
Article https://doi.org/10.1038/s41467-024-55198-7

Machine learning derived retinal pigment
score from ophthalmic imaging shows
ethnicity is not biology

Anand E. Rajesh1,2,37, Abraham Olvera-Barrios 3,37, Alasdair N. Warwick3,4,
Yue Wu1,2, Kelsey V. Stuart 3, Mahantesh I. Biradar 3, Chuin Ying Ung5,
Anthony P. Khawaja 3,6, Robert Luben 3,6, Paul J. Foster 3,
Charles R. Cleland7,8, William U. Makupa8, Alastair K. Denniston 9,
Matthew J. Burton3,7, Andrew Bastawrous8,10, Pearse A. Keane 3, Mark A. Chia3,
Angus W. Turner 11, Cecilia S. Lee 1,2, Adnan Tufail 3, Aaron Y. Lee 1,2,
Catherine Egan 3 & UK Biobank Eye and Vision Consortium*

Few metrics exist to describe phenotypic diversity within ophthalmic imaging
datasets, with researchers often using ethnicity as a surrogate marker for bio-
logical variability. We derived a continuous, measured metric, the retinal pig-
ment score (RPS), that quantifies the degree of pigmentation from a colour
fundus photograph of the eye. RPS was validated using two large epidemiolo-
gical studies with demographic and genetic data (UK Biobank and EPIC-Norfolk
Study) and reproduced in a Tanzanian, an Australian, and a Chinese dataset. A
genome-wide association study (GWAS) of RPS from UK Biobank identified 20
lociwith knownassociationswith skin, iris andhair pigmentation, ofwhicheight
were replicated in the EPIC-Norfolk cohort. There was a strong association
between RPS and ethnicity, however, there was substantial overlap between
each ethnicity and the respective distributions of RPS scores. RPS decouples
traditional demographic variables from clinical imaging characteristics. RPS
may serve as a useful metric to quantify the diversity of the training, validation,
and testing datasets used in the development of AI algorithms to ensure ade-
quate inclusion and explainability of the model performance, critical in evalu-
ating all currently deployed AI models. The code to derive RPS is publicly
available at: https://github.com/uw-biomedical-ml/retinal-pigmentation-score.

Retinal diseases are a significant global cause of vision loss, but not all
populations are affected equally. In 2020, there were estimated to be
103.1 million adults worldwide with diabetic retinopathy (DR) and 196
million people with age-related macular degeneration (AMD)1. Studies

have found DR prevalence is highest in Africa (35.90%), then North
America and the Caribbean (33.30%). In contrast, AMD has a sig-
nificantly higher prevalence in people of European than in those of
Asian or African ancestry2,3. In response to the overwhelming global
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burden of disease, many artificial intelligence (AI) algorithms have
been developed to enable more efficient care delivery. These AI algo-
rithms have been widely published, and several of them are already in
clinical practice for providing automated diagnoses of diseases suchas
DR, AMD, and glaucoma4–8.

The success of AI algorithms in ophthalmology is partly due to the
availability of large imaging datasets that have been collected from
routine clinical practice9. Describing the demographic characteristics
of these large datasets used for training is critical for understanding
algorithm generalisability, limitations and overall performance.
Despite this need, less than 20% of publicly available retinal imaging
datasets contain patient characteristics such as age, sex, or ethnicity10.
Studies that comparemodel performance across different populations
are limited due to methodological limitations and unlabelled data,
making bias evaluation challenging4,11,12.

Previous studies assessing bias in general AI algorithms have
found that the performance of image-based algorithms is often worse
amongpeoplewith a greater degreeof skin pigmentation, for instance,
in skin cancer classification, facial recognition andobject detection13–15.
In these studies, image pixel values aremeasured and converted into a
categorical pigmentation scale by human labellers or an algorithm.
These categories are then used to estimate the relative performanceof
algorithms within subcategories of pigmentation, either in the pre-
sence or absence of additional demographic data. Additionally, these
scales allow for the decoupling of race/ethnicity from the biological
differences in skin pigmentation16.

In the eye,melanin is present in the uvea (iris, retina, and choroid)
and is responsible for blue or brown iris colour and retinal
pigmentation17–22. We aimed to develop a continuous scale called the
Retinal Pigment Score (RPS) to quantify the background pigmentation
of retinal colour fundus photographs captured inUKBiobank.We then
sought to validate the RPS by comparing against the self-reported
ethnicity of the UK Biobank participants and by performing both
genome-wide (GWAS) and phenome-wide (PheWAS) association stu-
dies. Mechanistic insight was attained through gene prioritisation and

functional annotationwhilst causal associationswith clinically relevant
outcomes were tested using Mendelian randomisation. We validated
our results with a replication GWAS study in an independent cohort
(European Prospective Investigation into Cancer and Nutrition [EPIC]--
Norfolk) and reproduced the RPS method in three non-white popula-
tions (Tanzanian, Australian and Chinese datasets).

Results
Retinal Pigment Score
We designed an algorithm to extract the background retinal pigmen-
tation from colour fundus photographs. Briefly, the algorithm uses
published open-access deep learning models23 to identify and exclude
ungradable images, create amaskof the tissue that excludes the retinal
vasculature andoptic nerve, thenfinds the average chromaticity of this
background tissue. Chromaticity in this study is the quality of colour
independent of illumination measured in the CIELAB colour space24.
The chromaticity is then converted into a single continuousmetric: the
RPS (Fig. 1, Methods Retinal Pigmentation Score). A greater RPS cor-
relates with a greater degree of pigmentation in the retina. A total of
135,592 colour fundus photographs (67,982 right eyes, 67,610 left
eyes) from 68,504 participants in the UK Biobank study were available
for analysis. From these, 74,851 images (40,329 right eyes, 34,388 left
eyes) from 44,320 participants (55% female) were deemed gradable by
our pipeline and included in the analysis (Supplementary Table 1). A
previous studyof thisdataset deemedonly 11%of the images as “Good”
quality when assessed by human graders. Additionally, this study
described a similar imbalance in laterality25. Supplementary Fig. 1
shows the percentage area of the image identified as vessels and optic
discwas comparable across ethnic groups.Moreover, the approximate
area of the optic nerve head would fall in line with previous reports by
ethnicity26. Additionally, small differences in the size of the segmen-
tationmasks of the vessels and optic disc have a minimal effect on the
RPS, as shown in Supplementary Fig. 2. The patient-level character-
istics are summarised in Supplementary Table 2. The median age was
56 years (Interquartile Range[IQR]: 49-63) and 92% (40,704/44,320) of
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Fig. 1 | Schematic showing the method to generate the retinal pigmentation
score (RPS) from a colour fundus image. Input images are fed into the deep
learning algorithm to generate segmentation masks. These are added together to

make a retinal background mask, which is then transformed into L,a,b colorspace.
The chromaticity vectors are then extracted and transformed by the principal
component analysis model to create the RPS. Created with Biorender.com.
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participants self-described their ethnicity as white. The proportional
eigenvalues of the PrincipalComponentAnalysis used tonormalise the
RPS of the first two dimensions were 0.899 and 0.101. The median
(IQR) RPS was −0.82 (−9.89, 10.39). Each ethnic group had images in
every quintile of the RPS range, except for Chinese participants in the
lowest (less pigmented) quintile (Fig. 2).

Our RPSmethodwas reproduced in three independent non-white
populations from cohorts outside of the UK (described here by their
geographical location as “Tanzanian, Australian, and Chinese” data-
sets. Self-described ethnicity data was not available for the Tanzanian
and Chinese datasets and was described as Indigenous Australian for
the Australian dataset). To aid in comparison, we elected to fit the RPS
model trainedon theUKBiobank to thesedatasets to create RPSwith a
unified scale. A total of 1150 colour fundus photographs of 675 eyes
from 348 people were included in the Tanzanian dataset, 715 colour
fundus photographs of 715 eyes from 439 people were included in the
Australian dataset, and 2088 colour fundus photographs of 2088 eyes
from 1431 peoplewere included from theChinese dataset. TheChinese
dataset was from the publicly available Ocular Disease Intelligent
Recognition (ODIR) dataset27. Supplementary Table 1 provides details
on the number of images analysed, included, and deemed as inade-
quate quality, hence excluded by the pipeline. The median RPS were
40.24 (IQR: 36.38–44.94) in the Tanzanian dataset, 27.92 (18.67–35.17)
in the Australian dataset, and 29.79 (21.94–35.41) in the Chinese data-
set. Figure 2 shows the RPS distribution from Tanzanian, Australian,
and Chinese datasets in relation to the RPS distribution of self-
described ethnicity groups from the UK Biobank.

Retinal pigment score reliability
We assessed RPS reliability in an independent dataset of 27 eyes from
24 patients with two images per eye. The one-way consistency intra-
class correlation coefficient (ICC) was 0.920 (95% CI 0.834, 0.963,
p-value < 0.001).

Among 30,407 participants in the UK Biobank that had available
imaging, the mean and standard deviation of the difference in RPS
between the right and left eye was −1.36 (8.30) and the one-way ICC
was 0.788 (95% CI: 0.784, 0.792). In contrast, the use of the L, a, b
vectors to calculate RPS among the samegroup of participants yielded
a mean score of −2.40 (10.70) and a one-way ICC of 0.757 (95% CI:
0.753, 0.762).

Associations of RPS with clinical variables
We first examined associations of mean RPS (average score between
right and left eyes per participant) with sociodemographic and clinical
variables. Supplementary Fig. 3 shows the association of RPS with the
covariates of interest (deciles of continuous variables) adjusted for
age, sex, and UK Biobank centre. Non-white self-described ethnicities
were associated with increased RPS when compared with white indi-
viduals. A positive graded association was observed with increased
skin pigmentation, hair pigmentation, and deprivation. There was an
inverse linear association between RPS and height.

Next, the associations were tested with multivariable linear
regression adjusting for age, sex, height, self-described ethnicity, self-
described hair and skin colour, Townsend deprivation index (TDI),
refractive status, and UK Biobank assessment centre (Supplementary
Table 3). The RPSwasmodelled as a z-score. Coefficients represent the
standard deviation (SD) change in RPS per specified increase in cov-
ariates or the standardised difference between groups. Formal var-
iance inflation factor testing on the final model with adjusted
generalised standard error inflation factors showed no strong colli-
nearity (Supplementary Table 4) When compared with very fair skin
colour, darker skin tones showed a graded increase in RPS (p for linear
trend 2.5 × 10−231). People with black skin colour showed a 0.83 SD
increase in RPS (95%CI 0.72, 0.94; p 5.7 × 10−48) when compared with

people of very fair skin colour. Similarly, when compared with people
with blonde hair, darker hair colours showed a graded positive asso-
ciation with RPS (p for linear trend 2.2 × 10−155). People with black hair
colour showed a 0.53 SD increase in RPS when compared with people
with blonde hair colour (p 4.8 × 10−122).

There was a strong association of ethnicity with RPS. When com-
pared with white individuals, Chinese (1.49, [1.35, 1.62]; p 4.6 × 10−103)
and black (1.15, [1.07, 1.23]; p 1.6 × 10−158) people showed the largest
effect sizes. However, within ethnic groups, there was a wide spread of
overlapping RPS values (Fig. 2). Every 5-year rise in age was associated
with a small 0.02 SD increase in RPS (p 1.3 × 10−8), and every 5 cm
increase in height conferred a small −0.02 SD change in RPS (p 3.6 ×
10−8). However, sensitivity analyses with stratified linear regression
models across the three main ethnic groups showed an association in
different direction for age in white ethnic groups when compared with
models from Black and Asian ethnic groups (Supplementary Table 5).
The association with height remained significant and in the same
direction for white and Asian ethnic group models, and was not sig-
nificant for Black ethnic groups. Supplementary Fig. 4 showsmean RPS
adjusted for sex, andUKBiobank centre by deciles of age and height for
the three main ethnic groups. A non-linear association was evidenced
for refractive status. A higher RPS was observed in people with emme-
tropia (0.16 [95%CI 0.11, 0.20]; p 1.1 × 10−12), and hyperopia (0.11, [0.06,
0.15]; p 1.1 × 10−6) when compared with people with high myopia. The
most deprived TDI quintile showed a 0.06 SD increase in RPS when
compared with the least deprived TDI (p for linear trend 3 × 10−4).
Townsend Deprivation Index showed, however, an association in a
different direction in sensitivity analysis in the white ethnic group
model when compared with the Black ethnic group model (Supple-
mentary Table 5). Sex was not associated with RPS.

Genome-wide association study discovery analysis
A genome-wide association study (GWAS) was performed to assess
potential associations with standardised mean RPS (average score
between right and left eyes per participant); robust associations would
potentially support the biological plausibility of the metric. The dis-
covery analysis included 37,067 individuals of European ancestry from
theUKBiobank cohort. The genomic inflation factor was 1.071, and the
linkage disequilibrium score regression intercept was 1.013 with a ratio
of 0.09. Conditional analysis identified 20 independent autosomal
genomic loci reaching genome-wide significance (p < 5 × 10−8), the
majority ofwhich (17/20) havepreviously been shown to associatewith
hair, skin and/or iris colour (Table 1, Fig. 3).

Positional and expression quantitative trait locus mapping in
retina, skin and dermal fibroblasts were performed to identify candi-
date causal genes at each independent risk locus. This produced a set
of 100 prioritised genes (Supplementary Table 6), which were then
annotated inbiological context. A number of thesehad existing entries
in the GWAS Catalog28, with enrichment for traits including hair, eye
and skin colour, as well as various skin malignancies (Supplementary
Fig. 5). Enrichment for several Gene Ontology entries was also appar-
ent, especially those related to melanin and pigmentation biological
processes (Supplementary Fig. 6).

Genome-wide association study replication analysis
A replication GWAS was conducted in the independent EPIC Norfolk
Eye Study cohort, which is a predominantly white (99.7%), longitudinal
cohort fromNorfolk, England29. This replication analysis included 4273
individuals of European ancestry. Due to differences in genotyping
platforms and imputation methods, three of the lead variants high-
lighted in the discovery GWAS were either unavailable or did not pass
quality control in the replication dataset (rs173273, rs762948237, and
rs766338951). Replication was therefore assessed for 17 out of the 20
lead variants.
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Fig. 2 | Representative fundus photos with associated RPS. a Randomly sampled
colour fundus photographs from each UK Biobank self-reported ethnicity and from
the Tanzanian, Australian, and Chinese (ODIR) datasets, sorted by quintiles of retinal
pigment score (RPS) across the entire distribution of RPS for the UK Biobank cohort.
The RGB colour of the pixel value that is converted into RPS as well as the RPS is
shown at the bottom of each fundus photograph. Black spaces represent when there
are no suitable images within the respective ethnicity subgroup and quintile

b Normalised kernel density estimation plot of the distribution of RPS for all parti-
cipants groupedby self-reported ethnicity as reported in theUKBiobank aswell as the
Tanzanian, Australian, and Chinese (ODIR) datasets. Relative frequencies are nor-
malised so the area under each curve is equal for each ethnicity subgroup. The
subpanel consists of examples where for a given RPS and the a,b values in the CIELAB
colour space are constant but the L vector changes. The x-axis is shared in both
subpanels. Source data are provided as a Source Data file.
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The direction of effect was concordant for all 17 variants and
highly correlatedwith estimates from the discovery analysis (Pearson’s
rho = 0.986 [95% CI: 0.961, 0.995]) (Fig. 4). Of the 17 variants, 15 var-
iants were significant at p <0.05, 8 remained significant after adjusting
for multiple testing (p <0.05/17), and 2 achieved genome-wide sig-
nificance (Supplementary Table 7).

Phenome-wide association study
A phenome-wide association study (PheWAS) was performed within
the discovery UK Biobank GWAS sub-cohort (n = 37,067) to assess
potential associations between standardisedmean RPS (average score
between right and left eyes per participant) with 308 diseases. After
correction for multiple testing (p < 0.05/308), significant associations
were observed for higher RPS (indicating more pigmentation of the
retina) with decreased odds of ‘Actinic keratosis’ (OR: 0.87, 95% CI:
[0.81, 0.93]), ‘Primary Malignancy - Other Skin and subcutaneous tis-
sue’ (0.90 [0.86, 0.94]), and ‘Migraine’ (0.91, [0.87, 0.95]). Higher RPS
was associated with a greater risk of chronic obstructive pulmonary
disease (COPD); (1.11, [1.05, 1.16]). A further 26 diseases were sig-
nificantly associated at p < 0.05, including decreased odds for ‘Primary
Malignancy - Malignant Melanoma’ (p =0.02) (Supplementary Fig. 7,
Supplementary Table 8).

Mendelian randomisation
Two-sample Mendelian randomisation (MR) analyses were performed
to probe potential causal relationships between genetically predicted
retinal pigmentation with outcomes of particular interest, as high-
lighted by the PheWAS analysis, using outcome summary statistics
from FinnGen30 (Supplementary Table 9). 13 variants were included in
the instrumental variable following clumping of the 20 conditionally
independent lead variants from the discovery RPS GWAS, and har-
monisation with FinnGen (see Methods). All variants had an F-statistic
>10 (mean 139.9). Inverse-variance weighted (IVW) MR estimates pro-
vided evidence for protective causal effects on actinic keratosis (OR
0.44 per SD RPS [0.24, 0.83]; P =0.01), basal cell carcinoma of the skin
(OR 0.59 per SD RPS [0.38, 0.92]; P =0.02), squamous cell carcinoma

of the skin (OR0.38per SDRPS [0.20, 0.73];P =0.003), non-melanoma
skin cancer (OR 0.40 per SD RPS [0.22, 0.73]; P =0.03) and malignant
melanoma of the skin (OR 0.60 per SD RPS [0.38, 0.94]; P =0.003).
These findings were supported by weighted median, weighted mode,
and MR-Egger sensitivity analyses (Supplementary Table 10, Supple-
mentary Fig. 8–12). Despite the presence of global heterogeneity for
the MR instrument (Cochran’s Q statistic P <0.001), the MR-Egger
intercept test did not indicate average directional pleiotropy (P > 0.05)
(Supplementary Table 11). There was no evidence for a causal rela-
tionship with either COPD or migraine (Supplementary Table 10,
Supplementary Figs. 13, 14).

Discussion
We introduce a metric, the RPS, which quantifies the background
pigmentation of the retina from colour fundus photographs along a
continuous scale and is strongly associated with genetic variants
linked to human skin, eye, and hair phenotypes with replication in an
additional cohort. We studied datasets derived from people living in
the UK, including more than 3000 people who describe their own
ethnicity as not white, and from people with diabetes living in Tan-
zania (with a single self-reported ethnicity), people living in Australia
who describe their ethnicity as indigenous Australian or Aboriginal
and Torres Strait Islander, and more than 1,400 people living in
China. The RPS captures the biological variability of retinal colour
without recourse to the distinct, social and political constructs of
race and ethnicity. In our study, there is a significant overlap in the
distribution of RPS among a variety of ethnic groups and a wide
range of RPS within each ethnicity (Fig. 2). Many self-described eth-
nicities have RPS that fall within each quintile of the RPS distribution,
a feature that makes it impossible to determine ethnicity from
RPS alone.

Pigmentation is found everywhere in the body and is often stu-
died in relation to skin tone. In the field of dermatology, many scales
describe the degree of pigmentation in the skin. The Fitzpatrick clas-
sification of skin types (FST), developed in 1975, categorises skin col-
our into 6 types based on the skin’s reaction to UV radiation exposure,

Table 1 | Genome-wide significant associations with retinal pigment score in the UK Biobank cohort

Rs identifier chr:pos [hg19] EA/OA (EAF) Beta (95% CI) P Nearest gene Hair colour Skin colour Eye colour Replicated

rs6670870 1:205155177 A/T (0.76) −0.09 (−0.11; −0.08) 8.7E−36 DSTYK Yes

rs173273 1:212446689 G/T (0.41) 0.04 (0.02; 0.05) 2.9E−08 PPP2R5A Yes Yes

rs762948237 3:129178587 TCTTC/T (0.87) 0.05 (0.03; 0.07) 2.3E−08 IFT122

rs16891982 5:33951693 C/G (0.02) 0.52 (0.48; 0.56) 1.5E−135 SLC45A2 Yes Yes Yes Yes

rs12203592 6:396321 C/T (0.79) 0.13 (0.11; 0.14) 2.4E−59 IRF4 Yes Yes Yes Yes

rs62425803 6:134330249 G/A (0.81) 0.05 (0.04; 0.07) 1.4E−11 TCF21 Yes

rs117756744 7:100277212 G/A (0.98) 0.18 (0.14; 0.23) 5.4E−17 GNB2 Yes Yes Yes

rs1325117 9:12613472 G/A (0.36) 0.06 (0.05; 0.07) 3.0E−19 TYRP1;LURAP1L Yes Yes Yes

rs11023814 11:16007053 C/G (0.43) 0.04 (0.03; 0.06) 2.2E−12 SOX6 Yes Yes

rs150527451 11:68817897 G/A (0.89) 0.16 (0.14; 0.18) 1.7E−53 TPCN2 Yes Yes Yes

rs1060435 11:68855595 A/G (0.59) 0.07 (0.05; 0.08) 1.1E−24 TPCN2 Yes Yes Yes Yes

rs747572 11:87885082 A/G (0.63) 0.05 (0.04; 0.06) 4.9E−14 CTSC Yes Yes Yes

rs1126809 11:89017961 G/A (0.7) 0.07 (0.06; 0.09) 5.0E−27 TYR Yes Yes Yes Yes

rs4762973 12:20710145 A/G (0.75) 0.06 (0.04; 0.07) 7.8E−15 PDE3A

rs10771034 12:23979199 T/A (0.45) −0.04 (−0.06; −0.03) 1.1E−12 SOX5 Yes Yes Yes

rs766338951 13:95169060 CT/C (0.69) 0.08 (0.06; 0.09) 4.6E−30 DCT Yes Yes

rs1800407 15:28230318 C/T (0.91) 0.11 (0.09; 0.13) 1.8E−23 OCA2 Yes Yes Yes Yes

rs12913832 15:28365618 A/G (0.22) 0.44 (0.43; 0.46) 0.0E+00 HERC2 Yes Yes Yes Yes

rs7220155 17:79606020 C/T (0.62) −0.06 (-0.07; −0.05) 9.2E−22 TSPAN10 Yes Yes Yes

rs1785433 21:44783282 A/G (0.65) −0.04 (-0.05; −0.02) 1.3E−08 SIK1 Yes

Variants thatmet the replication thresholdof two-sided p < 0.05measuredwith the chi-square test statistic in the EPIC-Norfolk replicationGWASare indicated in the ‘Replicated’ column. There are 3
columns to indicate which variants have previously been shown to be associated with hair, skin or iris colour.
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from type I (fair skin, always burns, never tans) to type VI (deeply
pigmented, never burns)31,32. This scale has been adopted in the field of
computer science to describe the diversity in imaging datasets, and
exposeunderlying biaseswithinAI algorithms. Studies have found that
facial recognition AI performs worse on individuals with darker skin
colour measured by the FST scale14 and object detection software is
worse at detecting darker skinned pedestrians by FST scale from
images of street traffic13. This led to the Google Ethical AI team
recommending that all computer vision models report their perfor-
mance across a range of FST scales33. Recent work to widen the range
of skin tones has also been adopted as an industry standard34.

There is some evidence that retinal colour affects model perfor-
mance. A deep learning model trained to predict age-related macular
degeneration (AMD) found that patients with the minor allele at the
rs12913832/HERC2 locus, associated with retinal pigmentation in our
study, were more likely to have false positives for age-related macular
degeneration35. Another study postulated that drusen, a pathological
feature of AMD, may be more noticeable against a darker fundus
background36. Hirsch et al. showed saturation values from retinal oxi-
metry vary according to retinal pigmentation37,38. We found associa-
tions between the RPS and multiple genetic loci previously associated
with skin, hair and iris colour, providing strong biological evidence
that the RPS does indeed reflect the degree of retinal pigmentation. Of
the 20 genome-wide significant loci identified by conditional analysis
in the discovery GWAS analysis, 17 had pre-existing evidence for being
associated with hair, skin or iris pigmentation, including 3 that are
known to be associated with oculocutaneous albinism (TYR, OCA2
and TYRP1)39. Furthermore, despite differences in study populations
and cameras, we observed robust replication for these loci in the EPIC-
Norfolk cohort and a strong correlation between beta coefficients
in the two cohorts. This suggests that despite a range of input

data characteristics, the RPS is still estimating retinal pigmentation.
Post-GWAS analyses for a set of 100 prioritised causal genes demon-
strated enrichment for variousmelanin andpigmentationpathways, as
well as enrichment for pigmentation-related traits in the GWAS
Catalog28.

The two most significantly associated loci in the discovery GWAS
analysis were at HERC2 (rs12913832), and SLC45A2 (rs16891982). These
also reached genome-wide significance in the replication analysis. The
former is known to influence melanin production via effects on OCA2
expression, and iris colour40,41 while rs16891982 is amissensemutation
in the SLC45A2 gene42. rs12913832 modulates human pigmentation by
affecting chromatin-loop formation between a long-range enhancer
and theOCA2 promoter, leading to decreased expression of OCA2 and
lighter pigmentation40. This variant is strongly associated with brown
iris colour in European populations41. The SLC45A2 gene encodes a
membrane protein involved in the transport of solutes including tyr-
osine (a precursor to melanin synthesis), which is implicated in the
regulation of skin, hair and iris colour43–45. rs16891982 encodes a mis-
sense mutation in SCL45A2, and has been associated with skin pig-
mentation as well as a strong association with risk for cutaneous
malignant melanoma46.

Interestingly, the lead variants at PDE3A, SIK1 and IFT122 have not
been previously associated with skin, hair or iris pigmentation, thus
these new variants may be specifically related to retinal pigmentation.
PDE3A has been previously associated with arteriolar tortuosity47, SIK1
with the regulation of circadian rhythms48, and in vitro work has
implicated alternative splicing for IFT122 to play a role in PRPF31 reti-
nitis pigmentosa pathogenesis49.

The PheWAS analysis suggested that some diseases associated
with skin pigmentationwere also associatedwith retinal pigmentation.
Both actinic keratosis and cutaneous malignancy were inversely

Fig. 3 |ManhattanplotofGWAS results fromthediscovery cohort (UKBiobank,
n = 37067). The Y-axis represents the two-sided p-values from the linear mixed
effects model. Lead variants identified by GCTA-COJO are annotated with the
nearest gene. Points are truncated at −log10(p) = 70 for clarity. The dashed red line

indicates genome-wide significance (p = 5 × 10−8) which is adjusted for multiple
comparisons and the p-values are two-sided and calculated with the z-statistic.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-55198-7

Nature Communications |           (2025) 16:60 6

www.nature.com/naturecommunications


associated with increased RPS at phenome-wide significance. Malig-
nant melanoma was also inversely associated with increased RPS,
albeit only nominally, possibly due to the limited number of partici-
pants (n = 643) with malignant melanoma. MR analyses furthermore
provided evidence that genetic predisposition to increased retinal
pigmentation is causally protective for skin malignancies, including
malignantmelanoma.Migraine and COPD also showed phenome-wide
significant associations with RPS. The observational association with
migraine is consistent with a recent study showing an increased risk of
migrainewith lightlypigmented skin50. Similarly, the effect directionof
the association of RPS with COPD and allergic rhinitis is concordant
with previous literature postulating skin pigmentation and vitamin D
relationships51–53. However, further investigation with MR did not yield
any evidence for causality between retinal pigmentation with either
migraine or COPD.

The RPS may be utilised for several indications in the future.
Reporting the RPS range for any AI training datasets could offer an
immediate description of the phenotypic diversity within the data-
sets. Training or test sets could incorporate the RPS in the descrip-
tive summaries along with other important biological and
demographic covariates. The RPS could be used as a standard metric
in evaluating differences in AI algorithm performance across a
diverse set of input images, similar to how FST has been used in
dermatology. This would help ensure that real-world biological
variability in health and disease remains included in the generation of
new algorithms. This has implications not just for ophthalmic dis-
eases, but also for other diseases using retinal imaging biomarkers,
such as Alzheimer’s disease54,55 and cardiovascular disease56,57. With

the genetic associations demonstrated in this study, the RPS may be
used to study retinal pigmentation itself in relation to normal eye and
brain development, and a myriad of ophthalmic and systemic
diseases.

There are several limitations in this study. Both the UK Biobank
and EPIC-Norfolk participants are predominantly self-reported white
and European. The UK Biobank has a higher proportion of non-white
participants compared to EPIC-Norfolk cohort, but this number
comprises only 7.5% in the UK Biobank. Fortunately, this number still
equates to over 3000 people reporting non-white ethnicity. We also
showed that the RPS generated separately in an ethnically distinct
Tanzanian, Australian, and Chinese dataset is feasible when fit to the
UKBiobank RPS. It is our hope that the open-source availability of the
RPS method will allow this technique to be applied to other datasets
to address this limitation. Secondly, RPS is currently dataset-specific,
so that absolute RPS values from different cohorts cannot be directly
compared if they are not fit to the same RPS scale. In this work, we
elected to fit the Chinese, Australian and Tanzanian datasets to the
UK Biobank RPS scale to aid in comparison. This may be resolved
with standardisation of the metric between camera types, using
device-specific raw RGB values, and is the subject of future work.
Thirdly, large datasets that link genetic data with retinal images are
only available in limited geographic areas in the world. Finally, the
performance of the RPS in retinal disease states will need to be
assessed in future work.

In conclusion, the RPS is a continuous metric of retinal pig-
mentation directly derived from a non-invasive retinal image with
associations with genes implicated in hair, eye and skin colour.
Although race and ethnicity are believed to determine the biological
phenotype of retinal pigmentation, it is likely that the RPS is a more
precise measure of pigmentation. This may have implications for AI
algorithm development, testing, and for inclusion and algorithmic
fairness across all fields of medicine that use retinal imaging as
a biomarker.

Methods
Ethics
We analysed data from UK Biobank participants who as part of their
examinations underwent enhanced ophthalmic review. Ethics
approval was obtained by the Northwest Multi-centre Research Eth-
ics Committee (REC reference number 06/MRE08/65; approved
project number 28541), our research adhered to the tenets of the
Declaration of Helsinki. Informed consent was obtained from all
study participants and all participants were free towithdraw from the
study at any time58.

The EPIC-Norfolk Eye Study was carried out following the princi-
ples of the Declaration of Helsinki and the Research Governance Fra-
mework for Health and Social Care and was approved by the Norfolk
Local Research Ethics Committee (identifier: 05/Q0101/191) and the
East Norfolk and Waveney National Health Service Research Govern-
ance Committee (identifier: 2005EC07L). All participants gave written
informed consent. The study protocol is available online at https://
www.epic-norfolk.org.uk/.

The Tanzanian imaging data was collected following review and
approval by the Tanzanian National Institute for Medical Research
(Reference id: NIMR/HQ/R.8a/Vol.IX/2402), the Kilimanjaro Christian
Medical Centre (Reference number: 776), and the London School of
Hygiene & Tropical Medicine Ethics Committees (Reference num-
ber: 10172).

The Australian dataset was approved by the Western Australian
Aboriginal Health Ethics Committee (Reference number: 864).

The Chinese dataset was collected as part of a private dataset and
ethical collection was enforced by the original dataset creators. The
authors state the publishing of the dataset follows the ethical and
privacy rules of China27.

Fig. 4 | Comparison of betas for lead variants identified from the discovery and
replication cohort. Comparison of betas expressed as change in standard devia-
tion of mean RPS for lead variants identified from the discovery (UK Biobank,
n = 37067) genome-wide association study (GWAS) with their corresponding betas
in the replication (EPIC-Norfolk, n = 4273) analysis, with 95% confidence intervals.
Betas in the cohort were calculated using a generalised linear mixed model,
adjusting for age, sex and the first ten principal components. P-values are two-
sided, calculated from the z-statistic and corrected for multiple comparisons.
Variants meeting the Bonferroni-adjusted replication significance threshold
(p =0.05/ variants) in the EPIC-Norfolk GWAS are shaded black. The nearest gene is
annotated for variants achieving genome-wide significance. Source data are pro-
vided as a Source Data file.
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Study population
The UK Biobank is a national research resource aiming to improve
prevention, diagnosis, and treatment of a wide range of diseases.More
than 500,000 people aged 37–73 were recruited at 22 study assess-
ment centres across the UK between January 2006 and October 2010.
Further details of the overall study protocol and protocols for indivi-
dual tests are available online (https://biobank.ndph.ox.ac.uk/ukb/
index.cgi).

All participants completed a detailed touchscreen questionnaire
on demographic, clinical and lifestyle-related information. Sex was
acquired from a central NHS registry at recruitment, but in some cases
updated by the participant, hence this field contained amixture of the
sex the NHS had recorded for the participant and self-reported sex.
Analysis of sex on RPS was performed in supplemental figures. The
choices for ethnic backgroundwere categorised aswhite,mixed, Asian
or Asian British, Black or Black British, Chinese, or other ethnic group.
Participant postcode at the time of recruitment was used to determine
Townsend Deprivation Index (TDI), based on the corresponding out-
put area from the preceding national census; a higher positive score
implies a greater degree of deprivation. Medical history was obtained
through verbal interview with a trained nurse, including the date of
first diagnosis for non-cancer and cancer illnesses, as well as anymajor
operations. Participants gave broad consent for prospective data
linkage to national electronic health records (EHR) and registries,
including hospital episode statistics, death register and cancer regis-
ter. Linkage to primary care records is currently available for
approximately 45%of the cohort (~230,000participants, up to 2016 or
2017 depending on data supplier). Further details of the overall study
protocol andprotocols for individual tests are available online (https://
biobank.ndph.ox.ac.uk/ukb/index.cgi).

The EPIC-Norfolk Eye Study is a study of 8623 participants
from Norfolk, England and was added onto the EPIC Cohort29. The
EPIC study is a collaborative study involving 10 countries that
began participant recruitment in 198959. The EPIC-Norfolk, a United
Kingdombranchof this study, comprises a population-based cohort of
25 639 participants between 40 and 79 years of age at enrolment
recruited from 35 participating general practices in Norfolk, United
Kingdom. Baseline examinations were carried out between 1993
and 199760.

The Tanzanian dataset consisted of images acquired from people
attending a diabetic eye screening service in the Kilimanjaro region of
northern Tanzania between June 2017 and August 2018. All partici-
pants were African and had a diagnosis of diabetes mellitus. A total of
2076 retinal photographs of 1345 eyes from 690 people with diabetes
comprise the dataset. Only images that were graded as having no, or
mild, retinopathy were included in the analyses.

The Australian dataset consisted of images acquired from a single
Aboriginal Community Controlled Health Service located within a
metropolitan area of Perth, Western Australia. Participants were
Aboriginal people with diabetes mellitus attending a retinal screening
service. Retinal photographs of 1682 eyes of 864 peoplewere acquired
consecutively between July 2013 and October 2020. Only images that
were graded as having no retinopathy or mild retinopathy were
included in this study.

TheChinesedataset is thepublicly availableODIRdataset. In brief,
it is a labelled collection of manually curated colour fundus photos
with a wide range of disease and pathology. There are 10,000 images
from 5000 individuals from 487 clinical hospitals in 26 provinces
across China27. From this dataset, we included only the 3098 normal
fundus images.

Ophthalmic assessment
In the UK Biobank, more than 133,000 participants underwent an
enhanced ophthalmic assessment between 2009 and 2010 at 6
assessment centres, including visual acuity (with the LogMAR scale),

refractive error and intraocular pressure (IOP) measurements, as well
as ophthalmic imaging61. Baseline best corrected VA was measured
using a computerised semi-automated system at 3 metres distance.
Autorefraction was performed using an RC5000 Auto refractor ker-
atometer (Tomey, Nagoya, Japan). The spherical equivalent was cal-
culated by adding the sum of the spherical power and half of the
cylindrical power. Single-field undilated colour fundus photographs
(45° field of view, centred to include both optic disc and macula) and
macular optical coherence tomography (OCT) scans were captured
using a digital Topcon-1000 integrated ophthalmic camera (Topcon
3D OCT-1000 Mark II, Topcon Corp., Tokyo, Japan). Imaging was
performed after visual acuity, non-cycloplegic autorefraction, and
intraocular pressure (IOP) measurement. The right eye was
imaged first.

An ophthalmic examination for the EPIC-Norfolk participants was
performed on 8623 of participants as part of the third health exam-
ination, carried out between 2004 and 2011. Fundus photography was
acquired using a TRC-NW6S non-mydriatic retinal camera with a 10
megapixel Nikon D80 camera (Nikon corporation, Tokyo, Japan) via
the IMAGEnet Telemedicine System (Topcon Corporation, Tokyo,
Japan)29.

TheTanzanianpopulation underwent colour fundus photography
using a Topcon TRC-NW8 non-mydriatic retinal camera with a 12.3
megapixel Nikon D90 camera (Nikon corporation, Tokyo, Japan). All
imageswereacquired after dilationwith 1% tropicamide and followed a
standardised protocol whereby two 45° images (disc centred and
macular centred) were collected per eye.

The Indigenous Australian cohort underwent colour fundus
photography and OCT imaging acquired using a Topcon ophthalmic
camera (Topcon 3D-OCT1 Maestro, Topcon Corp., Tokyo, Japan).
Imageswere undilated, 45°, single-field,macular-centredphotographs.

The Chinese dataset was acquiredwithmultiple different cameras
with varying fields-of-view. The information about camera type and
field-of-view was not publically available in the data labels.

Retinal pigment score
Each fundus image was run through the AutoMorph pipeline23 to cre-
ate a segmentation mask of the retinal vasculature and optic disc. The
deep learning models used for each step of the segmentation pipeline
are described in detail in their manuscript. In summary, each image is
pre-processed and then passed through an image quality classifier that
was pre-trained on the EyePACs dataset. All images of insufficient
quality are excluded from the subsequent segmentation steps. The
binary vessel segmentationmodule is an ensembled UNet architecture
and the optic disc segmentation is a cascaded UNet with a ResNet
backbone. We modified the AutoMorph code by changing the file
system organisation between input and output nodes, adding in error
handling, and reducing output file size.

We took the segmentation masks for the disc segmentation and
the binary vessel segmentations from the AutoMorph modules and
added them together to make a combined disc and vessel mask. The
background of the fundus image was identified by finding all pixels
that were at or below the 0.5 percentile of the distribution of all
grayscale pixels from the input image. The background mask was
added to the combined vessel and disc mask. This mask was then
successively dilated using a 2-dimensional binary structuring kernel
with connectivity of two. The number of dilation iterations was four
multiplied by the pixel width of the image divided by 600 rounded to
the nearest integer, which was derived empirically. All pixels not
contained in dilated masks of the background/disc/segmentation
mask were used to create a new retinal background mask.

From the retinal background mask, we found the median RGB
pixel value and converted it into the CIELAB colour space24 which is a
colour space designed to have luminance (L vector) stored in a sepa-
rate vector from chromaticity (a,b vectors). To reduce the effect of
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illumination on themeasured colour from the retina, we only used the
a,b coordinates from the CIELAB space and ignored the L vector. To
transform the two-dimensional a,b chromaticity vectors for each eye,
we used a principal component analysis model to perform dimen-
sionality reduction. For each dataset, a two-component PCA model
was fitted to the median a,b value of the retinal background for all
images in the dataset. Then, each eye’s median a,b value was trans-
formed with the PCA model along the eigenvector with the greatest
eigenvalue. This new transformed vector was stored as the
1-dimensional RPS vector. Figure 1 represents a schematic of the
pipeline. Sensitivity analyses were conducted to test for RPS perfor-
mance across different background colour image pigmentation by
calculating the vessel and optic disc mask area from the total pixel
image area by ethnicity and by RPS quintiles. The effect of increasing
or decreasing the vessel and disc segmentation area on the RPS was
examined with a random selection of either a binary erosion or binary
dilation for 1 iteration with a 3×3 kernel to the combined vessel and
disc masks for a random selection of 100 fundus images from each of
the white, Black, Asian, Chinese and Mixed ethnic groups of the UK
Biobank.

The image analysis to derive the Retinal Pigment Score (RPS) was
performed with Python, version 3.862 and PyTorch, version 1.7.063. The
code to derive RPS is publicly available at: https://github.com/uw-
biomedical-ml/retinal-pigmentation-score.

RPS reliability was assessed in an independent dataset of 27 eyes
from 24 patients (22 healthy patients and 5 patients with mild non-
proliferative diabetic retinopathy). The images were captured on
Topcon 3D OCT-1 Maestro. One-way intraclass correlation (ICC) was
calculated between 2 repeat images from the same eye.

We assessed the mean difference, standard deviation and ICC
between the RPS of right and left eyes from the same patients within
the UK Biobank dataset. Additionally, we assessed the mean, standard
deviation and ICC of the RPS when the L, a and b vectors were used to
fit the principal component analysis (PCA).

Genome-wide association study
Genome-wide association study (GWAS) was performed to assess
potential genetic associations with standardised mean RPS (average
score between right and left eyes per participant). A beta coefficient of
1 therefore corresponds to a 1 standard deviation increase in stan-
dardised mean RPS. Analyses were conducted using a generalised
linear mixed model, adjusting for age, sex and the first ten principal
components. The initial discoveryGWAS analysis was performed in the
UK Biobank cohort. Lead variants reaching genome-wide significance
(p < 5 × 10−8) were re-evaluated in a replication GWAS analysis, con-
ducted in the EPIC-Norfolk cohort. A Bonferroni-adjusted replication
significance threshold was set at p =0.05/17.

Lead variants were furthermore investigated for previously iden-
tified associations with hair, skin and eye colour, bymanually referring
to the Open Targets Genetics64,65 and PhenoScanner66,67 databases and
the results are listed in Table 1.

Full details for genotyping and imputation in the UK Biobank
cohort have been described previously68. In brief, genotype calling
was performed using two arrays: the UK BiLEVE Axiom array
(~50,000 participants) and the UK Biobank Axiom array (~450,000
participants). Marker positions are in GRCh37 coordinates. There
were 805,426 markers available in the released data after quality
control. Genotype imputation was then performed using a combined
Haplotype Reference Consortium and UK10K reference panel,
expanding the number of testable variants to ~96 million. The
majority of the EPIC-Norfolk cohort were also genotyped using the
Affymetrix UK Biobank AxiomArray, however, genotyping for a small
subset was undertaken using the Affymetrix GeneChip Human
Mapping 500 K Array Set.

The following exclusions were applied for sample quality control:
individualswith relatedness corresponding to third-degree relatives or
closer, excess of missing genotypes or more heterozygosity than
expected. TheGWASanalysiswas furthermore restricted to individuals
of European ethnicity only. The following exclusions were applied for
variant-level quality control: call rate <95%, Hardy–Weinberg equili-
brium p < 1 × 10−6, posterior call probability <0.9, INFO score <0.9 and
minor allele frequency <0.01.

The SNP2GENE function within FUMA69 was used to perform
positional and expression quantitative trait locus (eQTL) gene map-
ping/prioritisation. SNPs in high LD (r2 > 0.6) with any independent
lead variant were positionally mapped to genes located within 10 kb.
Variants were also mapped to a set of prioritised genes within 1Mb if
associated with the expression of those genes in retina (reported in
EyeGEx), skin (reported in TwinsUK, GTEx v8) and dermal fibroblasts
(reported in GTEx v8). To test the prioritised genes for enrichment in
biological pathways, FUMA’s GENE2FUNC function was applied, using
hypergeometric mean pathway analysis against gene sets obtained
from MsigDB and WikiPathways. Multiple testing correction (Benja-
mini-Hochberg method) per data source of tested gene sets was per-
formed and gene sets with adjusted P ≤0.05 and >1 overlapping genes
were reported by default.

Phenome-wide association study
A phenome-wide association (PheWAS) analysis was conducted within
the discovery UK Biobank GWAS sub cohort using 308 CALIBER
codelists drawing on the followingdiagnostic records: verbal interview
responses, linked hospital episode statistics, death register and pri-
mary care records. Read 2, ICD-10 and OPCS-4 clinical codelists were
minimally adapted from the CALIBER Portal70. The former two coding
systems were expanded to Read 3 and ICD-9 equivalents, respectively,
using the mapping files provided by UK Biobank Resource 592.

The PheWAS analysis performed logistic regression to assess
potential disease associations with standardised mean RPS (average
score between right and left eyes per participant), adjusting for age at
baseline assessment and self-reported sex. All available diagnostic
records, both before and after the date of attendance for retinal ima-
ging, were included. Conditions with fewer than 200 cases were
excluded. Associations meeting the Bonferroni-corrected p-value
threshold (p =0.05/308) were considered phenome-wide significant.

Mendelian randomisation
Mendelian randomisation (MR) is a technique for evaluating causality
between exposure and outcome variables by utilising genetic variants
as instrumental variables (IV)71. In comparison to traditional epide-
miological methods, MR is relatively immune to bias from confound-
ing and reverse causation. The randomallocationof genetic variants at
conception is analogous to the random allocation of an intervention in
a randomised controlled trial. For the results fromanMRanalysis to be
valid, the IV must satisfy three critical assumptions: (1) the IV must be
associated with the exposure; (2) the IV must not be associated with
confounders of the exposure-outcome association; (3) the IV must
only affect the outcome via the exposure and not through alternative
pathways. Provided these criteria are met, the estimates from a MR
analysis reflect the causal association between a genetically deter-
mined risk factor (here, a genetic predisposition to increased retinal
pigmentation) and the development of a particular outcome over the
course of a lifetime.

Two-sample MR analyses were conducted drawing on the dis-
covery RPS GWAS results (exposure) and summary statistics from the
independent FinnGen cohort72 (data release 8) for selected outcomes
of interest, as highlighted by the RPS PheWAS analysis. The IV for
retinal pigmentation was constructed by selecting all conditionally
independent genome-wide significant single nucleotide
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polymorphisms (SNPs) from the discovery RPS GWAS analysis, and
performing clumping to exclude those with linkage disequilibrium
R2 > 0.01 and within 10,000 kb, using the 1000 Genomes Project Eur-
opean reference population73. Palindromic SNPs with minor allele
frequency >0.46 were excluded. Effect alleles were harmonised across
exposure and outcome datasets.

The main MR analyses were performed using a multiplicative
random-effects inverse-variance weighted (IVW) approach74. This
method provides precise and efficient estimates but is sensitive to
invalid IVs and pleiotropy75. We therefore conducted sensitivity ana-
lyses using three alternative MR methods: weighted median76, weigh-
tedmode77 andMR-Egger78. Eachmethodmakes different assumptions
about the nature of pleiotropy and consistent estimates across meth-
ods strengthens causal inferences79.

Under the IVW method, we calculated the mean F-statistic as an
indicator of instrument strength (a value > 10 is usually considered a
strong instrument)80. We assessed for heterogeneity with the I2 and
Cochran’sQ statistics in the IVWmodel and with Rucker’sQ’ statistic in
MR-Egger regression. The I2GX statistic is an indicator of expected
relative bias (or dilution) of the MR-Egger causal estimate81. In MR-
Egger regression, a significant difference of the intercept from zero is
evidence for average directional horizontal pleiotropy78.

Statistical analysis
All measurements were repeated from the same sample unless
otherwise reported. Linear regression models with standardised RPS
(z-score) adjusting for age, sex, self-reported ethnicity (categorised
as white, Black, Asian, mixed, Chinese, or other), hair colour (cate-
gorised as blonde, red, light brown, dark brown, black and other),
skin colour (categorised as very fair, fair, light olive, dark olive,
brown and black), spherical equivalent, height, TID (scores cate-
gorised in quintiles where a higher quintile implies a greater degree
of deprivation), and UK Biobank assessment centre were used to
examine associations with RPS. Collinearity was examined using
variance inflation factor testing on the final model with adjusted
generalised standard error inflation factors82. Missing data points
were categorised as “Missing” within each variable. Formal two-way
tests for interaction were examined for ethnicity and height, and
ethnicity and age. Sensitivity analyses were conducted with three
stratified linear regression models for the three main ethnic groups
(white, Black, and Asian ethnic groups).

The GWAS analysis was performed using REGENIE software83.
GCTA-COJO was used to prioritise lead variants84. Genomic inflation
factor and heritability estimates were calculated using the LDSC tool85

and pre-calculated LD scores for European ancestry (https://data.
broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). All
other statistical analyses and were performed in R (R for GNU macOS,
Version 4.2.0, The R Foundation for Statistical Computing, Vienna,
Austria)86. R packages used included PheWAS87, TwoSampleMR88,
MendelianRandomization89, ukbwranglr90, codemapper91, targets92,
tarchetypes93, tidyverse94, workflowr95, flextable96, gtsummary97 and
knitr98.

Inclusion and ethics statement
All collaborators of this study have fulfilled the criteria for authorship
required by Nature Portfolio journals have been included as authors.
Roles and responsibilities were agreed among collaborators ahead of
the research. This research was not severely restricted or prohibited in
the setting of the researchers, and does not result in stigmatisation,
incrimination, discrimination or personal risk to participants. Local and
regional research relevant to our study was considered in citations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Access to the UK Biobank is restricted to safeguard the privacy of the
participants and requires an application. The restrictions depend on
the level of access granted. One can apply for access on their website.
You cannot share the UK Biobank data with researchers who are not
registered with the UK Biobank. Registrations are reviewed within 10
working days of submission. The length of access depends on the
access granted. Access to the EPIC-Norfolk Eye study is restricted and
requires an application because of the desire to safeguard the priv-
acy of participants. One can request access via the EPIC-Norfolk
Management Committee. The data is available to researchers with
relevant scientific and ethics approvals for their research, including
those in other countries and in commercial companies who are
looking for new treatments or laboratory tests. Applications are
generally reviewed within 1 month. The Tanzanian fundus photo
dataset was transferred to LSHTM under a formal data transfer
agreement with the National Institute for Medical Research in Tan-
zania. This agreement stipulates that the dataset be used for
teaching or academic research purposes only. Requests for
access to the dataset can be made to Charles Cleland (charle-
s.cleland@lshtm.ac.uk) and replies will be within ten working days. If
access to the dataset is granted it will be for a period of six weeks.
The Australian dataset is available under restricted access in order to
safeguard participant privacy. This dataset, also known as the Der-
barl Yerrigan Health Service data, is a First Nations of Western Aus-
tralia diabetic screening dataset. This dataset is subject to ethical
approval for use by the Ethics Committee operated by the Aboriginal
Health Council of Western Australia (AHCWA). A written request will
be considered and responses should be returned in less than one
month. Access to the data is subject to further ethics applications to
AHCWA and the duration of access will depend on the applications.
Please reach out to angus.turner@uwa.edu.au for inquiries. The
Chinese dataset is a subset of the publically available ODIR dataset
and can be accessed as described in the corresponding manuscript.
(Li et al. 2021). The raw data used in this study are protected and are
not available due to data privacy laws. The data generated for figures
presented in this study are provided in the Source Data file. Retinal
pigment scores for UK Biobank participants will be made available to
approved UK Biobank researchers as a returned dataset (https://
biobank.ndph.ox.ac.uk/ukb/docs.cgi?id=1). FinnGen genome-wide
association study (GWAS) summary statistics are publicly available
online (https://www.finngen.fi/en/access_results). Summary statistics
from theGWAS analyses presented in this study will bemade publicly
available from the NHGRI-EBI Catalog of human genome-wide asso-
ciation studies (https://www.ebi.ac.uk/gwas/). Source data are pro-
vided with this paper.

Code availability
The code to derive RPS is publicly available at https://github.com/uw-
biomedical-ml/retinal-pigmentation-score.
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