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Abstract
Background  Measurement error and misclassification can cause bias or loss of power in epidemiological studies. 
Software performing quantitative bias analysis (QBA) to assess the sensitivity of results to mismeasurement are 
available. However, QBA is still not commonly used in practice, partly due to a lack of knowledge of these software 
implementations. The features and particular use cases of these tools have not been systematically evaluated.

Methods  We reviewed and summarised the latest available software tools for QBA in relation to mismeasured 
variables in health research. We searched the electronic database Web of Science for studies published between 1st 
January 2014 and 1st May 2024 (inclusive). We included epidemiological studies that described the use of software 
tools for QBA in relation to mismeasurement. We also searched for tools catalogued on the CRAN archive, in Stata 
manuals, and via Stata’s net command, available from within Stata or from the IDEAS/RePEc database. Tools were 
included if they were purpose-built, had documentation, and were applicable to epidemiological research. Data on 
the tools’ features and use cases were then extracted from the full article texts and software documentation.

Results  17 publicly available software tools for QBA were identified, accessible via R, Stata, and online web tools. 
The tools cover various types of analysis, including regression, contingency tables, mediation analysis, longitudinal 
analysis, survival analysis and instrumental variable analysis. However, there is a lack of software tools performing QBA 
for misclassification of categorical variables and measurement error outside of the classical model. Additionally, the 
existing tools often require specialist knowledge.

Conclusions  Despite the availability of several software tools, there are still gaps in the existing collection of tools 
that need to be addressed to enable wider usage of QBA in epidemiological studies. Efforts should be made to 
create new tools to assess multiple mismeasurement scenarios simultaneously, and also to increase the clarity of 
documentation for existing tools, and provide tutorials and examples for their usage. By doing so, the uptake of QBA 
techniques in epidemiology can be improved, leading to more accurate and reliable research findings.
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Introduction
In epidemiological and population health studies, we 
often aim to estimate the causal effect of an exposure 
or treatment on an outcome (referred to as the expo-
sure effect) while adjusting for confounders or other 
variables [1]. Most methods of estimating an exposure 
effect rely on the assumption that sufficient confound-
ers are known and have been included in the model, and 
that the included variables have been measured with-
out error. When data are obtained for epidemiological 
studies, there is potential for some of the variables to be 
measured with error and so this assumption may not be 
plausible [2]. Where we have categorical or binary vari-
ables measured with error (as opposed to continuous 
variables), we refer to measurement error as misclassi-
fication. Throughout, the umbrella term “mismeasure-
ment” is used to capture both scenarios.

It is a common misconception that non-differentially 
mismeasured variables will always bias the effect estimate 
towards the null [3, 4]. In fact, the impact of mismea-
surement on an effect estimate depends on a number of 
factors, including the role of the variable(s) in which the 
mismeasurement occurs (i.e., whether it is the outcome, 
exposure, or other covariate), the type of the variable 
(i.e., whether it is binary, continuous, or categorical) [5, 
6], whether errors in multiple variables are dependent on 
each other [7], the type of analysis being conducted, and 
whether the mismeasurement is differential (i.e., some 
aspect of the error distribution depends on another vari-
able) [8].

Failing to account for mismeasurement can result in 
problems such as decreased statistical power, biased 
effect estimates (either towards or away from the null), 
and inaccurate representations of estimate uncertainty 
[9]. Any of these issues could result in the reporting of 
erroneous study conclusions. Inaccurate findings may not 
only influence government policies and the development 
of large-scale health interventions, but could also shape 
the direction of subsequent studies, impact the scientific 
evidence base, and introduce bias into meta-analyses. 
Therefore, it is important to account for and quantify the 
potential effects of mismeasurement. Although potential 
mismeasurement is sometimes mentioned as a study lim-
itation, it is rarely investigated or adjusted for in practice 
[4, 10]. A recent review of measurement error in medical 
literature found that of 565 studies reviewed, only 44% 
mentioned measurement error at all, with 70% of those 
doing so only in the discussion section. Of the studies 
that mentioned mismeasurement, just 7% undertook any 
investigation or correction [10].

There exist many methods to adjust for mismeasure-
ment, which have been described extensively in the lit-
erature [5, 6, 8, 11, 12]. These methods typically require 
some form of ancillary data, such as validation data 

(either internal or external), or replication data [9]. How-
ever, ancillary data are often not readily available. In 
these cases, sensitivity analyses such as a quantitative 
bias analysis (QBA) can be used to evaluate the potential 
impact of mismeasurement on a study’s conclusions.

QBA consists of a group of statistical methods for 
assessing uncertainty arising due to biases in a study [13]. 
It can be applied to various biases, including, but not lim-
ited to, unmeasured confounding [14] and selection bias 
[15]. Here, we focus on QBA for mismeasurement, which 
is used to quantify the potential impact of mismeasure-
ment or to assess how severe it would need to be to 
change a study’s conclusions. This allows researchers to 
assess the robustness of the study’s conclusions to the 
assumption of no mismeasurement. See Background on 
quantitative bias analysis section for further information 
on QBA.

Currently, QBA methods are not employed as standard 
practice. A recent review found that QBA usage in epi-
demiology increased between 2006 and 2019 [15], but it 
was still relatively rare. Possible contributors to the lim-
ited use of QBA include the historical lack of available 
software, limited awareness of existing tools, and the 
relatively low profile of QBA methods in epidemiological 
training. Our review seeks to address these challenges by 
collating information on current software options, high-
lighting existing gaps, and increasing awareness of the 
tools available.

There have been several reviews of implementations 
of QBA methods for unmeasured confounding, misclas-
sification and selection bias in epidemiology and health-
related fields [15–20]. These reviews primarily focused 
on the methodological aspects of QBA—for example, 
describing available methods, summarising their appli-
cation in practice, and evaluating their use in empirical 
studies. They did not review the availability or function-
ality of software tools used to implement these methods. 
One review did examine software implementations of 
QBA methods, but it was specific to tools addressing bias 
due to unmeasured confounding [14].

In this scoping review, we aim to identify the lat-
est available software tools that implement a QBA for 
mismeasurement within epidemiological studies quanti-
fying an exposure effect estimate, and provide details on 
their features and use cases. This will increase awareness 
of the software and, alongside developments in guidance 
for researchers on appropriate QBA implementations 
[19–21], promote its usage as standard practice for health 
research. We also aim to highlight potential future areas 
for software development.

Background on quantitative bias analysis
A QBA for mismeasurement quantifies the likely mag-
nitude and direction of the bias under different plausible 
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assumptions about the mismeasurement process (assum-
ing no other sources of bias). Generally, a QBA requires 
a model (known as a bias model) for the observed data 
and the measurement errors [13]. The bias model 
includes one or more parameters (known as bias or sen-
sitivity parameters), which cannot be estimated from 
the observed data. These bias parameters encode the 
researcher’s assumptions about the mismeasurement 
process, determining the magnitude and direction of the 
bias-adjustment. For example, in the case of misclassifi-
cation, the bias parameters may include some combina-
tion of the sensitivity, specificity, positive predictive value 
and negative predictive values1. For a continuous variable 
measured with error, bias parameters may include reli-
ability metrics (such as the reliability ratio or intraclass 
correlation coefficient), or error quantities (such as error 
variance or mean squared error).

The observed data alone cannot be used to inform 
the values of the bias parameters. Researchers must 
pre-specify values or distributions of values for the bias 
parameters to enable estimation of the remaining param-
eters of the bias model and thus obtain a bias-adjusted 
estimate of the parameter of interest (e.g., the exposure 
effect). This information is usually obtained from external 
sources such as validation studies, prior research, expert 
elicitation, or theoretical constraints [21]. Although 
the observed data cannot by themselves determine bias 
parameters, in some circumstances they may provide 
information to rule out specific combinations of bias 
parameters as incompatible with the empirical data.

QBA methods can broadly be classified into two cat-
egories: deterministic and probabilistic [13]. A deter-
ministic QBA specifies one or more values for each bias 
parameter. A “simple bias analysis” fixes each bias param-
eter to a single value (i.e., treating the bias parameter 
values as known) and outputs a single bias-adjusted esti-
mate of the exposure effect [13].

Typically, the bias parameters are unknown and so 
the researcher will need to perform a “multidimensional 
bias analysis” where multiple values are specified for 
each bias parameter, and the bias model is repeatedly fit-
ted for each combination of bias parameter values. For 
example, in the case of multidimensional bias analysis 
for non-differential misclassification of a binary vari-
able, we could consider different pairs of sensitivity and 
specificity values2. A multidimensional bias analysis then 
outputs multiple bias-adjusted estimates. When there is 

1 Although agreement-based metrics such as Cohen’s κ [22] are some-
times reported for categorical variables, they are not suitable for use as bias 
parameters in QBA, since they measure agreement rather than the relation-
ship between observed and true values.
2 Note that differential misclassification would require separate parameter 
values for different subgroups, such as cases and controls within a case-
control study.

limited information about plausible values for the bias 
parameters, a tipping point analysis can be conducted to 
explore which combinations of values of the bias parame-
ters would overturn study conclusions. This frames QBA 
not only as a method for estimating the potential impact 
of bias, but also as a tool for assessing the robustness of 
study conclusions by identifying how extreme the bias 
would need to be to meaningfully alter inferences.

In a probabilistic QBA, the researcher specifies a prior 
probability distribution for each bias parameter. Using 
this prior distribution, the researcher can specify infor-
mation about the range of plausible values of the bias 
parameters, the value combinations that are most likely 
to occur, and the researcher’s uncertainty about this 
information. For example, in the case of misclassification, 
rather than assigning fixed values for sensitivity and spec-
ificity as is done in deterministic QBA, the researcher 
can specify probability distributions (such as Beta dis-
tributions) that reflect both plausible ranges and uncer-
tainty. These distributions can differ between cases and 
non-cases to allow for differential misclassification. Addi-
tionally, correlations among parameters (e.g., between 
sensitivity and specificity for cases) can be incorporated 
to reflect dependencies. By simulating draws from these 
joint distributions, the uncertainty in the bias parameters 
can be propagated through the analysis, yielding adjusted 
effect estimates with associated uncertainty intervals.

Two main approaches to probabilistic QBA are Bayes-
ian bias analysis (where the prior distribution of the bias 
parameters is combined with the likelihood function for 
the data) and Monte Carlo bias analysis (where values 
of the bias parameters are directly sampled from their 
distribution and then used to fix the bias parameters to 
enable estimation of the bias-adjusted exposure effect) 
[23].

Probabilistic QBA generates an empirical distribution 
of bias-adjusted effect estimates, which can be sum-
marised using point and interval estimates. The point 
estimate typically reflects the central tendency (e.g., mean 
or median) of the distribution under the QBA’s assump-
tions. The interpretation of the interval estimate depends 
on the QBA approach: in a Bayesian approach, the inter-
val (a credible interval) can be interpreted as having a 
specified probability of containing the true exposure 
effect, conditional on the model and prior. In contrast, 
in a Monte Carlo approach, the interval (described as a 
simulation interval [13]) reflects the variability induced 
by the simulation process and does not necessarily have 
a direct probabilistic interpretation about the true effect.

A multiple QBA (also known as a multiple-bias anal-
ysis) assesses the sensitivity of study results to multiple 
sources of bias such as mismeasurement, unmeasured 
confounding, and selection bias. A sequential multiple 
QBA adjusts for one bias at a time, where the order of 
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adjustment should be based on the reverse order in 
which the biases occurred during the data generation 
process [24]. Note that the order of bias adjustments can 
affect the results of the multiple QBA. When the order of 
adjustment is in doubt, the researcher should assess sen-
sitivity of the conclusions of the multiple QBA to differ-
ent ordering of the bias adjustments [13]. A simultaneous 
multiple QBA avoids this issue because it adjusts for the 
multiple sources of bias simultaneously [25].

Methods
We searched for QBA software described in health 
research articles, as well as those available in software 
databases, published between 1st January 2014 and 
1st May 2024 (inclusive). We selected this 10-year time 
frame to focus on recent tools that are methodologically 
current and more likely to be actively maintained.

We define a QBA as a method that adjusts for mismea-
surement using a model that includes one or more bias 
parameters. Also, “software” is defined as a web tool, 
package, or code that is publicly available to use, is not 
specific to a particular data example, and is accompanied 
by documentation. To be classified as having “documen-
tation”, a tool must provide enough information for users 
to understand its function and implementation without 
reliance on an external publication. This includes a user 
guide or in-code comments that explain the syntax, input 
requirements, and expected outputs. Examples of tools 
not meeting our software definition would be tools that 
were not publicly available, code files for specific exam-
ples that the researcher had to manually edit to apply 
to their study, and software that lacked documentation 
describing how to use the code, such as raw code files 
without explanatory comments.

We searched published literature from health research 
and software databases, as this is how most health 
researchers would identify methods and tools they can 
use. We did not look for methods within textbooks as 
these are not publicly available and often cannot be easily 
searched by applied researchers.

This review was written following the Preferred 
Reporting Items for Systematic reviews and Meta-Analy-
ses extension for Scoping Reviews (PRISMA-ScR) guide-
lines [26], and the PRISMA-ScR checklist can be found 
in Additional File 1. Our search was conducted in three 
steps: search implementation, eligibility screening and 
data extraction.

Publication search
In our first step, we used Web of Science to identify 
papers that mentioned all of the terms “measurement 
error”, “bias analysis” and “software” (or some other syn-
onym of these terms) in either the title, abstract or as 
keywords. The specific search terms used can be seen 

in Fig. 1 [27]. The search was applied to databases “Web 
of Science Core Collection”, “BIOSIS Citation Index”, 
“KCI-Korean Journal Database”, “MEDLINE” and “Sci-
ELO Citation Index”. We excluded from our search any 
meeting abstracts, clinical trials or patents. In addition, 
we excluded any articles published in journals outside of 
the fields of statistics, medicine, population health, and 
epidemiology and so deemed out of the scope of health 
research. A list of the excluded journals is given in Fig. 2.

Software repository search
In order to capture software implementations not men-
tioned in published literature, we completed several addi-
tional searches outside of Web of Science. We searched 
The Comprehensive R Archive Network (CRAN) [28], 
R’s central software repository containing a large collec-
tion of quality-assured contributed packages. We also 
searched IDEAS/RePEc [29], an online database index-
ing items of economics research including articles as 
well as Boston College’s Statistical Software Components 
(SSC) archive, which contains user-written Stata com-
mands and other code. In addition, using Stata’s search 
command, we conducted a search of the Stata manuals, 
the Stata Journal, and all Stata-related user-written com-
mands that are available via Stata’s net command.

We limited our results to tools which were first made 
publicly available (or had updated versions with new fea-
tures implementing a QBA to mismeasurement) between 
1st January 2014 and 1st May 2024 (inclusive). To imple-
ment this criterion, we manually checked the publication 
or update date of each tool and excluded any that fell out-
side the specified period.

CRAN
For our search of CRAN, we identified packages that 
mentioned both “measurement error” and “bias analy-
sis” (or synonyms of these terms) in either their title or 
description. The R code used to implement this search is 
included in Additional File 2.

We first used R’s built-in CRAN package repository 
tools to extract the names, titles and descriptions of all 
of the packages maintained on CRAN on the search date, 
8th May 2024. After cleaning the extracted text, removing 
new line breaks and any multiple spaces, we then used 
the R grep function, which searches for pattern matches 
to its argument, to search for those packages which men-
tioned both “measurement error” and “bias analysis” in 
their title or description. Search terms and synonyms 
used were equivalent to those in Fig. 1, in order to main-
tain consistency between our publication search and our 
repository search.
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IDEAS/RePEc and Stata
The “advanced search” tool of IDEAS was less flex-
ible than the R functions used to search CRAN, and so 
for this database we simplified our search strategy. We 
searched IDEAS for software components that had both 

“measurement error” and “bias analysis” or their syn-
onyms in any of their title, abstract or key words using 
the search string given in Fig. 3. We also used this same 
set of terms to search the Stata manuals, the implemen-
tation of which can be found in Additional File 3. We 

(TS=(measure* NEAR/3 error*) OR TS=(measure*-error) OR TS=(mismeasure*)

OR TS=(insensitive NEAR/0 measure*) OR TS=(unspecific NEAR/0 measure*) OR

TS=(information NEAR/0 bias) OR TS=(misclassif*) OR TS=(classif* NEAR/3 error)

OR TS=(miscode*) OR TS=(*coding NEAR/0 mistake) OR TS=(*coding NEAR/0

error) OR TS=(error NEAR/3 assessment) OR TS=(bias NEAR/0 measur*) OR

TS=(errant* NEAR/3 measur*) OR TS=(Berkson NEAR/3 error) OR TS=(Berkson-

error) OR TS=(miscategor*) OR TS=(categor* NEAR/3 error))

AND

(TS=(bias NEAR/0 analy*) OR TS=(sensitivity NEAR/0 analy*) OR TS=(bias NEAR/0

model*) OR TS=(uncertainty NEAR/0 analy*) OR TS=(bias NEAR/3 correct*) OR

TS=(bias NEAR/3 adjust*))

AND

(TS=(software) OR TS=(freeware) OR TS=(shareware) OR TS=(groupware) OR

TS=(Stata) OR TS=(Excel) OR TS=(Shiny) OR TS=(S-Plus) OR TS=(SPSS)

OR TS=(Stat-JR) OR TS=(MLwiN) OR TS=(command*) OR TS=(package*) OR

TS=(spreadsheet*) OR TS=(calculator*) OR TS=(desktop) OR TS=(mathematica)

OR TS=(fortran) OR TS=(R NEAR/3 program*) OR TS=(SAS NEAR/3 pro-

gram*) OR TS=(web NEAR/3 program*) OR TS=(online NEAR/3 program*) OR

TS=(computer NEAR/3 program*) OR TS=(virtual NEAR/3 program*) OR TS=(R

NEAR/0 function*) OR TS=(SAS NEAR/3 function*) OR TS=(web NEAR/3 func-

tion*) OR TS=(online NEAR/3 function*) OR TS=(computer NEAR/3 function*)

OR TS=(R NEAR/3 procedure*) OR TS=(SAS NEAR/3 procedure*) OR TS=(web

NEAR/3 procedure*) OR TS=(online NEAR/3 procedure*) OR TS=(computer NEAR/3

procedure*) OR TS=(virtual NEAR/3 procedure*) OR TS=(R NEAR/3 tool*) OR

TS=(SAS NEAR/3 tool*) OR TS=(web NEAR/3 tool*) OR TS=(online NEAR/3

tool*) OR TS=(computer NEAR/3 tool*) OR TS=(virtual NEAR/3 tool*) OR TS=(R

NEAR/3 macro*) OR TS=(SAS NEAR/3 macro*) OR TS=(web NEAR/3 macro*) OR

TS=(online NEAR/3 macro*) OR TS=(computer NEAR/3 macro*) OR TS=(virtual

NEAR/3 macro*) OR TS=(R NEAR/3 module*) OR TS=(SAS NEAR/3 module*) OR

TS=(web NEAR/3 module*) OR TS=(online NEAR/3 module*) OR TS=(computer

NEAR/3 module*) OR TS=(virtual NEAR/3 module*) OR TS=(R NEAR/3 code*)

OR TS=(SAS NEAR/3 code*) OR TS=(web NEAR/3 code*) OR TS=(online NEAR/3

code*) OR TS=(computer NEAR/3 code*) OR TS=(virtual NEAR/3 code*) OR TS=(R

NEAR/3 script*) OR TS=(SAS NEAR/3 script*) OR TS=(web NEAR/3 script*) OR

TS=(online NEAR/3 script*) OR TS=(computer NEAR/3 script*) OR TS=(virtual

NEAR/3 script*))

Fig. 1  Clarviate Web of Science search terms for this software review [27]
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considered all results which referenced either “measure-
ment error” or “bias analysis” or their synonyms.

Eligibility criteria
In our second step, the eligibility of identified abstracts 
and tools was assessed independently by two reviewers 
(CW and RH), with any disagreements resolved by con-
sensus. Abstracts and tools were eligible for data extrac-
tion if they satisfied all of the following criteria: 

1.	 the abstract mentioned purpose-built software,
2.	 the abstract discussed bias due to mismeasurement,
3.	 the software implemented a QBA for 

mismeasurement.

Examples of abstracts that would be excluded were those 
that only mentioned programming languages or code 
for examples rather than providing a purpose-built tool, 
abstracts where a QBA was not conducted but men-
tioned as further work, and abstracts which had software 
for purposes other than a QBA for mismeasurement.

Data extraction
In our third step, we examined the full texts of the 
included published papers and the documentation of 
the packages found via our CRAN, Stata manual, Stata 
net command and IDEAS/RePEc database searches to 
extract information about any software presented and 
its features. We excluded any R packages that had been 
removed from CRAN, software that could not be loaded, 
and software with example code that failed to run due to 
unhandled errors. We also excluded any sensitivity analy-
sis implementations that did not meet our definition for 
software or could not be considered a QBA due to not 
including at least one bias parameter.

Information was extracted on several data domains, 
reflecting tool characteristics and capabilities. An over-
view and description of the data collected is given in 
Fig. 4.

When assessing the documentation and usability of the 
tools, two reviewers (CW and RH) independently evalu-
ated the level of detail in the documentation and the level 

’(“sensitivity analysis” | “bias analysis” | “sensitivity analyses” | “bias analyses” |

“uncertainty analysis” | “uncertainty analyses” | “tipping”)

+

(“measurement error” | “measurement bias” | misclassification | misclassified |

“measured with error” | “information bias” | mismeasure | mismeasured| errors)’

Fig. 3  IDEAS/RePEc and Stata manual search terms for this software review
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of QBA knowledge required to perform a multidimen-
sional or probabilistic QBA using the tool. Any disagree-
ments were resolved by consensus.

Documentation was categorised into three levels; mini-
mal, moderate and extensive. Tools classified as having 
minimal documentation provided only a brief descrip-
tion of the tool’s purpose, required inputs, and syntax 
(where applicable). Moderate documentation included 
a full description of each function, at least one usage 
example, a written explanation of the output, and a 
detailed description of the method implemented. Tools 
at this level also provided practice datasets where appli-
cable. Tools classified as having extensive documentation 
offered additional tutorial materials such as vignettes, 
video tutorials, or an accompanying software journal 
article.

The level of QBA knowledge required was classi-
fied as either essential or specialist. Requiring essential 
knowledge indicated that the tool fully implemented a 
multidimensional or probabilistic bias analysis and dis-
played the results without researchers having to manu-
ally code these steps. Specialist knowledge was deemed 
to be required when researchers had to manually imple-
ment or visualize a multidimensional or probabilistic 

bias analysis. Alternatively, the tool may have required 
expertise in Bayesian methods, such as defining priors or 
assessing the convergence of MCMC samplers.

Results
Publication search
After removal of duplicates, our initial Web of Sci-
ence search returned 254 results. We then excluded 110 
papers when restricting to publications made between 
1st January 2014 and 1st May 2024. A further 63 papers 
were manually excluded that were published in journals 
outside of the scope of health research (as listed in Fig. 2). 
We were left with a total of 81 abstracts. This initial 
search step is illustrated in Fig. 5.

We excluded 37 abstracts which did not provide a 
purpose-built statistical software implementation, 10 
abstracts that did not focus on bias due to mismeasure-
ment, and nine abstracts where the software provided 
was not conducting a QBA for mismeasurement (e.g., 
the QBA was instead for an alternative form of bias). The 
abstract screening process is illustrated in Fig.  6. When 
reviewing the full text of the remaining 25 articles, we 
found references to 24 unique software tools.

Fig. 4  Domains of data extraction for each software tool
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Software repository search
Our IDEAS search identified a single Stata command, 
episens [30, 31], however, the mismeasurement-related 
functions of this tool had not been updated since 2008, 
and so the tool fell outside of our date range for eligibil-
ity. We discuss this tool further in Grey literature section, 
and in Table 2.

Our CRAN search returned ten software tools, four 
of which had also been identified by our Web of Science 

search. The tool multibias [32] also referenced an addi-
tional web tool implementation in its documentation, 
multibias web tool [33]. Thus, in total, our CRAN search 
provided an additional seven tools.

Our search using the Stata search command returned 
an initial 205 results, 136 of which were either duplicates 
or were outside of our date range and so were excluded. 
From the 69 remaining search results, four eligible tools 
were found.

Eligibility criteria
In total, 35 unique software tools were identified across 
all of our searches, the process of which is summarised in 
Fig. 7. Among these 35 tools, nine were excluded because 
they did not implement a QBA to mismeasurement, 
four were excluded because they did not provide suf-
ficient documentation or were code for a specific exam-
ple requiring user adjustment3, one tool was excluded 
because it failed to run example code due to an unre-
solved runtime error at the time of review, and one tool 
was excluded because it had been removed from CRAN. 
The remaining 20 met our inclusion criteria.

Of these 20 tools, web tool APScalculator [36], Stata 
command bamm [37], and R package SensiPhy [38] do 
not implement a QBA for an exposure effect estimate of 
an epidemiological study and so are excluded from the 
results presented in Table  1. The web tool APScalcula-
tor evaluates the impact of classical measurement error 
([6],  Chapter 1) on the categorization of a continuous 
variable into user-specified groups, rather than directly 
assessing bias in effect estimates. The R package SensiPhy 
estimates the impact of various sources of uncertainty in 
phylogenetic comparative methods used within ecology, 
which differs substantially from applications in health 
research. The Stata command bamm conducts a Bayes-
ian bias analysis to investigate the distribution of a single 
misclassified categorical variable, which could be either 
nominal or ordinal.

Overview of included tools
Table 1 summarises the key features of the 17 total soft-
ware programs we found that are applicable to health 
studies aiming to quantify bias in an effect estimate, in 
order of most recent update.

Environments and outputs
Of the tools reviewed, eight (47%) are implemented as R 
packages, six (35%) are web-based applications, and three 
(18%) are Stata commands.4

3 One of these tools, Short code [34, 35], is discussed further in Grey litera-
ture  section and included in Table  2, due to its prominence in core QBA 
literature [13].
4 We note here that the R package EValue has a corresponding Stata imple-
mentation evalue [60] and web tool [61, 62]. At the time of writing, neither 

Fig. 6  Flowchart of the abstract screening step of the review

 

Fig. 5  Flowchart of the publication search step of the review
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Approximately half of the tools (eight) provide both 
graphical and tabular outputs to aid the researcher in 
interpreting the results. Only three tools do not produce 
tables: web tool SAMBA-EHR, web tool SensitivityAnaly-
sis and R package ConMed. Three R packages and three 
Stata commands do not provide graphical plots of their 
results.

Mismeasurement
Of the 17 tools, four implement a QBA in the case of 
measurement error in a continuous variable (R packages 
miCoPTCM, ConMed and rcme, and web tool Media-
tionSensitivityAnalysis). Only R package rcme allows for 
multiplicative measurement error (i.e., error that scales 
with the true value of the variable), whilst the rest of 
the tools employ a classical additive measurement error 
model ([6], Chapter 1). A total of 12 tools apply a QBA 
for misclassification of a binary variable. Only one tool, 
R package mgee2, implements a QBA when the misclassi-
fied variable has more than two categories.

In total, 11 software tools handle cases of outcome 
mismeasurement, 12 handle exposure mismeasurement, 
and seven handle mismeasurement in other covariates 
(such as effect modifiers, mediators, or potential con-
founders). Among these, two tools (web tools SAMBA-
EHR and Outcome Misclassification) focus solely on 
outcome mismeasurement, four (Stata commands pvw 
and ivbounds, R package BayesSenMC, and multibias web 
tool) exclusively handle exposure mismeasurement, and 
only the web tool SensitivityAnalysis is specific to mis-
classification of a confounder.

of these tools implement a QBA to mismeasured variables; instead, they 
focus on bias due to unmeasured confounding, so we have not included 
them here. See [14] for further details on these tools for QBA to unmea-
sured confounding. The web tool SAMBA-EHR also exists alongside 
R package SAMBA [63]. This R package does not implement a QBA to 
mismeasured variables and so has not been reviewed here.

Among the tools, nine are applicable for both differen-
tial and non-differential mismeasurement, while seven 
are for non-differential mismeasurement only. The R 
package EValue is specific to differential misclassifica-
tion. Multiple variables can be mismeasured simultane-
ously in seven (41%) of the tools.

Bias analysis
A deterministic QBA is implemented exclusively in 11 
tools, two (web tool SensitivityAnalysis and R pack-
age BayesSensMC) support only a probabilistic QBA, 
and three include options to implement both a deter-
ministic and probabilistic QBA (R package episensr, 
web tool apisensr, and multibias web tool5). Among the 
tools that implement a probabilistic QBA, only R pack-
age BayesSenMC performs a Bayesian bias analysis, and 
the remaining tools perform a Monte Carlo bias analysis. 
Among the tools that implement a deterministic QBA, 
only six (40%) perform a multidimensional analysis.

Multiple bias analysis
The Stata command biasepi, web tools MediationSensi-
tivityAnalysis and multibias web tool, and the R packages 
EValue, ConMed, episensr, and multibias can all perform 
a multiple QBA for mismeasurement and unmeasured 
confounding. Additionally, Stata command biasepi, R 
package EValue, R package multibias, and multibias web 
tool can also adjust for selection bias. Note that all tools 
except R package EValue, R package episensr, and Stata 
command biasepi adjust for multiple sources of bias 
simultaneously; these tools instead apply a sequential 
approach.

5 The R package multibias does not perform a probabilistic QBA, but does 
provide guidance and example code demonstrating how a researcher can 
manually implement a probabilistic QBA using the tool. However, multibias 
web tool provides a function which performs a probabilistic QBA.

Fig. 7  Flowchart of the software tool search process

 



Page 10 of 16Wood et al. BMC Medical Research Methodology          (2025) 25:187 

Software name (Year) Environment Output Mismeasurement Bias analysis
Table Plot Type Differential Multiple 

mismeasured 
variables

Type Multi 
dimensional

biasepi (2019) [39, 40] Stata command ✓ - MC D, ND - Det -
pvw (2019) [41] Stata command ✓ - MC D, ND - Det -
SAMBA-EHR (2020) [42, 43] Web tool - ✓ MC ND - Det ✓
Outcome Misclassification (2020) [44] Web tool ✓ ✓ MC D, ND - Det ✓
SensitivityAnalysis (2020) [45] Web tool - ✓ MC ND - Prob -
miCoPTCM (2016, upd. 2020) [46] R package ✓ - ME ND ✓ Det -
ivbounds (2021) [47, 48] Stata command ✓ - MC ND - Det ✓
MediationSensitivityAnalysis (2021) [49] Web tool ✓ ✓ ME ND ✓ Det ✓
BayesSenMC (2021) [50] R package ✓ ✓ MC D, ND - Prob -
EValue (2017, upd. 2021) [51, 52] R package ✓ - MC D ✓ Det -
ConMed (2023) [53] R package: 

non-CRAN
- ✓ ME ND ✓ Det -

episensr (2015, upd. 2023) [54] R package ✓ ✓ MC D, ND ✓ Det, Prob ✓
apisensr (2021, upd. 2023) [55, 56] Web tool ✓ ✓ MC D, ND - Det, Prob ✓
mgee2 (2020, upd. 2023) [57, 58] R package ✓ ✓ MC ND ✓ Det -
multibias web tool (2023) [25, 33] Web tool ✓ ✓ MC D, ND - Det, Prob -
multibias (2023, upd. 2024) [25, 32] R package ✓ - MC D, ND ✓ Det -
rcme (2023, upd. 2024) [59] R package: 

non-CRAN
✓ ✓ ME D, ND - Det -

Software name (Year) Analysis
Data type Analysis of interest Outcome Exposure Other covariates

biasepi (2019) [39, 40] Individual, 
Aggregate

Contingency table bin bin -

pvw (2019) [41] Individual Regression bin bin bin, cat, cts
SAMBA-EHR (2020) [42, 43] Summary Regression bin cts, cat -
Outcome Misclassification (2020) [44] Summary Contingency table bin bin -
SensitivityAnalysis (2020) [45] Summary Regression cts bin bin
miCoPTCM (2016, upd. 2020) [46] Individual Survival analysis TTE cts cts
ivbounds (2021) [47, 48] Individual Instrumental variable 

analysis
bin, cat, cts bin bin, cat, cts

MediationSensitivityAnalysis (2021) [49] Summary Mediation analysis cts bin Mediator (cts), 
other (cts)

BayesSenMC (2021) [50] Aggregate Contingency table bin bin -
EValue (2017, upd. 2021) [51, 52] Summary Regression bin bin -
ConMed (2023) [53] Summary Mediation analysis cts cts Mediator (cts), 

other (bin, cat, cts)
episensr (2015, upd. 2023) [54] Aggregate Contingency table bin, TTE bin bin
apisensr (2021, upd. 2023) [55, 56] Aggregate Contingency table bin bin bin
mgee2 (2020, upd. 2023) [57, 58] Individual Longitudinal analysis cat (ordinal) cat (ordinal), 

bin, cts
cat (ordinal), bin, 
cat, cts

multibias web tool (2023) [25, 33] Individual Regression bin bin bin, cat, cts
multibias (2023, upd. 2024) [25, 32] Individual Regression bin bin bin, cat, cts
rcme (2023, upd. 2024) [59] Individual Regression cts cts cts
Software name (Year) Usage

Level of documentation Examples QBA knowledge required
biasepi (2019) [39, 40] Moderate ✓ Specialist
pvw (2019) [41] Moderate ✓ Specialist
SAMBA-EHR (2020) [42, 43] Extensive ✓ Essential
Outcome Misclassification (2020) [44] Extensive ✓ Essential
SensitivityAnalysis (2020) [45] Moderate ✓ Essential
miCoPTCM (2016, upd. 2020) [46] Moderate ✓ Specialist

Table 1  Software programs implementing a quantitative bias analysis for mismeasurement published between 2014 and 2024
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Data requirements and analysis of interest
All tools except Stata command biasepi, which can take 
either individual or aggregate data as inputs, are specific 
in the data type required. Individual-level data is required 
by seven of the tools, aggregated count data by four tools, 
and summary statistics (such as regression coefficients or 
other statistics derived from the data) are required by six 
of the tools.

When the analysis of interest is a mediation analy-
sis, two tools are applicable: web tool MediationSen-
sitivityAnalysis and R package ConMed. The web tool 
MediationSensitivityAnalysis performs bias analysis for 
measurement error in the outcome, mediator, or other 
observed covariates (effect modifiers or potential con-
founders), with the assumption that the binary expo-
sure is measured without error. The R package ConMed 
adjusts for measurement error in the mediator or out-
come, and is applicable specifically when there is unmea-
sured confounding as well as measurement error.

For other types of analysis of interest, R package 
miCoPTCM accounts for measurement error of a contin-
uous covariate or exposure in survival analysis (specifi-
cally a promotion time cure model), where the outcome 
is a time-to-event variable. Stata command ivbounds 
applies QBA for an instrumental variable analysis, allow-
ing for a binary or categorical instrumental variable. R 
package mgee2 conducts QBA for a longitudinal analysis, 
where there are changes within the same individuals or 
groups over time. Of the remaining tools, five are appli-
cable for the analysis of contingency tables and seven for 
logistic or linear regression.

Most tools require the outcome variable of the analy-
sis of interest to be either binary (nine programs) or con-
tinuous (five programs). Only R package mgee2 and Stata 
command ivbounds allow for a discrete outcome variable 
with more than two categories. The exposure variable of 

the analysis of interest is typically required to be exclu-
sively either binary (nine programs) or continuous (four 
programs), but two programs (web tool SAMBA-EHR 
and R package mgee2) allow exposure variables to be 
of multiple types including both discrete or continuous 
options. Of all of the tools, 12 (71%) allow for the inclu-
sion of other covariates than just the exposure and out-
come in the analysis.

Documentation and usability
Of the 17 tools reviewed, only two do not include usage 
examples, both of which are web tools. Documentation 
quality varies: eight tools have extensive documentation, 
six have moderate documentation, and three have mini-
mal documentation. Ten tools fully implement a multidi-
mensional or probabilistic QBA (i.e., user only requires 
essential QBA knowledge as the software implements 
all steps of the QBA including summaries of the results). 
However, seven tools require users to have specialist 
knowledge (e.g., a tool only performs a simple bias analy-
sis and so a user must write their own code to conduct a 
probabilistic QBA using this tool).

Grey literature
In our formal search we focused on software described 
in the published literature between January 1st 2014 and 
May 1st 2024, or software made available during this 
period via CRAN, the Stata manuals, the IDEAS/RePEc 
database, or other Stata user-written commands avail-
able using Stata’s net command. This approach ensured 
we captured the latest tools which applied researchers 
could readily locate. However, we recognise that addi-
tional software exists that was not identified through 
this search. For example, some tools have not been 
mentioned in journal articles and are hosted in alterna-
tive environments such as web-based platforms. Others 

Software name (Year) Usage
Level of documentation Examples QBA knowledge required

ivbounds (2021) [47, 48] Extensive ✓ Essential
MediationSensitivityAnalysis (2021) [49] Minimal - Essential
BayesSenMC (2021) [50] Extensive ✓ Specialist
EValue (2017, upd. 2021) [51, 52] Extensive ✓ Essential
ConMed (2023) [53] Moderate ✓ Essential
episensr (2015, upd. 2023) [54] Extensive ✓ Essential
apisensr (2021, upd. 2023) [55, 56] Extensive ✓ Essential
mgee2 (2020, upd. 2023) [57, 58] Moderate ✓ Specialist
multibias web tool (2023) [25, 33] Minimal - Essential
multibias (2023, upd. 2024) [25, 32] Extensive ✓ Specialist
rcme (2023, upd. 2024) [59] Minimal ✓ Specialist
Bold text for the “Outcome”, “Exposure” and “Other covariates” columns indicates the variable can be considered mismeasured by the tool. “Aggregate” data here 
means any non-individual level data e.g., count data. “Summary” data here means statistics calculated from data, e.g., regression coefficients or standard deviations

 Abbreviations used (in alphabetical order): D Differential, Det Deterministic, MC Misclassification, ME Measurement error, ND Non-differential, Prob Probabilistic, 
bin Binary, cat Categorical, cts Continuous, TTE Time-to-event, upd. Updated

Table 1  (continued) 
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were developed before 2014 and have not been signifi-
cantly updated since but remain in use. Table  2 gives a 
non-exhaustive brief overview of some tools known to 
the authors that were not captured by our formal search 
strategy, but that may be of interest to researchers.

Short code [34, 35], which consists of SAS and R code, 
is included in Table  2 despite having been initially cap-
tured in our formal search and later excluded based on 
our inclusion criteria; specifically, due to a lack of ade-
quate documentation (see Eligibility criteria  section). It 
is the only tool in Table  2 that passed initial screening 
stages but was actively excluded from the final review; 
the rest were not captured by our formal search. We 
include it here due to its prominence in the QBA litera-
ture and its potential value for learners, particularly when 
used alongside [13].

Another notable inclusion in Table  2 is the Misclassi-
fication spreadsheet Excel tool [75], which accompanies 
[13]. Although the spreadsheet was not captured by our 

formal search due to its distribution via a textbook web-
site rather than publication or software repositories, we 
note that it has been widely disseminated (including, 
since this review was conducted, being directly linked in 
methodological guidance [76]). This spreadsheet remains 
a valuable and accessible tool for introducing research-
ers to the mechanics of QBA. Similarly, the episens com-
mand for Stata, originally released in 2008 [30], remains 
relatively widely used in the Stata community for QBA to 
exposure misclassification.

Discussion
We have conducted an up-to-date review of software 
implementations of QBA to mismeasurement described 
in the published literature, R packages available on 
CRAN, and Stata commands, including user-written 
commands available from the SSC archive or via Stata’s 
net command. All software tools were developed or sig-
nificantly updated post-2019, with most (65%) having 
been developed or updated since 2021. The software 
tools were either R packages, Stata commands or online 
web tools and were available for routine analyses of inter-
est such as linear regression and contingency tables, and 
for more specialized analyses such as mediation analysis, 
instrumental variable analysis and survival analysis. All 
but one software tool implemented a QBA to non-differ-
ential mismeasurement with just over half applicable for 
differential and non-differential mismeasurement. Also, 
more than half of the software tools implement a QBA 
for misclassification of a binary variable. Although most 
software tools implemented a deterministic bias analysis, 
only six (40%) of these tools included features to allow 
the user to perform a multidimensional bias analysis. 
Most tools provided usage examples, but documentation 
quality varied from minimal to extensive. While several 
tools offered comprehensive guidance, including tutori-
als and vignettes, others provided only brief descriptions 
of inputs and outputs. Just over half of the tools imple-
mented all the steps of a multidimensional or probabilis-
tic QBA for the user, but a subset required specialist QBA 
knowledge, such as understanding Bayesian priors or 
manually implementing a multidimensional bias analysis.

Remarks on review limitations and future work
Our review did not assess the extent to which each tool is 
used in practice. While citation counts or software down-
load statistics (e.g., using the R package cranlogs) could 
offer useful proxies for uptake, such metrics are not con-
sistently available across different environments. Future 
work could explore quantifying the uptake of QBA tools 
in applied research and identifying factors associated 
with broader usage.

This review did not set out to evaluate the perfor-
mance of the software tools or verify their outputs and 

Table 2  Software tools for mismeasurement correction and QBA 
not captured by our formal search strategy
Tool Environment Brief description
Quantitative 
Bias Analysis 
[64]

Web tool Conducts simple and multidimen-
sional bias analyses for misclassifica-
tion and unmeasured confounding.

CMAverse 
[65, 66]

R package 
(non-CRAN)

Conducts sensitivity analyses for 
unmeasured confounding, mea-
surement error, and selection bias 
in causal mediation analysis.

episens [30, 
31]

Stata Provides basic sensitivity analysis of 
the observed relative risks, adjusting 
for unmeasured confounding and 
misclassification of the exposure.

eivtools [67] R package Functions for analysis with error-
prone covariates.

Prob Bias 
Analysis for 
Information 
Bias [68]

Web tool Probabilistic bias analysis for 
misclassification; an R based web 
interface for episensr [54].

simplemba 
[69]

Web tool Odds ratio calculator with misclas-
sification, selection bias, and 
confounding adjustment.

sensmac [70, 
71]

SAS Implements probabilistic sensitivity 
analysis to misclassification of a 
binary variable.

Multiple bias 
model [72, 
73]

SAS Code and dataset for conducting 
multiple bias modelling.

Mecor [74] R package Functions to perform covariate 
measurement error correction.

Short code 
[34, 35]

R and SAS code Code to perform record and sum-
mary level QBA, for misclassification 
and confounding.

Misclas-
sification 
spreadsheet 
[13, 75]

Excel spreadsheet Spreadsheet to perform simple 
bias analysis for misclassification in 
contingency tables.



Page 13 of 16Wood et al. BMC Medical Research Methodology          (2025) 25:187 

so we cannot comment on their runtime behaviour. Tools 
which failed to produce outputs due to unhandled errors 
were excluded. However, we note that for some proba-
bilistic QBAs, particularly those addressing misclassifi-
cation, admissible bias-adjusted results may not always 
be obtainable depending on the combination of input 
assumptions. In such cases, some tools (e.g., R package 
episensr) are designed to filter out inadmissible results, 
providing informative error messages. Other tools may 
not include such error handling or may return non-spe-
cific error messages. This highlights an important prac-
tical consideration for users: the interpretability and 
robustness of software feedback can vary and may impact 
the usability of tools in real-world settings.

Although the focus of this review is on software imple-
mentation, we also acknowledge that another potential 
barrier to wider uptake of QBA is the challenge of speci-
fying plausible bias parameter values and priors when 
they are not clearly identifiable from existing literature or 
validation data [15].

While these issues lie outside the scope of our review, 
applied examples that demonstrate not only the use of 
the software but also how plausible parameter values and 
priors might be selected could help reduce both barriers. 
We suggest that future works could build on this review 
by including such examples, clarifying in which cases 
each tool is most appropriate and highlighting differences 
in error handling and user support features.

Another area for expansion of this work would be 
broadening the scope of our searches. A limitation of 
this review is that we restricted our software repository 
searches to R packages available on CRAN and Stata 
commands available via the SSC archive or the net com-
mand. As such, we may have missed some tools avail-
able only on platforms such as GitHub or implemented 
in other programming environments such as Python, and 
without accompanying publications. These tools could be 
of interest to computationally oriented researchers, but 
may be unlikely to be widely adopted in applied epidemi-
ological settings without mention in a formal publication 
or inclusion in repositories.

We also restricted our publication search to epide-
miology, statistics, and health journals. This may have 
excluded software from other disciplines that could be 
applicable to health research. The numbers of these tools 
would likely be small, however, as different fields face 
very different complications and considerations to health 
research. Further, it is unlikely that health researchers 
would look outside of their field in order to find tools 
for use. Conducting similar reviews in domains such as 
psychology, engineering, or computational biology could 
increase awareness of potentially useful tools across 
disciplines.

Additionally, as discussed in Grey literature  sec-
tion, our review focused on tools developed or updated 
between 2014 and 2024, which may have led to the exclu-
sion of older software still in use. This time period was 
chosen to prioritise tools likely to remain supported and 
aligned with current statistical practice. However, useful 
legacy tools may have been missed. While Table  2 pro-
vides a brief overview of additional tools not captured in 
our formal search, including some which fell outside of 
this time period (e.g., popular Stata command episens), 
we did not conduct a full evaluation of these tools. This 
reflects a decision to focus on tools that met our inclu-
sion criteria; however, we acknowledge that some of 
these additional tools may still be useful in practice.

Future work could build on our review by system-
atically identifying and reviewing in detail tools that fall 
outside standard dissemination channels or have not 
been recently updated.

Remarks on implications for QBA uptake
Although previous work has suggested that implementa-
tion challenges in QBA have largely been addressed [21], 
our findings indicate significant gaps remain. Existing 
tools rarely support QBA for categorical variables with 
more than two levels, and few address measurement 
error in continuous variables beyond classical error mod-
els. Further, many of the tools reviewed were designed for 
specific use cases, often allowing only a single data type 
or a single type of bias analysis. A notable proportion of 
the tools only handle non-differential mismeasurement, 
despite growing emphasis in the literature that differ-
ential mismeasurement is common and may introduce 
complex bias in real-world studies [3, 4, 8, 77]. Tools 
capable of addressing differential mismeasurement may 
therefore be of greater practical value, particularly in 
applied epidemiologic research. Developing or expand-
ing software to cover these scenarios, and to handle mul-
tiple potential mismeasurement types, would improve 
accessibility and could lead to greater uptake by applied 
researchers.

While our formal search identified tools implemented 
in R, Stata and web environments, none were imple-
mented in SAS (see Table  2 for details of some SAS 
macros not captured by our formal search strategy). 
Given the use of SAS in many organisations (such as 
government agencies, healthcare institutions, and other 
applied research settings), this gap in platform availabil-
ity may limit the accessibility of QBA tools to some users. 
Increasing software availability across platforms could 
support broader adoption in applied research contexts.

In addition to gaps in available methods and envi-
ronments, level of documentation may pose a barrier 
to effective tool use. While we assessed documenta-
tion quality and the level of QBA knowledge required 
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separately, these aspects of tools are likely to be related. 
More extensive, good quality documentation may help 
to lessen the need for specialist expertise by supporting 
learning and correct use, while minimal documentation 
can make a tool inaccessible even if specialist knowledge 
is not required. This suggests that improving documen-
tation could make existing tools more accessible to a 
broader range of researchers, especially those less famil-
iar with QBA.

Further, although all tools met our definition of “soft-
ware” by including at least minimal documentation, we 
found that documentation often did not explicitly state 
key assumptions about the data. For example, despite 
eight tools allowing multiple variables to be simulta-
neously measured with error, only R package episensr 
explicitly stated that errors were required to be inde-
pendent. The lack of clear statements about underlying 
assumptions forces researchers to rely on prior method-
ological knowledge or manual code inspection, increas-
ing the potential risk of misuse or misinterpretation. This 
not only exacerbates the broader issue of unacknowl-
edged dependent error in epidemiological studies [78] 
but may also create a barrier to the adoption of tools by 
applied researchers. Addressing these gaps by explicitly 
stating assumptions and tool limitations in documenta-
tion could facilitate wider adoption and correct applica-
tion of QBA methods.

The substantial number of tools in Table  2 that were 
not identified through our formal search highlights the 
challenge for applied researchers in discovering relevant 
QBA software. Many of these tools would be difficult for 
researchers unfamiliar with mismeasurement and quan-
titative bias analysis to discover, reinforcing the need for 
greater visibility of tools. Publishing software tools in 
widely recognized repositories, maintaining clear docu-
mentation of updates and expansions, and encouraging 
researchers to cite software in their outputs would help 
bridge this gap.

Conclusions
Our review highlights an increase in the number of soft-
ware tools for QBA to mismeasurement but also reveals 
important gaps that may limit their accessibility and 
applicability. While many tools support common analy-
ses and provide extensive documentation, others lack 
clarity on key assumptions, require specialist knowledge, 
or are restricted to specific use cases. There is a lack of 
tools for handling misclassification of categorical vari-
ables and for addressing non-classical measurement 
error in continuous variables. Improved documentation, 
broader methodological coverage, and increased visibility 
through publication in software journals and good cita-
tion practices could enhance the usability and adoption 
of these tools. Future efforts should focus on developing 

more comprehensive software tools and ensuring that 
researchers can easily identify and apply appropriate pro-
grams for addressing mismeasurement in their studies.
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