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Abstract 
The fields of epidemiology and viral phylodynamics share the ultimate 
goal of disease control, but concepts, methodologies and data 
employed by each differ in ways that confer complementary strengths 
and different areas of weakness. We recently introduced EpiFusion, a 
model for joint inference of outbreak characteristics using 
phylogenetic and case incidence data via particle filtering and 
demonstrated its usage to infer the effective reproduction number of 
simulated and real outbreaks. Here we provide a series of vignettes 
demonstrating data analysis using the EpiFusion Analysis Framework, 
consisting of the R package EpiFusionUtilities and the Java program in 
which the model is implemented, including an example using a new 
feature incorporated since EpiFusion’s last description: the option to 
provide a phylogenetic tree posterior as the phylogenetic data input 
to the program. By outlining these examples, we aim to improve the 
usability of our model, and promote workflow reproducibility and 
open research.
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Introduction
Implementing mathematical models of infectious disease outbreak characteristics using computational tools is an
important aspect of public health research.1,2 Tools are often distributed as packages or libraries in popular programming
languages such as R, Python or Julia, or as standalone executable software.3–6 Distributing and documenting workflows
is important for the purposes of reproducible research, and to enable appropriate implementation of epidemiological
models.7–9 Previously we outlined EpiFusion, a novel method for modelling infectious disease outbreak characteristics
conditioned on case incidence and phylogenetic trees using particle filtering, and validated its usage to infer infection
trajectories and the effective reproduction number Rt:

10 Here, we present the EpiFusion Analysis Framework, consisting
of this EpiFusion model implemented as a Java command line tool, and the EpiFusionUtilities R package for data and
output processing.

EpiFusion consists of a ‘single process model, dual observation model’ particle filtering structure, where particles
simulate outbreak trajectories and characteristics through time (process model) and are evaluated against phylodynamic
and epidemiological data at resampling steps (observation models). EpiFusion uses case incidence and phylogenetic
tree(s) as its data input but can also be run with either data type alone. The force of infection over time β is fit within the
particle filter, and the recovery rate, case sampling rate, and genomic sequence sampling rate ( γ, ϕ andψ respectively) are
fit via Markov Chain Monte Carlo (MCMC). Further information including model theory and validation are provided in
Ref. 10. The EpiFusionmodel is packaged as a Java11 command line tool and takes eXtensibleMarkup Language (XML)
files12 as input.

In this article we provide instruction on implementing the recommended workflow (‘The EpiFusion Analysis Frame-
work’) using an EpiFusion model. This includes data pre-processing, parameterisation, and eventual output parsing
from within an R session, using the R package EpiFusionUtilities (https://github.com/ciarajudge/EpiFusionUtilities).
We also demonstrate start-to-finish use cases for complete analysis of two outbreak datasets using EpiFusion and
EpiFusionUtilities.

Methods
Operation
EpiFusion is implemented as an open-source Java software (version 8 or later) and can be used as a command line tool or
from within the EpiFusionUtilities R package (https://ciarajudge.github.io/EpiFusionUtilities/). The latest stable version
of the program is available for download under Releases on the project Github repository (https://github.com/ciarajudge/
EpiFusion/releases). The source code for the latest development version is also available at this repository for users who
wish to clone the repository and compile the program from source. EpiFusion can be called using its full file path, or from
any working directory on your system by creating a symbolic link (Appendix 1).

EpiFusionUtilities is implemented as an open source R13 (version 3.5.0 or later) package and is available to install from
Github using the R package devtools14:

# install from Github
devtools::install_github("https://github.com/ciarajudge/EpiFusionUtilities")

The key steps of the EpiFusion Framework workflow are outlined below in brief in the ‘Implementation’ section.

Implementation
The EpiFusion Analysis Framework consists of three main steps: (i) Data Processing and Parameterisation
(ii) Running EpiFusion and (iii) Parsing and Interpreting the output (Figure 1). All three steps can be carried out using
EpiFusionUtilities, but it is also possible tomanually assemble anXML input file and runEpiFusion from the
command line using an executable jar file.

Data processing and parameterisation

EpiFusion XML

EpiFusion uses input files written in eXtensible Markup Language (XML) to provide all data and parameterisation to the
program. These files contain Loggers, Data, Analysis, Model, Parameters and Priors sections where
various aspects of the model and analysis may be specified (Table 1). A full breakdown of the options available within
each section is included in the Supplementary Information (Appendix 2).
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Assembling parameter XML files

EpiFusion XML files may either be populated manually using templates available at the EpiFusionGithub repository
under examples, or created using a number of functions in the EpiFusionUtilities package.

The first step of processing case incidence or tree data for EpiFusion input is to select an ‘index date’. This date should
equate approximately to the ‘date of origin’ of the outbreak under consideration, i.e. the suspected date of the first
infection/importation to the geographical or demographic system under study (day ‘0’). The index date should fall before
any birth events (internal nodes / branching events) in the tree or observed epidemiological cases. This date is provided to
the processing functions to enable the case and incidence data to be rooted in numerical time units. All trajectory samples
will assume that the outbreak originated with one individual becoming infected on the index date. All times in the
EpiFusion input and output will be in relation to this date and measured in days.

index_date <- as.Date("2024-01-01")

Figure 1. Recommended EpiFusion Framework workflow, using EpiFusionUtilities functions (green) to
prepare data and parse results.

Table 1. Main sections of EpiFusion XML parameter file structure.

XML
section

Description

Loggers Provides detail on the program output, including specifying the file path of the output folder that
should be created, and the frequency at which the programboth logs the state of theMCMC to the
output files and prints to the console.

Data Provides the case incidence data and/or a phylogenetic tree or trees. These can be supplied either
directly within the XML document or by providing full file paths to files containing the data)

Analysis Parameterises themethod for fitting the infectivity parameter beta - this is the daily probability per
infectious individual of infecting another individual.

Model Allows further customisation of the EpiFusion model structure. Currently, this only includes
specification of the epidemiological observation model.

Parameters Specifiesmany assorted parameters for themodel, for example number ofMCMC steps per chain,
number of MCMC chains, and number of particles in the particle filter.

Priors Prior distribution specification for parameters to be fit via particle MCMC. A range of distribution
options are available, including: Normal, Truncated Normal, Poisson, Uniform, Uniform Discrete,
Beta and Fixed (if a parameter should be fixed to a specific value and not inferred via MCMC).
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If there is uncertainty in the date of origin of the outbreak we recommend setting the index date to earlier than the
estimated date. The resulting trajectories will likely demonstrate high uncertainty during the earliest days of the outbreak,
until the point of the time series at which some data becomes available.

To prepare a tree or posterior set of trees for EpiFusion, pass an S3 phylo or multiPhylo object in R to the
prepare_epifusion_tree() function (we recommend any standard phylogenetics R package to manipulate these
objects15,16). This function processes a phylogenetic tree (or trees) and writes to a file, which you can specify in the
arguments of the function (the default is ‘./processedtree.tree’). It is also necessary to pass the date of the last sample in the
tree(s). This function adds node and leaf labels to the tree string that correspond to their time in days after the index date.

prepare_epifusion_tree(tree,
index_date,
last_sequence_date,
"Data/Processed/processed_fixed_tree.tree")

To generate an EpiFusion XML file from within an R session, the generate_epifusion_XML() function may be
used. This function populates a template XML file (included with the EpiFusionUtilities package) with the
phylogenetic and/or case incidence data, and has default settings for parameters and priors which can also be changed by
providing new values in the arguments of the function. For example below, we pass a case incidence data frame
(consisting of two columns: a Date column named Date, with a numeric column Cases consisting of the number of
cases reported on the corresponding date) and tree to the function. We also specify that we will sample from the MCMC
chain every 100 steps, set our output folder path to output_files, and adjust the number of particles in the particle
filter to 300. This creates a file in our working directory, epifusion_input.xml, which is ready to pass to
EpiFusion.

logger_information <- list(fileBase = "output_files", logEvery = 100)
parameters_to_adjust <- list(numParticles = 300)

generate_epifusion_XML(tree = "Data/Processed/processed_fixed_tree.tree",
case_incidence = case_incidence,
index_date = index_date,
loggers = logger_information,
parameters = parameters_to_adjust,
xml_filepath = "epifusion_input.xml")

We include guidance on parameterisation and setting reasonable parameters and priors in the Supplementary Information
alongside our more detailed description of EpiFusion XML (Appendix 2).

Running EpiFusion

EpiFusion can be run directly from the command line by calling an executable Java Archive (JAR) file using the
following syntax. Here EpiFusion.jar is the file path to the executable file (i.e. in this example, the file is present in
the working directory) and epifusion_input.xml is the file path to the parameter XML file (also present in the
working directory for this example):

java -jar EpiFusion.jar epifusion_input.xml

Alternatively, it is possible to run EpiFusion from inside an R session with the EpiFusionUtilities function
run_epifusion(). An installation of Java is still required.

run_epifusion("epifusion_input.xml")

Interpreting output

EpiFusion creates a directory within the working directory that corresponds to the file path of the fileBase parameter
in your EpiFusion xml file. For each MCMC chain, EpiFusion will create the following output files:
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• betas: .csv file where each row is a daily trajectory of infectivity β sampled from the MCMC

• trajectories: .csv filewhere each row is a daily trajectory sampled from theMCMCof the number of individuals
infected over time

• params: .txt file where each column is an MCMC parameter, and each row is an MCMC sample

• likelihoods: .txt file of the posterior likelihoods calculated at each MCMC step

• acceptance: .txt file where each line logs the acceptance rate of steps between MCMC samples

• completed: .txt file where each line logs if the particle filter step was completed or quit due to particle depletion

• cuminfections: .txt file where each row is a trajectory of cumulative infections per day sampled from the
MCMC

• positivetests (only for combined or epi-only analyses): .csv filewhere each row is simulated case incidence by
the model which was compared to the observed case incidence. This is provided at the same resolution as the
observed case incidence, i.e. there will be one column per case incidence data point.

EpiFusionwill also save a copy of the parameter file used to the output folder, to recordwhich parameters were used, and a
file called ‘timings.txt’ with the runtime in nanoseconds.

It is possible to process this raw output manually, but EpiFusionUtilities provides a number of functions
to do this from within R. The following functions load the raw output into an R object, plot the likelihood trace for
each MCMC chain to enable inspection to decide what proportion of samples from each chain to discard as burn-in,
and finally extract the posterior samples from each chain with a given proportion discarded and combine them
into a single posterior while assessing convergence. To select an appropriate burn-in proportion, we recommend
inspecting the likelihood and parameter trace plots to assess the point at which samples along the x-axis form a stationary
distribution randomly sampled from the same region of the y-axis.17 It is also possible to test multiple extractions
extract_posterior_epifusion()with different burn-in proportions, and inspect the gelman-rubin statistics of
the parameters, which indicate convergence if below 1.015.18

raw_output <- load_raw_epifusion("output_files/")
plot_likelihood_trace(raw_output)
full_posterior <- extract_posterior_epifusion(raw_output, 0.1)

Below we demonstrate the implementation of this workflow using the EpiFusion executable and
EpiFusionUtilities to analyse data from a small simulated outbreak.

Use cases
Description of the simulated datasets
We demonstrate three analyses on two simulated outbreak datasets (Figures 2, 3). First we address a simple outbreak that
lasts approximately three months with constant sampling effort that captures a single epidemic peak (‘baseline’). In the
subsection ‘Full FrameworkWorkflow’wewill model this outbreak using case incidence data in conjunctionwith a fixed
time-scaled phylogenetic tree. Next, in ‘Phylogenetic Uncertainty’wewill model the same outbreakwhilst examining the
effect of phylogenetic uncertainty by using a tree posterior generated using a BEAST analysis of genomic samples
simulated from the outbreak. Finally, in ‘Introducing Rate Changes’, we examine an outbreak with similar transmission
dynamics but where initial minimal sampling of cases and sequences is followed by a sharp increase in the sampling rate
on February 5th 2024, and demonstrate how to parameterise this in an EpiFusionmodel. This example attempts to capture
the challenges that often accompany modelling real-world outbreaks, where circumstances may evolve as an outbreak
progresses (e.g. changes in case definitions affecting sampling rates, or upscaling of PCR diagnostics in response to an
emerging infectious disease).

To generate the data, outbreak trajectories, and resulting weekly case incidence and a transmission tree of cases were
simulated using ReMaster.19 To give a simulated phylogenetic tree of ‘sequenced samples’ from the outbreak the
transmission trees were downsampled, as typically only a small proportion of cases are sequenced in even heavily
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sampled outbreak settings.20,21 For the baseline outbreak genomic sequences were simulated in R from this phylogenetic
tree using the function simSeq() from the R package phangorn.16 These sequences were used to generate a tree posterior
using BEAST 2.7.322 with a Birth Death Skyline model,23 under a strict clock and JC69 substitution model.

The date of origin of each outbreak was arbitrarily chosen as January 1st 2024 and the case data and tree leaves
were labelled accordingly. The final resulting data inputs for analysis in EpiFusion consisted of a file with a fixed
time-scaled phylogenetic tree, a tree posterior file generated from sequences simulated from the outbreak, and a csv
file with dated counts of weekly incidence. These raw data files are provided alongside the code below in the article
repository (https://github.com/ciarajudge/EpiFusion_Vignettes). The data is also provided directly as part of the
EpiFusionUtilities package, and can be loaded directly into R using the functions baseline_dataset
and sampling_dataset.

Figure2.Data fromthebaselineoutbreak simulatedusingReMaster andBEAST2.7.3. Thedataset containsboth
a summary phylogenetic tree (top) and tree posterior samples (middle), and weekly case incidence (orange).

Figure 3. Data from outbreak with a step-change increase in sampling simulated using ReMaster.
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Full framework workflow
In this example, we will use the baseline dataset to show a full workflow using the EpiFusion Framework: (i) data
preparation (ii) prior and parameter specification (iii) running EpiFusion (iv) parsing and plotting output.

Data preparation

First we load and inspect the data for this example using the EpiFusionUtilities function
baseline_dataset(). This function loads a data frame with weekly case incidence (formatted with two columns,
Cases and Date, where Cases = the number of epidemiological cases reported on the corresponding Date), a time-scaled
phylogenetic tree, and samples from a tree posterior (with 50% burn-in removed) from a BEAST analysis which we will
use in a later section (Phylogenetic Uncertainty).

baseline_dataset()

print(baseline_caseincidence[1:5,])
## Cases Date
## 1 0 2024-01-08
## 2 6 2024-01-15
## 3 83 2024-01-22
## 4 285 2024-01-29
## 5 401 2024-02-05
print(baseline_tree)
##
## Phylogenetic tree with 59 tips and 58 internal nodes.
##
## Tip labels:
## sequence1|2024-01-25, sequence2|2024-01-30, sequence3|2024-02-12, sequence4|
2024-01-30, sequence5|2024-02-04, sequence6|2024-02-17, …

## Node labels:
## node_1, node_4, node_14, node_97, node_106, node_158, …

##
## Rooted; includes branch lengths.
print(baseline_treeposterior)
## 200 phylogenetic trees

Next we set two date objects: the ‘index date’, or the earliest date from which we will model the outbreak origin date, and
the date of sampling of the last observed sequence from the dataset. Whilst for this example we know (through the
simulation process) that the outbreak origin was the 1st of January 2024, it is good practice to set the index date to some
time before the date that we suspect the outbreak began in the location represented by our case and phylogenetic data, to
ensure the outbreak dynamics of are fully captured.

index_date <- as.Date("2023-12-26")
last_sequence <- as.Date("2024-03-10")

To prepare the tree objects for EpiFusion we can use the prepare_epifusion_tree function from
EpiFusionUtilities. This function processes the tree(s) for input to EpiFusion and writes them to the provided
file path. In the case where a single summary tree is provided to this function it also returns the processed tree as an R
phylo object, which here we reassign to the variable fixed_tree.

fixed_tree <- prepare_epifusion_tree(baseline_tree, index_date, last_sequence,
"Data/Processed/baseline_fixed_tree.tree")

Definition of parameters

We will create an EpiFusion XML file using the generate_epifusion_xml function from
EpiFusionUtilities. This function populates the below XML template with our data and creates a new file.
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It is often necessary to adjust some other parameters from their default values in this template. This can be achieved by
providing additional arguments to the generate_epifusion_xml function, which we demonstrate below.

<?xml version="1.0" encoding="UTF-8"?>
<EpiFusionInputs>

<loggers>
<fileBase>FILESTEM</fileBase>
<logEvery>10</logEvery>

</loggers>
<data>

<incidence>
<incidenceVals>INCIDENCE</incidenceVals>
<incidenceTimes type="exact">INCIDENCETIMES</incidenceTimes>

</incidence>
<tree>

<treePosterior></treePosterior>
</tree>
<epicontrib>0.5</epicontrib>
<changetimes>0</changetimes>

</data>
<analysis>

<type>looseformbeta</type>
<startTime>null</startTime>
<endTime>null</endTime>
<inferTimeOfIntroduction>false</inferTimeOfIntroduction>

</analysis>
<model>

<epiObservationModel>poisson</epiObservationModel>
</model>
<parameters>

<epiOnly>false</epiOnly>
<phyloOnly>false</phyloOnly>
<numParticles>200</numParticles>
<numSteps>2000</numSteps>
<numThreads>8</numThreads>
<numChains>4</numChains>
<stepCoefficient>0.05</stepCoefficient>
<resampleEvery>7</resampleEvery>
<segmentedDays>true</segmentedDays>
<samplingsAsRemovals>1</samplingsAsRemovals>
<pairedPsi>false</pairedPsi>

</parameters>
<priors>

<gamma>
<stepchange>false</stepchange>
<disttype>TruncatedNormal</disttype>
<mean>0.15</mean>
<standarddev>0.05</standarddev>
<lowerbound>0.0</lowerbound>

</gamma>
<psi>

<stepchange>false</stepchange>
<disttype>TruncatedNormal</disttype>
<mean>0.001</mean>
<standarddev>0.0005</standarddev>
<lowerbound>0.0</lowerbound>

</psi>
<phi>
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<stepchange>false</stepchange>
<disttype>TruncatedNormal</disttype>
<mean>0.02</mean>
<standarddev>0.01</standarddev>
<lowerbound>0.0</lowerbound>

</phi>
<initialBeta>

<stepchange>false</stepchange>
<disttype>Uniform</disttype>
<min>0.3</min>
<max>0.8</max>

</initialBeta>
<betaJitter>

<stepchange>false</stepchange>
<disttype>Uniform</disttype>
<min>0.001</min>
<max>0.05</max>

</betaJitter>
</priors>

</EpiFusionInputs>

We will generate an EpiFusion XML using the summary tree we prepared with the prepare_epifusion_tree
function and our loaded case incidence data. First we will make lists of the various parts of the XML file we wish to
override from the default. For example, the below code represents the loggers chunk in the default XML that details
how often we sample from the MCMC (every 10 MCMC steps):

<loggers>
<fileBase>FILESTEM</fileBase>
<logEvery>10</logEvery>

</loggers>

To override this, we will make a list in R that we will later pass to the loggers argument of the
generate_epifusion_xml function to specify our output folder filepath as Results/fixed_tree and sample
from theMCMC chain every 10 steps.Wewill also make aparameters list to adjust the number ofMCMC steps, thus
run each chain for longer to ensure we get a satisfactory number of samples from the posterior.Wewill reduce the number
of particles in the particle filter to 100, as this is sufficient for a short, simple analysis, and will slightly reduce runtime.

loggers <- list(fileBase = "Results/baseline_fixed_tree", logEvery = 10)
parameters <- list(numSteps = 10000,

numParticles = 100)

We will also slightly adjust the prior for initialBeta, or β0 (infectivity at the beginning of the time series) from the
default settings. As the default prior for γ is a truncated normal distribution with mean 0:15, standard deviation 0:05 and
lower bound 0:0, by setting the initial β value as 0:1< β< 0:5we indicate that the initialRt is approximately between 0:66
and 3:33 (Rt ¼ β=γ, i.e. 0:1=0:15¼ 0:66 and 0:5=0:15¼ 3:33).

priors <- list(initialBeta = list(stepchange = "false",
disttype = "Uniform",
min = 0.1,
max = 0.5))
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In this example we are happy with the other parameters in the default XML, so we can generate the XML file Data/
EpiFusion_XMLs/fixed_tree_inputfile.xml with the following code:

generate_epifusion_XML(tree = "Data/Processed/baseline_fixed_tree.tree",
case_incidence = baseline_caseincidence,
index_date = index_date,
loggers = loggers,
priors = priors,
parameters = parameters,
xml_filepath = "Data/EpiFusion_XMLs/baseline_fixed_tree_
inputfile.xml")

Running EpiFusion

To run EpiFusion for the fixed tree example, we will use the run_epifusion function from EpiFusionUtilities
to run the program within our R session:

run_epifusion("Data/EpiFusion_XMLs/baseline_fixed_tree_inputfile.xml")

On conclusion of its analysis, EpiFusion saves a timings.txt file to the output folder with the total runtime in
nanoseconds, which we examine and convert to minutes below:

runtime <- suppressWarnings(read.table("Results/baseline_fixed_tree/timings.txt")
[1,1]) / 6e10
paste0("Runtime: ",runtime," minutes")
## [1] "Runtime: 10.5715153277833 minutes"

Parsing and plotting the output

First we will use the load_raw_epifusion function to import the full raw results. This function automatically
produces plots (Figure 4) of the likelihood and parameter traces using the plot_likelihood_trace and
plot_parameter_trace functions. This allows us to check for convergence and help to identify what proportion
of each chain to discard as burn-in.

raw_output_fixed <- load_raw_epifusion("Results/baseline_fixed_tree/")

Next we can discard the burn-in from each MCMC chain and combine all chains into a combined posterior using the
extract_posterior_epifusion functionwhich takes a rawEpiFusion object and the proportion of each chain to
discard as burn-in as its arguments. By default, the function returns means and Highest Posterior Density (HPD) intervals
for the trajectories and parameters fitted by EpiFusion, however by specifying include_samples = TRUE we also
instruct the function to return the actual posterior samples (minus burn-in) for inspection. This greatly increases the
memory used by the posterior output object in your R environment, so is recommended for initial inspection of your
results but not for downstream tasks such as loading posteriors from many analyses for plotting.

parsed_output_fixed <- extract_posterior_epifusion(raw_output_fixed, 0.2,
include_samples = TRUE)
str(parsed_output_fixed, max.level = 2)
## List of 5
## $ infection_trajectories : List of 4
## ..$ mean_infection_trajectory : Named num [1:113] 0 1.22 1.54 1.73 1.96 …

## .. ..- attr(*, "names")= chr [1:113] "T_0" "T_1" "T_2" "T_3" …

## ..$ median_infection_trajectory : Named num [1:113] 0 1 1 1 2 2 2 2 5 6 …

## .. ..- attr(*, "names")= chr [1:113] "T_0" "T_1" "T_2" "T_3" …

## ..$ infection_trajectory_hpdintervals : List of 3
## ..$ infection_trajectory_samples :'data.frame': 3208 obs. of 113 variables:
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## $ rt_trajectories : List of 4
## ..$ mean_rt_trajectory : Named num [1:113] 2.09 2.14 2.18 2.25 2.32 …

## .. ..- attr(*, "names")= chr [1:113] "T_0" "T_1" "T_2" "T_3" …

## ..$ median_rt_trajectory : Named num [1:113] 2.13 2.16 2.2 2.24 2.32 …

## .. ..- attr(*, "names")= chr [1:113] "T_0" "T_1" "T_2" "T_3" …

## ..$ rt_trajectory_hpdintervals : List of 3
## ..$ rt_trajectory_samples :'data.frame': 3208 obs. of 113 variables:
## $ parameters :List of 5
## ..$ gamma :List of 3
## ..$ psi :List of 3
## ..$ phi :List of 3
## ..$ betaJitter :List of 3
## ..$ initialBeta:List of 3
## $ fitted_epi_cases : List of 4
## ..$ mean_fitted_epi_cases : Named num [1:15] 0.251 12.306 84.751 297.153

Figure 4. (a) Likelihood and trace plot from an EpiFusion analysis produced by the 'plot_likelihood_trace'
function in EpiFusionUtilities. (b) Parameter trace plots from an EpiFusion analysis produced by the
'plot_parameter_trace' function in EpiFusionUtilities.
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412.487 …

## .. ..- attr(*, "names")= chr [1:15] "T_0" "T_1" "T_2" "T_3" …

## ..$ median_fitted_epi_cases : Named num [1:15] 0 12 84 296 412 233 109 51 23
10 …

## .. ..- attr(*, "names")= chr [1:15] "T_0" "T_1" "T_2" "T_3" …

## ..$ fitted_epi_cases_hpdintervals : List of 3
## ..$ fitted_epi_cases_samples :'data.frame': 3208 obs. of 15 variables:
## $ cumulative_infections :List of 4
## ..$ mean_cuminfection_trajectory : Named num [1:113] 0 0.219 0.542 0.961 1.44 …

## .. ..- attr(*, "names")= chr [1:113] "T_0" "T_1" "T_2" "T_3" …

## ..$ median_cuminfection_trajectory : Named num [1:113] 0 0 0 1 1 2 2 3 6 9 …

## .. ..- attr(*, "names")= chr [1:113] "T_0" "T_1" "T_2" "T_3" …

## ..$ cuminfection_trajectory_hpdintervals : List of 3
## ..$ cuminfection_trajectory_samples :'data.frame': 3208 obs. of 113 variables:

The extracted posterior object from the extract_posterior_epifusion function contains mean and HPD
intervals of increasing width for infection, Rt , cumulative infection and fitted epidemiological case trajectories. The
trajectory_table function can parse these into a convenient table structured to be suitable for plotting with
ggplot2. This table is structured with a Time column for each day in the analysis, andMean and upper and lower HPD
interval (0.95, 0.88 and 0.66) columns for each trajectory type (infection, Rt , cumulative infections).

traj_table <- trajectory_table(parsed_output_fixed, index_date)
colnames(traj_table)
## [1] "Time" "Mean_Infected"
## [3] "Lower95_Infected" "Upper95_Infected"
## [5] "Lower88_Infected" "Upper88_Infected"
## [7] "Lower66_Infected" "Upper66_Infected"
## [9] "Mean_Rt" "Lower95_Rt"
## [11] "Upper95_Rt" "Lower88_Rt"
## [13] "Upper88_Rt" "Lower66_Rt"
## [15] "Upper66_Rt" "Mean_CumulativeInfections"
## [17] "Lower95_CumulativeInfections" "Upper95_CumulativeInfections"
## [19] "Lower88_CumulativeInfections" "Upper88_CumulativeInfections"
## [21] "Lower66_CumulativeInfections" "Upper66_CumulativeInfections"

#Show the first 5 columns and 3 rows of the traj_table
knitr::kable(head(traj_table[,1:5], n = 3))

It is possible use this table with ggplot functions to plot and inspect the inferred trajectories. However we also provide a
function,plot_trajectories that takes the trajectory table as input and automatically plots all three trajectory types
(Figure 5).

plot_trajectories(traj_table)

Time Mean_Infected Lower95_Infected Upper95_Infected Lower88_Infected

2023-12-26 0.000000 0 0 0

2023-12-27 1.218828 1 2 1

2023-12-28 1.542394 1 3 1
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The plot_trajectories function also takes additional arguments to allow more customisation. For example, it is
possible to provide a specific trajectory type to plot using the type argument, and specify bespoke plot colours using the
plot_colours argument. Here we will plot only the Rt trajectories in a specified colour (pink) (Figure 6).

plot_trajectories(traj_table, type = "rt", plot_colours = "pink")

As this was a combined analysis that has used case incidence data, it is possible to examine the fit of the case incidence
simulatedwithin themodel to the provided data.We already have the case incidence data loaded from the data preparation
stage, so we can add the mean and HPD intervals of the fit to the existing table (Figure 7).

Figure 5. Infection, Rt and cumulative infection trajectories plotted by the EpiFusionUtilities function
‘plot_trajectories’.

Figure 6. Inferred R(t) trajectories using a combined EpiFusion model and a fixed tree, plotted with the
EpiFusionUtilities function ‘plot_trajectories’.
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epi_data_and_fit_table <- baseline_caseincidence %>%
mutate(Stat = "Observed Cases") %>%
full_join(data.frame(Date = baseline_caseincidence$Date,

Stat = "Fitted Cases",
Cases = parsed_output_fixed$fitted_epi_cases$

median_fitted_epi_cases,
Lower95_Cases = parsed_output_fixed$fitted_epi_cases$

fitted_epi_cases_hpdintervals$HPD0.95$Lower,
Upper95_Cases = parsed_output_fixed$fitted_epi_cases$

fitted_epi_cases_hpdintervals$HPD0.95$Upper
)) %>%

mutate(Stat = factor(Stat, levels = c("Observed Cases", "Fitted Cases")))
## Joining with ‘by = join_by(Cases, Date, Stat)’
ggplot(epi_data_and_fit_table, aes(x = Date)) +

geom_bar(aes(y = Cases, fill = Stat), stat = "identity", position = "dodge",
col = NA, alpha = 0.7) +

scale_fill_manual(name = "", values = c("#e95b0d", "grey")) +
geom_errorbar(aes(ymin = Lower95_Cases, ymax = Upper95_Cases, col = Stat),

position = "dodge", show.legend = F) +
scale_color_manual(values = c(NA, "black")) +
lshtm_theme()

Observed epidemiological cases are shown by the grey bars, with their corresponding fitted cases from EpiFusion shown
to their right by the blue bars. The error bars for the fitted case incidence correspond to bounds of the 0.95 HPD interval.

Finally we can examine the posteriors of the MCMC parameters. The posterior extraction process uses the R package
stable.GR to perform gelman-rubin convergence tests on each parameter, and estimate the effective sample sizes of
each. If the gelman-rubin statistic is less than 1.015 this indicatesMCMCconvergence.18 If theMCMChas not converged
it may be necessary to run each chain for longer.

print(parsed_output_fixed$parameters$gamma$rhat)
## [1] 1.001274
print(parsed_output_fixed$parameters$gamma$ess)
## [1] 1052

Figure 7. Fit of observed epidemiological cases to simulated cases by the EpiFusion model, plotted with
ggplot2.
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We can also view the posterior density of a parameter by plotting the samples from theMCMC,whichwe can access from
the posterior object due to setting include_samples = TRUE when we extracted the posterior earlier using
extract_epifusion_posterior (Figure 8).

ggplot(data = data.frame(Gamma = parsed_output_fixed$parameters$gamma$samples),
aes(x = Gamma)) +

geom_density(fill = "#01454f", alpha = 0.3) +
lshtm_theme()

Phylogenetic uncertainty
In the previous example we modelled the baseline outbreak dataset using a fixed time-scaled phylogenetic tree as the
phylodynamic data source. However, in a real outbreak setting there is often uncertainty about the evolutionary
relationships and hence the tree sturcture (phylogenetic uncertainty). Bayesian tree inference approaches such as
BEAST22,24 attempt to approximate the true tree by sampling trees from a posterior set obtained through MCMC, often
yielding thousands of plausible tree structures under the provided data and model. A single maximum clade credibility
tree can be summarised from this ‘tree posterior’ and was used in EpiFusion using workflow specified above. It is
valuable, however, to assess how uncertainty in the tree structure may affect epidemiological parameters inferred through
EpiFusion. Currently, this can be explored by using a tree posterior as the data input into EpiFusion, and sampling a
unique tree from the posterior for use with each MCMC chain. Below we demonstrate this approach by once more
modelling the baseline outbreak dataset, but this time using the tree posterior as the phylodynamic data source.

Prepare data and parameters and run EpiFusion

To prepare the tree posterior (which was already loaded into our environment when we used the
baseline_dataset() function) we once again use the prepare_epifusion_tree function. This function
will recognise that a tree posterior has been passed, and will write the processed trees to a file without returning anything
to your R session.

prepare_epifusion_tree(baseline_treeposterior, index_date, last_sequence, "Data/
Processed/baseline_processed_tree_posterior.tree")

Next we will generate the XML file for the analysis using the tree posterior. We again specify adjustments to the loggers
chunk, specifying our desired output folder name and how often to sample from theMCMC and print to console.Wewill
also increase the number of MCMC chains to 50, which, in conjunction with passing a tree posterior to EpiFusion, will
instruct the model to run 50 chains, each using a different tree sampled at random from the tree posterior. This analysis
will therefore take longer.

loggers <- list(fileBase = "Results/baseline_tree_posterior", logEvery = 5)
parameters <- list(numChains = 50)

Figure 8. Posterior density of the gamma recovery/removal parameter, plotted using ggplot2.
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Similarly to the fixed tree example, wewill adjust some of the default priors. As before, wewill set the initial infectivity β0
to between 0:1 and 0:5.Wewill also narrow slightly narrow some priors using their inferred values as estimated from our
previous example on the same dataset, in order to help the efficiency of the MCMC sampling process due to the extra
number of chains we are running.

priors <- list(initialBeta = list(stepchange = "false",
disttype = "Uniform",
min = 0.1,
max = 0.5),

betaJitter = list(stepchange = "false",
disttype = "Uniform",
min = 0.005,
max = 0.05),

phi = list(stepchange = "false",
disttype = "TruncatedNormal",
lowerbound = 0.0,
mean = 0.02,
standarddev = 0.005))

Finally we generate an XML file using these parameters and priors for input into EpiFusion and run it:

generate_epifusion_XML(tree = "Data/Processed/baseline_processed_tree_posterior.
tree",

case_incidence = baseline_caseincidence,
index_date = index_date,
loggers = loggers,
parameters = parameters,
priors = priors,
xml_filepath = "Data/EpiFusion_XMLs/tree_posterior_

inputfile.xml")

run_epifusion("Data/EpiFusion_XMLs/tree_posterior_inputfile.xml")

Inspecting each chain

To examine the results of the model using the tree posterior we will again load the raw results with
load_raw_epifusion. This time we will set suppress_plots to true.

raw_phylouncertainty <- load_raw_epifusion("Results/baseline_tree_posterior/",
suppress_plots = TRUE)

To examine the effect the inclusion of the tree posterior has on the analysis, we can use another EpiFusionUtilities
function plot_chainwise_trajectories. This function operates similarly to the plot_trajectories
function, but separates the trajectories by chain for inspection, while discarding a proportion of the trajectories of each
chain for burn-in. This allows us to see how the sampled tree, which differs between each chain, affects the inferred
trajectories (Figure 9). Here we can see that most of the chains converge on a similar set of trajectories to our fixed tree
analysis, but some chains (and thus, some sampled trees) suggest other trajectory possibilities.

plot_chainwise_trajectories(raw_phylouncertainty, 0.2)
## [1] "WARNING: Chain 1 got stuck, with an acceptance rate of 0.0."
## [1] "WARNING: Chain 34 got stuck, with an acceptance rate of 0.0."
## [1] "WARNING: Chain 50 got stuck, with an acceptance rate of 0.0."

In this plot we see a further capability of the plot_chainwise_trajectories function. MCMC chains that have
become ‘stuck’ i.e. enter a state space where they do not accept any further MCMC steps and have an acceptance rate of
0% are plotted with dotted lines, to enable users to identify and discard them when extracting the posterior using the
discard_chains argument of the extract_posterior_epifusion function.
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When we extract the posterior from our raw output object (while discarding the ‘stuck’ chains), the chains will be
combined and this uncertainty will be represented in our posterior estimates. To further understand this uncertainty we
will extract the posterior sample using the extract_posterior_epifusion function and again create a trajectory
table using the trajectory_table function. Using this table, and our trajectory table from the fixed tree analysis, we
can use ggplot2 to plot the trajectories from both analyses to demonstrate the effect of the phylogenetic uncertainty on the
estimates (Figure 10). The tree posterior approach is characterised by a widening of the HPD intervals around the mean
fitted infection trajectory, due to the phylogenetic uncertainty.

posterior_phylouncertainty <- extract_posterior_epifusion(raw_phylouncertainty,
0.3, discard_chains = c(1, 34, 50))
phylouncertainty_trajtable <- trajectory_table(posterior_phylouncertainty,
as.Date("2023-12-15")) %>%

mutate(Approach = "Tree Posterior")

combined_trajtable <- traj_table %>%
mutate(Approach = "Fixed Tree") %>%
rbind(phylouncertainty_trajtable)

ggplot(combined_trajtable, aes(x = Time, col = Approach, fill = Approach)) +
geom_line(aes(y = Mean_Infected)) +
geom_ribbon(aes(ymin = Lower95_Infected, ymax = Upper95_Infected), col = NA,

alpha = 0.2) +
geom_ribbon(aes(ymin = Lower88_Infected, ymax = Upper88_Infected), col = NA,

alpha = 0.2) +

Figure 9. Inferred infection, Rt and cumulative infection trajectories plotted using the
‘plot_chainwise_trajectories’ function of EpiFusionUtilities.
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geom_ribbon(aes(ymin = Lower66_Infected, ymax = Upper66_Infected), col = NA,
alpha = 0.2) +

lshtm_theme() +
labs(y = "Individuals Infected") +
facet_wrap(~Approach, ncol = 1)

This approach to combining chains sampled under different phylogenetic trees to form unified posteriors should be
carefully employed. For the purposes of demonstration here we sample 50 trees in unique chains, however to adequately
approximate the full tree posterior it is advised to conduct more samples. Further, if there is significant disparity in the
inferred trajectories from different chains (i.e. under different trees), we recommend reexamining the tree posterior to
check for overt phylodynamic uncertainty in your tree data and consideringwhether employingEpiFusion is suitable with
highly uncertain phylogenies.

Introducing rate changes
While our previous examples with the baseline dataset describe an outbreak with constant sampling throughout, real life
scenarios are often more complicated as the rates that govern our model, β, γ, ϕ and ψ vary over time. β is allowed to vary
over time by default and is fit in the particle filter, but below we will address a common scenario where rates of sampling
cases and genomes (ϕ and ψ) increase sharply at a given time point. For example, this occurred during the Brazilian Zika
outbreak in 2015, where sampling sharply increased following the introduction of widespread PCR testing.25

Data preparation

We can load the data for this example using the EpiFusionUtilities function sampling_dataset(). We will use the
same index date for this analysis as previously, but for this dataset the last sequence in the tree was sampled on March
17th, so we will adjust the ‘last_sequence’ date accordingly. As in our other examples, we prepare our tree data for
EpiFusion using the prepare_epifusion_tree function.

sampling_dataset()
print(sampling_caseincidence[1:5,])
print(sampling_tree)

last_sequence <- as.Date("2024-03-17")

sampling_fixed_tree <- prepare_epifusion_tree(sampling_tree, index_date,
last_sequence, "Data/Processed/sampling_fixed_tree.tree")

Figure 10. Inferred infection trajectories from EpiFusion analyses using a fixed tree (red) vs a tree posterior
(blue).
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Advanced parameterisation: Time variant prior distributions

In this example we wish to parameterise the step-increase in sampling on February 5th in our model. We will do this by
setting a ‘time variant prior’ for case sampling rate phi when we generate the XML file, and using the ‘paired psi’ feature
(Supplementary Information Appendix 3) to pair the genomic sampling rate psi to the case sampling rate.

Previously in the EpiFusion input files, the phi block in the prior section consisted of the following XML code:

<phi>
<stepchange>false</stepchange>
<disttype>TruncatedNormal</disttype>
<mean>0.02</mean>
<standarddev>0.01</standarddev>
<lowerbound>0.0</lowerbound>

</phi>

A phi parameter with a step change is adjusted to look like this:

<phi>
<stepchange>true</stepchange>
<changetime>

<x0>
<disttype>FixedParameter</disttype>
<value>35</value>

</x0>
</changetime>
<distribs>

<x0>
<disttype>TruncatedNormal</disttype>
<mean>0.002</mean>
<standarddev>0.0001</standarddev>
<lowerbound>0.0</lowerbound>

</x0>
<x1>

<disttype>TruncatedNormal</disttype>
<mean>0.025</mean>
<standarddev>0.005</standarddev>
<lowerbound>0.0</lowerbound>

</x1>
</distribs>

</phi>

The key differences here include the setting of the stepchange parameter to true, and the introduction of two new sub-
nodes, changetimes and distribs, that contain the prior distribution details for the times of the rate changes in days from the
index date (changetimes), and the rates themselves (distribs). For a rate with n change points, there must be nþ1
distributions in distribs and n distributions in changetimes. These distributions are provided in tags with the format
xn.While these adjustments can be made manually, it is also possible to parameterise this through the priors argument of
generate_epifusion_xml using nested lists.

First we will make a list of the phi changetimes (in this example there is only one). In this scenario we ‘know’ the date of
the step change in sampling - February 5th, 41 days after our index date - so we will provide it as a fixed parameter.
However it is feasible to infer this change, if desired, by providing any discrete non-fixed prior distribution for this
parameter.

phi_changetimes <- list(x0 = list(disttype = "FixedParameter",
value = 41))
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Next we will provide prior distributions for phi before and after the provided change time in the distribs.

phi_distribs <- list(x0 = list(disttype = "TruncatedNormal",
mean = 0.005,
standarddev = 0.002,
lowerbound = 0.0),

x1 = list(disttype = "TruncatedNormal",
mean = 0.05,
standarddev = 0.02,
lowerbound = 0.0))

The list structure we introduce below using the changetimes and distribswe have created mirrors the structure of
the XML chunk.

phi_prior <- list(stepchange = "true",
changetime = phi_changetimes,
distribs = phi_distribs)

We can then feed this to the priors argument when we generate the XML file. We also will set pairedPsi to true in the
parameters, and provide an empty pairedPsi in the priors. This specifies that psi is not to be fit by MCMC, and the
genomic sampling rate psi is calculated as a proportion of the case sampling rate using the proportion of genomic
sequences to cases in the data. Further information on this process is available in the Supplementary Information.

generate_epifusion_XML(tree = "Data/Processed/sampling_fixed_tree.tree",
case_incidence = sampling_caseincidence,
index_date = index_date,
loggers = list(fileBase = "Results/sampling_step_change",

logEvery = 5),
parameters = list(pairedPsi = "true",

numSteps = 10000),
priors = list(phi = phi_prior,

pairedPsi = ""),
xml_filepath = "Data/EpiFusion_XMLs/sampling_fixed_tree_

inputfile.xml")

run_epifusion("Data/EpiFusion_XMLs/sampling_fixed_tree_inputfile.xml")

Pairing psiwith phi in this way is optional; here we couple the rates as we know they should change at the same time. It
is also possible to parameterise these separately, e.g. an increase in sequencing without a corresponding increase in case
sampling.

Parsing results

To complete our analysis we will load our results using the load_raw_epifusion function once more, and inspect
the parameter trace. Here we will suppress the automatically created plots, and specifically plot the parameter trace of
interest (the time varying parameters) using the plot_parameter_trace function, but changing the default type
from all to timevar (Figure 11).

raw_sampling <- load_raw_epifusion("Results/sampling_step_change/",
suppress_plots = TRUE)
plot_parameter_trace(raw_sampling, type = "timevar")

Here the output from plot_parameter_trace looks slightly different to previous versions (e.g. Figure 4). The
function automatically recognises the presence of parameters that vary over time, and plots their piecewise constant
values (y-axis) across time (x-axis) in step graphs. This allows the inferred value over time to be intuitively understood
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from the plot. The lines are coloured by their sample index on a continuous gradient, making visible the values to which
the each chain has converged (light blue). Here we see that despite each chain initiating at different values, the initial and
final sampling rates across each chain converge to approximately the same values. This is shown by the light blue (later
MCMC samples) lines occurring at the same y-axis value in each chain trace plot for the phi parameter.

The parsing and plotting process for the rest of the results from this analysis follows the same steps as the other vignettes
included in this article.

Conclusions and Discussion
The EpiFusion Analysis Framework is a novel workflow for implementing the EpiFusion joint epidemiological and
phylodynamic inference model using the Java implementation of the model and the R package EpiFusionUtilities. This
workflow is generalisable, utilising commonR objects for data formatting (data.frame andphylo ormultiPhylo
objects) and parameterisation (list objects). We detail the full analysis workflow here, including a new feature introduced
since EpiFusion’s first description: introduction of the ability to explore the effect phylogenetic uncertainty by providing
a tree posterior as data.

Use of this approach is recommended for outbreaks where a time-scaled phylogenetic tree and case incidence data is
available, and the desired result is continuous (to a daily resolution) models of pertinent outbreak trajectories such as Rt

and infections over time. The data sampled should arise from the same ‘outbreak system’; specifically the genomic
sequences used to build the tree and the case data should be sampled from the same approximate geographic location, time
period, and population. If a time-scaled phylogenetic tree is not already assembled, this may be generated from
established phylodynamic tree estimation approaches such as BEAST22 or Nextstrain.26 The program runs efficiently
for even very large trees, but run-time increases with the length of the time series under investigation,10 accordingly we
currently do not recommend EpiFusion for analyses of time periods of longer than five years. In these instances, other
programs such as EpiNow227 (case incidence data only) or TimTam28,29 (both genomic and case incidence data), written
in R and Java (BEAST Framework) respectively, may be more appropriate.

The documentation of reproducible analysis workflows, particularly for new tools, is essential for open research.7–9

Providing efficient pipelines with corresponding instructions enables researchers to build on previous work to address
empirical research in an efficient way, which can be of great importance during outbreak settings which are often time
sensitive.30 In the three vignettes described we provide examples of standard EpiFusion parameterisation, however there
are many advanced options available to users to customise their analysis. These include capabilities for composite (non-
parametric) prior distributions (Supplementary Information Appendix 4), multiple epidemiological observation model
options (Supplementary Information Appendix 2, ‘Model’), multiple options for fitting βt (Supplementary Information
Appendix 5), and buffer zones for rate step-changes (Supplementary Information Appendix 6).

Exploration of the effect of phylogenetic uncertainty is now incorporated in the program through allowing the use of a
time-rooted phylogenetic tree posterior (from a software such as BEAST) to be used as data within the model. This new
feature is an implementation rather than theoretical advancement: For each unique MCMC chain, a new tree is randomly
sampled from this posterior and used as the tree data in the model. The resulting posteriors can subsequently be examined

Figure 11. Parameter traces from an EpiFusion analysis with a case sampling rate (phi) step change.

Page 22 of 32

F1000Research 2025, 14:345 Last updated: 03 JUN 2025



and combined by the user with post-hoc EpiFusionUtilities functions. Incorporating phylogenetic uncertainty predictably
led to increased uncertainty in the model estimates in the combined posterior. We encourage care in implementing this
approach, and thoroughly examining the effect of using different trees on the model estimates using the
plot_parameter_trace and plot_chainwise_trajectories functions. Further, for efficiency in our
example shown above, we sample 50 trees, whereas it may be necessary to increase this number to adequately
approximate the tree posterior. Going forward we aim to investigate other approaches for incorporating phylogenetic
uncertainty in the model in a more comprehensive manner.

To demonstrate the advanced parameterisation options of the framework, we addressed an outbreak with a step-increase
in case and genomic sequence sampling rates. While this example featured a single change in the modelled rates, this
infrastructure is very flexible and can be used to add significant complexity to the model according to the user
requirements.

The current framework is robust, but has some limitations. Traditionally R packages such as EpiFusionUtilities
are distributed using the R package ecosystem CRAN. However, CRAN does not accept packages which contain binary
executable code,31 so it would not have been possible to distribute anEpiFusion release (an executable jar file) with the
package and enable running the model fromwithin R. A likely future step in the software development process may be to
fully integrate the model into the EpiFusionUtilities R package using R/Rcpp, to allow more universal usage for all users
including those without a extensive phylodynamic experience and would enable the package to be hosted on CRAN.

The requirement to provide a user defined index date, or earliest possible date of outbreak origin, is a practical
implementation compromise that may result in incorrect conclusions if the index date is not set early enough (i.e., if
the index date is accidentally set after the true date of outbreak origin). Currently this can be overcome by setting the index
date to a longer time period before the suspected origin of the outbreak, however the resulting estimates during the earlier
periods of themodelled time series should be treated carefully andwill typically display high levels of uncertainty. Future
distributions of this framework will aim to allow inference without this truncation to a specified index date, or allow the
index date to be inferred within the model.

In conclusion, this article aims to outline a reproducible framework for utilising our novel joint inference model using a
functional R package and a binary executable file. We show how different parameterisations and options for the analysis
can be implemented, including how to introduce phylogenetic uncertainty through the provided tree data, and time-
variant prior distributions.We hope that clearly outlining a use case of the framework will facilitate its implementation by
researchers to investigate hypotheses of public health importance in the future.
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ciarajudge/EpiFusion. The source code is made available under the GNUGeneral Public License (v3) (https://www.gnu.
org/licenses/gpl-3.0.en.html). The source code at the time of this publication is archived on Zenodo: https://doi.
org/10.5281/zenodo.1497387432

The source code for EpiFusionUtilities is written in R and is available on GitHub at the following repository: https://
github.com/ciarajudge/EpiFusionUtilities. The source code is made available under the GNU General Public License
(v3) (https://www.gnu.org/licenses/gpl-3.0.en.html). The source code at the time of this publication is archived on
Zenodo: https://doi.org/10.5281/zenodo.1497387833

Underlying data and analysis code
The simulated datasets used in this manuscript have been described in Section 4 and are provided in the Open Science
Framework repository ‘EpiFusion Analysis Framework Software Article’: https://doi.org/10.17605/OSF.IO/7W43Y.34

The project contains the following underlying data:

• baseline_caseindicence.RDS: weekly case incidence from the baseline simulated dataset (R data.frame)
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• baseline_treeposterior.RDS: posterior of time-scaled phylogenetic trees from the baseline simulated outbreak
dataset (R S3 multiPhylo object)

• baseline_tree.RDS: time-scaled phylogenetic tree from the baseline simulated outbreak dataset (R S3 phylo
object)

• sampling_caseindicence.RDS: weekly case incidence from the step-change in sampling simulated dataset
(R data.frame)

• sampling_tree.RDS: time-scaled phylogenetic tree from the step-change in sampling simulated outbreak dataset
(R S3 phylo object)

Data are made available under the terms of the Creative Commons Attribution 4.0 International Licence (CC-BY 4.0)
(https://creativecommons.org/licenses/by/4.0/).

The code used to produce all analyses and plots in this manuscript is available on GitHub at the following repository:
https://github.com/ciarajudge/EpiFusion_Vignettes. This repository is archived on Zenodo: https://doi.org/10.5281/
zenodo.14973889.35

Data and code are made available under the terms of the Creative Commons Attribution 4.0 International Licence (CC-
BY 4.0) (https://creativecommons.org/licenses/by/4.0/).

Extended data
The extended data in this manuscript (additional figures, tables and appendices) is available as a Supplementary
Information file which is provided in the Open Science Framework repository ‘EpiFusion Analysis Framework Software
Article’: https://doi.org/10.17605/OSF.IO/7W43Y.34

The project contains the following extended data:

• supplementary_information.pdf: PDF file containing Appendices 1-6 with supplementary information.
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Leo A Featherstone  
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Overview 
Judge et al. present the EpiFusionUtilities R package. It provides an R interface for the EpiFusion 
program implemented in java, but with the key extension to accommodating phylogenetic 
uncertainty. This is a valuable contribution both in providing a means to address phylogenetic 
uncertainty and by improving accesibility through an R interface. The examples provided are 
comprehensive and explained with good clarity.  
 
Some points for clarification 
 
P6: "It is also possible to test multiple extractions extract_posterior_epifusion() with different burn-in 
proportions, and inspect the gelman-rubin statistics of the parameters, which indicate convergence if 
below 1.015" 
 
It would be helpful to outline how the Gelman-Rubin statistic relates to effective sample size (ESS), 
which will be more familiar to BEAST users who appear to be part of the intended user base here. 
Could users equivalently read output into the `coda` R package to calculate ESS for MCMC traces? 
 
P16: "...It is valuable, however, to assess how uncertainty in the tree structure may affect 
epidemiological parameters inferred through EpiFusion. Currently, this can be explored by using a tree 
posterior as the data input into EpiFusion, and sampling a unique tree from the posterior for use with 
each MCMC chain..." 
 
Does the input strictly have to be a posterior distribution of trees? I gather the program is useful 
for comparing the effects of any set of candidate trees in a multiPhylo object, which I think is a 
really useful feature! 
 
P22 Figure 11: 
I'm concerned that any patterns in colour could be obscured by overlapping of states. Would you 
consider faceting by sub-groupings of samples or perhaps implementing some version of a 
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parallel coordinates plot to better tease apart states? Here's an example: 
(https://beastiary.wytamma.com/plots/parallel-coordinates/) from the beastiary [1] program. 
 
P22: "The program runs efficiently for even very large trees, but run-time increases with the length of 
the time series under investigation,10 accordingly we currently do not recommend EpiFusion for 
analyses of time periods of longer than five years" 
 
It sounds like the number of data points in the time series is the issue rather than the total 
timespan. If so, can you provide an upper limit on the workable number of rows in the time series? 
E.g. I assume 5 years of monthly or weekly time series data would be better than daily? 
 
P23: "Currently this can be overcome by setting the index date to a longer time period before the 
suspected origin of the outbreak, however the resulting estimates during the earlier periods of the 
modelled time series should be treated carefully and will typically display high levels of uncertainty. 
Future distributions of this framework will aim to allow inference without this truncation to a specified 
index date, or allow the index date to be inferred within the model." 
 
Please elaborate on how overly conservative index dates affect inference. Is it correct to intuit that 
having very old index date would deflate estimates of transmission rate?  How would this interact 
with the 5-year time limit you proposed above? 
 
P17: Typo: "We will also narrow slightly narrow some priors" 
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1. Wirth W, Duchene S: Real-Time and Remote MCMC Trace Inspection with Beastiary. Molecular 
Biology and Evolution. 2022; 39 (5). Publisher Full Text  
 
Is the rationale for developing the new software tool clearly explained?
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Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
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Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
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Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
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I confirm that I have read this submission and believe that I have an appropriate level of 
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Claire Guinat   
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Overall comment 
This documentation is very relevant to facilitate the correct use of the EpiFusion tool and is 
essential for open research. However, the text and code should be harmonized/complemented by 
what is also presented in the online tutorial on the GitHub page. The first part, which I think aims 
to be more generic, is a bit confusing; it becomes clearer when we reach the applications. I ran the 
different parts of the code, which run smoothly. However, here are a few points that might 
improve the manuscript: 
 

I also went to https://github.com/ciarajudge/EpiFusion/tree/main/examples 
=> What are the links between the three tutorials provided on GitHub and this paper? The 
connection is unclear. It would be helpful to integrate all sources of information or clarify 
their respective purposes to avoid fragmentation.

○

Table 1 – About Data 
=> Is the tree time-calibrated? Please clarify whether this refers to an MCC tree or a 
posterior sample of time-scalibrated trees.

○

About Parameters 
=> The term “parameters” usually refers to model parameters. Here, it appears to refer to 
inference parameters or hyperparameters. Please clarify this distinction.

○

About Model 
=> What are the available model options? The XML shows a Poisson model, but further 
explanation is needed on what each model represents (e.g., incidence process), and how to 
choose one over another.

○

Add library(EpiFusionUtilities) after devtools::install_github(...) 
=> This addition would improve clarity and ensure reproducibility for users unfamiliar with 
the package.

○

Index_case <- as.Date(“2024-01-01”) 
=> If this date cannot be estimated and must be fixed, what are the implications? Could you 
clarify how users should handle uncertainty, perhaps by suggesting a sensitivity analysis? 
Also, is this date just an example or related to real data?

○

“If there is uncertainty in the date of origin of the outbreak we recommend setting the index 
date to earlier than the estimated date.” 

○
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=> Please clarify what is meant by "estimated date"—is it based on genetic data, case 
reports, or another source?
“To prepare a tree or posterior set of trees for EpiFusion” 
=> The documentation should clarify whether trees must be time-calibrated. This is crucial 
for users preparing their data.

○

prepare_epifusion_tree(...) 
=> Are users expected to use the tree provided in the GitHub tutorial? Providing a simple 
MCC tree as an example would be helpful for learning purposes.

○

“This function populates a template XML...” 
=> It would help to list default parameter values and priors explicitly here. Also, clarify 
terminology: "priors" and "parameters" typically refer to biological model settings, whereas 
here they seem to relate to the inference framework (MCMC, particle filtering, etc.).

○

CSV case format for incidence data 
=> Please give an explicit description of the required format (e.g., columns, headers). You 
could refer to the full workflow tutorial but be explicit here too.

○

generate_epifusion_XML(...) 
=> The full workflow tutorial uses a different example and mentions priors, but it's unclear 
which parameters are being referred to. I recommend listing all adjustable priors (e.g., ψ, ϕ, 
betajitter) and defining them clearly.

○

run_epifusion("epifusion_input.xml") 
=> Could you include an estimate of run time or a way to monitor progress, similar to BEAST 
logs? This would help users plan their analyses.

○

Output files (betas.csv, params.txt, acceptance.txt) 
=> Clarify that params_chain0.csv is the output referenced as params.txt. Are these MCMC 
parameters or model parameters? Define what the “acceptance” file contains and how to 
interpret acceptance rates.

○

“It is possible to process this raw output manually...” 
=> Before visualizing outputs, users should be advised to assess convergence (e.g., trace 
plots, Gelman-Rubin statistics). Mention this step earlier in the process.

○

Rt estimates 
=> Where are the Rt estimates? Can users specify whether Rt is estimated from tree only, 
case data only, or combined? Clarifying this would be very useful.

○

Use cases section 
=> The term “Use cases” might be misleading, since “case” is already used for case incidence 
data. Perhaps “Applications” would be a clearer section title.

○

“Finally, in ‘Introducing Rate Changes’” 
=> Consider rewording as “Introducing sampling rate changes” to be more specific.

○

Structured populations 
=> Is it possible to use the method for structured populations and estimate different Rt 
values per subpopulation? Clarify whether this is supported or planned.

○

“To generate the data...” using ReMaster.19 
=> Do we assume that all cases are reported? Clarify whether the incidence file reflects total 
or sampled incidence, since under-reporting is common in real-world outbreaks.

○

“...csv file with dated counts of weekly incidence” 
=> Does incidence have to be weekly? Could it be daily or in another time unit? Specify how 
to align tree and case data temporal scales.

○

Methods vs. Use Cases 
=> The “Use Cases” section is much clearer than the “Methods” section. Consider stating 

○
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explicitly that the methods part is a generic overview and that detailed application examples 
follow.
include_samples = TRUE 
=> It is unclear what changes when this is set to TRUE. Does it apply burn-in and return a 
trimmed posterior sample? Please clarify the effect of this option.

○

parsed_output_fixed <- extract_posterior_epifusion(...) 
=> If users want to compute their own summary statistics (e.g., medians), should they use 
the raw output after burn-in? Clarify the recommended procedure.

○

“Finally we can examine the posteriors of the MCMC parameters...” 
=> Introduce convergence checks (Gelman-Rubin, ESS) earlier in the workflow. Also, define 
acronyms like ESS and rhat, and explain what these values represent and how to interpret 
them.

○

print(parsed_output_fixed$parameters$gamma$rhat) output 
=> It’s not clear to beginners what this output means. Relate it clearly to the earlier 
explanation of convergence diagnostics.

○

“However, in a real outbreak setting there is often uncertainty...” 
=> Typo: "sturcture" should be "structure".

○

“...sampled at random from the tree posterior...” 
=> Please clarify: if multiple trees are sampled, does this represent a sensitivity analysis 
across tree uncertainty? The phrasing earlier in the document suggests that only one tree is 
used per run.

○

“...run 50 chains, each using a different tree sampled...” 
=> This is now clearer, thanks. It might help to emphasize that this is the way to explore tree 
uncertainty.

○

Side question 
=> I wonder why the authors of the original EpiFusion paper are not included in this 
manuscript? Their inclusion would make sense if the method is being described or re-
implemented.

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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This manuscript provides a valuable practical extension of the EpiFusion framework, offering clear 
guidance for implementing joint phylodynamic-epidemiological analyses via the EpiFusionUtilities 
R package. The inclusion of vignettes and real-world outbreak case studies significantly enhances 
reproducibility and accessibility, bridging the gap between theoretical models and applied public 
health research. Below are suggestions to further strengthen the work: 
  
1.    The emphasis on reproducibility is a major strength. To ensure seamless replication across 
systems, the authors could: 
·       Encapsulate dependencies by providing Docker containers or platform-agnostic virtual 
environments (e.g., via renv). 
·       Document software versions explicitly, including a sessionInfo() output, R/Java version 
requirements, and a requirements.txt file (or equivalent) to help users mirror the analysis 
environment. 
 
2.    While the focus on EpiFusionUtilities is appropriate, the manuscript would benefit from a 
comparative discussion of how EpiFusion complements or differs from established tools (e.g., 
BEAST, PhyDyn, Outbreaker2). A concise table or paragraph highlighting unique features (e.g., 
joint modeling of genomic and epidemiological data) and limitations (e.g., computational 
scalability) would help users assess its suitability for their needs. 
 
3.    The manuscript includes analyses of two outbreak datasets. Briefly justify their selection and 
relevance to contemporary public health challenges to strengthen the narrative. A more explicit 
discussion of the framework’s assumptions and limitations would improve its practical utility: 
·       The model assumes a single infected individual (single index) initiates the outbreak. Discuss 
its sensitivity to this assumption and whether the model can accommodate multiple introductions. 
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·       While the manuscript notes that phylogenetic uncertainty affects parameter estimation, it 
should also address how variation in tree-building methods (e.g., ML vs. Bayesian approaches) 
might propagate into epidemiological inferences. 
·       Guidance on computational performance (e.g., runtime benchmarks for larger datasets or 
complex models) would help users gauge feasibility for their own work.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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