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ABSTRACT
Introduction: In clinical trials, a treatment policy strategy is often used to handle treatment nonadherence. However, estimation
in this context is complicated when data are missing after treatment deviation. Reference-based multiple imputation has been
developed for the analysis of a longitudinal continuous outcome in this setting. It has been shown that Rubin’s variance estimator
ensures that the proportional loss of information due to missing data is approximately the same as that seen in analysis under the
missing-at-random assumption for a broad range of commonly used reference-based alternatives; that is it is information anchored.
However, the best way to implement reference-based multiple imputation for longitudinal binary data is unclear.
Methods: We formulate and describe two algorithms for implementing reference-based multiple imputation for longitudinal
binary outcome data using: (i) joint modeling with the multivariate normal distribution and an adaptive rounding algorithm and
(ii) joint modeling with a latent multivariate normal model. A simulation study was performed to compare the properties of the
two methods.
Results: Across the broad range of scenarios evaluated, the latent normal approach typically gave slightly less bias; both methods
provided approximately information anchored inference. The advantage of the latent normal approach was more marked with a
rarer outcome. However, both approaches may not perform satisfactorily if the outcome prevalence is very rare, that is, ≤ 10%.
Discussion: Reference-based multiple imputation provides a practical information anchored tool for inferences about the treat-
ment effect for a treatment policy estimand with a longitudinal binary outcome. The latent multivariate normal model is the
preferred implementation.

1 | Introduction

Frequently in clinical trials, it is of interest to use a treat-
ment policy strategy to handle treatment nonadherence. Such
an approach seeks to identify the benefit of a specified treat-
ment, whether or not all treatment was adhered to. If all
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outcome data after treatment nonadherence are observed in
a trial estimation will be straightforward by directly apply-
ing the substantive analysis model of interest. However, out-
come data are often completely missing for participants after
stopping treatment early, which complicates the analysis. In
such a setting, the only option is to make an untestable
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plausible assumption for the unobserved off-treatment data
in analysis.

In 2013, Carpenter, Kenward, and Roger developed referenced-
based multiple imputation for the analysis of a longitudinal
continuous outcome in this setting [1]. This approach enables
assessment of contextually relevant assumptions for data miss-
ing after stopping treatment by making reference to the observed
data from another group in the trial, typically the control/placebo
group. Such an approach is particularly relevant when imple-
menting a treatment policy strategy, where data after treatment
withdrawal may be expected to behave similarly to that observed
in a reference group of the trial. In brief, using an underlying mul-
tivariate normal model [1], differences between the mean and
variance of the observed and missing data are specified explic-
itly by reference to specific trial arm parameters, corresponding
to contextually relevant reference-based assumptions. Statistical
analysis then proceeds using the method of multiple imputation
with Rubin’s rules for inference.

Commonly used reference-based assumptions, also summarized
in Table 1, include: randomized-arm missing-at-random (MAR),
jump-to-reference (J2R), copy increments in reference (CIR),
copy reference (CR), and last mean carried forward (LMCF).
It has been shown that for the treatment effect, Rubin’s vari-
ance estimator ensures that the proportional loss of informa-
tion (i.e., increase in variance) due to missing data is approxi-
mately the same as analysis under the missing-at-random (MAR)
assumption for these commonly used reference-based alterna-
tives; that is, it is information anchored [2]. This approach has
been implemented in Stata (mimix [3]), SAS (miwithd and the
five macros [4]), and R (RefbasedMI, refBasedCts and rbmi)
[5–7].

Whilst reference-based multiple imputation is now well estab-
lished for a continuous outcome, the methodology is less well
developed for binary responses. For monotone binary missing
data Gao et al. proposed a control-based MI procedure using a
sequence of logistic regression models (one for each time point)
using only the control group observations (i.e., CR) [8]. Tang pro-
posed two approaches for implementing delta based, CR and J2R
multiple imputation for longitudinal binary data; the first uses
sequential logistic regression (for CR) and a Metropolis-Hastings
sampler and the second uses a multivariate probit model with
latent variables using a parameter-expanded monotone data aug-
mentation algorithm (for CR and J2R) [9]. Lu considered CR
and J2R multiple imputation using a multivariate probit model
with latent variables using a composite likelihood approach [10].
But these binary multiple imputation procedures have yet to
be fully evaluated and do not cover other previously discussed
reference-based assumptions including CIR and LMCF.

The aim of this article is to develop and evaluate the reference-
based multiple imputation approach for longitudinal binary data.
In the following section, we introduce a case study of an antide-
pressant trial. We then formulate the generalized reference-based
multiple imputation model for binary data via (i) joint model-
ing with the multivariate normal distribution and an adaptive
rounding algorithm; and (ii) joint modeling with a latent normal
model (equivalent to a multivariate probit model). Following for-
mulation, these proposals are evaluated using a simulation study

TABLE 1 | Reference-based multiple imputation options.

Method Assumption

Randomized-arm MAR Assumes patients follow the data
distribution observed from their

own randomized arm throughout
the trial.

Jump to reference (J2R) Assumes behavior from patients
own randomized arm up to time
of withdrawal, post-withdrawal

assumes behavior from specified
reference arm.

Last mean carried
forward (LMCF)

Assumes behavior from patients
own randomized arm,

post-withdrawal maintains
behavior at last observed

on-treatment time from own arm.
Copy increments in
reference (CIR)

Assumes behavior from patients
own randomized arm up to time
of withdrawal, post-withdrawal

behavior tracks the
increase/decrease seen for the

specified reference arm.
Copy reference (CR) Assumes behavior from specified

reference arm throughout.

where we investigate the bias of the treatment effect and prop-
erties of Rubin’s variance estimator. Subsequently we apply the
methods to the case study and finish with a discussion on the
preferred implementation.

2 | Case Study: Anti-Depressant Trial

Our case study uses data from an anti-depressant trial originally
conducted by Goldstein et al. [11]. The original trial had four
treatment arms, including a placebo, a positive control (parox-
etine) administered once daily, and two arms which were dif-
ferent doses of the experimental medication duloxetine admin-
istered twice daily for 8 weeks. The binary outcome of interest
we consider here is a clinically relevant change from baseline
in the Hamilton 17-item rating scale for depression (HAMD17)
at Week 8, which was also measured at Weeks 1, 2, 4, and 6.
We use publicly available data from the placebo arm (n= 100)
and an active arm (n= 100) created by randomly selecting 100
patients from the three non-placebo arms [12]. The estimand of
interest in this manuscript is the ratio of the odds of clinically
meaningful change from baseline in Hamilton 17-item rating
scale for depression at Week 8 among the eligible trial popula-
tion with depression from active treatment relative to placebo
regardless of whether all treatment was received, and is also
summarized in Table 2. However, a number of patients stopped
taking their assigned treatment early and stopped subsequent
follow-up. Specifically, on-treatment completion rates were 70%
for the active arm (n= 70/100) and ≈ 60% for the placebo arm
(n= 61/100). The proportions of patients off-treatment over the
treatment period, which coincide with missing data, are shown in
Table 3 for each treatment arm. This case study inspires the simu-
lation study performed in Section 4, and is analyzed in Section 5.
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TABLE 2 | Estimand of interest in the anti-depressant trial.

Estimand
attribute Description

Population Patients with depression fulfilling
trial eligibility criteria (as fully

defined in trial protocol)
Treatment conditions Duloxetine treatment versus

placebo regardless of whether all
doses of treatment were received

Endpoint Clinically meaningful
response—change from baseline

of > 50% in Hamilton 17-item
rating scale for depression

(HAMD17) at Week 8
Handling of intercurrent
events

Stopping treatment
early—treatment policy

Population level
summary

Odds ratio

TABLE 3 | Off-treatment rates (coinciding with missingness) in the
anti-depressant trial over time. N= 100 in each treatment arm.

Time Placebo (%) Active (%)

Week 1 0 0
Week 2 8 10
Week 4 15 15
Week 6 27 25
Week 8 39 30

3 | Methods

There are generally two main routes, focusing on parametric
methods, to approach multivariate multiple imputation; joint
modeling versus full conditional specification. We consider two
joint modeling approaches, following the earlier established
approach for conducting reference-based multiple imputation in
the continuous setting which used a joint multivariate normal
model [1]. This approach also enables analysis under a wide
range of reference-based assumptions (randomized-arm MAR,
CR, J2R, CIR, and LMCF).

3.1 | Setting and Notation

Consider a generic two-arm trial comparing an active treatment
to a reference treatment. Let 𝑡 index randomized arm where
𝑡 = 𝑎 indicates active arm assignment and 𝑡 = 𝑟 indicates refer-
ence arm assignment. There are 𝑛𝑡 patients randomized to each
arm, that is, the trial includes 𝑛𝑎 patients randomized to an active
arm and 𝑛𝑟 patients randomized to a reference arm (total 𝑛𝑎 + 𝑛𝑟
patients within the trial). In practice, the reference arm may
refer to a control/placebo arm or another active treatment. Indi-
vidual patients are indexed with the subscript 𝑖, where in the
active arm, 𝑖 = 1, . . . , 𝑛𝑎 and in the reference arm 𝑖 = 1, . . . , 𝑛𝑟.
Let 𝑗 = 1, . . . , 𝐽 + 1 index scheduled patient visits, where visit
𝑗 = 1 is the baseline visit and there are J post-baseline visits (total

J + 1 visits). For patient 𝑖 in treatment arm 𝑡, let 𝑌𝑡,𝑖,𝑗 denote
the binary response at time 𝑗 and let the column vector Y𝑡,𝑖 =(
𝑌𝑡,𝑖,1, . . . . , 𝑌𝑡,𝑖,𝐽+1

)𝑇 denote the patient’s responses which we seek
to measure. Let Yt denote the column vector

(
Y𝑡,1, . . . ,Y𝑡,𝑛𝑡

)
.

Henceforth, we describe the intercurrent event of stopping ran-
domized treatment early as deviation following Carpenter, Ken-
ward, and Roger [1]. For simplicity and clarity of the follow-
ing exposition, we assume all patients were observed at 𝑗 = 1
without deviation and let 𝑑𝑡,𝑖 denote for each patient the last
observation time prior to a deviation, where 𝑑𝑡,𝑖 can thus take val-
ues 1, . . . , 𝐽 + 1. We assume all post deviation responses will be
missing and there are no interim missing data. We wish to esti-
mate the treatment effect at the end of the follow-up, that is, at
time 𝐽 + 1, using an odds ratio. The analysis model will be a logis-
tic regression of the outcome at time 𝐽 + 1 on treatment.

3.2 | Method 1: Joint Modeling With
Multivariate Normal Model and an Adaptive
Rounding Algorithm

To impute binary outcome data under MAR, one approach is
to treat the binary data as continuous within the imputation
process and impute using a multivariate normal model. Con-
sequently, imputed data observations will not be immediately
binary unlike the observed data. The imputed continuous data
can then be transformed into 0’s and 1’s by rounding to the appro-
priate binary value before fitting the substantive analysis model
of interest. This approach has previously been evaluated and used
to impute data under MAR [13, 14] and was chosen for evaluation
given implementation would be accessible to trialists who could
use software developed for continuous reference-based multiple
imputation in practice [2, 4].

Several different rounding algorithms have been proposed when
imputing binary data in this manner under standard MAR.
Bernaards, Belin, and Schafer [14] compared three different ways
this could be done; (1) simple rounding (round to nearest 0 or 1),
(2) a Bernoulli draw based on a coin flip where the imputed value
represents the probability of a 1 (values < 0 or > 1 rounded to 0
or 1), and (3) adaptive rounding where the cut-off for rounding
to 0 or 1 is based on a normal approximation to the binomial dis-
tribution which uses the marginal proportions of 0’s and 1’s on
the imputed variable. Bernaards concluded the adaptive round-
ing approach works best. Carpenter and Kenward discuss how
adaptive rounding is the preferred method of rounding following
multiple imputation under MAR and how this method is likely to
perform satisfactorily if the underlying probability of the outcome
is between 0.1 and 0.9 [13, 14].

Hence, one proposal for reference-based multiple imputation is
to treat the binary outcome data as continuous for the purpose of
imputation and follow the reference-based MI algorithm of Car-
penter, Kenward, and Roger [1]. Then post imputation apply the
adaptive rounding algorithm to achieve binary data. Formally the
full algorithm, which includes steps from Carpenter, Kenward,
and Roger [1] is as follows.

1. Choose the desired reference-based assumption (see
Table 1).
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2. Separately for each treatment arm 𝑡, take all the observed
pre-deviation binary outcome data 𝑌𝑡, and under MAR, treat
as continuous data and fit a MVN distribution with an
unstructured mean (i.e., a separate mean for each of the
observation times) and variance–covariance matrix using a
Bayesian approach with an improper prior for the mean and
an uninformative Jeffreys prior for the covariance matrix.
Formally, 𝑌𝑡 ∼ 𝑁𝐽+1

(
𝛍t,𝚺t

)
where 𝛍t =

(
𝜇𝑡,1, . . . . , 𝜇𝑡,𝐽+1

)
for the 𝐽 + 1 treatment group specific means and associated
variance–covariance matrix 𝚺t.

3. Draw a mean vector and covariance matrix from the poste-
rior distribution for each treatment arm. Specifically use the
Markov-Chain Monte Carlo (MCMC) method to draw from
the appropriate Bayesian posterior, with a sufficient burn-in
to allow it to reach its stationary distribution and update the
chain sufficiently in-between to ensure subsequent draws
are independent, given the observed data. The sampler can
be initiated using the EM algorithm.

4. Use the draws in Step 3 to form the joint distribution
of each deviating individual’s observed pre- and missing
post-deviation outcome data as required for the chosen
reference-based assumption. The options presented by Car-
penter, Roger, and Kenward [1] are described in Table 1 and
technical details for forming the corresponding joint distri-
butions are described in Section 3.2.1.

5. Construct the conditional distribution of missing
post-deviation data given the observed pre-deviation
outcome data for each individual who deviated, using
their joint distribution formed in Step 4. Sample missing
post-deviation data from the conditional distributions to
create a completed dataset.

6. Repeat Steps 3–5 𝐾 ≥ 2 times, resulting in 𝐾 imputed
datasets.

7. For binary variable 𝑗 in imputed dataset 𝑘 = 1, . . . 𝐾 ,
let 𝑌 𝑗,𝑘 denote the mean of the observed binary and
imputed (as continuous) values across the two treat-
ment arms and construct the threshold 𝑐𝑗,𝑘 = 𝑌 𝑗,𝑘 −

Φ−1
(
𝑌 𝑗,𝑘

)√
𝑌 𝑗,𝑘

(
1 − 𝑌 𝑗,𝑘

)
where Φ(.) is the cumulative

distribution function for the standard normal. For imputed
data sets 𝑘 = 1, . . . 𝐾 , re-code continuous imputed values
as: 𝑌𝑡,𝑖,𝑗,𝑘 = 0 if 𝑌𝑡,𝑖,𝑗,𝑘 ≤ 𝑐𝑗,𝑘 or 𝑌𝑡,𝑖,𝑗,𝑘 = 1 if 𝑌𝑡,𝑖,𝑗,𝑘 > 𝑐𝑗,𝑘.

8. Fit the substantive analysis model of interest to each
re-coded imputed data set 𝑘 with binary values for all 𝑌𝑡,𝑖,𝑗,𝑘,
and combine the resulting 𝐾 parameter estimates and stan-
dard errors using Rubin’s rules for final inference.

Up to here, we have not considered additional baseline covariates.
Additional baseline covariates can also be included as responses
in the model following the approach described here, and they
may or may not be crossed with time. Since the pre-deviation
data, including baseline response, are modeled separately in each
treatment arm, consequently the baseline covariate effects will be
naturally crossed with treatment. Other variants of this approach
consider a standard Gaussian repeated-measures model with
treatment-by-time interaction and for all baseline covariates
either share the same baseline covariate effects assumed to be

constant over time and across treatment group, or share the same
baseline—time interaction effects that vary over time but are
assumed constant across treatment groups [4].

3.2.1 | Options for Forming Joint Distribution
of Observed and Missing Data

Five options for forming the joint distribution of each deviating
individual’s observed and missing data in Step 4, which corre-
spond with the reference-based assumptions described by Car-
penter, Kenward, and Roger [1] and in Table 1 are as follows.

For MAR, the joint distribution of their observed and
post-deviation outcomes is MVN with mean, 𝛍t,i =(
𝜇𝑡,1, . . . , 𝜇𝑡,𝑑𝑡,𝑖

, 𝜇𝑡,𝑑𝑡,𝑖+1, . . . , 𝜇𝑡,𝐽+1

)
and covariance matrix 𝚺t

for 𝑡 = 𝑎, 𝑟.

For jump to reference (J2R), the joint distribution of the observed
and post-deviation outcomes for a patient in the active arm is
MVN with mean, 𝛍a,i =

(
𝜇𝑎,1, . . . , 𝜇𝑎,𝑑𝑡,𝑖

, 𝜇𝑟,𝑑𝑡,𝑖+1, . . . , 𝜇𝑟,𝐽+1

)
. To

construct the new covariance matrix, first denote the covari-
ance matrices from the reference arm and active arm partitioned
at time 𝑑𝑡,𝑖 according to the pre- (denoted by subscript 1) and
post-deviation (denoted by subscript 2) measurements as,

𝚺r =

[
R𝟏𝟏 R𝟏𝟐

R𝟐𝟏 R𝟐𝟐

]

𝚺a =

[
A𝟏𝟏 A𝟏𝟐

A𝟐𝟏 A𝟐𝟐

]

The new covariance matrix𝚺J𝟐R will consist of variances from the
active arm for the pre-deviation measurement(s), and variances
from the reference arm for post-deviation measurements and the
conditional components for the post- given pre-deviation mea-
surement(s). The new matrix will be positive definiteness since
𝚺r and 𝚺a are positive definite. That is,

𝚺J𝟐R =

[
𝚺𝟏𝟏 𝚺𝟏𝟐

𝚺𝟐𝟏 𝚺𝟐𝟐

]
subject to the constraints,

𝚺𝟏𝟏 = A𝟏𝟏,𝚺𝟐𝟏𝚺−𝟏
𝟏𝟏 = R𝟐𝟏R−𝟏

𝟏𝟏 ,𝚺𝟐𝟐 − 𝚺𝟐𝟏𝚺−𝟏
𝟏𝟏 𝚺𝟏𝟐 = R𝟐𝟐 − R𝟐𝟏R−𝟏

𝟏𝟏 R𝟏𝟐

For copy reference (CR), the joint distribution of the observed and
post-deviation outcomes for a patient in the active arm is MVN
with mean, 𝛍a,i =

(
𝜇𝑟,1, . . . , 𝜇𝑟,𝑑𝑡,𝑖

, 𝜇𝑟,𝑑𝑡,𝑖+1, . . . , 𝜇𝑟,𝐽+1

)
and 𝚺CR =

𝚺J𝟐R.

For copy increments in reference (CIR), the joint distribution of
the observed and post-deviation outcomes for a patient in the

active arm is MVN with mean, 𝛍a,i =
(
𝜇𝑎,1, . . . , 𝜇𝑎,𝑑𝑡,𝑖

, 𝜇𝑎,𝑑𝑡,𝑖
+(

𝜇𝑟,𝑑𝑡,𝑖+1 − 𝜇𝑟,𝑑𝑡,𝑖

)
, . . . , 𝜇𝑎,𝑑𝑡,𝑖

+
(
𝜇𝑟,𝐽+1 − 𝜇𝑟,𝑑𝑡,𝑖

))
and 𝚺CIR =

𝚺J𝟐R.

Under J2R, CR, or CIR the joint distribution of the observed and
postdeviation outcomes for a patient in the reference arm is the
same as under MAR.

4 of 17 Statistics in Medicine, 2025
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For LMCF, the joint distribution of the observed and
postdeviation outcomes is MVN with mean, 𝛍t,i =(
𝜇𝑡,1 . . . , 𝜇𝑡,𝑑𝑡,𝑖−1, 𝜇𝑡,𝑑𝑡,𝑖

, . . . , 𝜇𝑡,𝑑𝑡,𝑖

)
and covariance matrix 𝚺t

for 𝑡 = 𝑎, 𝑟.

3.3 | Method 2: Joint Modeling With Latent
Normal Multivariate Normal Model

An alternative option for imputing binary data under MAR, is to
use a latent normal variable for each binary variable. The latent
normal variables can then be modeled using a Bayesian approach
and a multivariate normal model. Generally define latent normal
variables for patient 𝑖 in arm 𝑡 at time 𝑗 as 𝑍𝑡,𝑖,𝑗 ∼ 𝑁

(
𝛽𝑡,𝑗 , 1

)
such

that 𝑍𝑡,𝑖,𝑗 > 0 ⇔ 𝑌𝑡,𝑖,𝑗 = 0 and 𝑍𝑡,𝑖,𝑗 ≤ 0 ⇔ 𝑌𝑡,𝑖,𝑗 = 1 [15, 16]. This
means that the latent normal formulation is equivalent to a multi-
variate probit model [13]. For imputation under MAR, the latent
normal MCMC algorithm described by Carpenter and Kenward
in Chapter 4 [13], appropriately draws the model parameters con-
straining the variance of the latent variables to be one to ensure
identifiability. This consists of a Gibbs sampling algorithm [17],
combined with a Metropolis Hastings algorithm proposed by
Browne [18] for updating the covariance matrix with variance
terms constrained to be 1. This approach was originally imple-
mented in Realcom-impute and is also now implemented in the
R package Jomo [16].

To implement reference-based multiple imputation, a latent nor-
mal variable can be used for each binary variable 𝑌𝑡,𝑖,𝑗 then a mul-
tivariate normal model can be fitted separately by treatment arm
to the latent normal variables using a Bayesian approach. We pro-
pose this can be done using the latent normal MCMC algorithm
described in Carpenter and Kenward, chapter 4, to draw model
parameters separately by treatment arm during the imputation
process under MAR. In a similar fashion to Carpenter, Roger, and
Kenward [1] reference-based distributions can be constructed for
the latent variables for subsequent imputation of latent variables
under reference-based behavior by combining the parameters of
the latent multivariate normal models between arms. This is dif-
ferent to the proposals of Lu [10] and Tang [9], as we propose to
fit the latent MVN separately by treatment group in the impu-
tation step. After drawing latent variables under reference-based
behavior the corresponding binary outcome values can be identi-
fied (𝑍𝑡,𝑖,𝑗 > 0 ⇔ 𝑌𝑡,𝑖,𝑗 = 0; 𝑍𝑡,𝑖,𝑗 ≤ 0 ⇔ 𝑌𝑡,𝑖,𝑗 = 1).

In the following, we describe the full algorithm which entails
drawing latent variables for patients with 𝑌𝑡,𝑖,𝑗 observed, as well
as for those missing 𝑌𝑡,𝑖,𝑗 .

1. Choose the desired reference-based assumption (see
Table 1).

2. Separately for each treatment arm 𝑡 = 𝑎, 𝑟, take all patients
(indexed by 𝑖) observed pre-deviation data measured at up to
𝑗 = 1, 2, . . . , 𝐽 + 1 time points, 𝑌𝑡, and fit a multivariate nor-
mal distribution using latent normal variables under MAR
and a Bayesian approach with the latent normal MCMC
algorithm and a flat improper prior for the mean and for the
variance–covariance matrix to represent the greatest uncer-
tainty. The variance of the latent variables is constrained
to be one to enable identification. Using the latent normal

approach the joint model for each treatment arm 𝑡 is:

𝑌𝑡,𝑖,1 = 0 if 𝑍𝑡,𝑖,1 > 0;𝑍𝑡,𝑖,1 = 𝜇𝑡,1 + 𝑒𝑡,𝑖,1

𝑌𝑡,𝑖,2 = 0 if 𝑍𝑡,𝑖,2 > 0;𝑍𝑡,𝑖,2 = 𝜇𝑡,2 + 𝑒𝑡,𝑖,2

· · ·

𝑌𝑡,𝑖,𝐽+1 = 0 if 𝑍𝑡,𝑖,𝐽+1 > 0;𝑍𝑡,𝑖,𝐽+1 = 𝜇𝑡,𝐽+1 + 𝑒𝑡,𝑖,𝐽+1⎛⎜⎜⎜⎜⎜⎝

𝑒𝑡,𝑖,1

𝑒𝑡,𝑖,2

. . .

𝑒𝑡,𝑖,𝐽+1

⎞⎟⎟⎟⎟⎟⎠
∼ 𝑁𝐽+1

⎡⎢⎢⎢⎢⎢⎣
𝟎,𝛀t =

⎛⎜⎜⎜⎜⎜⎝

1 𝜎𝑡,12 . . . 𝜎𝑡,1𝐽+1

𝜎𝑡,21 1 . . . 𝜎𝑡,2𝐽+1

. . . . . . . . . . . .

𝜎𝑡,𝐽+11 𝜎𝑡,𝐽+12 . . . 1

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
That is, 𝑍𝑡 ∼ 𝑁𝐽+1

(
𝛍t,𝚺t

)
where 𝛍t =

(
𝜇𝑡,1, . . . . , 𝜇𝑡,𝐽+1

)
for

the J + 1 treatment group specific means and associated
variance–covariance matrix 𝚺t. If there are additional base-
line covariates to be included in the imputation model these
can be treated as covariates in the model and hence incorpo-
rated into the means at each time point. This allows for dif-
ferent baseline effects for each time point, that is, baseline
time interactions. Alternatively, additional baseline covari-
ates can be included as responses in the model. Starting
values of a matrix of zeros for the means, and the identity
matrix for the covariance matrix can be utilized.

3. Separately for each arm (𝑡 = 𝑎, 𝑟) draw a mean vector 𝛍t
[consisting of the mean for each latent variable at each time
point] and variance covariance matrix 𝛀t [with variance
terms constrained to be 1] from the posterior distribution.
The variance covariance matrix is updated element wise
using a Metropolis Hastings sampler.

4. For each patient who deviates before the end of the trial (and
therefore has some missing data) use the draws from step (3)
to first build the joint distribution of that patients pre-and
post-deviation data for the latent variables for the desired
reference-based assumption. This can be done under a
range of assumptions (see Table 1), and as described in
Section 3.2.1 but for the latent variables.

5. For each patient 𝑖 in treatment arm 𝑡 that devi-
ates then draw proposed latent variables for times
𝑗 = 1, 2, . . . , 𝐽 + 1 in a sequential fashion starting from
𝑗 = 1 under reference-based behavior 𝑍

ref
𝑡,𝑖,𝑗

(where
ref = MAR, J2R,CIR,CR, or LMCF) from the appropri-
ate normal distributions the joint data distributions formed
in Step 3 (conditional on any observed vales of 𝑌𝑡,𝑖,𝑗 and for
𝑗 > 1 previously drawn reference-based latent variables).
Then set values for 𝑌 in imputed data set 𝑘 = 1, . . . , 𝐾 .
That is,

Set 𝑗 = 1,

a. For 𝑗 = 1 draw 𝑍̃
ref
𝑡,𝑖,𝑗

from the appropriate univariate
normal distribution (e.g., under MAR ∼ 𝑁

(
𝜇𝑡,1, 1

)
or

under CR ∼ 𝑁
(
𝜇𝑟,1, 1

)
) or if 𝑗 > 1 draw 𝑍̃

ref
𝑡,𝑖,𝑗

from the
conditional normal distribution of 𝑍

ref
𝑡,𝑖,𝑗

given previ-
ously drawn values𝑍ref

𝑡,𝑖,1 for j= 2 or𝑍ref
𝑡,𝑖,1, . . . , 𝑍

ref
𝑡,𝑖,𝑗−1 for

𝑗 > 2.
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b. If 𝑌𝑡,𝑖,𝑗 is missing accept the drawn value, setting 𝑍ref
𝑡,𝑖,𝑗

=
𝑍̃

ref
𝑡,𝑖,𝑗

; If 𝑌𝑡,𝑖,𝑗 is observed and 𝑌𝑡,𝑖,𝑗 = 0 and 𝑍̃
ref
𝑡,𝑖,𝑗

> 0 or
𝑌𝑡,𝑖,𝑗 = 1 and 𝑍̃

ref
𝑡,𝑖,𝑗

≤ 0 accept the drawn value, setting
𝑍

ref
𝑡,𝑖,𝑗

= 𝑍̃
ref
𝑡,𝑖,𝑗

, otherwise return to step (a) and re-draw
𝑍̃

ref
𝑡,𝑖,𝑗

.

c. Set 𝑗 = 𝑗 + 1

d. Repeat steps (a)–(c) until 𝑍̃ref
𝑡,𝑖,𝑗

has been drawn and
accepted for all 𝐽 + 1 time points.

e. Identify missing binary outcome values based on
accepted 𝑍̃

ref
𝑡,𝑖,𝑗

values as follows: 𝑍̃ref
𝑡,𝑖,𝑗

> 0 ⇒ 𝑌𝑡,𝑖,𝑗,𝑘 = 0;
𝑍̃

ref
𝑡,𝑖,𝑗

≤ 0 ⇒ 𝑌𝑡,𝑖,𝑗,𝑘 = 1.

6. Repeat Steps 3–5 𝐾 ≥ 2 times, resulting in 𝐾 imputed data
sets.

7. Fit the substantive analysis model of interest to each
imputed data set 𝑘 and combine the parameter estimates
across the 𝐾 imputed data sets using Rubin’s rules for infer-
ence.

To illustrate how Step 5 proceeds for randomized-arm MAR
and J2R, consider drawing latent variables for a simple set-
ting where 𝐽 + 1 = 2. All patients are observed at J = 1,
but some patients in the active arm are missing 𝑌𝑎,𝑖,2. For
𝑗 = 1, draw under MAR 𝑍̃

MAR
𝑎,𝑖,1 ∼ 𝑁

(
𝜇𝑎,1, 1

)
; and under

J2R 𝑍̃
𝐽2𝑅
𝑎,𝑖,1 ∼ 𝑁

(
𝜇𝑎,1, 1

)
. For patients with 𝑌𝑎,𝑖,1 observed (by

definition all will in this simple setting), if 𝑌𝑎,𝑖,1 = 0 and
𝑍̃

ref
𝑎,𝑖,1 > 0 or 𝑌𝑎,𝑖,1 = 1 and 𝑍̃

ref
𝑎,𝑖,1 ≤ 0 accept the proposal and

set 𝑍
ref
𝑎,𝑖,1 = 𝑍̃

ref
𝑎,𝑖,1, otherwise make a another draw for 𝑍̃

ref
𝑎,𝑖,1

for patient 𝑖 until an acceptable 𝑍̃
ref
𝑎,𝑖,1 is drawn. Then draw

proposed latent for 𝑍̃
ref
𝑎,𝑖,2 ∣ 𝑍ref

𝑎,𝑖,1 from the appropriate condi-
tional normal distribution. That is, under MAR 𝑍̃

MAR
𝑎,𝑖,2 ∣ 𝑍MAR

𝑎,𝑖,1 ∼

𝑁
(
𝜇𝑎,2 +

(
𝑍MAR

𝑎,𝑖,1 − 𝜇𝑎,1

)
𝜎𝑎,12

𝜎𝑎,11
, 1 − 𝜎𝑎,12

(
𝜎𝑎,11

)−1
𝜎𝑎,12

)
; under J2R

𝑍̃
𝐽2𝑅
𝑎,𝑖,2 ∣ 𝑍𝐽2𝑅

𝑎,𝑖,1 ∼ 𝑁
(
𝜇𝑟,2 +

(
𝑍𝐽2𝑅

𝑎,𝑖,1 − 𝜇𝑎,1

)
𝜎𝑟,12

𝜎𝑟,11
, 1 − 𝜎𝑟,12

(
𝜎𝑟,11

)−1
𝜎𝑟,12

)
.

For active patients with 𝑌𝑎,𝑖,2 observed, if 𝑌𝑎,𝑖,2 = 0 and
𝑍̃

ref
𝑎,𝑖,2 > 0 or 𝑌𝑎,𝑖,2 = 1 and 𝑍̃

ref
𝑎,𝑖,2 ≤ 0 accept the proposal and

set 𝑍ref
𝑎,𝑖,2 = 𝑍̃

ref
𝑎,𝑖,2, otherwise make a another draw for 𝑍̃

ref
𝑎,𝑖,2 for

patient 𝑖 until an acceptable 𝑍̃
ref
𝑎,𝑖,2 is drawn. For active patients

with 𝑌𝑎,𝑖,2 missing, set 𝑍ref
𝑎,𝑖,2 = 𝑍̃

ref
𝑎,𝑖,2 and if 𝑍ref

𝑎,𝑖,2 > 0 set 𝑌𝑎,𝑖,2,𝑘 = 0
otherwise set 𝑌𝑎,𝑖,2,𝑘 = 1.

We note that both the aforementioned methods of multiple impu-
tation can still be utilized in other settings where there is no base-
line measure of the binary outcome. In such cases, there will be a
total of 𝐽 time points and appropriate postdeviation distributions
can be constructed as described above. Further, although we have
assumed everyone is observed at 𝑗 = 1 in the above, such that 𝑑𝑡,𝑖
can take values 1, . . . , 𝐽 + 1, in other settings there may be people
who deviate immediately, such that there is no pre-deviation data
available for them. Such settings can also still be handled with
above methods, through constructing appropriate postdeviation
data distributions and imputing from them.

4 | Simulation Study

In this section, using the ADEMP framework [19], we describe
the methods for a simulation study conducted to evaluate the
two aforementioned methods of reference-based multiple impu-
tation, followed by presentation of the results. First, we con-
ducted a series of simulations in a simple trial setting with base-
line and a single follow-up. This was followed by exploration in a
longitudinal trial setting with three follow-up time points. Simu-
lation code is available in the Supporting Information.

4.1 | Simulation Methods

4.1.1 | Aim

The aim of this simulation study was to evaluate the performance
of joint modeling using a continuous MVN model with an adap-
tive rounding algorithm or a latent MVN normal model for con-
ducting reference-based multiple imputation for a clinical trial
with a binary outcome. Specifically, we aimed to evaluate perfor-
mance for the treatment effect for varying on-treatment outcome
prevalences and amounts of deviation resulting in missing data
for different reference-based truths.

4.1.2 | Data Generating Mechanisms

(a) The Deviation-Free (On-Treatment) Outcomes

First, we generated the potential deviation-free (on-treatment),
completely observed binary data for a simple trial setting with
baseline and a single post-baseline time point and two treat-
ment groups (active and reference), using a multivariate probit
model. The parameters of the generated data were based on those
observed in the anti-depressant trial (described in Section 2) at
Week 1 from the reference arm (for the baseline time, denoted
with the subscript 1 in the following) and Week 8 from both arms
(for the single follow-up, denoted with the subscript 2 in the fol-
lowing). Specifically for patient 𝑖 in treatment arm 𝑡 = 𝑎, 𝑟 at time j
= 1, 2, 𝑌𝑡,𝑖,𝑗 = 𝐼

(
𝑍𝑡,𝑖,𝑗 ≤ 0

)
, 𝑍𝑡 ∼ 𝑁

(
𝜇𝑡,Σ

)
where 𝜇𝑟 = (1.57,0.26)

and 𝜇𝑎 = (1.57,−0.13) and Σ =
(

1 0.6
0.6 1

)
. The corresponding

true on-treatment outcome prevalences at the follow-up time
point were approximately 40% in the reference arm and 55% in
the active arm. A sample size of n= 250 per group was chosen
to provide 90% power to detect this difference. We also gener-
ated potential deviation-free (on-treatment), completely observed
data under four lower outcome prevalence settings (all else except
the treatment effect the same), described in Table 4.

We also investigated what happens with a different data generat-
ing model in this initial simple trial setting. In particular, we gen-
erated on-treatment data using a sequential process and a logistic
model for the baseline and single follow-up setting with various
outcome prevalences (see Supporting Information for methods
and results, Figures S1 and S2, for this data generating model).

We next generated potential deviation-free (on-treatment) com-
plete binary data for a longitudinal trial with three post-baseline
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TABLE 4 | Outcome prevalence settings for simulation study.

𝝁
𝒓

𝝁
𝒂

Outcome
prevalencea —ref (%)

Outcome
prevalencea —active (%) Power

Baseline and single follow-up
(1.57, 0.26) (1.57, −0.13) 40b 55b 90% power
(1.57, 0.53) (1.57, 0.16) 30 44 90% power
(1.57, 0.83) (1.57, 0.43) 20 33 91% power
(1.57, 1.30) (1.57, 0.85) 10 20 88% power
(1.57, 1.56) (1.57, 1.30) 6 10 38% power
Three follow-up time points
(1.57, 0.54, 0.26) (1.33, 0.41, −0.13) 40b 55b 90% power
(1.57, 1.05, 0.53) (1.33, 0.75, 0.16) 30 44 90% power
(1.57, 1.2, 0.83) (1.33, 0.88, 0.43) 20 33 91% power
(1.57, 1.44, 1.30) (1.33, 1.11, 0.85) 10 20 88% power
(1.57, 1.565, 1.56) (1.33, 1.315, 1.30) 6 10 38% power

aOutcome prevalence on-treatment at either the single follow-up time point or time 3 for the three follow-up setting.
bOutcome prevalence observed in the anti-depressant trial.

time points and two treatment groups using a multivariate pro-
bit model. The parameters of the generated data were based on
those observed in the depression trial for both treatment arms at
Week 1 (for time 1), Week 4 (for time 2), and Week 8 (for time
3). Thus for each outcome prevalence setting, 𝜇𝑡,2 from the pre-
vious multivariate probit single follow-up setting became 𝜇𝑡,3 in
the three follow-up setting; 𝜇𝑎,1 = 1.57 and 𝜇𝑟,1 = 1.33 and the new
𝜇𝑎,2 and 𝜇𝑟,2 for the three follow-up setting were as observed in
the depression trial 𝜇𝑎,2 = 0.54 𝜇𝑟,2 = 0.41; and for the rarer out-
come scenarios as described in Table 4. The variance–covariance
matrix was,

Σ =
⎛⎜⎜⎜⎝

1 0.4 0.5
0.4 1 0.6
0.5 0.6 1

⎞⎟⎟⎟⎠
(b) Deviation and Different Post-Deviation Outcome
Truths

Using the simulated on-treatment outcomes, we then simulated
various different amounts of deviation at different time points
and then the different deviation-type-specific outcome, that is,
different reference-based truths. Although deviation was ini-
tially simulated under MAR, deviation changed the true value
of the outcome post-deviation and then we made the out-
come missing at time of deviation and thereafter. To achieve
this, after simulating deviation the post-deviation data were
re-generated separately for each of the reference-based behav-
iors (randomized-arm MAR, CR). This was conducted using
the pre-deviation on-treatment data and the appropriate condi-
tional normal distributions for the underlying latent variables
relevant for the reference-based behavior (see Section 3.2.1)
using the known true treatment arm parameters in the data
generating model. This provided simulated trial data sets
where we were truly able to observe the post deviation data
under the reference-based behavior, that is, true off-treatment
post-deviation data for CR, and true on-treatment data for
randomized-arm MAR.

Specifically, for the single follow-up setting we initially simu-
lated deviation, at the follow-up time point only under MAR
using a logistic regression model. Let 𝑅𝑡,𝑖,2 = 1 if 𝑌𝑡,𝑖,2 is observed
on-treatment, that is, no deviation and 𝑅𝑡,𝑖,2 = 0 indicate devi-
ation. We initially considered the deviation mechanism in
the active arm only as: logitP

(
𝑅𝑎,𝑖,2 = 1

)
= 0.367 + 1.167∗𝑌𝑎,𝑖,1 +

0.032 resulting in approximately 30% deviation in the active
arm (as observed in the anti-depressant trial). Subsequently, we
changed the third term from 0.032 to 0.932 and then from 0.032 to
2.132, to achieve settings with approximately 15% deviation and
5% deviation in the active arm. The post-deviation outcomes at
the follow-up time point were then re-generated separately for
each of the reference-based behaviors (randomized-arm MAR,
CR, J2R, CIR or LMCF) as described above to give five differ-
ent truths. Post-deviation data were then set missing to examine
methods performance.

We also simulated settings with deviation in both arms of the trial
using the same three mechanisms as above for the active arm, and
for the reference arm logitP

(
𝑅𝑟,𝑖,2 = 1

)
= 1.167∗𝑌𝑟,𝑖,1 + 0.032. We

then changed the second term in the model from 0.032 to 0.932
and then from 0.032 to 2.132, to achieve settings with approxi-
mately 40% (as observed in the anti-depressant trial), 20% and
7.5% deviation data in the reference arm. The post-deviation data
in both arms at the follow-up time point were then re-generated
under each of the reference-based methods to give five different
truths, where for patients in the reference arm this was always
re-generated under randomized-arm MAR. This gave a total of
30 scenarios (5 outcome prevalences× 6 missing data settings) for
each reference-based truth (randomized-arm MAR or CR) in the
single follow-up setting. Post-deviation data in both arms were
then set missing to examine methods performance.

For the three follow-up setting, we imposed deviation at time
two and time three using a logistic regression model for devi-
ation. As per the single follow-up setting we initially con-
sidered the deviation mechanism in the active arm only and
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for time two we considered the MAR deviation data mech-
anism as: logitP

(
𝑅𝑎,𝑖,2 = 1

)
= −0.027 + 0.005∗𝑌𝑎,𝑖,1 + 1.729. This

resulted in approximately 15% with deviation in the active
arm at time two. Deviation at time 2 implied continued
deviation at time 3, that is, 𝑅𝑎,𝑖,3 = 0 if 𝑅𝑎,𝑖,2 = 0. For devi-
ation at time three only, we considered the MAR devia-
tion data mechanism as: logitP

(
𝑅𝑎,𝑖,3 = 1|𝑅𝑎,𝑖,2 = 1

)
= 0.367 +

1.167∗𝑌𝑎,𝑖,1 + 0.032 resulting in around 30% deviation in the active
arm at time three only. Subsequently we changed the third term
for both logitP

(
𝑅𝑎,𝑖,2 = 1

)
and logitP

(
𝑅𝑎,𝑖,3 = 1|𝑅𝑎,𝑖,2 = 1

)
. For

logitP
(
𝑅𝑎,𝑖,2 = 1

)
, we changed the third term from 1.729 to 2.629

and then from 1.729 to 3.829, to achieve settings with approxi-
mately 7% deviation and 2% deviation in the active arm at time 2.
For logitP

(
𝑅𝑎,𝑖,3 = 1|𝑅𝑎,𝑖,2 = 1

)
, we changed the third term from

0.032 to 0.932 and then from 0.032 to 2.132, to achieve settings
with around 15% deviation and 5% deviation in the active arm
at time 3. The post-deviation data were then re-generated sepa-
rately for each of the reference-based behaviors (randomized-arm
MAR, CR, J2R, CIR, or LMCF) as described above to give five dif-
ferent truths. Post-deviation data were then set missing to exam-
ine methods performance.

We then simulated deviation in both arms of the trials using
the same mechanisms as above for the active arm, and for the
reference arm initially logitP

(
𝑅𝑟,𝑖,2 = 1

)
= 0.005∗𝑌𝑟,𝑖,1 + 1.729,

logitP
(
𝑅𝑟,𝑖,3 = 1|𝑅𝑟,𝑖,2 = 1

)
= 1.167∗𝑌𝑟,𝑖,1 + 0.032 and 𝑅𝑟,𝑖,3 = 0 if

𝑅𝑟,𝑖,2 = 0. This resulted in additional deviation in the reference
arm at time 2 of approximately 15% and at time 3 of approxi-
mately 40%. Subsequently for the reference arm the second term
of logitP

(
𝑅𝑟,𝑖,2 = 1

)
was changed from 1.729 to 2.629 and then

to 3.829 and the second term of logitP
(
𝑅𝑟,𝑖,3 = 1|𝑅𝑟,𝑖,2 = 1

)
was

changed from 0.032 to 0.932 and then to 2.132 to obtain settings
with additional deviation in the reference arm at time 2 of approx-
imately 17% and 2% and at time 3 of approximately 20% and 7.5%.
The post-deviation data were then re-generated separately for
each of the reference-based behaviors (randomized-arm MAR,
CR, J2R, CIR, or LMCF) as described above to give five different
truths. This gave 30 scenarios (5 outcome prevalences× 6 missing
data settings) for each reference-based truth (randomized-arm
MAR, CR, J2R, CIR, or LMCF) in the three follow-up setting.
Post-deviation data in both arms were then set missing to exam-
ine methods performance.

Henceforth, we refer to deviation and missingness which coin-
cide as missingness.

In each scenario, 1000 data sets were simulated to give acceptable
Monte Carlo SE to quantify simulation uncertainty for assessing
bias performance. The Monte Carlo SE for the bias is calculated as

MCSE =
√(

Var(𝑇𝐸)∕𝑛simulations

)
where Var(𝑇𝐸) is the variance

of the estimated treatment effects for the given method and sce-
nario. Assuming a variance of 0.126, based on the observed vari-
ance of the treatment effect in the depression trial, 𝑛simulations =
1000 provides a MCSE of 0.0112, so that we will estimate the bias
of the treatment effect to within ±0.022 with 95% confidence.

4.1.3 | Estimands of Interest

For the single follow-up setting, the estimands of interest for the
binary outcome for active treatment compared with reference
treatment are: (i) the log odds ratio using a treatment policy strat-
egy to handle deviation under on-treatment behavior and (ii) the
log odds ratio using a treatment policy strategy to handle devia-
tion under CR behavior. For the three follow-up setting, addition-
ally the log odds ratio using a treatment policy strategy to handle
deviation under J2R, CIR, and LMCF behavior (iii–v).

4.1.4 | Methods

After setting post-deviation data missing as described above, we
applied the two methods of reference-based multiple imputa-
tion to the partially observed data sets. First, for the baseline
and single follow-up setting, we focused on copy reference which
is equivalent to jump-to-reference and copy increments in ref-
erence in this simple setting where the baseline means are the
same in each treatment group. This equivalence is appropriate,
since in practice due to randomization the baseline means will
have the same expectation. For comparison, multiple imputa-
tion under missing-at-random reflecting on-treatment behavior
post-deviation was also performed using the two different meth-
ods. For the three follow-up setting, we explored randomized arm
MAR, CR, J2R, CIR, and LMCF multiple imputation for each
implementation. For each multiple imputation analysis, 50 impu-
tations were used and in the MCMC procedure an initial burn
in of 500 iterations and a burn 500 was used between imputa-
tion draws, which seemed to guarantee convergence of the sam-
pler and independence of imputations at visual inspection of the
chains. Reference-based multiple imputation using the multi-
variate normal and rounding approach was conducted in Stata
using mimix [3]. The latent normal approach was conducted in R.
Example code can be found in the Supporting Information. The
same data sets were used for each method.

For each simulated data set using the regenerated post-deviation
data under the reference-based method (randomized-arm MAR,
CR, J2R, CIR, or LMCF) (generated as described above), which
represented if we were truly able to observe the post deviation
data under the reference-based behavior, we estimated the vari-
ance of the treatment effect under fully observed reference-based
behavior

(
𝑉full,reference

)
. This enabled us to calculate the informa-

tion anchored variance as,

𝑉anchored =
(
𝑉obs,MAR∕𝑉full

)
∗ 𝑉full,reference

where 𝑉full was the variance of the treatment effect with fully
observed on-treatment data and 𝑉obs,MAR was the variance of the
treatment effect after setting data missing and imputing under
on-treatment MAR.

For each scenario with an underlying multivariate probit data
generation mechanism, true values of the treatment effect were
calculated by simulating a very large data set (n= 1 000 000 per
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FIGURE 1 | Bias performance for Copy Reference (CR) with single follow-up and observed outcome prevalence of 40% versus 55%. Error bars
represent ±1.96*MCSE.

arm) using the underlying multivariate normal model to pro-
vide outcomes on the latent scale and corresponding binary out-
come based on the latent variables as 𝑌𝑡,𝑖,𝑗 = 𝐼

(
𝑍

ref
𝑡,𝑖,𝑗

≤ 0
)

. Devia-
tion times were simulated using the same mechanisms described
above. True post-deviation data was then re-generated according
to the reference-based method (e.g., J2R) using the known true
parameters in the conditional normal distributions for the under-
lying latent variables. A logistic model was then fitted to produce
the true log odds ratio.

4.1.5 | Performance Measures

The performance measures for the estimands of interest were
the bias, average model-based variance and empirical variance
(seen across simulations). We were seeking methods with min-
imal bias. The model-based variance was compared to the infor-
mation anchored variance.

5 | Results

5.1 | Simple Setting: Single Follow-Up

Figure 1 shows the bias of the estimated treatment effect for a
MVN data structure with baseline and a single follow-up and a
common outcome prevalence of 40% reference (placebo) versus
55% active if no deviations, following MAR (on-treatment behav-
ior) and CR multiple imputation. The latent approach to multi-
ple imputation was generally unbiased under MAR and CR for
all studied missing scenarios (Figure 1). The MVN and round-
ing approach was unbiased under MAR for all missing scenarios;

but for CR was only unbiased up to 15% missing data; for 30% of
missing data there was a small amount of bias.

When we examined the rarer outcome prevalence settings, there
was a more notable variation between the two methods of CR
imputation with respect to bias (Figure 2). The latent approach to
multiple imputation was unbiased under CR for all studied miss-
ing scenarios, except for the very rare setting (6% reference vs. 10%
active) with higher missing data. This reflects the slightly poorer
performance of MAR latent MI in this rarest setting. The MVN
and rounding approach under CR showed slight bias for two of
the rarer outcome settings (10% reference vs. 20% active and 20%
reference vs. 33% active) with 30% missing data; although for the
very rare setting (6% reference vs. 10% active) it was unbiased
under CR, but notably biased under MAR.

For the common outcome prevalence and all rare outcome set-
tings, the variance as calculated by Rubin’s rules under CR was
larger than the empirical repeated sampling variance of the CR
treatment estimate (see Figure 3 and Figures S3–S6). Conse-
quently this means the coverage of 95% confidence intervals com-
puted using Rubin’s rules is > 95% as illustrated in Figure 4. The
variance as calculated by Rubin’s rules was approximately infor-
mation anchored for both methods of CR imputation, with the
precision of the approximation being stronger for lower propor-
tions of missing data (see Figure 3 and Figures S3–S6).

5.2 | Three Follow-Up Time Points

For a MVN data structure with three follow-up time points and
monotone missingness at time 2 or 3 only following deviation, the
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FIGURE 2 | Bias performance for Copy Reference (CR) with single follow-up and rarer outcome prevalence. Error bars represent ±1.96*MCSE.
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average estimated variance when post-deviation data is fully observed under CR behavior.

10 of 17 Statistics in Medicine, 2025

 10970258, 2025, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10301 by T
est, W

iley O
nline L

ibrary on [21/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 4 | Coverage performance with single follow-up—observed outcome prevalence of 40% versus 55%; left hand panel for MAR imputation;
right hand panel for the CR imputation.

latent approach to missing-at-random (on-treatment)/copy ref-
erence/jump to reference/copy increments in reference/LMCF
multiple imputation was typically unbiased for the common out-
come prevalence (40% reference, vs. 55% active, see Figure 5).
In contrast, there was some bias for the MVN and rounding
approach for higher rates of missingness, especially for copy
increments in reference and LMCF. This is due to a difference in
expectations between the latent scale and the transformed pro-
bit scale which does not cancel out for these assumptions for the
rounding approach and dilutes the treatment effect once on the
probit scale. We elaborate further on this in the discussion.

When we looked at rarer outcome prevalences, as per the single
follow-up setting, there were more notable differences between
the performance of the two methods of imputation with respect
to bias which varied by specific reference-based assumption
(Figures 6 and 7 and Figures S11–S13).

Under MAR (on-treatment), the latent approach is generally
unbiased (except for very rare setting, 6% reference vs. 10% active,
with higher missing data) and performs better in rarer outcome
settings in comparison to the MVN and rounding approach,
which in contrast shows some bias for the rarest two settings.

Under CR, both methods of imputation are typically unbiased
for more common outcome prevalences, down to 20% reference
versus 33% active (Figure S12). But both approaches first show
some signs of slight bias for the 10% reference versus 20% active
setting with the higher missingness of 30% (Figure S13). For the
rarest setting, both methods of CR imputation are biased with the
higher missingess of 30% (Figure 6).

Under J2R the latent approach is unbiased for more common
outcome prevalences down to 20% reference and 33% active
(Figure S12), but shows bias for the two rarer settings for
15%–30% missing data (Figure 6 and Figure S13). In contrast, the
rounding approach for J2R is unbiased in all studied settings.

Under CIR and LMCF the latent approach is generally unbiased,
except for the higher 30% missingness in the two rarest outcome
prevalence settings (Figure 6 and Figure S13). The CIR MVN and
rounding approach is most often biased across all the rarer out-
come prevalence settings (Figure 6 and Figures S11–S13). The
LMCF MVN and rounding approach is generally biased with
greater than 5% missing data across all outcome prevalence set-
tings (Figures 5 and 6, and Figures S11–S13).

For the common outcome prevalence and all rare outcome set-
tings, the variance as calculated by Rubin’s rules was approx-
imately information anchored for both methods and all the
explored reference-based assumptions as observed for the previ-
ous single follow-up setting (see Figures S14–S17). Similarly, the
variance as calculated by Rubin’s rules was larger than the empir-
ical sampling variance of the CR treatment estimate, resulting in
the coverage of 95% confidence intervals computed using Rubin’s
rules being > 95%.

5.3 | Results With Missingness in Both Arms

Results with missing data in both treatment arms (see Figure 7
and Figures S18–S26) were similar to those seen with missing
data in one arm with respect to bias and information anchoring
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FIGURE 5 | Bias performance with three follow-up time points and observed outcome prevalence of 40% versus 55%. Error bars represent
±1.96*MCSE.
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FIGURE 6 | Bias performance with three follow-up time points and rare outcome prevalence of 6% versus 10%. Error bars represent ±1.96*MCSE.
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FIGURE 7 | Three follow-up setting with rare outcome prevalence of 6% reference versus 10% active bias performance of reference-based multiple
imputation with missing data in both treatment arms. *Missingness in arm 1 is 7.5%, 20%, and 40% when missingness in arm 2 is 5%, 15%, and 30%,
respectively. Error bars represent ±1.96*MCSE.

in most settings. However, intriguingly, in the very rare setting
(6% reference vs. 10% active) with missing data in both treatment
groups under randomized-arm MAR there was notably more bias
toward the null for the MVN rounding approach, and some evi-
dence of bias toward the null for the latent MVN approach with
30% missingness compared with missingness in the active arm
only; this was whilst there appeared to be less bias for some
of the reference-based imputation methods for both methods of
imputation with missing data in both arms compared to active
arm only (Figure 7). In particular, the bias for CIR disappeared
with missing data in both arms. With missing data in both arms
under CR, J2R, or CIR, missing data in the reference arm is natu-
rally imputed under randomized-arm MAR. Thus, it appears the
increased bias seen for the reference arm under randomized-arm
MAR-toward the null (see Figure 7) cancels with the bias for the
active arm seen previously (Figure 6) in the direction away from
the null. Under LMCF, the bias for the MVN rounding approach
notably increases with missing data in both arm, there is now evi-
dence of slight bias for the latent MVN approach with missing
data in both arms.

6 | Analysis of Case Study

For the observed on-treatment patients in the anti-depressant
trial, 41% (25/61) in the placebo group and 56% (39/70) in the
active group had a clinically meaningful response at 8 weeks. To
estimate the targeted treatment policy estimand (see Table 2),
the anti-depressant trial was analyzed using both methods of
referenced-based MI under MAR, J2R, CR, CIR, and LMCF. In
all reference-based scenarios, the reference group was placebo
(consequently placebo patients imputed under MAR) and 1000

imputations were produced. Code can be found in the Supporting
Information. Results are summarized in Figure 8 and Table 5.

Generally, under all reference-based scenarios the treatment
effect was smaller than under MAR and not significant (using a
strict p< 0.05 cut-off for significance). With a missing data rate of
30% active and 40% placebo, as expected by the simulation study,
we see some differences between the two methods of imputa-
tion for the corresponding options, but overall conclusions do not
change dependent on what method is used. For reference-based
multiple imputation under J2R and CR, the two methods of
implementation resulted in very similar estimates. The largest
discrepancy between the reference-based methods was seen for
CIR: treatment effect was 1.66 95% CI (0.87–3.14) with the MVN
rounding approach versus 1.78 95% CI (0.91–3.46) with the
latent approach. This larger difference reflects the slight bias seen
for CIR in the simulation study when the MVN and rounding
approach was used with a common outcome prevalence. Discrep-
ancies were also seen for LMCF and MAR; however, in this case
study the differences did not substantially change conclusions for
any assumption.

7 | Discussion

7.1 | Main Findings

We have found that reference-based multiple imputation
provides a practical, information anchored tool for drawing
inferences on the treatment effect for a treatment policy esti-
mand with a longitudinal binary outcome and unobserved
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FIGURE 8 | Analysis of the anti-depressant trial, treatment estimates as OR with 95% CI for multiple imputation under MAR, CR, J2R, CIR, and
LMCF for using MVN normal and adaptive rounding (gray) and a latent MVN model (black).

TABLE 5 | Analysis of the anti-depressant trial.

Imputation
Treatment OR

[mc error] 95% CI SE p

Method 1—MVN+ rounding
MAR (by-arm) 1.91 [0.01] 0.98–3.70 0.64 0.056
J2R 1.60 [0.01] 0.85–3.02 0.52 0.147
CR 1.63 [0.01] 0.86–3.08 0.53 0.133
CIR 1.66 [0.01] 0.87–3.14 0.54 0.121
LMCF 1.78 [0.01] 0.94–3.35 0.57 0.075

Method 2—latent
variable MVN

MAR (by-arm) 1.97 [0.01] 0.99–3.92 0.69 0.052
J2R 1.59 [0.01] 0.84–3.02 0.52 0.158
CR 1.62 [0.01] 0.85–3.09 0.53 0.141
CIR 1.78 [0.01] 0.91–3.46 0.60 0.091
LMCF 1.83 [0.01] 0.98–3.42 0.58 0.056

Note: Reference= placebo group. Thousand imputations used.

data after treatment deviation. Two methods of imputation
were explored including a multivariate normal and round-
ing approach and a latent multivariate normal model. The
performance of both methods in terms of bias and variance
estimation depends on the outcome prevalence and amount of
missing data. Our results suggest the latent multivariate normal
model is the preferred implementation since this is generally
less biased in a rarer outcome setting, however in a very rare
outcome prevalence setting (≤ 10%) both methods may not be
unbiased.

Under copy, increments in reference and LMCF the multivariate
normal and rounding approach resulted in more bias that other
reference-based methods. For this approach, the observed binary
outcome data is first modeled as continuous, then a non-linear
function is used to convert imputed data from the continuous
scale to the binary scale. For a random variable 𝑋, for linear func-
tions 𝑔, 𝐸[𝑔(𝑋)] = 𝑔(𝐸[𝑋]), but this is not necessarily true for
non-linear functions [20]. For these two approaches, the bias due
to the transformation does not appear to cancel out between the
treatment arms with missing data in the active only. With miss-
ing data in both arms, interestingly the bias is not so extreme
for copy increments in reference in the rarest setting studied
(see Figure 7). These results are intriguing and indicate further
avenues for further research to theoretically explore the biases to
identify if modifications can be implemented to correct for the
bias using the MVN and rounding method.

7.2 | Strengths and Limitations

A strength of this study is the inclusion of a case study in addi-
tion to a simulation study. The results of the simulation study
are reflected in the results of the case study. Although we con-
sidered a variety of simulation scenarios inspired by a real-life
trial including those which had approximately 90% power, reflect-
ing typical RCT scenarios, we were limited by the finite num-
ber of settings and scenarios we explored. As with any simula-
tion study, our conclusions consequently do not cover all settings
and results should be interpreted in light of these. The outcome
analyzed in the depression case study was clinically meaning-
ful improvement in depression symptoms at 8 weeks, defined as
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improvement of 50% or more in the baseline HAMD17. As con-
tinuous variable (HAMD17) underlies this binary outcome, for
the purpose of imputation the HAMD17 could have alternatively
been imputed as a continuous variable and the clinically relevant
response identified afterwards. But we chose to treat this outcome
as pure binary for the purpose of demonstrating and exploring
the methods for a binary outcome within as the data for this case
study is fully open access, thus also accessible by readers. The
best approach to imputation for this specific trial and outcome is
beyond the scope of this paper.

We only explored two implementations of reference-based multi-
ple imputation, using either a standard MVN model and an adap-
tive rounding approach or a latent MVN model. Both explored
methods were joint modeling approaches following the earlier
established approach for conducting reference-based multiple
imputation in the continuous setting [1]. The former simpler
approach was chosen for its accessibility, being readily imple-
mentable using available software for the continuous setting
and for a variety of reference-based assumptions (J2R, CIR, CR,
and LMCF). The latter latent MVN approach was considered
since the latent MVN has previously been shown to perform
well for standard multiple imputation of discrete data under
missing-at-random [21]. Our latent MVN approach was also sim-
ilar to latent multivariate normal model approaches proposed
by Lu [10] and Tang [9] and also enabled a wider variety of
reference-based assumptions (randomized-arm MAR, J2R, CIR,
CR, and LMCF). The latent multivariate normal model we pro-
pose here is different to the previous proposals, as we propose to
fit the latent MVN separately by treatment group in the imputa-
tion step to allow for greater generalizabilty. Our proposal there-
fore allows the covariance matrix to vary by treatment arm. Gao
et al. [8] previously proposed control-based multiple imputation
(i.e., CR imputation) for a binary outcome using a sequence
of logistic regression models and Tang [9] also proposed using
sequential logistic regression for CR. We didn’t explore their
approaches as only implementable for CR imputation. In further
work, it would be useful to consider these non-joint modeling
options and how they compare to the latent MVN model, which
we have identified here as the preferred joint modeling approach
for the CR setting.

Our analysis model of interest was a (i) logistic model, that is,
a GLM from the binomial family with a logistic link to consider
the odds ratio. One could use marginalization to obtain risk dif-
ference or risk ratio. When using this approach results are not
expected to differ for different estimands. One could alternatively
adopt (ii) a GLM from the binomial family with a log link to get
the risk ratio. Or (iii) a GLM from the binomial family with an
identity link to get the risk difference. We hypothesize the iden-
tified performance for (i) to be similar to (ii) and (iii) since infer-
ence is obtained using GLMs from the same family, with alterna-
tive link functions. However, we have not formally explored this,
which would be important further work.

7.3 | Research in Context

Our simulation results in the binary setting with respect to vari-
ance performance correspond with performance in the continu-
ous setting, which has been extensively explored via simulation

and theoretically elsewhere. Specifically in the reference-based
MI setting Rubin’s’ variance estimator has been shown to be
biased compared to the reference-based imputation estimator’s
true repeated sampling variance [2, 22]. This was seen in our sim-
ulation results for both methods explored. However, it has also
been shown that the reference-based imputation estimator’s true
repeated sampling variance has undesirable and unwanted prop-
erties in the current context of estimation for a treatment policy
estimand with missing data [23]. The repeated sampling variance
gets smaller the greater the amount of missing data. Thus if we
use a variance estimator that targets this then this results in more
efficient estimation with less data. This is not typically suitable
for a missing data method, which rather should reflect a loss of
information (i.e., larger variance) with higher amounts of missing
data. We consequently did not explore alternative variance esti-
mators, which target the true repeated sampling variance of the
reference-based estimator.

On the other hand, Cro, Carpenter, and Kenward [2] showed
that for longitudinal continuous data, for the class of con-
trolled and reference-based analyses explored here Rubin’s vari-
ance estimate alternatively provides approximately information
anchored inference. That is the proportion of information lost
due to missing data is approximately equivalent to that seen
under missing-at-random. The difference between Rubin’s vari-
ance estimate and the information anchored variance will be
small and will vanish asymptotically with increasing sample size.
Our results correspond and show Rubin’s variance estimator is
approximately information anchored in the binary setting. Over-
all, although Rubin’s variance estimator does not target the impu-
tation estimator’s true repeated sampling variance this is advan-
tageous. Rubin’s variance enables inference, which incorporates
a loss of information due to missing data.

We have considered the setting where there is no data available
after the intercurrent event of treatment deviation, that is, miss-
ing data is concurrent with treatment cessation. If some data
are available after treatment stopping, the imputation methods
explored here can be used ignoring any off-treatment data in the
imputation process and then merging any observed off-treatment
data back in. However, this may not be the most efficient
use of observed off-treatment data where this exists. Since the
reference-based MI procedures discussed here disregard potential
information about the outcomes off-treatment during imputation
strong assumptions underlie the analysis that may not always be
consistent with trial experience in the active arm after treatment
withdrawal; modeling missing data based on off-treatment for
treatment deviators may be more suitable when adequate (e.g.,
at or around 50% [24]) off-treatment data is available. For other
outcome types (continuous and count data), using off-treatment
data within the imputation process has been shown to be an alter-
native analytical approach to estimation given there is adequate
off-treatment data [25]. If there is limited observed off-treatment
data post-deviation retrieved drop out imputation approaches
based on modeling outcome after treatment withdrawal may be
impractical because parameters are, or may be, poorly estimated
[26]. Exploration of retrieved drop-out imputation procedures in
the binary setting are required to establish when these work well
and how they compare to the reference-based imputation meth-
ods explored in this article.
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We did not consider interim missing data, but any additional
interim missing data may be handled under an MAR assumption.
However, under the two described approached alternative distri-
butions for interim missing data can be included if desired. Cro
et al. [27] discusses how different assumptions may be readily
made for different types of data when using multiple imputation,
an appeal of using this flexible analytical tool.

Although we have focused on estimation for a treatment
policy strategy for handling treatment nonadherence in this
manuscript, reference-based multiple imputation may also be
useful when a hypothetical strategy is of interest. For example,
where it is hypothesized that nonadherers in the active arm
had a poor outcome even if they had adhered a reference-based
assumption may also be of value.

7.4 | Implications for Practice

From the results of this study, we recommend multiple impu-
tation using the latent multivariate normal model to be used to
impute longitudinal binary data when seeking a treatment pol-
icy estimand when data is missing post treatment cessation. We
have included R code in the Supporting Information, which can
be adapted for use in this setting. A formal R program is currently
in development at time of writing to improve accessibility of this
method.

In practice, a natural question is when reference-methods are
appropriate for use (Table 1). Their applicability will be context
specific. In trials of two active treatments, reference-base meth-
ods may not be appropriate if upon deviation participants cannot
access the treatment in the other arm. However, if upon devia-
tion patients can switch treatments their use may be indicated.
Randomized-arm MAR is a natural option for an on-treatment
estimand. For treatment policy estimands, J2R is appropriate
when we believe the deviator ceased their randomized treat-
ment and started treatment similar to that available in one of
the other arms (the reference) post-deviation; When we wish
to assume that post-deviation the disease resumes the course
observed in the reference arm CIR is more appropriate; CR
is a natural option when we believe patients followed a dif-
ferent (reference) treatment from their randomized allocation
throughout the trial; and LMCF is suitable when we believe
the effect of randomized treatment is maintained on average
post-deviation.

7.5 | Conclusion

Reference-based multiple imputation provides a useful tool for
the analysis of clinical trials with longitudinal binary outcomes
with missing data. Whilst it can be implemented using joint mod-
eling with the multivariate normal distribution and an adaptive
rounding algorithm or with a latent multivariate normal model,
the latter method is preferable with a rarer outcome therefore
recommended for use. However, with a very rare outcome preva-
lence (≤ 10%) both methods may introduce in bias. Both provide
an approximate information anchored variance, meaning that
the uncertainty due to missing data is desirably reflected in the
inference.
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