lagged DIR. This approach enabled us to leverage available 
case data to strengthen predictive performance while 
maintaining operational feasibility.
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Since 2017, a transdisciplinary team of international 
researchers and national and regional health and 
meteorological bodies have been coproducing the climate-
informed dengue early warning system in Barbados. 23,24 

This work included a modelling framework employing a 
DLNM. 22 Although DLNMs are powerful for understand-
ing the non-linear and lagged effects of individual pre-
dictors, when used operationally, these models necessitate 
that climate service providers generate multilead climate 
forecasts on a routine basis, which might not align with 
operational practices. This requirement can represent a 
barrier in resource-limited settings where the generation of 
or access to timely high-quality data and computational 
resources can be challenging. 22,37 Additionally, DLNMs can 
lead to unpredictable outcomes when input variables 
exceed the historical range used to define non-linear asso-
ciations, as the model must extrapolate coefficients in 
unfamiliar territory. Unlike linear models, which assume 
stationarity (ie, that statistical relationships remain con-
stant over time), DLNMs are more sensitive to boundary 
conditions, increasing the potential for uncertain results. 
Furthermore, relationships between disease incidence and 
climate covariates in a DLNM can be challenging to inter-
pret and communicate to non-technical audiences. In 
contrast, interaction models offer a straightforward and 
flexible approach, accounting for any input value without 
the need for complex lag structures. This relative simplicity 
reduces computational demands while enhancing the 
interpretability of climate–disease relationships, which are 
key for translating findings into practice.
Our interaction model is being implemented within the 

national dengue early warning system in Barbados, jointly 
maintained by MHW, BMS, CIMH, and CARPHA. The 
applicability of this framework could be tested to predict 
climate-sensitive infectious diseases in other endemic set-
tings with similarly consistent, long-term, and high-quality 
epidemiological and meteorological records, including 
other Caribbean SIDS. However, early warning systems 
need to be cocreated alongside decision makers with explicit 
mandates for the provision of local health care and cross-
sectoral collaborators, including meteorologists, research-
ers, government agents, and communities. 38 These actors 
are crucial for interpreting results and identifying key bar-
riers to early warning system implementation, operation-
alisation, and sustainability, which affect long-term use. 24 

Early warning systems can support epidemic preparedness 
and response planning to prevent or mitigate outbreaks. 
One example is the growing practice of anticipatory action 
by governments and humanitarian agencies. Anticipatory 
action combines the use of observations and forecasts with 
in-depth risk analysis to predict where and when a disaster 
might occur in order to intervene in advance and reduce 
negative impacts. 39 For example, the Red Cross Red Cres-
cent Movement formalises early warnings from forecasts 
into early action protocols to ensure emergency funding is 
released and appropriate early actions are taken during 
the lead time afforded by early warnings. 40

Despite these advancements, this research has several 
limitations. The temperature and SPI values used in this 
study were averaged from two weather stations, CIMH and 
GAIA, which were chosen for their long, high-quality 
records, which allow for more accurate SPI calculations, 
and proximity to populated areas. However, these data 
might not fully capture the climatic conditions across the 
entire island. Furthermore, seasonal climate forecasts 
increase in uncertainty with lead time due to systematic 
biases, poor predictability of interannual climate variability, 
and imperfect initial conditions. These factors will subse-
quently affect dengue risk predictions, although the direct 
assessment of these impacts is beyond the scope of this 
study. To minimise uncertainty, we make use of multiple 
ensemble members and persistence components in the 
short-lag SPI and temperature forecasts.
Dengue infection data only included laboratory-

confirmed symptomatic cases from individuals who 
sought medical care. Thus, infected individuals who were 
asymptomatic or had mild symptoms, constituting most
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dengue infections, 41 were not captured. For the early 
warning system, time constraints in accessing real-time 
dengue cases might result in incomplete counts due to 
delays in receiving data from testing laboratories. Despite 
this limitation, our prediction model showed a consistent 
detection of true outbreaks in the absence of close-to-real-
time cases and could be adapted accordingly if such data 
became unavailable. Other relevant data, such as serology, 
vector control activities, interventions, and entomological 
indices, could enhance model accuracy, although high-
quality records are challenging to obtain. Growing evi-
dence suggests that entomological data might not reliably 
predict dengue outbreaks, with multiple studies finding 
little evidence of direct associations between vector indices 
and dengue cases. 42–46 In Barbados, the MHW highlight that 
vector surveillance efforts often increase during suspected 
dengue outbreaks to evaluate the effectiveness of inter-
ventions. Reactive surveillance can compromise the quality 
and consistency of entomological data, thereby distorting 
causal relationships with reported cases. 47 The inclusion of 
data on water supply shortages could provide a more direct 
representation of water storage practices, rather than rely-
ing solely on assumptions linked to drought; however, to 
our knowledge, these data were not readily available. 
Instead, we opted to use random effects to account for 
unknown temporal variation in dengue incidence. This 
approach, we argue, would factor in inevitable inter-
ruptions in dengue diagnostic and testing capacity during 
the COVID-19 pandemic. In Barbados, most cases of 
COVID-19 occurred between July, 2021, and October, 2022. 
We developed an approach to account for the yearly random 
effect with close-to-real-time case data. This approach 
might result in an underestimation of cases during the high 
season and an overestimation of cases during the low sea-
son, although the seasonal random effect should compen-
sate for such variation. Outputs and parameters for the 
early warning system will need to be monitored and eval-
uated periodically to ensure the prediction model remains 
operationally relevant and reliable over time.
Overall, this study highlights the compound and cascad-

ing effects of climatic extremes on dengue outbreak risk in 
Barbados with interacting long-lag and short-lag predictors, 
and outlines an impact-based forecast model for integration 
into a national dengue early warning system. Additionally, 
we detailed an approach that redefines the dengue season 
and leverages close-to-real-time case data to potentially 
improve the predictive performance of Bayesian mixed-
effects models. In future work, we aim to systematically 
monitor and evaluate the effectiveness of the early warning 
system to understand its real-world performance, including 
the reliability and timeliness of alerts, response to alerts, 
quantifiable reductions in case numbers and outbreaks, and 
financial costs. This monitoring is crucial to ensure the early 
warning system provides tangible benefits to the wellbeing 
of the communities it is intended to serve. Further testing of 
the long–short-lag interaction model could also be carried 
out in other settings with endemic climate-sensitive

infectious diseases to evaluate its robustness across different 
epidemiological and climatic contexts.
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