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Abstract

The complexity and speed of evolution in viruses with RNA genomes makes predictive identification of variants with epi-
demic or pandemic potential challenging. In recent years, machine learning has become an increasingly capable technology for 
addressing this challenge, as advances in methods and computational power have dramatically improved the performance of 
models and led to their widespread adoption across industries and disciplines. Nascent applications of machine learning tech-
nology to virus research have now expanded, providing new tools for handling large-scale datasets and leading to a reshaping 
of existing workflows for phenotype prediction, phylogenetic analysis, drug discovery and more. This review explores how 
machine learning has been applied to and has impacted the study of viruses, before addressing the strengths and limitations 
of its techniques and finally highlighting the next steps that are needed for the technology to reach its full potential in this chal-
lenging and ever-relevant research area.

CURRENT CHALLENGES IN VIROLOGY
Viruses are ubiquitous pathogens which infect virtually all life on the planet. In the context of humans, they are the leading 
cause of infectious disease and place a major burden on public health worldwide. Viral infections of humans can vary from 
asymptomatic to life-threatening and, alongside endemic and seasonal illnesses, have the potential to cause major outbreaks and 
global pandemics. The threat to human health posed by pandemic viruses is exemplified by COVID-19, an infectious disease 
caused by the coronavirus SARS-CoV-2 that has been responsible for over six million deaths in the 4 years since its emergence in 
2019 [1]. Viruses with both high impact on human health and pandemic potential tend to be those with RNA genomes, such as 
coronaviruses and influenza viruses. The traits of these viruses – typically including high rates of mutation and transmissibility, 
as well as the ability to infect and jump between the primary animal host and humans as a secondary host – pose a significant and 
ever-present threat to public health, driven primarily by the unpredictability of a novel virus’ emergence in the human popula-
tion and the rapid speed of transmission into new communities once it does so [2]. These traits additionally pose a challenge to 
research efforts and particularly the development of therapeutic strategies, as the speed of evolution and transmission of some 
emerging viruses with human hosts necessitates a rapid turnaround time and can quickly render antiviral compounds or vaccines 
ineffective [3]. One avenue for overcoming these challenges is the prediction of new outbreaks through the study of the patterns 
of mutation and adaptation that give rise to them [4].

We have now entered an era where the number of viral genome sequences available for research is greater than ever before, 
thanks to the advent of accessible, cost-effective next-generation sequencing (NGS) technology and the unprecedented 
response of the global health community to COVID-19, with over 16 million SARS-CoV-2 sequences available publicly as 
of April 2024 [5]. In a similar timeframe, the field of machine learning (ML) has seen an exponential increase in power and 
capability, driven by the larger volume of data available, technological advancement and the advent of deep learning. Today, 
ML has already seen focused use as a new avenue for tackling existing challenges in virus research, with many possible 
applications remaining [6–9].
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AN OVERVIEW OF ML
A subfield of artificial intelligence (AI), ML is concerned with the development of mathematical algorithms capable of ‘learning’ 
from input data – that is, the ability to improve performance on a designated task by analysing new data and without explicit 
programming. ML algorithms learn the patterns and structure of a training dataset. The output of a trained algorithm is a model, 
which can then be used to make predictions based on unseen data.

A wide array of ML technologies and techniques exist, and each can be broadly categorized based on whether the model is 
supervised or unsupervised. In supervised learning, training data for an algorithm are labelled in order to teach it a specific goal. 
In unsupervised learning, the algorithm learns the structure of unlabelled data without explicit instructions. Supervised and 
unsupervised ML models can then be further defined by the task they perform, which can include the classification of data into 
categories or the grouping of data based on similarity. These categories and their associated tasks are summarized in Fig. 1. More 
complex models generally require larger training datasets to perform their tasks effectively. The simplest mathematical models 

Fig. 1. A selection of relevant supervised and unsupervised ML tasks which have been applied to viral data, including representative examples. 
Classification algorithms place unseen data points into existing categories, based on a labelled training dataset. Classification techniques have 
seen use for the purposes of predicting tropism from virus genome sequence data, identifying putative interactions between viral and host proteins 
and predicting whether a given viral protein will bind to a specific antibody [24, 95, 103]. Regression algorithms analyse the relationships between 
dependent and independent variables in data points, with the goal of predicting future unseen values. Regression has been used for the prediction 
of variant phenotypes [37]. Clustering algorithms group unlabelled data points together based on their similarity to each other. Clustering is used to 
identify unknown relationships and patterns between data points and phenotypes [89].
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may be able to make accurate predictions based on a training dataset with hundreds or thousands of entries, whereas modern-day 
language models may require millions in order to identify high-level patterns and nuanced associations between data points [10].

Currently, the latest and most powerful ML models are based on neural networks. A neural network is an algorithm consisting of 
many interconnected computational nodes. These nodes are also known as neurons, as each will receive, process and output data 
in a manner similar to those in the human brain [11]. Neural networks have existed conceptually since the mid-twentieth century, 
though their capabilities have historically been limited due to computational hardware being incapable of hosting complex models 
with multiple, dense layers of neurons [12]. However, recent technological advances in hardware, network design and training 
approaches have resulted in the rise of deep learning algorithms – large-scale neural networks with a large number of hidden 
layers, capable of identifying features and patterns in extremely large and complex datasets. Deep learning algorithms have had a 
major impact in many areas of research and, in molecular biology, are already known for solving the problem of accurate protein 
structure prediction from sequence data [13]. Thanks to their rapid advancement and powerful, public-facing applications, deep 
learning models have come to dominate scientific and cultural discourse in recent years [14].

ML APPLIED TO VIRUS RESEARCH
Those ML models employed for virus research may work with a wide variety of data types, including structure or binding 
information, phenotypic or phylogenetic information and nucleic or aa sequences. The latter is frequently utilized and typically 
encompasses both genome and protein sequences from viruses and their hosts. In order to be used as input for an ML model, data 
must first be converted into a form that an algorithm can recognize in a process termed feature extraction (Fig. 2). Features are 
individual measured properties that describe the input data. To provide an example, a feature representation created from an aa 
sequence may contain a series of values representing its physiochemical properties [15]. There are a wide variety of mathematical 
techniques for the feature extraction of biological data, with each providing differing representations with varying levels of size 
and complexity [16]. Feature extraction techniques are chosen based on the composition of the input data, as well as the nature 
of the ML model being used.

Input data for ML models in virus research are frequently sourced from experimental datasets, the results of simulations or 
analyses or online databases (Table 1). Many existing studies utilizing ML techniques on viruses take advantage of the large-scale 
public databases available for genetic sequences, such as GenBank, the BVBRC or GISAID [5, 17, 18]. In addition, the focus is 
shifting increasingly towards the use of general large language models (LLMs) developed from protein structure databases such as 
the Protein Data Bank or UniProt, for the purposes of advanced feature extraction or addressing sparse training datasets [19, 20].

CLASSIFYING VIRAL SEQUENCES
One of the more conceptually straightforward tasks in ML is the classification of data into different categories. In the context of 
virus research, a classification algorithm may be tasked with identifying the host species of a given viral sequence, or assigning it 
to a genetic lineage. One of the earliest examples of ML being applied to virological data is in the 2009 H1N1 swine flu pandemic, 
as researchers sought to identify the host origin of newly sequenced viral genomes [21]. Influenza A virus (IAV) is the causative 
agent of the pandemic and infects a wide range of animal hosts. Additionally, the virus is capable of evading the host immune 
system either through incremental changes over time or large, dramatic antigenic shift events [22, 23]. The ability to quickly 
determine the origin of IAV genome segments in newly identified sequences enables researchers to more quickly track the 
emergence, transmission and evolution of influenza viruses.

In a 2009 study, classification algorithms were used to identify a number of IAV sequences obtained from GISAID during the 
2009 pandemic as being of either human or swine origin [21]. Each method achieved a prediction accuracy score above 95% 
for each of the 8 segments in the IAV genome – tempered only by the small training dataset used to create each model (~150 
sequences per genome segment, per host) [21]. More recent studies have achieved similar levels of predictive accuracy with much 
larger training datasets. By representing the aa sequences of each IAV genome segment via their physiochemical properties and 
applying a random forest classifier, Eng et al. achieved 98.62% prediction accuracy when classifying sequences belonging to the 
IAV fusion protein haemagglutinin (HA) as being of human or avian origin, using a training dataset of ~10 000 sequences [24]. A 
2020 study used this foundation to explore feature representation in greater depth, identifying HA as the protein most indicative 
of host tropism [25]. Lastly, a 2022 study utilizing over 59 000 HA sequences found that a neural network achieved the highest 
level of accuracy when classifying sequences between human, avian and swine, though at a lower taxonomic level (i.e. specific 
avian hosts) a gradient-boosting algorithm achieved better results, as these are optimized for dealing with sparse or missing data 
and the number of sequences available for certain avian hosts is comparatively low [26, 27].

Several of the above-mentioned studies have resulted in the construction of online platforms for the prediction of IAV host or 
subtype from sequence data – using models trained on GISAID or BVBRC (formally IRD) data [18, 28, 29]. As a highly impactful 
pathogen with organized sequencing efforts dating back to the 1980s, IAV has one of the largest sequence datasets of any virus [18]. 
This puts into perspective the scale of the COVID-19 sequencing effort, with publicly available SARS-CoV-2 sequences already 
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Fig. 2. Visualizing ML pathways. (a)  Preparing and converting viral genomic data for the construction of an ML model. The nucleic acid genome of a 
virus particle is extracted and sequenced into a form which can be read by computational software. The raw sequence data are then converted into a 
set of features which can be read by an ML algorithm while maintaining needed information from the original data. The feature set can then be used 
to train an ML algorithm, ultimately leading to the construction of a completed model. (b) A graphical depiction of a neural network’s structure. Input 
data are processed by input nodes and passed through a number of hidden layers. Nodes (neurons) receive and process data, before sending it further 
along the network to other connected nodes. Fully processed data are retrieved from the output node.
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far outnumbering influenza or any other virus. As of November 2024, the GenBank public database contains over 8.9 million 
SARS-CoV-2 nt sequences (of which 3 million are marked as nt complete) since the start of the pandemic, in comparison to 
IAV (1.1 million nt sequences, 10 000 complete) and human immunodeficiency virus 1 (HIV-1, 1.1 million nt sequences, 7200 
complete), which both number among the most well-represented viruses on the platform with entries dating back as far as 1982 
and 1985, respectively [30]. The unprecedented size of the SARS-CoV-2 dataset presents a challenge in how to effectively manage 
and analyse its entries to gain biological insight – a challenge which ML is well suited to address.

SARS-CoV-2 is a non-segmented, positive-sense RNA virus of zoonotic origin, which replicates efficiently in humans [31]. 
Due to the proofreading exonuclease capability of the SARS-CoV-2 RNA-dependent RNA polymerase, the virus has a lower 
replication error rate than IAV (one study has placed the replication error rate for SARS-CoV-2 in cell culture to be 23.9-fold 
lower than IAV) but has nevertheless accumulated mutations over the course of the COVID-19 pandemic, which has led to 

Table 1. Available data sources for the training and validation of ML algorithms in virology, broadly categorized with a brief summary of each category 
as well as use cases and drawbacks for each

Data source Summary Use cases Drawbacks Ref

Large-scale, automatically 
curated databases (GISAID, NCBI 
GenBank, Influenza Research 
Database, Observed Antibody Space, 
UniProtKB)

Contain hundreds of thousands to 
millions of sequences and protein 
structures obtained from around the 
world; are typically freely available 
and collaborative efforts, with many 
groups providing data

Can be used to train or validate a wide 
variety of ML algorithms, particularly 
for the purpose of phylogenetic 
analysis, genotype to phenotype 
prediction and prediction of protein 
structure; the extremely large amount 
of data available can be used to train 
complex deep learning algorithms, 
which require comparatively massive 
training datasets

In many cases, automated curation 
and the inclusion of entries from 
many different sources result in overall 
metadata quality being low, with 
inconsistencies between entries and 
very few entries containing phenotypic 
information, where relevant; overall 
data may be biassed towards certain 
regions (particularly Europe and the 
USA), and in the case of viral sequence 
databases, data are only available at 
this scale for heavily studied viruses 
such as SARS-CoV-2 and influenza

[19, 67, 120, 121]

Large-scale, manually curated 
databases (UniProtKB/Swiss-Prot, 
Protein Database)

Curated datasets containing viral 
genome sequences or protein 
structures; manual curation means 
data must meet strict quality 
standards, with comprehensive and 
standardized metadata

Similar to large-scale, automatically 
curated databases, though the 
inclusion of additional metadata 
increases potential ML applications, 
and high-quality protein structure 
data can be used for validation

Maintaining and building upon 
a manually curated, high-quality 
database requires expert knowledge 
and significant resources; the Protein 
Database (PDB) and UniProtKB/
Swiss-Prot database are unique 
examples of such large-scale, manually 
curated protein structure databases

[122]

Small-scale, manually curated 
databases (SKEMPI, AB Bind)

Curated datasets containing high-
quality experimental data collated 
from existing literature; data 
vary greatly across datasets and 
disciplines but may include, for 
example, thermodynamic and kinetic 
information for protein–protein 
interactions (SKEMPI) or antibody 
binding (AB-Bind)

Used for the training and validation 
of ML algorithms designed to predict 
phenotypic effects, such as changes 
in binding free energy (ΔΔG) due to 
mutation or relevant thermodynamics

Obtaining and curating experimentally 
verified data is an extensive process 
which naturally limits the potential 
size of these datasets – total entries 
are typically in the low thousands 
compared to the millions seen in some 
genomic databases

[49, 123]

Phenotype databases and ontologies 
(Gene Ontology, Database of 
Genomes and Phenotypes)

Provide information on the functions 
and phenotypes associated with genes; 
in the case of ontologies, they aim to 
develop a standardized vocabulary to 
describe their effects and interactions 
and provide evidence-based 
annotations to relate gene products to 
their biological role

Can be used to supplement training 
data for algorithms designed to 
predict protein–protein interactions, 
or provide additional information for 
feature embedding techniques

Consisting of annotations and 
descriptions, these cannot typically 
be used as the sole training data for 
an ML model; less well-known or 
studied viruses may have fewer or 
less accurate annotations; likewise, 
well-known proteins and pathways 
may have highly complex or detailed 
annotations and networks, which are 
difficult to integrate into an ML model

[79, 80]

Derived from experimental data 
(NGS, deep mutational scanning, 
molecular dynamic simulations)

Modern mutagenesis, sequencing 
and computational techniques allow 
for novel large-scale datasets to be 
generated practically by a research 
laboratory; these datasets can include 
deep sequencing data on a genetic 
population, phenotypic data on aa 
substitutions or simulated data of 
molecular dynamics and interactions

Used for training and validating 
algorithms with the goal of 
phylogenetic analysis or prediction of 
phenotypic effects. Data may also be 
used in combination with genomic/
structural data to provide phenotypic 
input for a training dataset

While data from a single experimental 
source or study may include 
hundreds of thousands of entries 
with standardized metadata, 
this typically lacks the scope of 
information available from databases 
with submissions from across the 
world; additionally, generation of 
data experimentally requires time, 
effort and resources in comparison 
to acquisition from an accessible 
database; datasets associated with 
specific studies may not be as readily 
available as those from collaborative 
databases

[46, 48, 124]

Examples given are not intended to be an exhaustive list – rather representative of each category.
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the emergence of new variants with altered infectivity and disease phenotypes [32–34]. The ability to quickly classify new 
SARS-CoV-2 sequences is paramount to tracking the pandemic, and to that end, the Phylogenetic Assignment of Named 
Global Outbreak lineages (Pangolin or PANGO) nomenclature has been adopted as the standard for the classification of 
the virus’ genetic lineages [35]. Assigning new viral sequences to a PANGO lineage is performed using the pangoLEARN 
tool – an ML model consisting of a random forest classification algorithm trained on sequences from the GISAID database, 
where each base in the SARS-CoV-2 genome has been one-hot encoded [36]. In one-hot encoding, categorical data are 
converted into a numerical array, which can then be fed to an ML algorithm. In this example, the array represents each of 
the four nt bases, as well as which of them is present at a given position in the genome. Encoded sequences are then quickly 
assigned to a lineage.

PREDICTING VIRAL PHENOTYPES
Beyond the classification of viral sequences, the ability to predict the relevant phenotypes of novel variants is an important asset 
for the development of strategies and interventions against existing and emerging viruses. Models built to perform this task may 
be designed to predict a novel virus’ ability to bind to a specific host receptor, gain resistance to a particular therapy or intervention 
or evade specific antibodies, among other applications. Such models may also attempt to identify the aa mutations or evolutionary 
pathways associated with these phenotypes.

PyR0 is a logistic regression model trained on over six million SARS-CoV-2 sequences available from GISAID at the time of 
its development in early 2022 [37]. The goal of the model is to sort sequences into genetic clusters from which it can estimate 
the overall fitness of a given virus. The PyR0 model was constructed using genome sequences with associated collection dates, 
locations and PANGO lineages – allowing entries to be sorted based on date and region. A complete phylogeny was constructed 
using a tool specialized for large datasets, and this phylogeny was then used to partition samples into genetic clusters based on 
a refined version of the PANGO nomenclature [38]. These genetic clusters are used to estimate the fitness of different lineages 
and form the basis of the model itself, which regresses lineage counts against aa mutations across different times and regions. 
By aligning differing aa mutations with lineages and fitness estimates across the spatial and temporal history of the pandemic, 
PyR0 demonstrated an ability to detect and characterize new lineages of SARS-CoV-2 (correctly classifying the Omicron variant 
as having the highest fitness to date at the time of the study) and was able to predict single aa mutations relevant to viral fitness.

However, while powerful, there are limits to PyR0 and other regression models when applied to sequence data, as they rely on the 
assumption that individual mutations are independent of one another in regard to phenotypic effect. In reality, SARS-CoV-2 has 
repeatedly evolved combinations of mutations, which occur simultaneously, and the evolutionary history of the virus is highly 
complex and nonlinear to an extent that linear regression algorithms are unable to predict [39, 40]. Instead, studies have turned 
to neural networks and deep learning algorithms to investigate more complex problems.

Working with over seven million spike protein sequences taken from GISAID, the developers of the TEMPO model used a 
phylogenetic tree-based sampling method to generate historical sequences, which were then fed into a neural network in order to 
predict aa mutations based on the virus’ evolutionary history [41]. TEMPO was designed for the prediction of potential mutations 
at target sites based on historical data and successfully predicted 22 out of 39 real-world mutations, which emerged following the 
most recent entries in its training dataset in February 2022.

Beyond SARS-CoV-2, neural networks have been applied to measure antigenic distances between IAV sequences in both human 
and swine hosts, allowing for the identification of antigenically distinct strains, which can be selectively targeted for in vitro 
follow-up work [42, 43]. In addition, a separate study from Xia et al. developed a deep learning model, which employed two 
separate neural networks – one dealing with local aa context and the other with long-distance sequence information – with the 
goal of predicting antigenic variation between IAV sequences [44]. This model used a quasi-experimental dataset of phenotypic 
data from HA inhibition assays and achieved very high prediction performance (99.20% agreement with existing sequence data), 
though confidence in the model’s performance would be increased with access to a true experimental dataset [45].

Neural networks can also be trained with deep sequencing datasets, which provide high-resolution genetic coverage of their targets 
[46, 47]. Such datasets can include phenotypic information related to specific sequences or mutations. In a recent study, neural 
networks were applied to data from a deep mutational scanning (DMS) experiment, which leverages deep sequencing alongside 
laboratory assays to generate phenotypic information for every individual aa substitution mutation in a population [48]. In this 
case, the DMS experiment investigated the effects of mutations in the receptor-binding domain (RBD) of the SARS-CoV-2 spike 
protein on binding affinity for the ACE2 receptor, as well as a number of target antibodies. The dataset, which coupled sequence 
data with phenotypic information, was used to train ML algorithms for the prediction of mutational effects on viral phenotypes, 
and it was found that a neural network approach was able to most accurately predict binding and non-binding phenotypes – 
achieving accuracy scores of >0.92, though only when incorporating combinatorial mutations in the training dataset, as well as 
data that were mutationally distant from the Wu-Hu-1 reference sequence. Due to the multiple nonlinear pathways of SARS-CoV-2 
evolution, single aa mutations alone cannot represent the additive effects of combinatorial mutations [49–51].
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Phenotypic data obtained from DMS experiments can further be used to supplement ML models trained from sequence or 
structural information. In a recent study, molecular dynamic simulations, which are capable of analysing the physical movements 
of atoms and molecules over time in very high resolution, were used to train a neural network model capable of reproducing 
experimental changes in binding affinity caused by aa mutations in the receptor RBD of the SARS-CoV-2 spike protein [49]. 
In short, ML analysis performed on snapshots from the simulation was able to estimate the change in binding energy between 
the RBD and the ACE2 receptor, which could then be directly compared to experimental measurements from a previous DMS 
experiment in order to validate results. The tool achieved a correlation coefficient of 0.73 between predicted and experimental 
values. In a separate study, a similar approach revealed interactions in the binding complex between spike and ACE2 [52]. More 
complex neural networks have proven to be effective tools for the analysis and processing of particularly massive raw datasets 
outputted by molecular dynamic simulations [53].

DRUG DISCOVERY AND VACCINE DESIGN
ML is currently seeing extensive use in pharmaceutical fields as models are applied to pipelines for drug discovery and vaccine 
design [54, 55]. Deep learning is now commonly applied to molecular dynamics and related molecular docking simulations 
in structure-based drug discovery [56, 57]. Briefly, deep learning-based techniques are used to predict protein structures and 
perform virtual screens, with molecular simulations then being employed to obtain relevant thermodynamic and kinetic data 
for candidate molecules [56]. An attractive prospect in drug discovery, ML can streamline and focus in vitro work to reduce the 
cost and duration of various steps in the workflow [58].

Deep learning techniques have additionally been employed to perform virtual screenings of potential antiviral compounds and 
perform functions in molecular dynamic simulations themselves [13, 56, 59]. Since the start of the COVID-19 pandemic, deep 
learning has additionally been used for drug repurposing screenings, identifying a number of existing compounds with activity 
against SARS-CoV-2 including azathioprine, pralatrexate and, in combination with other compounds, remdesivir [60–63].

In a similar vein, ML techniques are increasingly influencing the related field of vaccine design, via the development of tech-
niques that speed up or replace different stages in the vaccine development pipeline. In particular, ML plays a key role in reverse 
vaccinology, a long-standing method of vaccine discovery, which identifies potential antigens using computational techniques 
trained on genetic and immunological data [64].

To date, a number of ML and deep learning-based models have been developed for the prediction of B cell and T cell epitopes 
as potential vaccine components [65]. Many of these are trained on data from the Immune Epitope Database – a freely available 
catalogue of experimental data on antibody and T cell epitopes [66]. In addition, deep learning is able to take advantage of 
advances in NGS-based immune repertoire sequencing for either B cell receptors or T cell receptors – a particularly noteworthy 
data source for ML algorithms, with some databases containing millions to over a billion sequences [67, 68]. Immune repertoire 
data have been used to train deep learning models focused on sequence classification and prediction of disease severity, though 
these do represent early applications [69, 70].

PREDICTING VIRAL HOST–PATHOGEN INTERACTIONS
The mechanisms of virus infection and replication are largely determined by protein–protein interactions (PPIs) between the 
pathogen and host. Understanding these interactions is important for advancing knowledge of virus replication as well as iden-
tifying new drug and vaccine targets. As such, the identification of virus–host PPIs has seen extensive research, though the total 
interactome (complete space of interacting host and viral proteins) remains incomplete, and work continues to be focused on 
well-studied pathogens [71].

ML methods have seen extensive use for the prediction of PPIs, which can be considered a classification task. PPI classifiers are 
trained on experimentally validated interacting protein pairs, obtained from host–pathogen PPI databases such as HPIDB, HVIDB 
or Viruses.STRING for interspecies interactions, or HCVpro and NCBI HIV-1 for specific viruses, for example [72–76]. Interac-
tion data are paired with sequence data for the respective proteins, typically obtained from reviewed structures available from 
UniProt [19]. As the most abundant form of training data available, aa sequences form the bedrock of most PPI classifiers, with 
a number of feature extraction techniques employed to discern physiochemical properties, as well as phylogenetic information.

In addition to sequence and interaction data, modern PPI classifiers often incorporate phenotypes associated with specific 
pathogens or genes [77, 78]. These can be acquired from phenotype databases such as PathoPhenoDB or dbGaP, as well 
as ontology resources, which aim to build and maintain a controlled vocabulary of genes and gene products [79–81]. 
However, the availability of phenotypic data as well as interaction data can be limited, especially for viruses and hosts, 
which are less studied [82]. As a result, recent studies have turned to generalizable LLMs to learn more from smaller 
viral datasets [83].
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LEARNING THE LANGUAGE OF VIRAL PROTEINS
LLMs are based on the concepts and techniques of natural language processing. This is a subfield of AI concerned with 
developing algorithms that can understand, interpret and manipulate human language. Modern natural language processing 
is based on linguistic techniques and the process of word embedding. In word embedding, individual words are converted 
to numeric vectors, which can be read by an ML algorithm while preserving semantic context [84–86]. Each of these vectors 
contains tens to hundreds of dimensions, and in this vector space, any words which are closer to each other are suggested to 
be similar in meaning. In this way, natural language processing algorithms can take full sequence context into account when 
performing analysis [87]. While this technology began with the development of tools for speech recognition, translation 
and language generation, many computational biologists have applied the technology to the language of proteins.

The sequences of aas that make up proteins share much in common with human language regarding their representation, structure 
and status as ‘information complete’ – i.e. all of a protein’s information is theoretically contained within its aa sequence [88]. As 
a result, recent studies have attempted to apply natural language processing techniques to the analysis of viral protein sequences, 
to elucidate or predict the properties of the molecule [10, 89].

In one pioneering 2021 study, language models were employed to predict the immune escape potential of protein sequences 
from IAV, human immunodeficiency virus (HIV) and SARS-CoV-2 [89]. These models were based on neural network 
architecture and designed to assess grammar (referred to as grammaticality) and semantics as part of the same output. In the 
context of viral sequences, grammaticality was structured to represent the ‘biological rules’ of infectivity and evolutionary 
fitness, whereas semantics would refer to a change in the ‘meaning’ of the sequence – in this case the switch to no longer 
being recognized by the host immune system. The models were able to cluster raw sequence data into groups corresponding 
to subtype and/or host species, with further analysis indicating that grammatical or semantic change was significantly 
correlated with fitness and escape potential.

As the field of natural language processing has advanced rapidly in recent years, LLMs have now become the dominant 
computational tool for ML applications to viral protein data. LLMs are trained on millions or billions of data points and 
are extremely powerful and versatile, with a vast scale of knowledge and the ability to handle complex tasks and generate 
fluent and coherent human language [90]. Currently, transformer-based models are at the forefront of natural language 
processing. These utilize attention mechanisms, where a model can identify and prioritize the most relevant parts of its 
input sequence. Transformer models form the core of many LLMs, including the BERT and GPT architectures [91]. These 
have been adapted for use in protein research, with the ProteinBERT model adapting the existing BERT architecture 
and introducing a pretraining task on over 100 million protein sequences from UniRef90 [10, 92]. Similarly, a previously 
discussed model for the prediction of mutation phenotypes, TEMPO, utilizes transformer architecture to outperform other 
neural network technologies when predicting mutation effects for SARS-CoV-2 [41, 93]. Currently, the evolutionary scale 
modelling (ESM) family of models are considered among the largest and most powerful protein language models available. 
These are transformer-based LLMs that can be scaled up to billions of parameters, allowing them to capture high-level 
evolutionary information and nuanced relationships between sequences in even greater depth. In a recent study, ESM-1b 
was used in the construction of a new model for the prediction of receptor/antibody binding specificity in SARS-CoV-2 
[94]. The study builds upon previous work on natural language applications to viral protein sequences and the prediction 
of SARS-CoV-2 variant phenotypes to construct ML-guided Antigenic Evolution Prediction (MLAEP), a multitask deep 
learning model that predicts binding specificity using variant sequences and binding target structures [89, 95]. Through 
experimental validation, it was found that MLAEP was able to predict mutations, which occur in chronic infections as well 
as emerging variants, and additionally forecast combinatorial mutations through an understanding of epistatic interactions.

The ESM family of models illustrate the ongoing rapid advancement of protein language models. ESM-2, published in 2022, is 
trained on ~65 million unique protein sequences from UniRef and can hold up to 15 billion parameters [96]. ESM-3, released in 
2024, is claimed to hold up to 98 billion parameters [97].

ADDRESSING DATA SCARCITY
With the advent of large protein language models, it is now becoming increasingly common practice to use pre-trained LLMs 
to obtain input features from sequence data, as generalizable protein models are able to provide a wealth of useful information 
from a single viral protein sequence. The practice of taking a pre-trained model and adjusting it based on a dataset of interest is 
called fine-tuning and is a form of transfer learning.

Broadly, transfer learning is concerned with the reapplication of machine knowledge to a new, related task. Its potential lies in 
its ability to leverage existing models to enable accurate predictions from comparatively sparse information, with a significantly 
reduced training cost [98]. Within virology, transfer learning has recently been applied to the prediction of PPIs. One recent 
model, known as multitask transfer, is based on an LLM named UniRep, which is trained on over 24 million sequences from 
UniRef50 [92, 99, 100]. The feature-rich protein representations obtained from this model were then further refined via a neural 
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network, incorporating a multitask component – the prediction of interactions with human proteins. Multitask transfer was 
found to outperform a number of contemporary models after training on benchmark datasets.

A transfer learning model based on transformer architecture, named DeepVHIPPI, was first pre-trained on the Swiss-Prot 
database before being fine-tuned with PPI data from SARS-CoV-2, influenza or Ebola [101]. Recently, the STEP architecture, 
which uses a twin neural network incorporating the pre-trained ProtBERT model, was able to match or beat the accuracy of 
competing models on the same dataset [102].

PITFALLS AND CONSIDERATIONS
While the use of deep learning and fine-tuned protein language models is becoming standard practice for ML applications to 
viral data, there are still scenarios in which alternative techniques are better suited. In scenarios such as PPI prediction where 
the ML task can be well defined, smaller-scale algorithms are often more accurate [103, 104] and have been employed to predict 
PPIs for a number of viruses from comparatively small datasets with a high level of accuracy [103, 104]. In addition, classical 
ML techniques are typically less computationally demanding than deep learning, which can require days or weeks of training 
time with high-performance hardware.

Beyond the specifics of model selection, there are a number of notable considerations that must be made when working with ML 
models and in the context of the virus research discussed in this review. First, an ML model is only ever as good as the data used 
to train it – as highlighted in this review, the majority of models trained on viral data have utilized genetic sequences for their 
training datasets, and such sequences are typically obtained from collaborative online databases. While the wealth of sequencing 
data available from such platforms are unique resources, which have contributed greatly to research, they are hindered by a lack 
of associated metadata and a tendency towards regional bias [105]. Metadata elements (such as host tropism, disease severity 
and therapeutic effectiveness to name a small number of examples) often serve as the predictive goals of trained models but 
are rarely included in data entries in any significant number (with the notable exception of host tropism). For example, the 
overwhelming majority of sequences made available on GISAID have no metadata beyond the patient’s age, gender and the date 
and location of sample collection. As of November 2024, roughly 5% of total sequences in GISAID’s EpiCoV database are listed 
as having patient status information, and there are a considerable number of entries with missing information. Nevertheless, 
models like PyR0 have shown that SARS-CoV-2 databases can still be used to make accurate phenotypic predictions from viral 
sequence data and highlight the potential of a dataset that is more robust and richer in metadata. To that end, data scientists are 
currently pushing initiatives such as FAIR, which call for international standardization of data with robust and comprehensive 
metadata [106].

In addition, it is important to note that major regional and socioeconomic biases exist within public sequence databases, with the 
clear majority of samples coming from Europe and the USA [105, 107]. While such biases pose clear obstacles to the accurate study 
of virus diversity and evolution, they also create ethical concerns, as populations from minority or less privileged socioeconomic 
backgrounds are not fully represented [108, 109]. In the related field of cancer biology, population bias has been shown to affect 
molecular data – a fact that warrants careful consideration and extensive validation when acting from ML predictions [107]. These 
data disparities highlight the need for a more comprehensive global data infrastructure, as well as open and equal collaboration 
between collecting institutions.

It can also be seen from this review that the current body of ML research which utilizes viral sequence or protein data is heavily 
skewed towards SARS-CoV-2, and to a lesser extent IAV. Whilst this is almost certainly due in part to the global importance of 
the COVID-19 pandemic and its coincidental emergence around the time that deep learning techniques were rapidly advancing, 
there is also the consideration that SARS-CoV-2 and IAV are two of very few viruses for which sufficient public data are available 
for the training of ML models. The fact remains that improved data infrastructure is needed for the techniques highlighted in 
this review to expand beyond this small group of viruses, though transfer learning approaches may hold potential in this regard.

Lastly, it should be considered that deep learning models, including LLMs, can be problematic in scientific research due to their 
‘black box’ nature. Due to the self-supervised nature of deep neural network model training and their extreme complexity, it is 
not possible to understand the mathematical transformations being performed to generate predictions from training data – only 
to determine the accuracy of the predictions themselves. While efforts are being made to adapt algorithms and construct tools 
to help us understand the decision-making processes of deep learning through explainable AI, caution should be taken when 
interpreting ML and deep learning predictions, which should be empirically validated in all cases [110, 111]. Whilst many past 
studies had stopped short of experimental validation of predictions, more recent work has shown that experimental validation 
of ML predictions can not only serve to improve confidence in model accuracy but also can additionally contribute to a ‘virtuous 
cycle’, where validated predictions can be fed back into the training dataset to further improve model accuracy and capability 
(Fig. 3) [94].
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ML IN VIROLOGY – CURRENT AND FUTURE CHALLENGES
Some of the earliest applications of ML technology to viral data occurred in the late 2000s and early into the 2010s, where studies 
utilized ML techniques in an attempt to better understand the 2009 H1N1 swine flu pandemic [21, 24]. Since then, the amount 
and ambition of virology research utilizing ML techniques has increased both in line with ML’s technological development and 
as the availability of large quantities of data increased. The most recent applications have made use of deep learning models to 
analyse the unprecedented amount of data generated for SARS-CoV-2 [94]. Looking forwards, it seems clear that protein language 
models and transfer learning approaches hold the greatest potential for virology, but what advances in virology research might 
these techniques be capable of enabling?

In order to maximize its potential as part of the virology research toolkit, one major challenge for ML research will be improving 
generalizability – that is, how effectively a given model can perform across a range of prediction targets. In virology, this idea is 
particularly important, evidenced by the bias towards SARS-CoV-2 and IAV in ML virus research up to this point. This bias is 
primarily driven by a lack of sufficient training data for most viruses; however, the advent of LLMs, particularly those trained 
on generalized protein databases, holds huge potential, as these feature-rich models can be fine-tuned to obtain accurate results 
from small or sparce datasets. This is evidenced by their increasing use in PPI prediction where studies are frequently limited by 
data availability – demonstrated with SARS-CoV-2 and human polyomavirus 2 [103].

Fig. 3. The ‘virtuous cycle’ of the ML workflow. An initial input dataset is used to train an ML model for use on viral data. Model predictions then inform 
experimental work, which in turn generates additional data used to refine the existing ML model. The refined model then informs further experimental 
work, and the cycle repeats.
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The ability to analyse and interpret large-scale datasets to generate informed hypotheses is arguably one of the most powerful 
applications of ML in virology research – once again enabled by large protein language models and their ability to capture 
the context of the entire protein environment. A powerful application of this approach is in the streamlining of experimental 
workflows through focusing on research questions.

For example, in drug discovery research, ML approaches offer computational screening of candidate drugs to facilitate the focusing 
of subsequent in vitro studies by conducting in silico pre-screening to identify and exclude compounds with unfavourable proper-
ties or poor matches and predict those most likely to be successful compounds. This makes the research more cost-effective and 
has substantially increased the speed at which new compounds can be identified [112]. Furthermore, these ML approaches will 
be pivotal in advancing the understanding and prediction of evolutionary pathways of viral genomes, particularly in phenotypic 
prediction of mutations, such as indicating where there may be acquisition of antiviral resistance or immunological escape.

In the case of immune escape, a recent example of an ML model developed to address it is EVEscape – a deep learning model and 
functional framework for the prediction of immune escape during viral outbreaks (Table 2) [4]. EVEscape is built to predict the 
likelihood of a given mutation being an escape mutant – able to disrupt polyclonal antibody binding while preserving the other 
necessary properties of the viral protein. EVEscape is based on EVE, a deep learning model which predicts the pathogenicity of aa 
variants in humans by analysing evolutionarily related protein sequence alignments from UniRef [113]. As EVE makes predictions 
based on the likelihood of variants arising in the context of their evolutionary WT, so too is EVEscape able to take epistatic effects 
into account when making its predictions. EVEscape is designed to be modular and has been trained on a number of small-scale 
datasets from IAV and SARS-CoV-2, as well as pre-pandemic coronaviruses, HIV and the understudied but high-consequence 
emerging Lassa and Nipah viruses. With the exception of IAV and HIV, these datasets ranged from ~1000 to ~6000 sequences, 
and comparison with DMS data confirmed their ability to predict known escape variants. Similarly, the model identified three 
known escape mutants in Lassa virus within the top 10% of its predictions. The ability of EVEscape to serve as a general framework 
for predicting viral escape variants makes it a powerful tool for the focusing and prioritization of experimental work in the early 
stages of an outbreak, as well as contextualizing newly identified virus variants detected by surveillance efforts. In addition, the 
model has more practical potential owing to its ability to make accurate predictions from comparatively small, pre-pandemic 
datasets – those with sequence numbers in the low thousands, which is much more representative of publicly available data 
for many viruses. EVEscape currently runs a publicly accessible web page for the prediction of immune escape for up-to-date 
SARS-CoV-2 variants on GISAID and flags potentially concerning strains as they emerge [114].

Generalizable and modular tools like EVEscape may offer a glimpse into the future of ML models trained on viral sequence 
and protein data, and these models may play a key role in addressing both present and future virus research and public health 
challenges. Where good surveillance systems exist, such as for IAV, predictive ML tools may be able to infer virus evolutionary 
trajectories and identify variants with concerning mutations before their transmission becomes established in the population, 
giving an opportunity to prepare countermeasures such as response infrastructure and updated vaccine formulations. When 
outbreaks do occur, generalizable models may be able to identify drug or vaccine targets and forecast their efficacy, allowing a 
focused response effort to be deployed much more quickly.

Climate change is altering – and will continue to alter – the ecology and epidemiology of infectious diseases, seen already by 
changing patterns of vector-borne viruses, including West Nile, Zika and dengue [115]. Already, ML techniques have been used 
to develop dengue outbreak prediction models and integrated approaches to analyse arbovirus epidemiology alongside geospatial 
mapping of their respective vectors [116–118]. As the global climate crisis continues, many vector species of viral infections will 

Table 2. Tools and models for ML in virus research

Tool Summary Access link Ref

INFINITy A classification tool used to identify the subtype and clade of influenza A and B HA protein 
sequences; available as an R package or can be accessed via a dedicated web server

infinity.unlu.edu.ar [28]

Pangolin A command line tool and web application built for the rapid assignment of genetic lineages to SARS-
CoV-2 sequences; lineage assignment is performed via pangoLEARN, an ML classification algorithm

pangolin.cog-uk.io [36]

EVEscape A tool which predicts the likelihood of antibody escape for mutations across a number of different 
viruses; based on EVE, a deep learning model trained on evolutionarily related protein sequences

evescape.org [4]

UniRep A deep learning model which provides feature-rich protein representation for downstream 
engineering task; trained on over 24 million protein sequences

github.com/churchlab/UniRep [100]

ProteinBERT A transformer-based LLM based on the BERT architecture and trained on over 100 million protein 
sequences; a highly generalizable model which can be fine-tuned for any protein-related task

github.com/nadavbra/protein_bert [10]

ESM3 The latest in the ESM series of LLMs, trained as a general model of proteins; ESM3 is trained on 
2.78 billion protein sequences and can be used to generate new, functional protein sequences

evolutionaryscale.ai [97]

https://infinity.unlu.edu.ar/
https://pangolin.cog-uk.io/
https://evescape.org/
https://github.com/churchlab/UniRep
https://github.com/nadavbra/protein_bert
https://www.evolutionaryscale.ai/
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expand into non-endemic areas, changing disease burden and risk populations. The use of ML has potential in underpinning 
research, and supporting public health responses to ensure the global community is prepared for future outbreaks.

While this review has been chiefly concerned with ML applications to viral sequence and protein data, it is acknowledged that 
ML technology has also seen extensive application to clinical data. In this area, ML models have been developed for disease 
diagnosis, treatment and prognosis among many other applications, and while considered beyond the scope of this review, it is 
likely that clinical ML research will intersect with molecular ML research in the future [119].

Fully realizing the potential for ML to transform approaches for future virology research and response will require international 
cooperation and investment. This must be done in order to improve data infrastructure, ensure data collected conform to estab-
lished standards, expand surveillance programmes co-ordinately with training and infrastructure equitably across all resource 
settings and geographies and enable open, unrestricted access to viral sequence and protein datasets. Further, these approaches 
must be implemented for both established and emerging viruses.
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