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Abstract 

Zoonotic soil-transmitted helminths (STH), including Ancylostoma ceylanicum,  

Ancylostoma caninum, Ancylostoma braziliense, Trichuris vulpis, Trichuris suis, and 

Ascaris suum, are increasingly recognised as potential sources of human infection. 

Additionally, animals can act as carriers or reservoirs for human STH species. How-

ever, the extent of cross-host infection remains poorly understood, primarily due to 

reliance on morphological diagnostics. This review compiles data on the occurrence 

of cross-host STH infections, highlighting zoonotic STH in humans and human STH 

species in domestic and livestock animals. Following PRISMA guidelines, PubMed, 

Medline, and Web of Science were systematically searched without restriction on 

publication date, covering records available from inception to December 2024, 

with the earliest retrieved study published in 1942. Inclusion criteria encompassed 

studies on cross-host STH infections confirmed by molecular methods. Exclusion 

criteria included experimental infection studies, studies involving wildlife, and those 

that did not find cross-host infection. Two independent reviewers assessed bias 

using Appraisal tool for Cross-sectional studies (AXIS) and Joanna Briggs Institute 

appraisal tools. The protocol is registered with PROSPERO (CRD42024519067). 

The review screened 4197 titles and abstracts and included 51 studies. Ancylostoma 

ceylanicum was the commonest zoonotic STH reported, predominantly in Southeast 

Asia. Human STH species (Ancylostoma duodenale, Necator americanus, Trichu-

ris trichiura and Ascaris lumbricoides) were found in dogs, cats, and pigs. Studies 

examining both humans and animals together in shared environments showed STH 

presence in both populations. Case studies revealed gastrointestinal and dermatolog-

ical effects in humans particularly infected with zoonotic hookworms. This systematic 
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review highlights STH cross-host species infections underscoring the need for further 

One health epidemiological investigations of humans and domestic/livestock animals 

in sympatric environments to better understand the burden and explore the transmis-

sion dynamics of cross-host STH infections.

Background

The soil-transmitted helminths (STH) in humans are neglected tropical diseases 
caused commonly by Ascaris lumbricoides, Trichuris trichiura and hookworms (Ancy-
lostoma duodenale, Necator americanus). The World Health Organisation has spec-
ified aims to eliminate STH as a public health problem in 96% of endemic countries 
by 2030, targeting a reduction in heavy-to-moderate intensity infection prevalence 
in children to below 2% by preventive chemotherapy [1]. While widespread deworm-
ing initiatives have successfully reduced morbidity in most settings [2], persistent 
environmental contamination may contribute to continued reinfection, raising ques-
tions around sustainability [3,4]. In order to address environmental contamination, 
focus has been primarily directed towards improvements in water, sanitation, and 
hygiene (WASH) infrastructure and behaviour change communication to prevent 
human faecal contamination [5]. However, evidence suggest WASH’s effectiveness is 
low-to-moderate [6–8] and it may not effectively address all sources of environmental 
contamination.

Zoonotic helminths are globally prevalent in animals, but the frequency of their 
occurrence in humans and its public health implications remain largely unexplored. 
Most notably, dogs and cats serve as hosts for the hookworm species Ancylostoma 
ceylanicum, Ancylostoma caninum, Ancylostoma braziliense, in addition to Trichuris 
vulpis, while pigs host Ascaris suum and Trichuris suis - all of whom have zoonotic 
potential. Limited evidence of their presence in humans is due to the inability of 
morphological egg identification (until recently, the primary diagnostic tool) to differen-
tiate between species. Nevertheless, genetic analyses suggests potential cross-host 
species infection of Ascaris and Trichuris between humans and pigs [9–12], including 
hybridisation between A. suum and A. lumbricoides [13,14]. Furthermore, it is also 
possible that animals can act either as carriers/transport hosts [15,16] or reservoirs of 
human STH species, potentially influencing the transmission dynamics.

Given that dogs’ and cats’ faeces commonly contaminate soil in areas where they 
roam freely [17–20], and that pigs are reared closely with humans in many low-and-
middle-income settings, it is important to ascertain their role in maintaining STH 
transmission in human populations. Considering the potential challenges to disease 
control, posed by animal reservoirs, this study systematically reviews evidence of 
cross-host species infections of zoonotic STH (A. ceylanicum, A. caninum, A. brazil-
iense, T. vulpis, A. suum, and T. suis) in humans and human STH (A. lumbricoides, T. 
trichiura, A. duodenale and N. americanus) in domestic/livestock animals. It aims to 
understand the geographical distribution and the extent of cross-host species infec-
tions to explore the role of animals in the transmission of STH in endemic settings.
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Methods

Search strategy and selection criteria

Following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines [21] (S1 Check-
list), a systematic review on cross-host species infections of STH between humans and animals (domestic/livestock) was 
conducted. The protocol of this systematic review was registered with PROSPERO (registration ID CRD42024519067). 
The review was carried out by two independent reviewers, UM and RK. UM formulated the research questions, developed 
inclusion and exclusion criteria, and build the search strategy. Titles/abstracts and full texts were screened independently 
by both reviewers, with discrepancies resolved through discussion. Risk of bias assessments were also conducted 
independently. The initial search was conducted between June and August 2023, with an updated search conducted in 
December 2024 (Detailed timelines are described in S1 Table). UM took the lead in the interpretation and reporting the 
findings.

Database search

Three databases-PubMed, Medline, and Web of Science, were searched without applying date restrictions for studies 
published since inception to December 2024, with the earliest retrieved study published in 1942. The search strategy 
was designed to include evidence on “Cross-host species infection” between humans and animals defined as the 
occurrence of zoonotic STH species, namely A. ceylanicum, A. caninum, A. braziliense, A. suum, T. vulpis and T. suis 
in humans. It also included occurrences of human STH species that is, A. lumbricoides, T. trichiura, A. duodenale or 
N. americanus, in domestic/livestock animals. BOOLEAN operators ‘OR’ and ‘AND’ were used to refine the search 
strategy. The list of search terms and details of the search strategy applied to extract studies from each database is 
described in S1 Table.

Study selection

Original studies employing molecular methods to confirm STH species in cross-host species infections were consid-
ered for inclusion. Only studies using molecular diagnostic methods were included in this review due to the limitations of 
conventional microscopy, such as the Kato-Katz method, which cannot distinguish between morphologically similar STH 
species. For example, overlapping egg sizes and morphological similarities, between A. lumbricoides and A. suum [22], or 
T. trichiura and T. vulpis [23] can result in misidentification. Since this review aims to establish the occurrence (not neces-
sarily the prevalence) of cross-host species infections, both community-based studies and studies conducted in hospital 
settings were included. We included only papers that explicitly reported cross-host species infections, excluding those 
that investigated but did not find evidence of such infections. Experimental studies (artificially-induced infections), studies 
reporting helminths in wildlife animals, studies that did not use molecular methods were excluded. Other forms of publica-
tions such as editorials, or review papers were also excluded but bibliography was checked for further references. Unpub-
lished and grey literature were not assessed. Strongyloides stercoralis, although classified as an STH, was excluded from 
this review due to its unique features: under-reporting due to auto-infection [24], diagnostic limitations related to Kato-katz 
method [25], and Ivermectin as the preferred treatment and preventive deworming [26]; hence was excluded from this 
review.

Data extraction

The studies identified from all the three databases were exported to Zotero (Zotero 6.0.36) [27] for management and 
referencing. Rayyan software [28] was used for study organisation and duplicate detection, with manual screening. After 
removing duplicates, titles and abstracts were screened. Studies with unclear eligibility were included for further assess-
ment. Full-texts of eligible studies were retrieved.
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Information on the year of publication, species detected, animal hosts, country, diagnostic method used, sample size, 
number of samples tested by morphological examination, number of samples tested by molecular method, gene targets, 
number of samples tested as positive, prevalence (with 95% confidence intervals, when applicable), clinical symptoms 
and case description (for case studies) were extracted (S1 Data). If participants had travelled to an endemic region, then 
the place of origin and the place travelled were also recorded. No pooled analysis was conducted.

Data were extracted and synthesised as presented in the original studies. When percentages were not reported but 
sufficient raw data were available, corresponding percentages were calculated. Conversely, when only percentages 
were provided and the denominators were clearly stated, the absolute number of cases was derived. Instances of mixed 
infections were recorded as reported; when specific species were not identified, these were noted accordingly. For case 
reports lacking details such as travel history or clinical symptoms, missing information was acknowledged.

Quality assessment

Risk of bias was assessed using the Appraisal tool for Cross-sectional studies (AXIS) [29] for community-based studies 
and the Joanna Briggs Institute (JBI) Critical Appraisal tools for cross-sectional studies and case reports [30] for  
hospital-based studies. AXIS consists of 20 items evaluating study design, reporting quality, and bias risk. The JBI tool for 
cross-sectional studies assesses sample criteria, subject descriptions, measurement validity, confounding factors iden-
tification, and statistical analysis appropriateness. For case reports, the JBI tool evaluates clarity of case descriptions, 
suitability of diagnostic methods, consideration of confounding factors, and reliability of conclusions. All eligible studies 
were included regardless of the quality score.

Results

Search results

The process of selecting eligible studies using the PRISMA guidelines is presented in Fig 1.
The search identified 4197 studies. The distribution of records retrieved from each database is detailed in S2 Data. After 

removing 1948 duplicates, 2249 records were screened for titles and abstracts, of which 627 were excluded. A total of 1622 
full-text articles were evaluated for eligibility against the pre-determined eligibility criteria. Fifty-one studies were included in 
this review, after excluding 1011 studies that were not relevant to the study objective, 265 studies that did not use molecular 
methods for identification of STH species, 53 experimental infection studies, 32 studies that only included unrelated hel-
minth species, 69 studies involving only wild animals and 12 records for which full-text was not available (Fig 1). The rea-
son for excluding the papers after full-text assessment is explained in the S3 Data. The 12 records for which the full texts 
were unavailable were published between 1949 and 2001. Given the age of these publications and the likelihood that they 
did not employ molecular diagnostic methods for species confirmation, efforts to contact the authors were not undertaken.

Study characteristics

Thirty-five (68.6%) of the 51 studies that met the eligibility criteria were community-based while 16 (31.4%) studies were 
conducted in hospital settings. Majority of the studies (96·1%, 49 of 51) were published in the last decade (2010–2022) 
(S1 Fig). Studies conducted across 28 countries revealed the presence of cross-host species STH infections in humans 
and animals. Predominantly, 62·7% (32 of 51) of these studies were from 12 countries in Southeast Asia (SEA), with a 
smaller proportion from South America (11·8%, 6 of 51), Europe (9.8%, 5 of 51), Africa (7.8%, 4 of 51), South Asia (7.8%, 
4 of 51) and Oceania (3·9%, 2 of 51) (Figs 2, 3, S2 and S3).

Among the community-based studies, the majority (74.3%, 26 of 35) utilised cross-sectional designs. A smaller per-
centage were integrated into larger programs (5·7%, 2 of 35) [31,32], while others employed alternative designs, including 
cluster-randomised trial (2.8%, 1 of 35) [33], efficacy trial of treatment or drugs (5.7%, 2 of 35) [34,35], testing/validation of 
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diagnostic tools or treatment (5.7%, 2 of 35) [36,37], cohort study design (2.8%, 1 of 35) [38], or retrospective analysis of 
archived samples from previous studies (2.8%, 1 of 35) [39]. Rural populations were the focus of the majority of  
community-based studies (65.7%, 23 of 35) [23,40–47], with some studies (11.4%, 4 of 35) specifically targeting tribal or 
indigenous communities [40,41,43,44]. Additionally, 22·8% (8 of 35) focused on children, particularly preschool and school-
aged groups, with a subset conducted in daycare centres and schools (5·7%, 2 of 35) [36,48,49]. Other specific study loca-
tions included communities around temples [50], refugee camps [31,32], and tea-growing communities [51]. Site selection 
methods varied, including accessibility-based approaches [41,43,45,52] and consideration of contact with domestic animals 
[45,51]. Sampling methodologies encompassed simple random sampling of households [35,52], random selection of vil-
lages/schools [43,53], random sampling of participants [54], purposive [47] and convenience sampling [55] (Table 1)

Among hospital-based studies, 68.7% (11 of 16) followed a case-study design, while four studies (25%, 4 of 16)  
utilised preexisting laboratory or patient’s samples [64–67], with one study sampled from both a hospital and a village [68]. 
These studies included symptomatic patients, with samples comprising of adult worms [64,69–75] and faeces  
[65,67,68,73,76–78]. Five studies (three from France and two from Japan) reported travel histories to endemic countries 
such as Thailand [73], Lao PDR [73,76], Myanmar [77], Malaysia [76], India [76], West Indies [79], Pakistan, Cote d‘Ivo-
ire, Colombia, Pakistan, French Guiana [66] and Papua New Guinea [76]; while three mentioned contact with animals 
[69,71,72] (Table 2).

Fig 1.  Flow diagram showing the screening and selection of studies using the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA).

https://doi.org/10.1371/journal.pgph.0004614.g001

https://doi.org/10.1371/journal.pgph.0004614.g001
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Polymerase chain reaction (PCR) methods commonly targeting genes such as Internal transcribed spacer-1,2 regions (ITS), 
mitochondrial cytochrome c oxidase subunit I (COX1), 5·8S, 18S and 28S ribosomal ribonucleic acid (rRNA) were used for species 
confirmation. In community studies, 45·7% (16 of 35) limited PCR testing to microscopy-positive samples, while 31·4% studies 
(11 of 35) analysed all samples (Table 1). In some cases (8·6%, 3 of 35), a subset of microscopy-positive samples was randomly 
selected for PCR [36,44,52]. PCR was conducted in faeces (80·4%, 41 of 51 studies) and in adult worms (15·7%, 8 of 51 studies). 
The largest surveys were in Myanmar and Thailand, focussing on refugees and employing PCR on all samples [31,32].

Quality assessment of studies

Majority (91.4%, 32 of 35) of the community-based studies scored 17 points or higher out of a total of 20 points, indicat-
ing high quality. Among hospital-based studies, 87.5% (14 of 16) scored 6 points or higher out of a total of 8 points, also 
reflecting good quality. Details of the quality assessment of the studies are in S2, S3 and S4 Tables.

Fig 2.  Distribution of studies reporting the occurrence of zoonotic STH across Southeast Asia, South Asia, Oceania, Africa, Europe and South 
America. The country borders shapefile used as the base layer is the wb_countries_admin0_10m dataset, available from https://datacatalog.worldbank.
org/search/dataset/0038272, and is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

https://doi.org/10.1371/journal.pgph.0004614.g002

https://datacatalog.worldbank.org/search/dataset/0038272
https://datacatalog.worldbank.org/search/dataset/0038272
https://doi.org/10.1371/journal.pgph.0004614.g002
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Fig 3.  Distribution of studies reporting the occurrence of human STH species in animal hosts. The country borders shapefile used as the base 
layer is the wb_countries_admin0_10m dataset, available from https://datacatalog.worldbank.org/search/dataset/0038272, and is licensed under the 
Creative Commons Attribution 4.0 International (CC BY 4.0) license.

https://doi.org/10.1371/journal.pgph.0004614.g003

https://datacatalog.worldbank.org/search/dataset/0038272
https://doi.org/10.1371/journal.pgph.0004614.g003


PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0004614  August 12, 2025 8 / 25

Table 1.  Characteristics of eligible community-based studies reporting zoonotic STH species in humans and/or human-associated STH spe-
cies in animals.

Citation Country Study design/ 
participants

Type of 
study

Selection of 
isolates for 
molecular 
testing

Number 
tested

PCR* 
method

Gene 
targets

Species in humans Species in animals Quality 
score §

George et 

al (2016) 

[34]

Brazil, 

Cambo-

dia, Cam-

eroon, 

Ethiopia, 

Tanzania, 

Vietnam

Treatment efficacy 

trials, children STH egg 

positive by McMaster

Drug/

treatment 

efficacy trial

Random sample 

(20–40 samples 

per site)

207 in total 

across 6 

countries

Semi-

nested 

PCR, 

PCR-RFLP&

ITS^-1, 2 

and 5·8s 

region

- T. vulpis: 3·4% (7/207)¶

- A. suum: nil

- A. lumbricoides: 34·2% 

(71/207)

- T. trichiura: 42·0% 

(87/207)

- N. americanus: 35·2% 

(73/207)

- A. duodenale: 19·3% 

(40/207)

-Mixed infections(N. 
americanus and A.  
duodenale)-4.3% (9/207)

Not assessed 18

Chang et 

a£(2020) 

[56]

Cambodia Worm expulsion study 

in one village with high 

hookworm prevalence

Cross- 

sectional

All adult hook-

worms recovered 

from 9 people

65 adult 

worms

PCR COX1± - A. ceylanicum: 9·3% 

(6/65)

- N. americanus:90·7% 

(59/65)

-Mixed infections (N. amer-
icanus and A. ceylanicum): 

3 patients

Not assessed 18

Colella et al 

(2021) [35]

Cambodia Treatment efficacy trial, 

individuals aged over 6 

years from ten villages 

positive by standard 

faecal flotation

Drug/

treatment 

efficacy trial

All samples 

collected

151 human 

faecal 

samples

Multiplex 

qPCR#

ITS-1, 2 

region

- A. ceylanicum: 5·3% 

(8/151)

- N. americanus: 86·8% 

(131/151)

- Mixed infection- 7·9% 

(12/151)

Not assessed 18

Inpankaew 

et al (2014) 

[42]

Cambodia Cross-sectional study 

of 67 households 

randomly selected, 218 

and 94 dogs individuals 

enrolled, egg positive 

by microscopy

Cross- 

sectional

All samples 

collected

218 human 

faecal 

samples,

94 dog 

faecal 

samples

PCR, 

PCR-RFLP

ITS-1, 2 

and 5·8s 

region

Hookworm spp: 56·9% 

(124/218)

- A. ceylanicum: 46·0% 

(57/124)

- N. americanus: 47·6% 

(59/124)

-A. duodenale: 0·8% 

(1/124)

- Mixed infection (N. amer-
icanus and A. ceylanicum): 
3·2% (4/124)

- Mixed infection (A. cey-
lanicum and A. duodenale)- 
1·6% (2/124)

- Mixed infection (N. 
americanus, A.ceylanicum 

and A. duodenale): 0·8% 

(1/124)

- Hookworm spp: 
95.7% (90/94)

- A. ceylanicum: 

90·0% (81/90)

- A. caninum: 5·6% 

(5/90)

- A. ceylanicum and 

A.caninum: 3·3% 

(3/90)

- A. ceylanicum and 

N. americanus: 

1·1% (1/90)

18

Sears et al 

(2022) [55]

Ecuador Cross-sectional study 

samples from a conve-

nience subsample of 

preschool, schoolchil-

dren and daycare staffs 

from two provinces

Cross- 

sectional

Single samples 

from 230 

individuals

230 human 

faecal 

samples

Multi paral-

lel qPCR

ITS-1, 2 

and 5·8s 

region

- A. ceylanicum: 2·6% 

(6/230)

- N. americanus: 37·0% 

(85/230)

Not assessed 18

(Continued)



PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0004614  August 12, 2025 9 / 25

Citation Country Study design/ 
participants

Type of 
study

Selection of 
isolates for 
molecular 
testing

Number 
tested

PCR* 
method

Gene 
targets

Species in humans Species in animals Quality 
score §

Calvopina 

et al (2024) 

[40]

Ecuador Study conducted in 

a village inhabited by 

indigenous population. 

Single faecal samples 

collected from humans 

and dogs. Presence 

of eggs or larvae was 

assessed using  

formalin-ether 

concentration

Cross- 

sectional

All samples 

collected

54 human 

faecal 

samples,

79 dog 

faecal 

samples

Multi- 

parallel 

qPCR, con-

ventional 

PCR

ITS-1 - A. ceylanicum: 14.8% 

(8/54)

- A. caninum: 11.1% 

(6/54)

- A. braziliense: 1.9% 

(1/54)

- A. duodenale: 31.5% 

(17/54),

- N. americanus: 14.8% 

(8/54)

- Mixed infection (anthro-

ponotic/zoonotic species): 

11.0% (6/54)

- N. americanus: 

12.4% (10/79)

- A. duodenale: 

6.3% (5/79)

- A. ceylanicum: 

78.5% (62/79)

- A. caninum: 49.4% 

(39/79)

- A. braziliense: 

21.5% (17/79)

- Mixed infections 

(anthroponotic/

zoonotic species): 

13.9% (11/79)

15

Aguilar- 

Rodríguez 

et al (2024) 

[39]

Ecuador Retrospective analysis 

of archived samples 

from previous studies.

Retrospec-

tive analysis 

of archived 

samples

Microscopy 

positive samples 

from 4 studies 

and micros-

copy negative 

samples from 5 

studies

132 faecal 

sam-

ples. 69 

samples 

which were 

microscopy 

positive 

and 63 

samples 

which were 

microscopy 

negative

Multi- 

parallel 

qPCR

COX1 - A. ceylanicum: 19.7% 

(26/132)

- A. duodenale: 34.9% 

(46/132)

- N. americanus: 18.2% 

(24/132)

- S. stercoralis: 6.8% 

(9/132)

- T. trichiura: 15.9% 

(21/132)

- A. lumbricoides: 71.2% 

(94/132)

- Mixed infection (with 

any STH species): 81.8% 

(108/132)

Not assessed 17

Boyko et al 

(2020) [16]

Ghana Faecal samples col-

lected from dogs

and pigs, hookworm 

eggs positive

by Kato–Katz method

Cross- 

sectional

Microscopy pos-

itive faecal sam-

ples collected 

from 64 dogs

and 20 pigs

43 dog and

9 pig hook-

worm pos-

itive faecal 

samples

PCR ITS-2, 

COX1

Not assessed - N. americanus:

Dogs: 47·0% 

(20/43)

Pigs: 56·0% (5/9)

18

Traub et al 

(2002) [51]

India Survey in tea-growing 

communities, including 

adults and children 

(staff and labour popu-

lations, excluding exec-

utives), eggs assessed 

by sedimentation and 

centrifugal flotation

Cross- 

sectional

Dogs-Ascaris 

eggs which 

are micros-

copy positive. 

Human- Ascaris 

eggs, adult A. 

lumbricoides 

worm as positive 

controls

5 human 

faecal 

samples,

31 dog 

faecal 

samples

PCR-RFLP ITS-1, 2 

and 5·8s 

region

Not assessed All 31 dog- 

derived Ascaris egg 

samples exhibited 

a digestion pattern 

that matched 

those described for 

human- 

derived Ascaris. 5 

dog-derived Ascaris 

eggs exhibited 

100% homology 

with those found in 

Ascaris eggs from 

humans and the 

adult worm from 

Assam

-Mixed infections 

(with >1 zoonotic 

species): 99.0%

18
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George et 

al (2015) 

[44]

India Survey of children 1–15 

years, eggs positive by 

saline wet microscopy 

method

Cross- 

sectional

A subset of 

50 randomly 

selected micros-

copy positive 

samples

50 human 

faecal 

samples

Semi-

nested 

PCR, 

PCR-RFLP

ITS-1, 2 

and 5·8s 

region

- Hookworm spp: 82·0% 

(41/50)

- A. ceylanicum: 5·0% 
(2/41)
- N. americanus: 95·0% 
(39/41)
- A. duodenale: 15·0% 
(6/41)
-Mixed infections (A. 
duodenale and N. ameri-
canus): 14.6% (6/41)

Not assessed 18

George et 

al (2016) 

[33]

India Part of a community- 

based cluster ran-

domised control trial, 

faecal samples of 

humans, dogs and 

soil samples from 9 

clusters, egg positive by 

saline wet mount

Cluster 

randomised 

trial

146 of 711 

positive 

individuals that 

were positive by 

microscopy

77 of 90 dogs 

that were 

positive by 

microscopy

143 human 

faecal 

samples, 

77 dog 

faecal 

samples

PCR-RFLP ITS-1,2 

and 5·8s 

region

- Hookworm spp.: 83·2% 

(119/143)

- A. caninum: 16·8% 

(20/119)

– N. americanus:100·0% 
(119/119)
- A. duodenale: 8·4% 

(10/119)

-Mixed infections (with 

any of the hookworms): 

detected, but numbers not 

specified

- Hookworm DNA: 

88·3% (68/77)

- A. caninum: 76·5% 

(52/68)

- A. ceylanicum: 
27·9% (19/68)

- Mixed infections 

(A. caninum and A. 
ceylanicum): 4·4% 

(3/68)

18

Agustina et 

al (2023) 

[47]

Indonesia Cross-sectional study, 

samples collected 

from pig farmers using 

purposive sampling. 

Flotation concentration 

method used for the 

detection of Ascaris 

spp. eggs

Cross- 

sectional

All samples 

collected

239 human 

faecal 

samples

PCR COX1 A. suum: 1.25% (3/239) Not assessed 15

Mulinge et 

al (2020) 

[57]

Kenya Single canine faecal 

samples collected from 

the environment

Cross- 

sectional

78 of 490 faecal 

samples that 

were positive 

by microscopy 

were randomly 

selected

PCR 

products 

obtained 

from 70 

of 78 dog 

faecal 

samples

PCR, 

PCR-RFLP

ITS-1,2, 

5·8s 

and 28S 

region

Not assessed - A. caninum: 

84·3% (59/70)

- A. braziliense: 
14·3% (10/70)

- A. duodenale: 
1·4% (1/70)

18

Conlan et 

al (2012) 

[52]

Lao PDR A survey conducted 

in one 6 randomly 

selected villages (one 

district selected randomly 

from each of the four 

provinces), with 14 

households chosen per 

village. All household 

members aged 6 and 

above were invited to 

participate, egg-positive 

by formalin- 

ether concentration 

technique. Dog faecal 

samples collected from 

household with dogs.

Cross- 

sectional

Human-46 ran-

domly selected 

from micros-

copy positive 

samples;17 of 

46 (successfully 

amplified)

Dogs-23 of 94 

selected;18 of 

23 successfully 

amplified.

46 human 

faecal 

samples,

23 dog 

faecal 

samples

PCR ITS-1,2 

and 5·8s 

region

- A. ceylanicum: 17·6% 

(3/17)

- N. americanus: 82·4% 

(14/17)

- N. americanus: 
5·6% (1/18)

- A. ceylanicum: 
38·9% (7/18)

- A. caninum: 11·1% 

(2/18)
- A. braziliense: 
5·6% (1/18)

- Mixed infections 

(A. ceylanicum and 

A. caninum): 22.2% 

(4/18)

-Mixed infections 

(A. ceylanicum and 

N. americanus): 

16.7% (3/18)

18
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Sato et al 

(2010) [58]

Lao PDR Single faecal sample 

collected from each of 

individuals, aged 8–60 

years, hookworm egg 

positive by Kato- 

Katz method

Cross- 

sectional

All samples 

recovered from 

203 individuals

203 human 

faecal 

samples

PCR ITS-1,2 

and 5·8s 

region

- N. americanus: 5·9% 

(12/203)

- Ancylostoma spp.: 9·4% 

(19/203)

- Mixed infections (N. 
americanus and Ancy-
lostoma spp.): 0·5% 
(1/203)
Sequencing-9/20 sam-
ples, and the amplicon 
of the adult A. duode-
nale, were successfully 
sequenced
- A. caninum: 33·3% (3/9)
- A. ceylanicum: 11·1% 
(1/9)
- A. duodenale: 55·6% 
(5/9)

Not assessed 18

Ash et al 

(2017) [37]

Lao PDR Participants from a 

village were invited 

to provide faecal 

samples. Village dog 

samples were collected 

opportunistically

Testing/

validation of 

a diagnostic 

tool

Human- a subset 

of 31 hookworm 

samples positive 

by microscopy

Dog- all 9 

samples

31 human 

faecal 

samples,

9 dog 

faecal 

samples

PCR ITS-1,2 

and 5·8s 

region

- A. ceylanicum: 6·4% 

(2/31)

- N. americanus: 70·9% 

(22/31)

- A. duodenale: 6·4% 

(2/31)

- A. braziliense: 19·4% 

(6/31)

- N. americanus and A. 
ceylanicum): 3·2% (1/31)

- Mixed infections (N. 
americanus and A. ceylani-
cum): 3.2% (1/31)

- N. americanus: 

22·2% (2/9)

- A. ceylanicum: 
44·4% (4/9)

- A. caninum: 44·4% 

(4/9)

- A. ceylanicum and 

A. caninum: 11·1% 
(1/9)
- Mixed infections 

(A. ceylanicum and 

A. caninum): 11.1% 

(1/9)

18

Niamnuy et 

al (2016) 

[54]

Lao PDR, 

Thailand

Cross-sectional study 

in 3 districts, dogs and 

cats from participat-

ing households were 

randomly selected.

Cross- 

sectional

5 samples were 

cultured for PCR

5 hook-

worm 

larvae

PCR ITS-1,2 

and 5·8s 

region

- A. ceylanicum: 20·0% 

(1/5)

- N. americanus: 80·0% 

(4/5)

Not assessed 18

Chin et al 

(2016) [41]

Malaysia Cross-sectional study in 

two ethnic groups in 4 

accessible villages

Cross- 

sectional

All 186 samples 

collected

186 human 

faecal 

samples

Two step 

semi-

nested 

PCR

ITS-2, 

28S 

region

- A. ceylanicum: 4·3% 

(8/186)

- N. americanus: 20·4% 

(38/186)

- Mixed infections (N. ameri-
canus and A. ceylanicum) 
-1·1% (2/186)

Not assessed 18

Ngui et al 

(2012) [45]

Malaysia Study in 8 remote 

villages selected based 

on high hookworm 

prevalence and 

accessibility

Cross- 

sectional

Human- 47 of 58 

microscopy- 

positive samples 

were success-

fully amplified

Dogs and cats- 

50 of 65  

microscopy- 

positive samples 

were success-

fully amplified.

47 human 

faecal 

samples,

50 dog and 

cat faecal 

samples

PCR, Two-

step semi-

nested 

PCR

ITS-2, 

5·8s 

and 28S 

region

- A. ceylanicum: 12·8% 

(6/47)

- N. americanus: 76·6% 

(36/ 47)

- Mixed infections (A. 
ceylanicum and N. ameri-
canus): 10·6% (5/47)

- A. caninum (dogs): 
52·0% (26/50)

- A. ceylanicum 

(cats & dogs): 

46·0%

(23/50)

- A. braziliense 

(cats): 2·0% (1/50)

17
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Mohd- 

Shaharud-

din et al 

(2019) [43]

Malaysia A cross-sectional study 

in indigenous commu-

nities, 5 accessible 

villages selected by 

convenience sampling, 

individuals were invited 

to voluntarily participate

Cross- 

sectional

Human, dog and  

cat-Samples 

positive by 

microscopy

240 human 

faecal 

samples,

74 dog and 

cat faecal 

samples

Two step 

semi-

nested 

PCR

SSUr-

RNA||

- T. vulpis: 1·3% (3/240)

- T. trichiura: 98·7% 

(237/240)

- T. trichiura: 

56·8% (42/74)

- T. vulpis: 43·2% 

(32/74)

Microscopy -ve 

samples confirmed 

to be -ve by PCR

Sequencing: 99%-

100% homologous 

to T. trichiura and 

T. vulpis (NCBI 

database)

18

Dunn et al 

(2020) [59]

Myanmar A cross-sectional study 

among residents of 

delta region of Myan-

mar, single stool sam-

ple of participants were 

tested egg positive by 

Kato-Katz method

Cross- 

sectional

All 648 samples 

collected from 

participants

648 human 

faecal 

samples

qPCR ITS 

region

- A. ceylanicum: 4·6% 

[(95% CI-3·15-6·54) 

(30/648)]

- A. lumbricoides: 8·8% 

[(95% CI 6·73–11·25) 

(57/648)]

- T. trichiura: 22·8% [(95% 

CI 19·66–26·27) (148/648)]

- N. americanus: 22·7% 

[(95% CI 19·51–26·11) 

(147/648)]

- A. duodenale: 0·2% 

[(95% CI 0·00–0·86) 

(1/648)]
- Mixed infections (two-

three species): 28.8% 

(84/292)

Not assessed 18

Htun et al 

(2021) [60]

Myanmar A cross-sectional study 

of dogs in 11 locations, 

stool samples assessed 

by sedimentation and 

flotation and McMaster 

methods

Cross- 

sectional

Only samples 

that were 

morphologically 

positive for 

hookworm and 

whipworm eggs

166 Ancy-
lostoma 
spp. posi-

tive, 15

Trichu-
ris spp. 

positive 

samples

PCR COX1, 

SSU 

rRNA

Not assessed - T. trichiura: 

26·7% (4/15)

- T. vulpis: 86·7% 

(13/15)

- Mixed infections 

(T. trichiura and 

T. vulpis): 13·3% 

(2/15)

- A. ceylanicum: 
72·2% (120/166)

18

Aung et al 

(2017) [46]

Myanmar Faecal samples from 

individuals 5–60 years 

in three rural areas, 

hookworm egg positive 

by ethyl acetate con-

centration technique

Cross- 

sectional

Only samples 

that were 

positive for hook-

worm eggs

21 human 

Hook-
worm spp. 
positive 

samples

PCR ITS-1,2 

and 5·8s 

region

Sequence results-

8 and 3 samples showed 

99–100% similarity to 

N. americanus with A. cey-
lanicum respectively

Not assessed 18

O’Connell 

et al (2018) 

[31]

Myanmar, 

Thailand

Part of a larger 

program, individuals 

>6 months in refugee 

camps

Intergrated 

to a larger 

program

All samples 

included at the 

baseline of the 

study

1548 

human 

faecal 

samples

Multiparal-

lel qPCR, 

PCR-RFLP.

ITS-1,2 

and 5·8s 

region

-A. ceylanicum: 5·4% 

(83/1548)

-N. americanus-25·4% 

(393/1548)

Not assessed 18
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Aula et al 

(2020) [61]

Philippines Stool samples from 

humans were collected 

across 18 locations 

in a previous study. 

Faeces from dogs were 

collected in a separate 

survey, egg positive by 

Kato-Katz method

Cross- 

sectional

Human and dog 

samples positive 

for Ancylostoma 
spp.

128 human 

Ancy-
lostoma 
spp. 
positive 

samples, 

33 dog

Ancy-
lostoma 
spp. 
positive 

samples

Multiplex 

qPCR, 

qPCR

ITS-1, 2 

region

- A. ceylanicum: 26·6% 

[(95% CI 18·8–34·3) 

(34/128)]

- Mixed infections (A. 
duodenale and N. amer-
icanus): 13.2% [(95% CI 

8.7-17.6 (30/228)]

- Mixed infections (N. 
americanus and A. cey-
lanicum): 4.0% [95% CI 

(1.4-6.5) (9/228)]

- Mixed infections (A. duo-
denale and A. ceylanicum): 
4.8% [95% CI (2.0-7.6) 

(11/228)]

- Mixed infections (N. 
americanus, A. ceylanicum 

and A. duodenale): 4.4% 

[95% CI (1.7-7.1) (10/228)]

- A. ceylanicum: 
36·4% [(95% 

CI 19·04–3·69) 

(12/33)]

18

Bradbury 

et al (2017) 

[62]

Solomon 

Islands

Study in two villages, 

all residents invited to 

participate, egg positive 

by Kato-Katz method

Cross- 

sectional

66 of 170 hook-

worm micros-

copy samples 

selected

66 human 

faecal 

samples

Multiplex 

PCR

ITS-1,2 

and 5.8s 

region

- A. ceylanicum: 16·7% 

(11/66)

- N. americanus: 81·8% 

(54/66)

- Mixed (A. ceylanicum 

and N. americanus): 1·5% 

(1/66)

Not assessed 18

Ngcampha-

lala et al 

(2020) [48]

South 

Africa

Stool samples of stray 

dogs collected from 5 

centers. Human stool 

samples collected from 

2 primary schools; egg 

positive by modified 

Wisconsin sugar flota-

tion method

Cross- 

sectional

Samples 

included for 

sequencing 

are those with 

multiple bands 

after EcoRII 

restriction, 

suspected to be 

non-A. caninum 

species.

3 human 

faecal 

samples, 

27 dog 

faecal 

samples

PCR, 

PCR-RLFP

ITS1 and 

5·8S

Sequencing
- A. caninum: 100·0% 

(3/3)

Sequencing
- A. caninum: 81·5% 

(22/27)

- A. braziliense: 

11·1% (3/27)

- Mixed (A. caninum 

& A. braziliense): 

7·4% (2/27)

15

Jiraanankul 

et al (2011) 

[38]

Thailand Survey of adult and 

children in a rural 

community, egg positive 

by wet preparation, 

Kato-Katz method and 

water-ethyl acetate sed-

imentation technique

Cohort 

study

50 of 58 micros-

copy positive 

samples were 

successfully 

amplified

58 human 

faecal 

samples

PCR ITS-1,2 

and 5·8s 

region

- A. ceylanicum: 4·0% 

(2/50)
- N. americanus: 92·0% 

(46/50)

- A. duodenale: 2·0% 

(1/50)

- Mixed (N. americanus 

and A. ceylanicum): 2·0% 

(1/50)

Not assessed 18

Areekul et 

al (2010) 

[23]

Thailand Cross-sectional survey 

in a rural community, 

stool samples were 

randomly collected from 

schoolchildren and 

dogs, hookworm eggs 

positive by formalin- 

ether concentration 

technique.

Cross- 

sectional

Samples positive 

for Trichuris spp. 
by microscopy

56 human 

faecal 

samples, 

17 dog 

faecal 

samples.

PCR ITS-1, 

SSU 

rRNA 

region

- T. vulpis: 10·7% (6/56)

- T. trichiura: 100% (56/56)

- Mixed infections (T. vulpis 

and T. trichiura): 10·7% 

(6/56)

- T. trichiura: 

71·4% (10/14)

- Trichuris spp.: 

82·4% (14/17)

- T. vulpis: 28·6% 

(4/14)

18
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Traub et al 

(2008) [50]

Thailand Survey of dogs and 

humans from temple 

communities with  

faecal samples 

randomly collected, 

egg positive by zinc 

sulphate and sodium 

nitrate flotation method

Cross- 

sectional

Human- all 

microscopy posi-

tive samples

Dogs-122 of 

133 microscopy 

positive samples 

were success-

fully amplified

7 human 

faecal 

samples, 

122 dog 

faecal 

samples.

PCR, 

PCR-RFLP

ITS-1,2 

and 5·8s 

region

- A. ceylanicum: 28·6% 

(2/7)

- N. americanus: 71·4% 
(5/7)

- A. ceylanicum: 
77·0% (94/122)
- A. caninum: 9·0% 

(11/122)
- Mixed infections 

(A. ceylanicum and 

A. caninum): 14·0% 

(17/122)

18

Webster et 

al (2022) 

[32]

Thailand- 

Myanmar 

border

Cross-sectional study 

as part of an enhanced 

premigration health 

program including 

participants >=6months

Intergrated 

to a larger 

program

All samples 

collected

1835 

human 

faecal 

samples

qPCR ITS-1, 2 

region

- A. ceylanicum: 5·0% 

(89/1835)

- A. lumbricoides: 39·0% 

(726/ 1835)

- T. trichiura: 32·0% 

(598/1835)

- N. americanus: 26·0% 

(84/1835)

- G. lamblia: 22·0% 

(403/1835)

- Mixed infections (more 

than one organism): 41% 

(756/1835)

Not assessed 18

Stracke et 

al (2019) 

[36]

Timor-

Leste, 

Cambodia

Validation study for 

multiplexed quantitative 

PCR (qPCR), in Timor-

Leste school children 

from six primary 

schools, In Cambodia 

participants from ten 

remote villages

Testing/

validation of 

a diagnostic 

tool

All samples 

collected

462 human 

faecal 

samples 

from 

Timor-

Leste, 

302 faecal 

samples 

from 

Cambodia.

Multiplexed 

tandem 

PCR

ITS-2 

region

Timor-Leste
- A. ceylanicum: 1·1% 

(5/462)

- A. lumbricoides: 33·5% 

(155/462),
- T. trichiura: 2·4% 

(11/462)
- N. americanus: 10·4% 

(48/462)
Cambodia
- A. ceylanicum: 8·6% 

(26/302)

- N. americanus: 65·9% 

(199/302)

Not assessed 18

Stracke et 

al (2021) 

[49]

Thailand A total of 273 faecal 

samples from 2- to 

6-year-old pre-school 

and school-aged chil-

dren, Kato Katz thick 

smear

Cross- 

sectional

All samples 

collected

273 faecal 

samples

multiplexed- 

tandem 

qPCR

ITS-2 

region

A.ceylanicum:1·1% 

(3/273)

- A. lumbricoides: 39·2% 

(107/273),
- T. trichiura: 36·6% 

(100/273)
- Mixed infections (A.lum-
bricoides and T.trichiura): 

24.2% (66/273)

- Mixed infections (A. 
lumbricoides, T. trichiura 

and A. ceylanicum): 0.7% 

(2/273)

- Mixed infections (T. trichi-
ura and A. ceylanicum): 

0.4% (1/273)

Not assessed 18
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Evidence of cross-host species infections

Occurrence of zoonotic STH in humans.  Notably, A. ceylanicum was the most-reported zoonotic STH species, 
appearing in 66·7% (34 of 51) of the studies. Its distribution spanning 16 countries, mainly in SEA (61·8%, 21 of 34), with 
additional occurrences noted in the Solomon Islands, India, Bangladesh, Ecuador, Colombia, France and Australia (Fig 2). 
Case studies were reported from Japan, France, Malaysia, Bangladesh and Colombia [70,73,75–78] (Table 2).

Twenty studies reported its frequency as a percentage of hookworm positives with proportions ranging from 2·6% 
[55] to 46·0% [42]. Although A. ceylanicum generally appeared to be a minor infection, in four studies its positivity rate 
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Bui et al 

(2021) [63]

Vietnam Stool samples collected 

from residents of a 

province, egg positive 

by Kato-Katz

Cross- 

sectional

Samples positive 

for hookworm 

spp. by 

microscopy

48 human 

faecal 

samples

Semi-

nested 

PCR-RLFP

ITS-1,2 

and 5·8s 

region

- A. ceylanicum: 31·3% 

(15/48)

- N. americanus: 47·9% 

(23/48)

- Mixed (A. ceylanicum & 

N. americanus): 20·8% 

(10/48)

Not assessed 18

Hughes et 

al (2023) 

[53]

Vietnam Cross-sectional study of 

primary school  

students in remote 

regions. Schools ran-

domly selected from a 

list of eligible schools

Cross- 

sectional

All samples col-

lected were not 

subject to qPCR 

analysis

120 

samples 

per school. 

7710 of 

8730 

(88.3%) 

stool 

samples 

collected 

were 

analysed 

by PCR

qPCR ITS-1,2 - Overall STH: 14.9% 

[(95% CI 11.3-18.42) 

(1149/7710)]

- All hookworm: 14.1% 

[(95% CI 10.6-17.6) 

(1087/7710)]

- A. ceylanicum: 0.6% 

[(95% CI 0.4-0.8) 

(46/7710)]

- N. americanus: 13.7% 

[(95% CI 10.2-17.2) 

(1056/7710)]

- A. duodenale: 0.06% 

[(95% CI 0.00-0.1) 

(5/7710)]

- A. lumbricoides: 0.2% 

[(95% CI 0.03-0.5) 

(15/7710)]

- T. trichiura: 0.7% (95% CI 

0.3-1.1)

- Mixed infections (two 

STH species): 0.9% 

(69/7710)

Not assessed 18

* PCR-polymerase chain reaction.
& RFLP-Restriction Fragment Length Polymorphism.
^ ITS-Internal Transcribed Spacer.
¶ T. vulpis was found only in Cameroon.
§ Quality score-The critical appraisal tool for cross-sectional studies (AXIS) has a total of 20 points.
£ PCR analysis was performed on faecal samples in all studies, with the exception of [56], which examined adult worms.
± COX 1-Cytochrome c oxidase subunit 1.
# qPCR-quantitative PCR.
|| SSU rNA-Small subunit ribosomal ribonucleic acid.

https://doi.org/10.1371/journal.pgph.0004614.t001

Table 1.  (Continued)

https://doi.org/10.1371/journal.pgph.0004614.t001
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Table 2.  Summary of hospital/laboratory-based studies included in the review.

Citation Country 
of origin

Clinical history/symptoms Method of 
diagnosis

Type of sample anal-
ysed by PCR

Number of 
cases

Species 
detected

Travel history/
animal contact

Quality 
score*

Koehler et 
al (2013) 
[67]

Australia Stool samples of humans 
with history of gastrointesti-
nal disorders were tested in 
2 laboratories

PCR* based 
Single-strand 
conformation 
polymorphism 
analysis

Faecal Two positive 
cases of 12 
tested

A. 
ceylanicum

Recent travel his-
tory not recorded

6†

Nath et 
al (2024) 
[78]

Bangla-
desh

Recurrent diarrhoea and 
weakness

PCR Faecal One case A. 
ceylanicum

Recent travel his-
tory not recorded

5

Furtado et 
al (2020) 
[65]

Brazilian 
states

– Conventional 
PCR

Faecal One case A. caninum Recent travel his-
tory not recorded

6

Poppert et 
al (2017) 
[75]

Colombia Loss of vision PCR, 
sequencing

Adult worm was 
destroyed during surgi-
cal removal. intraoper-
ative rinsing fluid was 
used

One case A. 
ceylanicum

Recent travel his-
tory not recorded

8

Brunet et 
al (2015) 
[77]

France Fever, vomiting, dyspnoea, 
bloody diarrhoea and weight 
loss. Pruritic erythematous 
macules on buttocks while 
in Myanmar

PCR Faecal One case A. 
ceylanicum

Returned from 
Myanmar

7

Gerber et 
al (2021) 
[66]

France Samples of symptomatic 
patients who have travelled 
from endemic countries

PCR Faecal 3/34 A. 
ceylanicum

Returned from 
Pakistan, Cote 
d‘Ivoire, Colom-
bia, Pakistan and 
French Guiana

6

Joncour et 
al (2012) 
[79]

France Itchy rash, persistent pruritis PCR, DNA 
sequencing

Larvae from skin 
scrapings

One case A. 
braziliense

Returned from the 
West Indies

7

Romano 
et al 
(2021) 
[71]

Italy Abdominal pain, vomiting, 
bloating

PCR Adult worm One case A. suum History of rearing 
chickens and pigs

7

Dutto M et 
al (2013) 
[72]

Italy Found one worm in his stool PCR-RFLP& Adult worm One case a hybrid 
genotype-A. 
suum/
lumbricoides

No history of 
travel, pig farmer

7

Arizono et 
al (2010) 
[64]

Japan – PCR Adult Ascaris worms Ascaris worms
obtained from 9
patients, 3 iso-
lates were of pig 
origin

A. suum Recent travel his-
tory not recorded

6

Yoshi-
kawa et 
al (2018) 
[76]

Japan Three cases had abdominal 
pain, diarrhoea

PCR Faecal 4 cases A. 
ceylanicum

Case 1-returned 
from Malaysia
Case 2-returned 
from Papua New 
Guinea
Case 3-returned 
from Lao PDR
Case 4-returned 
from India

7

(Continued)
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was comparable to N. americanus [39,40,42,63]. Ten studies, which analysed all collected samples by PCR, found 
its contribution to the overall prevalence, ranging from 1·1% to 14·8% [31,32,35,36,40,41,55,56,68,80] (Table 1). 
Other zoonotic STH species observed in SEA included A. braziliense (3·4%, 1 of 29 studies), T. vulpis (6.9%, 2 of 29 
studies), A. caninum (3.4%, 1 of 29 studies), and A. suum (6.9%, 2 of 29 studies), although their presence was more 
sporadic.

Reports of zoonotic STH in humans were found to be documented infrequently across other regions globally. In Africa, 
A. caninum [48] and T. vulpis [34] in humans were identified in one study each. Likewise, South America witnessed four 
studies reporting A. ceylanicum [39,40,55,75] and one reporting A. caninum [65]. In Oceania, A. ceylanicum was reported 
in two studies [62,67]. In South Asia, it was documented in two studies [44,78], and A. caninum [33] was reported in 
another. Finally, in Europe, two studies identified A. ceylanicum [66,77], two studies found A. suum [71,72], and one study 
detected A. braziliense [79] (Figs 2 and S2).

A. braziliense was reported in a tribal population in Laos [37], with another occurrence reported in a case study in 
France [79]. A. caninum was identified in human populations in India [33], Brazil [65], South Africa [48], Lao PDR [58] and 
in a case study in South Korea [69]. T. vulpis was detected in human faeces in two studies in SEA and one in Cameroon 
[23,34,43]. A. suum in humans occurred in one community study in Indonesia [47], in two case studies conducted in Italy, 
along with another study in a hospital in Japan where samples from patients were identified as A. suum [64,71,72].

Morbidities linked with zoonotic STH infections.  Clinical case studies documented zoonotic STH infections 
in humans, presenting with gastrointestinal disturbances (diarrhoea, vomiting, blood in stools, constipation), fever, 
eosinophilia, difficulty in breathing, and weight loss [66,67,70,71,73,76,77]. One case of A. braziliense, confirmed by 
PCR on two larvae obtained from skin scrapings, presented with itchy rash and persistent pruritic but no gastrointestinal 
symptoms [79]. In another case of A. ceylanicum identified by PCR of larvae, involved pruritic erythematous macules 

Citation Country 
of origin

Clinical history/symptoms Method of 
diagnosis

Type of sample anal-
ysed by PCR

Number of 
cases

Species 
detected

Travel history/
animal contact

Quality 
score*

Nishioka 
et al 
(2024) 
[74]

Japan Asymptomatic PCR-RFLP Worm collected by 
colonoscopy

One case A. suum Recent travel his-
tory not recorded

7

Jung et 
al (2020) 
[69]

South 
Korea

Moderate eosinophilia PCR Worm One case A. caninum Patient owns a 
dog

6

Kaya et 
al (2016) 
[73]

Japan Intermittent diarrhoea, 
eosinophilia.

PCR Adult worm One case A. 
ceylanicum

Returned from 
Thailand and Lao 
PDR

7

Ngui et 
al (2014) 
[70]

Malaysia Upper GI bleed (blood in 
stool)

PCR, DNA 
sequencing

Worm One case A. 
ceylanicum

Recent travel his-
tory not recorded

5

Phosuk et 
al (2013) 
[68]$

Thailand – PCR 10 larval hookworm 
samples from faecal 
agar plate cultures of 
patients and 20 from 
community participants

Three positive 
cases

A. 
ceylanicum

Recent travel his-
tory not recorded

6

* Quality score- JBI critical appraisal tool for case studies and cross-sectional studies has a total of 8 points. The JBI critical appraisal tool for cross- 
sectional studies was used for [64–68].
$ Samples were collected from both hospital patients and community participants.

*PCR-polymerase chain reaction.
& RFLP-Restriction Fragment Length Polymorphism.

https://doi.org/10.1371/journal.pgph.0004614.t002

Table 2.  (Continued)

https://doi.org/10.1371/journal.pgph.0004614.t002
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and gastrointestinal symptoms [77]. Two asymptomatic cases were detected through routine testing after returning from 
abroad [76] (Table 2).

Occurrence of human STH species in animals.  Only nine (17·6%) studies [23,37,40,42,43,51,52,57,60] have 
reported the presence of human STH species in animals. Instances where human STH species were identified in animals 
involved dogs, cats, and pigs. The occurrence of T. trichiura (among Trichuris spp. infected dogs and cats) ranged from 
26·7% to 71·4% in Malaysia, Thailand, and Myanmar [23,43,60].

N. americanus was found in 12.6% (10/79 samples) of dog stools in Ecuador [40], 1 of 18 hookworm samples in 
Laos [52], and in 47% of dogs (20/43 samples) and 56% of pigs (5/9 samples) in Ghana [16]. A. duodenale was found 
in 6.3% (5/79 samples) of dog stools in Ecuador [40] and 1 of 70 dog hookworm-positive dog samples in Kenya [57]. 
In India, 31 dog-derived Ascaris egg samples matched the digestion pattern of human-derived Ascaris by PCR- 
Restriction Fragment Length Polymorphism, with five showing 100% homology with human Ascaris eggs and the adult 
worm [51] (Figs 3 and S3).

Human-animal sympatric studies

Among the studies described above, eleven studies systematically explored human and animal populations in shared 
environments, predominantly investigating dogs and cats with humans [23,33,37,40,42,43,45,48,50–52]. When T. vulpis 
was detected in humans, notably dogs and cats, in the same environment showed high infection rates ranging from 28·6% 
[23] to 43·2% [43]. Interestingly, in these studies, both dogs and humans were also found to be infected with T. trichiura 
with prevalences ranging 56·8% -71·4% and 98·7-100·0% respectively [23,43]. Similarly, when humans were infected with 
A. ceylanicum, [37,42,45,50,52] correspondingly, dogs showed high infection rates ranging from 38·9% to 90·0%. In India, 
A. caninum was found in humans, with dogs also showing a high infection rate of 76·5% [33]. Furthermore, when dogs 
were infected with N. americanus with prevalences 1·1% - 22·2%, humans also exhibited high infection rates ranging from 
47·6% to 82·4% [37,42,52]. Similarly, in areas where dogs were infected with A. duodenale, humans were also found to be 
infected with the same species [40].

Discussion

This systematic review consolidates evidence of STH cross-host species infections, shedding light on their distribution and 
diversity. Analysing 51 studies on infections from stool and whole worm samples, the notable presence of zoonotic hook-
worm infections in humans is highlighted, with A.ceylanicum, being a key source of human infections in SEA. Addition-
ally, other zoonotic STH, such as A.caninum, A. braziliense, A. suum and T.vulpis were reported sporadically worldwide 
suggesting an under-recognised global issue. Despite genetic evidence of cross-host infections of Ascaris and Trichuris 
spp. between humans and pigs, fewer studies have explored this. The role of animals as reservoirs or carriers for human 
STH remains under-investigated. Our findings stress the importance of sampling in sympatric environments to better 
understand these dynamics and underscore the need for representative data, integrating molecular methods and fostering 
cross-sector collaboration to address animal reservoirs.

Majority of the human studies in this review focussed on zoonotic hookworms, particularly A. ceylanicum predominantly 
reported in SEA, but also in other regions. A. caninum and A. braziliense, were less commonly reported, although they 
are known to be widely distributed among dogs in tropical regions [81–88]. With dog ownership averaging 130 dogs per 
1000 people globally [89], current data may underestimate the true occurrence of these zoonotic hookworm infections in 
humans. This raises the possibility that observed human hookworm infections could include contributions from A. ceylan-
icum, A. caninum and A. braziliense, misidentified as A. duodenale. Although zoonotic hookworm infections in humans 
rarely constitute a major proportion of overall STH or hookworm positives, even low levels of cross-host species infection 
may have the potential to maintain transmission between humans and animal reservoirs, perpetuating the risk of re- 
infection and hindering efforts to achieve disease elimination. The emergence of reduced anthelmintic efficacy in humans 
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[90], combined with resistance to benzimidazole [91,92] as seen in A.caninum in dogs in the United States of America 
[92–94], highlights potential future challenges.

The review also sheds light on the zoonotic potential of T. vulpis and A. suum although in a limited number of studies. T. 
vulpis, primarily found in dogs was detected in human faecal samples in Cameroon [34], Malaysia [43] and Thailand [23]. 
Similarly, A. suum, a pig helminth, was identified in humans in Italy [71,72], Japan [64] and Indonesia [47]. Despite genetic 
studies demonstrating hybridisation between A. lumbricoides and A. suum [9,95,96] and between T. trichiura and T. suis, 
confirming distinct species with high genetic variation [97,98], suggesting cross-species transmission dynamics between 
humans and pigs [11,12,97,99], studies exploring these interactions remain scarce. Given the prevalence of small-scale 
pig farming globally, the role of pigs as potential reservoirs for zoonotic STH warrants further investigation. Additionally, 
coprophagy in animals can facilitate parasite transmission making them an important part of the transmission cycle.

Only a limited number of studies have investigated the presence of human STH in animals, but this lack of investigation 
does not imply their absence. Studies found the presence of T. trichiura [23,43,60], N. americanus [16,37,40,42,52], A. 
duodenale [40,57] and A. lumbricoides in dogs, cats and pigs.

The presence of animal reservoirs could significantly hinder eliminate efforts, which largely rely on mass drug adminis-
tration (MDA). This necessitates exploring STH transmission through a One Health lens. For example, a modelling study 
demonstrated that extending MDA to dogs could significantly reduce human A. ceylanicum prevalence to less than 1·0% 
with just 25–50% deworming coverage of dogs by 2030 [100]. Additionally, the studies of humans and animals in shared 
environments also highlighted coinfection of zoonotic and human STH species in both populations, further emphasising 
the potential for cross-host transmission in areas of human-animal coexistence.

Understanding the dynamics of cross-host STH infections remains complex. Evidence is needed to confirm whether 
zoonotic and human STH can complete their life cycles in alternative hosts. Zoonotic STH eggs may mature and repro-
duce in humans or pass through the human body without causing any harm, and human STH eggs may behave similarly 
in animals. Although uncertain whether other zoonotic STHs can complete their life cycles in humans, the presence of 
viable zoonotic hookworm eggs and adult worms seen in the studies of this review suggests potential for onward trans-
mission. Additionally, animals may also serve as mechanical transmitters or transport hosts [15,16] likely contributing to 
STH transmission

Hospital based studies on symptomatic patients and those with travel history confirmed the clinical relevance of zoo-
notic STH, particularly A. ceylanicum, A. suum, and A. caninum. Common clinical manifestations include gastrointestinal 
disturbances, fever, eosinophilia, respiratory difficulties, and weight loss [66,67,69–71,73,76,77]. Zoonotic hookworm 
infections are also linked to cutaneous larva migrans, though evidence is limited because of underreporting and infrequent 
investigation of zoonotic hookworms in most settings. Although these studies may not represent the broader distribution 
of infection, the presence of patent eggs and worms confirmed by molecular analyses highlights the potential of zoonotic 
STH to cause certain morbidities in humans.

This study has important limitations. Despite, recent community-based studies indicating increasing interest in exploring 
the occurrence of cross-host species infections, in this review we could not establish its true extent due to heterogeneity 
in study designs, diverse sampling strategies, limited geographic representativeness, and variations in sample selection 
criteria for molecular analyses. Sample bias, especially in studies with voluntary participation, hindered drawing compre-
hensive conclusions on the burden of cross-host species infections in humans and animals.

Recommendations

The scarcity of information regarding cross-host species infections at present could be attributed to limited exploration, 
related to morphological examination of eggs, hindering species identification. To address this gap, it is essential to 
strengthen surveillance by incorporating molecular methods and fostering cross-sector collaboration through a One health 
approach. Moreover, studies focusing on A. ceylanicum are concentrated in SEA, targeting rural communities with high 
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hookworm prevalence and including households with domestic animals. Expanding research to diverse geographical 
regions beyond SEA and conducting studies in sympatric environments where humans and animals coexist closely are 
important, as these settings are key interfaces for cross-species transmission. As global initiatives aim to reduce STH 
morbidity by 2030, improved data on cross-host species infections are essential for informed interventions and improved 
public health outcomes.
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