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Abstract 
Tuberculosis household contacts are at high risk of developing tuberculosis. Tuberculo-

sis preventive therapy (TPT) is highly effective, but implementation is hindered by limited 

accessibility of diagnostic tests aimed at detecting Mycobacterium tuberculosis (Mtb) 

infection. Development of Mtb infection prediction models to guide clinical decision- 

making aims to overcome these challenges. We used data from 1905 tuberculosis house-

hold contacts (age ≥10 years) from Zimbabwe, Mozambique and Tanzania to develop two 

prediction models for Mtb infection determined by interferon-gamma release assay (IGRA) 

using logistic regression with backward elimination and cross-validation and converted 

these into a risk score. Model performance was assessed using area under the receiver 

operating characteristic curve (AUROC), sensitivity, and specificity. We developed a basic 

model with six predictors (age, caregiver role, index case symptom duration, index HIV 

status, household crowding, and index GeneXpert MTB/Rif results) and a comprehensive 

model with eleven predictors. The basic and comprehensive risk scores showed limited 

predictive capability (AUROC 0.592, sensitivity 76%, specificity 35% and AUROC 0.586, 

sensitivity 76%, specificity 36% respectively), with considerable overlap across IGRA- 

positive and -negative individuals. Neither model conferred net benefit over a treat-all 

strategy. Overall, our results suggest that the prediction models developed in this study do 

not add value for guiding TPT use in high-tuberculosis burden settings. This likely reflects 

complex Mtb transmission dynamics at the household- and community-level, variation  

in individual-level susceptibility and immune response, as well as limited accuracy of 

IGRA testing. Improved diagnostics to determine Mtb infection status in terms of ease- 

of-use, accuracy, and costs are needed.
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Introduction
Whilst in 2020 COVID-19 briefly overtook tuberculosis (TB) as the leading cause of death 
due to an infectious disease, TB has since regained its lead, despite being both preventable 
and curable [1]. TB is caused by pathogens of the Mycobacterium tuberculosis (Mtb) complex 
and is transmitted primarily by aerosols, putting people living with someone who has TB at 
particularly high risk of Mtb infection [2].

It is estimated that a quarter of the world’s population is infected with Mtb, representing a 
vast reservoir of people at risk of developing TB [3]. One in ten people infected with Mtb will 
progress to TB [4–6], risk of progression can be significantly reduced (≤90%) by preventive 
therapy (TPT) which is an important pillar in the WHO End-TB strategy [7,8]. Identifying 
those with Mtb infection is a critical step in the TB prevention cascade, especially in high- 
burden settings. Household contacts of individuals recently diagnosed with TB represent a 
key population for screening and preventive interventions because of their high likelihood of 
exposure to Mtb [9,10].

The most recent WHO guidelines recommend expanding TPT to all household contacts 
in high-TB incidence countries [11], if possible focused on those with demonstrated Mtb 
infection, but few countries have operationalised this. Diagnostic tests to detect Mtb infection 
include tuberculin skin tests (TST) and interferon-gamma release assays (IGRA). These tests 
require nursing skills for intradermal injections, established cold chain, and repeat patient 
visits or trained laboratory staff and infrastructure. A lack of cheap, rapid and easy to use diag-
nostic tests to screen for Mtb infection partly explains the suboptimal implementation of TPT 
for TB household contacts [12,13].

Given costs and logistics of these tests, most high-TB burden countries either i) recom-
mend TPT for all household contacts without prior testing for Mtb infection, resulting in con-
siderable overtreatment and health-system costs [14], or ii) restrict TPT to high risk groups 
(such as household contacts less than 5 years old and people living with HIV).

Considering these challenges, recent efforts have focused on improving strategies to 
identify Mtb infection among household contacts, including use of prediction models based 
on easily ascertainable risk factors [15]. These models aim to incorporate individual- and 
household-level, environmental, host- and pathogen-related predictors such as proximity to 
the person with TB, time spent with the index case, and the infectiousness of the person with 
TB [16–19]. Ideally, the predictors would be easy to ascertain from the person diagnosed and 
being treated for TB by a nurse or community health worker, thus reducing the burden on 
health systems by prioritizing individuals or households for individual assessment, diagnos-
tic testing and subsequent preventive therapy where indicated. Previous models have shown 
inconsistent performance, with some achieving moderate predictive accuracy in low-TB bur-
den settings but often underperforming in high-TB burden settings [16–19], highlighting the 
challenges of generalizability across diverse populations and epidemiological contexts.

Here, we sought to develop and systematically evaluate whether prediction models can 
accurately predict IGRA positivity as a marker of Mtb infection among adolescent and adult 
TB household contacts in East and Southern Africa, to support targeted provision of TPT 
without IGRA or TST.

Methods
In a dataset of adult and adolescent TB household contacts from Tanzania, Mozambique, and 
Zimbabwe, we developed de novo prediction models for positive IGRA result using a large and 
diverse cohort with information related to household member with TB (index case), house-
hold, and household contact factors, measured at the time of diagnosis of the index case in the 

Funding: ERASE-TB is part of the EDCTP2 
programme supported by the European Union 
(grant number RIA2018D-2508-ERASE-TB to 
NH), the German Center for Infection Research 
(DZIF) (grant number: 02.710 to KK), Swedish 
Research Council (220-23602 to GK) and 
Wellcome Trust (203905/Z/16/Z to CJC). 
Cepheid, Inc., and SD Biosensor provided test 
kits and analyzers at no cost to the Consortium. 
The funders had no role in study design, data 
collection and analysis, decision to publish, or 
preparation of the manuscript.

Competing interests: The authors have 
declared that no competing interests exist.



PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0004340  March 31, 2025 3 / 14

PLOS Global Public Health Mtb prediction models among adult and adolescent household contacts

Early Risk Assessment in TB contactS by new diagnostic tEsts (ERASE-TB) study. Trans-
parent Reporting of a Multivariable Prediction Model or Individual Prognosis Or Diagnosis 
(TRIPOD) guidelines are used for reporting of results [20].

Study population
The study population for the development of prediction models was a large multi-national, 
observational, prospective cohort study (ERASE-TB). Inclusion and exclusion criteria are 
shown in S1 Table. We enrolled household contacts (age ≥10 years) of adults with microbi-
ologically confirmed pulmonary TB (age ≥18 years) with a positive smear (at least +1) and/
or a medium or high-level positive Xpert MTB/Rif sputum result across three sites: Maputo 
(Mozambique), Mbeya (Tanzania), and Harare (Zimbabwe). The enrolment periods were as 
follows: Maputo from 05 August 2021 to 23 March 2023, Mbeya from 31 August 2021 to 08 
February 2023, and Harare from 08 March 2021 to 17 January 2023. A total of 2109 household 
contacts were recruited (Fig 1).

Study procedures
The study protocol for ERASE-TB, including details of all study procedures, has been pub-
lished [21]. In brief, at each study visit (every 6 months for a period of up to 24 months), 
enrolled household contacts underwent TB screening (WHO symptom screen and chest 
X-ray, followed by Xpert MTB/Rif Ultra if either was suggestive of TB) and collection of 

Fig 1.  Flow diagram illustrating participants recruited and selected for analysis from the ERASE-TB study.

https://doi.org/10.1371/journal.pgph.0004340.g001

https://doi.org/10.1371/journal.pgph.0004340.g001
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samples for novel diagnostic tests and biobanking. All household contacts who were not 
known to be living with HIV were offered HIV testing. IGRAs (STANDARDTM F TB-Feron 
FIA [IFN-gamma; SD Biosensor, Republic of Korea]) were conducted at baseline and at subse-
quent visits dependent on reagent availability. Individual- and household-level questionnaires 
collected socioeconomic characteristics, information about living conditions, past medical 
history, and factors known to be associated with Mtb infection.

Outcome
The primary outcome of interest was IGRA binary result (negative or positive) as a marker 
of Mtb infection, interpreted according to the manufacturer’s instructions. For household 
contacts with indeterminant or missing IGRA results at baseline, the next available follow-up 
IGRA result was used to infer baseline results: a negative IGRA result at follow-up was catego-
rised as negative, and a positive IGRA result at follow-up was categorised as positive. House-
hold contacts diagnosed with TB within 30 days of the baseline visit and those with missing or 
indeterminate IGRA result after taking into account follow-up results were excluded from the 
analysis.

Development of prediction models
Analysis was done using R version 4.3.2. Inclusion of candidate predictor variables for the 
newly developed model was based on existing evidence of association with Mtb infection, 
according to reviewed literature [19,22–31] and availability in the ERASE-TB dataset. Vari-
ables related to the person diagnosed and treated for TB were regarded as household-level 
variables. Prior to model development, descriptive analyses were conducted. Continuous data 
were summarized by the mean and standard deviation or median and interquartile ranges, 
while categorical data was summarized as frequencies with percentages. For model develop-
ment, the ERASE-TB dataset was randomly split into model development (70%) and evalua-
tion (30%) datasets. Missing values in predictor variables were classified as “unknown”.

We utilized 10-fold cross-validation technique exclusively on the training data. This tech-
nique involved dividing the training set into 10 equal subsets, iteratively training the model 
on 9 of these subsets, and validating it on the remaining subset. This process was repeated 
10 times, ensuring that each subset served as the validation set exactly once. Performance 
metrics obtained from each fold were averaged to provide a robust estimate of the model’s 
performance.

Two models were developed. We first developed a model with basic individual- and 
household-level predictors, ascertainable from the person with TB by a nurse or community 
health worker using just a questionnaire (basic model). Our goal was to be able to predict 
which household contacts had Mtb infection without having to physically review and assess 
every individual member of the household. We secondly developed a model with all eligible 
individual and household predictors (comprehensive model), to determine whether predic-
tive performance could be enhanced using a more comprehensive approach. S2 Table shows 
candidate predictor variables and how data was collected.

For each model, using the training dataset, we conducted a multiple logistic regression, 
with backward elimination of candidate predictors contributing little predictive value to the 
overall multivariable model, assessed using the “varImp” function in R and examining regres-
sion coefficients and p-values (i.e., sequential removal of variables with the largest p-value and 
least important until variables with p-value < 0.2 remained). To derive a prediction risk score 
to be used by clinicians in resource-limited settings, regression coefficients were normalized 
into scores using the formula:
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	 Score
Coefficient Lowest coefficient

=
−
−

  
Highest coefficient  LLowest coefficient 

 ×10 	

Scores ranged from 0 to 10 (for category with the lowest and category with the highest pre-
dictive impact respectively) and were added up to compute a summative risk score for Mtb 
infection.

Risk score assessment
We assessed the predictive performance of our de novo basic and comprehensive risk scores 
by evaluating the agreement between observed and predicted risks using the held-back eval-
uation dataset. A confusion matrix was then used to assess the model’s sensitivity and speci-
ficity, with a decision threshold of 0.5 and the corresponding maximum Youden Index, which 
indicates the optimal balance between sensitivity and specificity, was calculated. We examined 
area under the receiver operating characteristic (ROC) curves to compare the performance of 
the two risk scores and determine the added value of including detailed clinical information in 
the model. We stratified individuals into low-, medium-, and high-risk groups for Mtb infec-
tion based on score categories.

We also visually displayed the relationship between the scores and the outcome using 
density plots, to understand how well the scores correlated with the outcome measurement. 
Decision curve analysis was used to compare the net benefit of interventions to treat Mtb 
infection based on risk scores against treat-all or treat-none approaches across different 
threshold probabilities.

To evaluate the robustness of the model, a sensitivity analysis was conducted using the 
basic model. This analysis included only participants with baseline IGRA results, excluding 
inferred results. Additionally, the results from the last available IGRA test during follow-ups 
were utilized.

Ethical considerations
Informed written consent, or guardian consent and individual assent for people under the age 
of 18, was obtained from all participants. Ethical approval was granted by all relevant insti-
tutions: the Medical Research Council in Zimbabwe (MRCZ/A/2618), the National Health 
Research Ethics Committee in Tanzania (TMDA-WEB0021/CTR/0004/03), the National Bio-
ethics Committee for Health in Mozambique (541/CNBS/21), and the ethical committees of 
London School of Hygiene & Tropical Medicine, United Kingdom (22522–2) and the medical 
faculty of the Ludwig-Maximilians-Universität München, Germany (20–0771)).

Results

Study population
In ERASE-TB, 2109 household contacts of people diagnosed with pulmonary TB were 
recruited from 822 households between March 2021, and March 2023. A total of 1905 (90%) 
were included in the analysis. Of these, 1720 (90%) had a valid baseline IGRA result and an 
additional185 (10%) had results inferred from follow-up results (Fig 1). 169 (8%) participants 
could not be classified into the outcome of interest even after inferring follow-up results and 
23 (1.1%) were diagnosed with TB at baseline, and thus were excluded from the analysis. 
Therefore, 1905 (90% recruited) household contacts were included in the analysis. Table 1 
describes the baseline individual- and household-level characteristics of included partici-
pants: 62% were female and median age was 27 (interquartile range: 17-42) years with 29% 
of participants being adolescents (10-17 years). A total of 292 (15%) household contacts were 
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Table 1.  Baseline characteristics of participants.

IGRA-Positive IGRA-Negative
N=811 (43%) N=1094 (57%)
N (%) N (%)

INDIVIDUAL LEVEL CHARACTERISTICS (HOUSEHOLD CONTACT)
Country Zimbabwe 332 (49%) 342 (51%)

Mozambique 197 (32%) 411 (68%)
Tanzania 282 (45%) 341 (55%)

Age (years) 10-17 197 (35%) 358 (65%)
18-25 149 (40%) 226 (60%)
26-35 124 (42%) 172 (58%)
36+ 341 (50%) 338 (50%)

Sex Female 511 (43%) 677 (57%)
Male 300 (42%) 417 (58%)

HIV status of household contact HIV negative 693 (44%) 895 (56%)
HIV positive 112 (38%) 180 (62%)
HIV status unknown 6 (24%) 19 (76%)

BMI category* Underweight 72 (43%) 96 (57%)
Normal weight 490 (41%) 697 (59%)
Overweight 155 (44%) 197 (56%)
Obesity 94 (48%) 104 (52%)

Frequency of contact with index person  
with TB

<1 day per week 9 (53%) 8 (47%)
1-3 days per week 26 (43%) 34 (57%)
4-6 days per week 38 (44%) 49 (56%)
Daily 737 (42%) 1002 (58%)

Directly involved in caring for the index person 
with TB

No 437 (39%) 675 (61%)
Yes 374 (47%) 419 (53%)

HOUSEHOLD LEVEL CHARACTERISTICS
Household income per person per day (USD) Median (IQR) 0.55

(0.30–1.06)
0.55
(0.31–0.98)

Impoverishment (< 1.90 USD/day) Yes 751 (42%) 1030 (58%)
No 60 (48%) 64 (52%)

Xpert semi-quantitative grade of TB index case High 499 (44%) 632 (56%)
Medium 312 (40%) 462 (60%)

HIV status of index Unknown 68 (46%) 80 (54%)
Negative 533 (45%) 665 (55%)
Positive 210 (38%) 349 (62%)

Index ART status** Not on ART 48 (29%) 118 (71%)
On ART 162 (41%) 231 (59%)

Index TB presenting symptoms Cough 808 (43%) 1089 (57%)
Haemoptysis 163 (43%) 217 (57%)

Duration of index case symptoms before start 
of treatment (days)

<30 days 91 (31%) 200 (69%)
30-89 days 348 (41%) 502 (59%)
≥90 days 372 (49%) 387 (51%)

Crowding*** No 619 (41%) 876 (59%)
Yes 192 (47%) 218 (53%)

Footnotes:
BMI = body mass index.
IGRA = interferon-gamma release assay.

(Continued)
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living with HIV. Overall, 811/1905 (43%) of the included participants were IGRA positive. The 
highest prevalence of IGRA positivity was in Zimbabwe (49%) and among older adults (50%, 
compared to 33% among adolescents aged 10-14 years).

Development and validation of risk prediction model
The training subset consisted of 1334 (70%) household contacts, and evaluation subset 
571 (30%). Eleven individual- and household-level Mtb candidate predictor variables were 
included in the initial multivariable logistic regression (S1 Code), constituting the comprehen-
sive model (S3 Table). The final basic model included six individual- and household-level pre-
dictors. Individual-level predictors were age, and whether the household contact cared for the 
index, while household-level predictors included duration of illness of the index case, index 
HIV status, Xpert/smear positivity level, and household crowing according to United Nations 
definition (≥3 people per room) (Table 2). TB index cases, not on ART contributed the lowest 
score while index symptom duration of more than 3 months had the highest score.

Neither the basic nor the comprehensive model achieved adequate prediction for positive 
IGRA result among TB household contacts. The basic model yielded low AUROC (0.592; Fig 
2). At a threshold of 0.5, the model had a sensitivity of 76% (95% CI: 70 – 79), specificity of 
35% (95% CI: 27 – 39), and Youden Index of 0.08 (95% CI: 0.01 – 0.15). The comprehensive 
model had an equally low AUROC of 0.586, while at a threshold of 0.5 the model had a sensi-
tivity of 76% (95%CI: 72 – 82), specificity of 36% (95% CI: 30 – 42) and Youden Index of 0.13 
(95% CI: 0.05 – 0.19). Sensitivity analysis of the basic model using only participants who had 
baseline IGRA results available (without inferring missing or indeterminate baseline result) 
as well as using results of last available IGRA test result during follow-up did not change the 
model performance, yielding AUROCs of 0.61 and 0.60 respectively (S1 Fig).

We developed a risk score to assess the risk of positive IGRA result in a clinical setting, 
based on the basic prediction model (Table 2). Each response to a variable in the final model 
contributed to the score independently. The maximum possible risk score for the model was 
42, while the minimum score was 20. Risk score categories were developed as low positive 
IGRA risk (<30), medium positive IGRA risk (30≤score>35), high positive IGRA risk score 
(≥35). These categories were determined based on the distribution of the scores, where 
approximately 25% of the scores are less than 30, and the upper 25% are above 35. This 
approach was taken to ensure a balanced representation across the risk categories. Risk score 
categories among IGRA positive and IGRA negative participants showed a small difference 
in proportions of people categorized as medium- and low-risk in both groups (Fig 3A). Using 
this risk stratification, the basic model classified 53% and 8.3% of IGRA negative participants 
as medium and high risk respectively, while 24% of IGRA positive participants were classified 
as low risk. The density plot revealed substantial overlap between the scores assigned to IGRA 

TB = tuberculosis.
IQR = inter-quartile range.
ART = anti-retroviral therapy.
UN = United Nations.
USD = United States Dollars
*BMI Categories were created using the WHO categories [32]
**ART status among index cases with HIV only
***Crowding categorised as per UN Habitat definitions (≥3 people per room) [33].

https://doi.org/10.1371/journal.pgph.0004340.t001

Table 1.  (Continued)

https://doi.org/10.1371/journal.pgph.0004340.t001
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negative and positive participants, with the IGRA positive group showing a distribution with 
slightly higher scores compared to the IGRA negative group (Fig 3B). This overlap implies 
that the model does not distinguish between these two groups effectively, overestimating 
risk for IGRA negative contacts, and underestimating risk for IGRA positive contacts. This 
is further evidenced by the calibration plot (Fig 3C), (S2 Code) which demonstrates that the 
model’s predicted probabilities do not align well with the observed outcomes.

Decision Curve Analysis (DCA) of our basic model predicting IGRA positivity compares the 
net benefit of interventions to treat Mtb infection based on risk scores against treat-all or treat-
none approaches across different threshold probabilities (i.e., the probability of disease at which 
the health system/provider would provide treatment). When considering our model in the con-
text of TB preventive interventions for TB household contacts, the net benefit of treat-all decision 
surpasses that of using risk scores across the range of threshold probabilities considered (Fig 4).

Discussion
TB remains a significant global health challenge, particularly in resource-limited settings 
where the burden of disease is highest [34]. Using risk prediction tools to guide use of TPT 
among household contacts has been proposed as one pragmatic approach to improve delivery 
of TPT in settings where current diagnostic tests are not feasible.

Table 2.  Basic model predictors of Mtb infection.

Coefficient P-Value Score
Mtb risk factors
Age (years)
10-14 4
15-17 0.2813 0.217 6
18-25 0.1880 0.331 5
26-35 0.3227 0.104 6
36 + 0.6677 <0.001 9
Cared for the index
No 4
Yes 0.2785 0.021 6
Index HIV status
Negative 4
Positive, not on ART -0.4768 0.027 0
Positive, on ART -0.0623 0.668 3
Unknown 0.3231 0.126 6
Index Symptom duration
<1 month 4
1≤ months<3 0.5828 0.001 8
3 months and above 0.8447 <0.001 10
Household crowding (≥3 people per room)
No 4
Yes 0.2629 0.058 6
GeneXpert MTB/Rif Ultra index positivity
Medium 4
High 0.1801 0.498 5
Lowest/Highest possible score 20/42

https://doi.org/10.1371/journal.pgph.0004340.t002

https://doi.org/10.1371/journal.pgph.0004340.t002
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Our findings do not support use of risk prediction tools for Mtb infection - as defined 
herein by IGRA testing – among adolescents and adults in high-TB burden settings. We devel-
oped two new tools using high-quality granular data from a research cohort of adolescents 
and adults from TB-affected households. Both achieved poor predictive accuracy, AUC, and 
sensitivity and specificity estimates. In short, each model was no better than random selection. 
For example, our basic risk score inadvertently misclassified 61% of individuals who were not 
infected with Mtb determined by IGRA as being medium- to high-risk. Given the high pro-
portion of household contacts misclassified by these scores, we do not recommend their use in 
clinical practice.

Our study highlights the challenges of developing effective prediction models for Mtb 
infection in high-TB burden settings. While previous models, such as the Mandalakas score, 
have shown reasonable performance in specific populations (e.g., children younger than six 
years), their application to adolescent and adult populations in high-TB burden environments 
remains problematic [18,19,31]. However, this finding is in contrast with Mtb infection pre-
diction models developed in low-TB burden settings that have achieved reasonable predictive 
performance among adolescents and adults [16,17]. This brings to attention the complexity 
of Mtb transmission dynamics in high-TB burden settings, where community transmission is 
pervasive, making it difficult to rely solely on household-related predictors to identify at-risk 
individuals [35–37]. In high-TB incidence settings, household-related risk factors alone do not 
sufficiently capture the multifaceted nature of Mtb exposure and infection from a single expo-
sure, as prior transmission events inside or outside the household may have occurred [35]. 
The high prevalence of Mtb infection in such environments complicates the identification of 
new transmission events and makes it difficult to discriminate between individuals recently 
infected and those with prior exposure.

Fig 2.  Performance of basic model and comprehensive models.

https://doi.org/10.1371/journal.pgph.0004340.g002

https://doi.org/10.1371/journal.pgph.0004340.g002
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Additionally, the high prevalence of HIV in these settings may partly explain the poor 
performance of Mtb prediction models. Evidence suggests that HIV-related immunosuppres-
sion in people with TB can reduce the infectiousness of the individual [38]. This was reflected 
in our analysis, where HIV-positive index cases on ART were assigned the lowest risk scores. 
These findings further underscore the intricate interplay between community-level transmis-
sion dynamics and individual-level factors, such as HIV status and ART use, in shaping Mtb 
transmission patterns.

While both our models did not achieve good enough performance, this study represents an 
important step forward in understanding what is needed to provide targeted treatment of Mtb 
infection for adolescents and adults in high burden settings. In this context, prediction models 
cannot adequately discriminate between Mtb infected and non-infected adolescent and adults, 
as measured using IGRA. Also, given that IGRA is an imperfect reference standard with lim-
ited accuracy [39], the study might be predicting the wrong outcome especially when assessed 
at one time-point only. Therefore, a more nuanced understanding of Mtb transmission 
dynamics, recognizing the complex interplay between household-related factors and broader 
community-level influences is needed. Further collaborative, interdisciplinary innovation is 
essential to develop more accurate, easy-to-use, affordable and accessible tests that identify 
people with recent Mtb infection, those infected in the distant past and those not infected to 
inform targeted interventions for TB control and prevention.

Fig 3.  Performance of de-novo risk scores on positive and negative IGRAs. 

https://doi.org/10.1371/journal.pgph.0004340.g003

https://doi.org/10.1371/journal.pgph.0004340.g003
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Poor model performance may however also reflect the limitations of our study. For exam-
ple, we only enrolled household contacts who were exposed to highly infectious TB index 
cases. Bacterial burden in the index case, most frequently categorized as smear positive and 
smear negative, is strongly associated with Mtb infection [40–42]. However, in this study TB 
index cases were only eligible if their sputum samples tested smear-positive or medium or 
high level Xpert MTB/Rif positive (which is equivalent to smear positive) meaning heteroge-
neity of bacterial burden in the index cases was limited. This limits our ability to generalize 
findings to lower bacterial burden categories (e.g., smear-negative or trace Xpert positive), 
which have also been shown to contribute to Mtb transmission.

In conclusion, our study provides valuable insights into the challenges of developing and or 
implementing predictive models for Mtb infection, ultimately aimed at identifying those most 
recently infected, in high burden settings characterized by intense community transmission. 
Use of individual and household predictors does not add significant benefit over the treat-all or 
treat-none strategies currently being the most implemented strategy in low resource settings.
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