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Abstract: Extensively drug-resistant tuberculosis (XDR-TB) is a public health concern as
drug resistance is outpacing the drug development pipeline. Alternative immunotherapeu-
tic approaches are needed. Peripheral blood mononuclear cells (PBMCs) were isolated from
pre-XDR/XDR-TB (n = 25) patients and LTBI (n = 18) participants. Thereafter, monocytic-
derived dendritic cells (mo-DCs) were co-cultured with M. tb antigens, with/without
a maturation cocktail (interferon-γ, interferon-α, CD40L, IL-1β, and TLR3 and TLR7/8
agonists). Two peptide pools were evaluated: (i) an ECAT peptide pool (ESAT6, CFP10,
Ag85B, and TB10.4 peptides) and (ii) a PE/PPE peptide pool. Sonicated lysate of the M. tb
HN878 strain served as a control. Mo-DCs were assessed for DC maturation markers, Th1
cytokines, and the ability of the DC-primed PBMCs to restrict the growth of M. tb-infected
monocyte-derived macrophages. In pre-XDR/XDR-TB, mo-DCs matured with M. tb anti-
gens (ECAT or PE/PPE peptide pool, or HN878 lysate) + cocktail, compared to mo-DCs
matured with M. tb antigens only, showed higher upregulation of co-stimulatory molecules
and IL-12p70 (p < 0.001 for both comparisons). The matured mo-DCs had enhanced antigen-
specific CD8+ T-cell responses to ESAT-6 (p = 0.05) and Ag85B (p = 0.03). Containment
was higher with mo-DCs matured with the PE/PPE peptide pool cocktail versus mo-DCs
matured with the PE/PPE peptide pool (p = 0.0002). Mo-DCs matured with the PE/PPE
peptide pool + cocktail achieved better containment than the ECAT peptide pool + cocktail
[50%, (IQR:39–75) versus 46%, (IQR:15–62); p = 0.02]. In patients with pre-XDR/XDR-TB,
an effector response primed by mo-DCs matured with an ECAT or PE/PPE peptide pool +
cocktail was capable of restricting the growth of M. tb in vitro.

Keywords: dendritic cell vaccine; pre-extensively drug-resistant tuberculosis; extensively
drug-resistant tuberculosis; drug-resistant tuberculosis; cellular vaccine; monocytic-derived
dendritic cells

1. Introduction
Tuberculosis (TB), caused by infection from the bacillus Mycobacterium tuberculosis

(M. tb), is one of the leading causes of death from a single infectious agent worldwide and
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remains the deadliest infectious disease globally. In 2023, an estimated 1.09 million deaths
among HIV-negative and 161,000 deaths among HIV-infected people were reported. South
Africa is among the 14 countries with the highest burden of TB, TB/HIV, and drug-resistant
(DR) TB [1].

Globally and in South Africa, the increasing prevalence of extensively drug-resistant
TB (XDR-TB) is posing a significant threat to the control of TB [1]. XDR-TB is defined
as resistance to (i) rifampicin and isoniazid from the first line treatment regime, (ii) any
fluoroquinolone, and (iii) at least one of the drugs bedaquiline and linezolid. Globally,
159,684 cases of multi-drug-resistant TB (MDR-TB; resistance to rifampicin and isoniazid),
and 28,982 cases of pre-XDR-TB (resistance to rifampicin and isoniazid and at least one
of the fluoroquinolones) or XDR-TB were detected during 2022 [1]. The typical treatment
duration for XDR-TB, even with newer drugs, is between 18 and 24 months. It is associated
with a high pill burden, accompanied by frequent drug toxicity, high rates of adverse events,
and low treatment success rates [2]. Treatment success in South Africa is 53% for XDR-
TB [3]. Many patients who do not succumb to the disease, fail treatment and are discharged
back into their communities [4,5], posing a significant risk for onward transmission [4].
Alternate treatment options are, therefore, urgently required because the drug development
pipeline is slow moving, and as new drugs are developed, drug resistance amplification is
rapidly evolving.

DC-based immunotherapy is a cellular therapeutic vaccination strategy whereby
disease-specific ex vivo-generated autologous monocytic-derived dendritic cells (mo-DCs)
are administered to the patient with the intention of eliciting protective and targeted cy-
totoxic T lymphocyte (CTL) immunity [6]. A DC-based immunotherapeutic intervention
may offer potential benefits as an adjunctive treatment for XDR-TB. Immunotherapeutic
strategies aim to improve overall immunity by reducing pathology associated with chronic
disease, shorten treatment duration that will ultimately reduce treatment costs, and poten-
tially increase treatment compliance leading to improved success rates [7–9]. Furthermore,
immunotherapy offers a unique appeal for drug-resistant TB as new treatment regimens
for these patients are limited [7,8,10,11].

In this study, mo-DCs were cultured from peripheral blood mononuclear cells (PBMCs)
obtained from pre-XDR/XDR-TB patients and persons with latent TB infection (LTBI).
Naturally occurring DCs account for less than 0.5% of the peripheral blood leukocytes;
therefore, mo-DCs [12], which are functionally similar to naturally occurring inflammatory
DCs, were used [13–15]. The mo-DCs were matured with M. tb-specific peptide pools, with
or without a maturation cocktail [IFN-γ, IFN-α, CD40L, IL-1β, Ampligen (TLR-3 agonist),
and R848 (a TLR7/8 agonist)] [12]. We show that we can optimally mature patient-specific
mo-DCs in vitro with M. tb-specific peptide pools and a full maturation cocktail. The
mature mo-DCs were able to prime M. tb-specific effector cells and polarise polyfunctional
T-cell and CTL responses that were bactericidal to M. tb in vitro.

2. Materials and Methods
2.1. Study Site and Population

Pre-XDR-TB was defined as resistance to rifampicin and isoniazid, and at least one of
the fluoroquinolones, while XDR-TB included additional resistances to one injectable [8].
Patients (n = 25) were recruited at Brooklyn Chest Hospital, Cape Town, South Africa,
between 2017 and 2020 if they were >18 years old and healthy. HIV-infected persons with a
CD4 count greater than 200 cells/mL were included. Latent TB-infected (LTBI) participants
(n = 18) were recruited as controls if they were asymptomatic, had no previous history
of TB, and were QuantiFERON-TB Gold In-Tube Interferon-Gamma Release Assay (QFT-
GIT IGRA) positive. Please refer to the inclusion and exclusion criteria in the Appendix.
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Ethical approval was obtained from the Human Research Ethics Committee (HREC) of the
University of Cape Town (#213/2016).

2.2. M. tb-Specific Antigens

The ECAT peptide pool comprised peptides from the ESAT-6, CFP-10, Ag85B, and
TB10.4 proteins (Table A1). The PE/PPE peptide pool consisted of peptides from the
PE_PGRS33, PE_PGRS62, PE18, PPE25, PPE33, and PPE46 proteins (Table A2). The
ECAT [16–21] and PE/PPE peptides [22–28] were selected based on their immunogenicity
supported in the literature. A sonicated lysate from a M. tb clinical Beijing stain, HN878,
was the antigen positive control. The optimal concentration for both the ECAT and PE/PPE
peptide pools were 1 µg/mL and 3 µg/mL for the HN878 lysate, determined using an IFN-γ
enzyme-linked immune absorbent spot (ELISA; Mabtech, Cincinnati, OH, USA) assays.

2.3. Venipuncture and Peripheral Blood Mononuclear Cell Isolation

PBMCs were isolated via density centrifugation (using Leucosep® tubes and Histopaque-
1077 (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturers’ instructions
(Greiner, Germany). The buffy coat, from centrifuged whole blood, was diluted with Dul-
becco’s phosphate-buffered solution (DPBS, Lonza, Switzerland) and transferred to the
Leucosep® tube for centrifugation. Thereafter, the enriched cell fraction was harvested,
washed with DPBS, and re-suspended. Cell density and viability were determined with Türks
solution (Sigma-Aldrich, USA) or Trypan blue solution (Sigma-Aldrich, USA), respectively,
under a light microscope using a haematocytometer.

2.4. Culture Conditions to Obtain Mature mo-DCs

Monocytes (~1 × 107 cells) were isolated by plastic adherence and differentiated into
immature mo-DCs with CellGenix DC medium (CellGenix, Freiburg, Germany) containing
100 µg/mL IL-4 and GM-CSF (Prospec Bio, East Brunswick, NJ, USA) for 5 days at 37 ◦C.
After 5 days, the immature mo-DCs were incubated with or without 1 µg/mL ECAT or
PE/PPE peptide pool, or 3 µg/mL HN878 lysate for 6 h at 37 ◦C and then matured with
or without a full maturation cocktail containing (i) 25 ng/mL IFN-γ, (ii) 10 ng/mL IFN-α,
(iii) 10 ng/mL IL1-β, (iv) 1 µg/mL CD40L (all purchased from Prospec Bio, East Brunswick,
USA), (v) 100 µg/mL Ampligen (AIM ImmunoTech, Ocala, FL, USA ), and (vi) 2.5 µg/mL
R848 (InvivoGen, San Diego, CA, USA) for 42 h at 37 ◦C. Untreated, immature DCs
and DCs matured with a limited maturation cocktail, containing only 25 ng/mL IFN-γ,
10 ng/mL IFN-α, 10 ng/mL IL1-β, and 1 µg/mL CD40L, served as experimental controls.
The TLRs were not included in the limited cocktail as TLR agonists are known to mature
DCs [29,30]. The composition and concentration of the maturation cocktail was optimized
in a previously published study conducted by Tomasicchio et al. [12]. Mo-DCs were stained
for flow cytometry analysis and supernatants derived from the immature and mature
mo-DCs were stored at −80 ◦C for IL-12p70 and IL-10 analysis by ELISA. A schematic of
the experimental procedure used in this study can be found in Figure 1. The DC culture
conditions are abbreviated in the text below as follows: iDCs = immature DCs; ECAT only
= mo-DCs matured with ECAT peptide pool only; PE/PPE only = mo-DCs matured with
PE/PPE peptide pool only; HN878 only = mo-DCs matured with sonicated HN878 lysate
only; LC = mo-DCs matured with limited cocktail only; ECAT + C = mo-DCs matured with
ECAT peptide pool and full maturation cocktail; PE/PPE + C = mo-DCs matured with
PE/PPE peptide pool and full maturation cocktail; and HN878 + C = mo-DCs matured
with sonicated HN878 lysate and full maturation cocktail.
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the generation of effector cells, PBMCs were co-cultured with mature mo-DCs for seven days. DC-
primed effector cells were stained for flow cytometry, the culture supernatants assessed for soluble 
cytokine secretion using Luminex, and the DC-primed effector cells assessed for antigen specificity 
using a tetramer assay. After seven days, the mo-DC-primed effector T-cells were co-cultured with 
M. tb H37Rv-infected macrophages and M. tb containment (CFU/mL) determined using a stasis as-
say by counting colonies on agar plates. Abbreviations: ECAT = peptide pool consisting of ESAT-6, 
CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE peptides; 
HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail containing IFN-γ, IFN-
α, IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L, Ampligen 
(TLR3 agonist), and R848 (TLR7/8 agonist). 
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cultured at a ratio of 1:10 in RPMI (Lonza, Basel, Switzerland) medium supplemented with 
10% human A/B serum (Western Province Blood Transfusion Services, South Africa), 2 
mM L-glutamine, 25 mM HEPES, 0.1 mg/mL sodium pyruvate, 100 IU/mL penicillin, and 
100 mg/mL streptomycin (R-10; Sigma, Buchs, Germany). After 3 days, the medium was 
replaced with fresh medium containing 10 U/mL IL-2 (Roche, Basel, Switzerland). The 
cells were cultured for an additional 4 days at 37 °C to generate effector cells. DC-primed 
effector cells were stained for flow cytometry analysis and culture supernatants were 
stored at −80 °C for cytokine and chemokine analysis by Luminex assay. 

2.6. IL-12p70 and IL-10 ELISA 

Figure 1. Schematic of the experimental procedures used to determine the efficacy of mo-DCs against
M. tb. (A) Monocytes were differentiated into immature DCs with GM-CSF and IL-4 for five days.
The immature DCs were loaded with M. tb antigens for six hours, then incubation with/without a
maturation cocktail for two days. Immature and mature mo-DCs were stained for flow cytometry
analysis and culture supernatants assessed for soluble cytokine secretion using ELISA. (B) For the
generation of effector cells, PBMCs were co-cultured with mature mo-DCs for seven days. DC-primed
effector cells were stained for flow cytometry, the culture supernatants assessed for soluble cytokine
secretion using Luminex, and the DC-primed effector cells assessed for antigen specificity using a
tetramer assay. After seven days, the mo-DC-primed effector T-cells were co-cultured with M. tb
H37Rv-infected macrophages and M. tb containment (CFU/mL) determined using a stasis assay
by counting colonies on agar plates. Abbreviations: ECAT = peptide pool consisting of ESAT-6,
CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE peptides;
HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail containing IFN-γ, IFN-α,
IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L, Ampligen
(TLR3 agonist), and R848 (TLR7/8 agonist).

2.5. Generation of Effector Cells

Mature mo-DCs were co-cultured with autologous PBMCs to generate DC-primed
effector cells, as previously described [12] (Figure 1). Briefly, mature mo-DCs were co-
cultured at a ratio of 1:10 in RPMI (Lonza, Basel, Switzerland) medium supplemented
with 10% human A/B serum (Western Province Blood Transfusion Services, South Africa),
2 mM L-glutamine, 25 mM HEPES, 0.1 mg/mL sodium pyruvate, 100 IU/mL penicillin,
and 100 mg/mL streptomycin (R-10; Sigma, Buchs, Germany). After 3 days, the medium
was replaced with fresh medium containing 10 U/mL IL-2 (Roche, Basel, Switzerland). The
cells were cultured for an additional 4 days at 37 ◦C to generate effector cells. DC-primed
effector cells were stained for flow cytometry analysis and culture supernatants were stored
at −80 ◦C for cytokine and chemokine analysis by Luminex assay.

2.6. IL-12p70 and IL-10 ELISA

The expression of IL-12p70 and IL-10 was determined from the culture supernatants
using ELISA, according to the manufacturer’s specifications (Mabtech, Stockholm, Sweden).
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2.7. Sample Preparation for Flow Cytometry

Cells were washed with DPBS then stained with viability stain for 15 min. Zom-
bie Aqua Fixable viability kit (Biolegend, San Diego, CA, USA) was used for both DCs
and the DC-primed effector cells. The immature and mature DCs were stained for HLA-
DR-PerCP/Cyanine 5.5, CD40-FITC, CD80-PE/Cy7, CD83-APC, CD86-PE/Dazzle 594,
CCR7-PE, PDL1-BV421, MMR-BV785, DC-SIGN-APC/FIRE 750, and TLR2-BV711 in BV
Brilliant Stain buffer (Becton-Dickenson, Franklin Lakes, NJ, USA) for 30 min. Thereafter,
they were washed and fixed with 1% Cell Fix solution (Becton-Dickenson, USA). The DC-
primed effector cells were surface stained for CD3-AF700, CD4-APC/Cy7, CD8-PE/Cy5,
CD45RO-BV650, CD69-PE/Cy7, and PD1-BV711 for 30 min. Thereafter, they were fixed
in a 1% Cell Fix solution for 30 min, experienced permeabilization with a 1% Permeabilis-
ing solution 2 (Becton-Dickenson, USA) for 30 min, and were stained for Granulysin-PE,
Perfoin-AF488, TNFα-BV785, IL17-PE/Dazzle 594, IL2-BV421, and IFN-γ-APC in BD Bril-
liant stain buffer for 45 min. The cells were washed and stored in a 4% paraformaldehyde
solution in PBS (Becton-Dickenson, USA). All samples were acquired on a BD LSR-II within
3 days. The Minimum Information about a Flow Cytometry Experiment (MIFlowCyt)
standards were followed to ensure consistency and reproducibility. Briefly, single-stained
compensation controls, consisting of positive and negative beads, were used in this study.
The compensation matrix was determined and applied using the FACS Diva software (ver-
sion 7). All flow cytometry data were represented as % of a total population, normalizing
the data for variability associated with absolute cell numbers. Flow cytometry data were
analysed using FlowJo software (v9.9, FlowJo LLC, Ashland, OR, USA). The gating strategy
for the immature and mature DCs as well as the DC-primed effector cells are presented in
Figures A2 and A3, respectively. All fluorescently labelled antibodies used are shown in
Tables A3 and A4.

2.8. Cytokine and Chemokine Luminex Assay

IL-10, TNF-α, IFN-γ, IL-13, RANTES, IL-17, and IL-6 were measured using a Luminex
Milliplex kit (Merck, Darmstadt, Germany), according to the manufacturer’s instructions.

2.9. ESAT-6 and Ag85B Tetramer Assay

The MHC-1-specific tetramers were HLA-02 positive; therefore, only patient samples
with matching HLA-02 type were included in the assay. Only DC-primed effector cells
loaded with ECAT peptide pool and HN878 lysate were assessed for specificity. Effector
cells were stained with Ag85B-PE tetramer, ESAT-6-APC tetramer (MBL, Ottawa, IL, USA),
CD3-AF700, CD8-FITC (Becton Dickinson, Franklin Lakes, NJ, USA), and Zombie NIR
(Biolegend, San Diego, CA, USA) as recommended by the manufacturer, followed by
acquisition using a flow cytometry and analyses.

2.10. Mycobacterial Stasis Assay

A previously described mycobacterial containment assay was used to assess the mo-
DC-primed effector cell responses on their ability to contain M. tb within peripheral blood
monocyte-derived macrophages (MDMs) [31]. DC-primed effector cells were generated
by co-culturing matured mo-DCs with autologous PBMCs for seven days (Figure 1). In
parallel, 1 × 106/mL PBMCs were seeded into a tissue culture plate and cultured for
five days. Thereafter, the plate was washed to remove non-adherent cells and the MDMs
were infected with H37Rv at an MOI of 5:1 for 18 h. The cells were further washed to
remove any mycobacteria that was not taken up. On day seven, the DC-primed effector
cells were co-cultured with M. tb-infected MDMs for 24 h. Colony-forming units (CFUs)
were enumerated in all wells. The reference control contained M. tb-infected MDMs only
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and represented 100% M. tb survival. The percentage (%) mycobacterial containment was
reported and defined as the reduction in M. tb survival compared to the reference control
representing 100% M. tb survival.

2.11. Statistical Analysis

Data were analysed for statistical significance by one-way Analysis of Variance
(ANOVA) with Dunnett’s post-test where applicable. A Wilcoxon signed-rank paired
t-test was used to assess the differences within population groups. A Mann–Whitney U-test
was used to assess the differences between population groups. Data were analysed using
Graphpad Prism software (Version 10 GraphPad Software, La Jolla, CA, USA) where *, **,
***, and **** indicated p < 0.05, p < 0.01, p < 0.005, and p < 0.0001, respectively.

3. Results
3.1. Demographics and Clinical Characterisation of the Pre-XDR/XDR-TB Patients

The demographics of the pre-XDR (n = 4)/XDR-TB (n = 21) patients used for this
study are shown in Table 1. The median age of the pre-XDR/XDR-TB patients was 34 years.
Patients were more likely to be HIV negative and the majority (84%) of the patients had
confirmed XDR-TB. Nine out of the 25 patients had a previous episode of TB. Three patients
had previous drug-susceptible TB, five had MDR-TB, and one patient had a previous
episode of XDR-TB. The median ranges of the patients’ haematological counts were within
normal ranges. The patient and sample recruitment schematics for the pre-XDR-TB/XDR-
TB patients and LTBI participants are shown in Figures 2 and A1, respectively.

Table 1. Demographic characteristics, disease characteristics, and haematological descriptors of
enrolled pre-XDR/XDR-TB patients and LTBI participants.

Pre-XDR/XDR-TB Patients (n
= 25) LTBI Participants (n = 18)

Median age in years (range) 34 (22–58) 46 (24–57)

Gender in %, (n)
Male 80% (20/25) Male 16% (3/18)

Female 20% (5/25) Female 84% (15/18)

Race in %, (n)

Black 44% (11/25) Black 33% (6/18)

Mixed race 32% (8/25) Mixed race 67% (12/18)

Not disclosed 24% (6/25)

Diagnosis in %, (n)
Pre-XDR-TB 16% (4/25)

N/A
XDR-TB 84% (21/25)

HIV status in %, (n)
Negative 68% (17/25)

Negative 100% (18/18)
Positive 32% (8/25)

Previous TB %, (n)

None 16% (4/25)

N/A

DS-TB 12% (3/25)

MDR-TB 20% (5/25)

XDR-TB 4% (1/25)

Not disclosed 48% (12/25)
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Table 1. Cont.

Pre-XDR/XDR-TB Patients (n
= 25) LTBI Participants (n = 18)

CD3 median (cells/uL)
(range)

HIV−ve: 1379
(898–2470)HIV+ve: 888

(411–1494)
N/A

CD4 median (cells/uL),
(range)

HIV−ve: 835
(432–1423)HIV+ve: 478

(200–815)
N/A

CD8 median (cells/uL),
(range)

HIV−ve: 445 (280–1325)
HIV+ve: 673 (231–995) N/A

N/A = Not applicable.
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Figure 2. The pre-XDR/XDR-TB patient recruitment and sample schematic. A total of 71 individuals
presenting with resistance beyond MDR were asked to consent to the study. After screening, only 43
were eligible for consent and sample collection. In total, 18 patients were further excluded due to
failure to provide adequate blood volumes for the follow-up visit or amendments to the experimental
protocol. A total of 25 pre-XDR/XDR-TB patient samples were included in the final results. Samples
from 14 pre-XDR/XDR-TB patients were used for the phenotypic assessment of mature mo-DCs using
flow cytometry, the determination of soluble cytokine secretion of mature mo-DCs using ELISA, the
CD8+ specific tetramer assay for the determination of antigen specificity using flow cytometry, and
the M. tb containment assay. Exceptions for the aforementioned experiments are reported. Samples
from 11 pre-XDR/XDR-TB patients were used for the characterisation of DC-primed CD4+ and CD8+

T-cell responses and the determination of soluble cytokine secretion from the DC-primed effector cell
responses. Exclusions due to experimental errors are reported.
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3.2. mo-DCs from Pre-XDR/XDR-TB Patients, Matured with M. tb Antigens and Full Maturation
Cocktail, Expressed High Levels of Key Co-Stimulatory Molecules

Functional matured mo-DCs are characterized by the upregulation of C-C chemokine
receptor 7 (CCR7), which is essential for migration, and CD80, CD83, and CD86 as key DC
maturation markers (Figure 3A–D).
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Figure 3. Matured mo-DCs from pre-XDR/XDR-TB patients expressed high levels of co-stimulatory
molecules. Immature mo-DCs from pre-XDR/XDR-TB patients (n = 14) were differentiated from
monocytes with IL-4 and GM-CSF for five days. After five days, the immature mo-DCs were matured
with M. tb antigens, with/without the maturation cocktail for 48 h. The mo-DCs were analysed for
CCR7 (A), CD80 (B), CD83 (C), and CD86 (D) by flow cytometry. The experimental conditions are
immature DC, negative control (DCs matured without M. tb antigens or cocktail), mo-DCs matured
with ECAT only, mo-DCs matured with PE/PPE only, mo-DCs matured with HN878 only, mo-DCs
matured with limited cocktail only, mo-DCs matured with ECAT + C, mo-DCs matured with PE/PPE +
C, and mo-DCs matured with HN878 + C. Statistical analysis was performed using GraphPad Prism.
One-way ANOVA with Dunnett’s post-test was used to compare experimental groups to the control
group (immature mo-DCs). For paired comparisons between mo-DCs matured with M. tb antigens
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only and mo-DCs with M. tb antigens + C, the Wilcoxon signed-rank test was applied. Significance
levels are indicated as *, **, ***, **** for p < 0.05, p < 0.01, p < 0.005 and p < 0.0001 respectively.
Outliers are represented by symbols, which indicate data points that fall significantly outside the
interquartile range. Abbreviations: ECAT = peptide pool consisting of ESAT-6, CFP-10, AG85b, and
TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE peptides; HN878 = sonicated
lysate of M. tb HN878; LC = limited maturation cocktail containing IFN-γ, IFN-α, IL1-β, and CD40L;
C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L, Ampligen (TLR3 agonist), and
R848 (TLR7/8 agonist).

In LTBI participants and pre-XDR/XDR-TB patients, mo-DCs matured with ECAT
peptide pool and cocktail (ECAT + C), PE/PPE peptide pool and cocktail (PE/PPE +
C), or HN878 lysate and cocktail (HN878 + C) expressed higher levels of CCR7, CD80,
CD83, and CD86 compared to mo-DCs matured with ECAT peptide pool only (ECAT
only), PE/PPE peptide pool only (PE/PPE only), and HN878 lysate only (HN878 only;
p ≤ 0.02 for all comparisons in LTBI; p ≤ 0.003 for all comparisons in pre-XDR/XDR;
Figures 3A–D and A4). Mo-DCs matured with the limited cocktail only (no antigen added)
(LC), only upregulated CCR7, CD80, CD83, and CD86 to a similar degree to mo-DCs
matured with ECAT + C, PE/PPE + C, or HN878 + C.

3.3. Matured mo-DCs from Pre-XDR/XDR-TB Patients Expressed High Levels of Th1
Polarising Cytokines

IL-12p70 is a Th1 polarizing cytokine that is necessary for the generation of a protective
immune response [32].

In LTBI participants and pre-XDR/XDR-TB patients, mo-DCs matured with ECAT + C,
PE/PPE + C, or HN878 + C expressed higher levels of IL-12p70 compared to mo-DCs ma-
tured with the peptide pool (ECAT or PE/PPE) or lysate only (p ≤ 0.03 for all comparisons
in LTBI; p = 0.004 for all comparison in pre-XDR/XDR-TB; Figures 4A and A5).
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were determined using the ELISAPRO IL-12p70 and IL-10 detection kit (Mabtech). In order to
determine the Th-polarizing response, the IL-12p70/IL-10 (C) ratio was assessed. The experimental
conditions are immature DC, negative control (DCs matured without M. tb antigens or cocktail), mo-
DCs matured with ECAT only, mo-DCs matured with PE/PPE only, mo-DCs matured with HN878
only, mo-DCs matured with limited cocktail only, mo-DCs matured with ECAT + C, mo-DCs matured
with PE/PPE + C, and mo-DCs matured with HN878 + C. Statistical analysis was performed using
GraphPad Prism. One-way ANOVA with Dunnett’s post-test was used to compare experimental
groups to the control group (immature mo-DCs). For paired comparisons between mo-DCs matured
with M. tb antigens only and mo-DCs with M. tb antigens + C, the Wilcoxon signed-rank test was
applied. Significance levels are indicated as * and ** for p < 0.05 and p < 0.01 respectively. Outliers are
represented by symbols, which indicate data points that fall significantly outside the interquartile
range. Abbreviations: ECAT = peptide pool consisting of ESAT-6, CFP-10, AG85b, and TB10.4
peptides; PE/PPE = peptide pool consisting of PE and PPE peptides; HN878 = sonicated lysate of
M. tb HN878; LC = limited maturation cocktail containing IFN-γ, IFN-α, IL1-β, and CD40L; C = full
maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L, Ampligen (TLR3 agonist), and R848
(TLR7/8 agonist).

IL-10 is a characteristic Th2 polarizing cytokine. In pre-XDR/XDR-TB patients, mo-
DCs matured with ECAT + C, PE/PPE + C, or HN878 + C produced higher levels of
IL-10 compared to mo-DCs matured with ECAT only (p = 0.008), PE/PPE only (p = 0.004),
or HN878 only (Figure 4B; p = 0.004). In LTBI participants, only mo-DCs matured with
ECAT + C and HN878 + C produced higher levels of IL-10 compared to the peptide pool
and lysate-only controls (p = 0.03 for all comparisons). In both LTBI participants and
pre-XDR/XDR-TB patients, there was no difference in the levels of IL-12p70 and IL-10
from mo-DCs matured with the LC to mo-DCs matured with ECAT + C, PE/PPE + C, or
HN878 + C.

In order to determine the Th-polarizing response, the IL-12p70 (Th1)/IL-10 (Th2) ratio
was determined (Figure 4C). Only DCs from pre-XDR/XDR-TB patients, matured with
ECAT + C, PE/PPE + C, or HN878 + C, polarize a dominant Th1 response compared
to DCs matured with the peptide pool and lysate-only controls (Figure 4C; p ≤ 0.03 for
all comparisons).

3.4. Matured mo-DCs from Pre-XDR/XDR-TB Patients Primed CD4+ T-Cells That Expressed
High Levels of Th1 and Polyfunctional Cytokines

The mo-DCs were co-cultured with autologous PBMCs to generate DC-primed CD4+

and CD8+ T-cells. Thereafter, the CD4+ T-cells were examined for single and polyfunctional
expression of IFN-γ, TNF-α, IL-2, and IL-17 (Figure 5).

In pre-XDR/XDR-TB patients, CD4+ T-cells primed by mo-DCs matured with ECAT +
C expressed higher levels of IFN-γ and IL-2 compared to CD4+ T-cells primed by mo-DCs
matured with ECAT only (IFN-γ: p = 0.04; IL-2: p = 0.05). CD4+ T-cells primed by mo-DCs
matured with HN878 + C expressed higher levels of IFN-γ and TNF-α compared to CD4+

T-cells primed by untreated mo-DCs (IFN-γ: p = 0.04; TNF-α: p = 0.004). Similarly, CD4+

T-cells primed by mo-DCs matured with HN878 only, expressed higher levels of single
secreting IL-2 and TNF-α compared to CD4+ T-cells primed by untreated mo-DCs (IL-2:
p = 0.05; TNF-α: p = 0.008). CD4+ T-cells primed by mo-DCs matured with the LC only
upregulated IFN-γ (p = 0.008) and IL-2 (p = 0.02) compared to CD4+ T-cells primed by
untreated mo-DCs. Nevertheless, compared to CD4+ T-cells primed by mo-DCs matured
with ECAT + C or HN878 + C, there was no statistical difference between the IFN-γ, IL-
2, and TNF-α expression primed by CD4+ T-cells primed by mo-DCs matured with the
LC only.
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Figure 5. Matured mo-DCs from pre-XDR/XDR-TB patients primed CD4+ that expressed high
levels of Th1 effector cytokines. PBMCs were co-cultured with XDR-TB patient-derived, matured
mo-DCs (n = 9) for seven days. The single (IFN-γ, TNF-α, and IL-2) and polyfunctional (IFN-γ/IL-2;
IFN-γ/TNF-α; IL-2 /TNF-α and IFN-γ/IL-2/TNF-α) cytokine secretion from the DC primed CD4+

T-cells, matured with either the ECAT peptide pool (A), the PE/PPE peptide pool (B) or the M. tb
HN878 lysate (C) was determined by flow cytometry. The flow cytometry data were analysed using
FlowJo. Statistical analysis was performed using GraphPad Prism. One-way ANOVA with Dunnett’s
post-test was used to compare experimental groups to the control group (immature mo-DCs). For
paired comparisons between mo-DCs matured with M. tb antigens only and mo-DCs with M. tb
antigens + C, the Wilcoxon signed-rank test was applied. Significance levels are indicated as * and
** for p < 0.05 and p < 0.01 respectively. Outliers are represented by symbols, which indicate data
points that fall significantly outside the interquartile range. Abbreviations: ECAT = peptide pool
consisting of ESAT-6, CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of
PE and PPE peptides; HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail
containing IFN-γ, IFN-α, IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α,
IL1-β, CD40L, Ampligen (TLR3 agonist), and R848 (TLR7/8 agonist).

For polyfunctionality, CD4+ T-cells primed by mo-DCs matured with HN878 + C
expressed higher levels of co-secreting IFN-γ and TNF-α, IL-2 and TNF-α, and IFN-γ, TNF-
α, and IL-2 compared to CD4+ T-cells matured with untreated mo-DCs (Figure 5; p < 0.008
for all comparisons). Similarly, CD4+ T-cells primed by mo-DCs matured with HN878 only
expressed higher levels of co-secreting IFN-γ and IL-2, IFN-γ and TNF-α, IL-2 and TNF-α,
and IFN-γ, TNF-α, and IL-2 compared to CD4+ T-cells matured with untreated mo-DCs
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(p < 0.05 for all comparisons). Interestingly, in LTBI participants, CD4+ T-cells primed by
antigen-matured mo-DCs did not display a significant increase in cytokine expression.

3.5. Matured mo-DCs from Pre-XDR/XDR-TB Patients Primed CD8+ T-Cells That Expressed
High Levels of Cytolytic Markers

The DC-primed CD8+ T-cells were assessed for granulysin and perforin expression
(Figure 6).
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Figure 6. Matured mo-DCs from pre-XDR/XDR-TB patients primed CD8+ T-cells that expressed high
levels of cytolytic markers. PBMCs were co-cultured with XDR-TB patient-derived, matured mo-DCs
(n = 9) for seven days. The expression levels of granulysin and perforin from the DC-primed CD8+

T-cells, matured with either the ECAT peptide pool (A), the PE/PPE peptide pool (B) or the M. tb
HN878 lysate (C) was determined by flow cytometry. The flow cytometry data were analysed using
FlowJo. Statistical analysis was performed using GraphPad Prism. One-way ANOVA with Dunnett’s
post-test was used to compare experimental groups to the control group (immature mo-DCs). For
paired comparisons between mo-DCs matured with M. tb antigens only and mo-DCs with M. tb
antigens + C, the Wilcoxon signed-rank test was applied. Significance levels are indicated as * and
** for p < 0.05 and p < 0.01 respectively. Outliers are represented by symbols, which indicate data
points that fall significantly outside the interquartile range. Abbreviations: ECAT = peptide pool
consisting of ESAT-6, CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of
PE and PPE peptides; HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail
containing IFN-γ, IFN-α, IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α,
IL1-β, CD40L, Ampligen (TLR3 agonist), and R848 (TLR7/8 agonist).

In pre-XDR/XDR-TB patients, CD8+ T-cells primed by mo-DCs matured with the LC
only and ECAT + C expressed higher levels of perforin compared to CD8+ T-cells primed
by untreated mo-DCs (p ≤ 0.009). Mo-DCs matured with HN878 + C, however, primed
CD8+ T-cells that expressed cytolytic markers to a greater degree. CD8+ T-cells primed
by mo-DCs matured with HN878 + C expressed higher levels of granulysin and perforin
compared to CD8+ T-cells primed by untreated DC (p = 0.01 for both comparisons). In
LTBI participants, CD8+ T-cells primed by antigen-matured mo-DCs did not significantly
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upregulate granulysin, but upregulation of perforin was observed for HN878 + C only
(p = 0.05).

3.6. Matured mo-DCs from Pre-XDR/XDR-TB Patients Primed Effector Cells That Secreted High
Levels of Soluble Cytokines

The DC-primed effector cells were assessed for their secretion of IL-13, TNF-α, IL-6, IL-
10, IL-17, and chemokine regulated upon activation, normal T-cell expressed and secreted
(RANTES) (Figure 7A–D).
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Figure 7. Matured mo-DCs from pre-XDR/XDR-TB patients primed effector cells that secreted
high levels of soluble cytokines. PBMCs were co-cultured with XDR-TB patient-derived, matured
mo-DCs (n = 9) for seven days. The experimental conditions are immature DC, negative control (DCs
matured without M. tb antigens or cocktail), mo-DCs matured with ECAT only, mo-DCs matured
with PE/PPE only, mo-DCs matured with HN878 only, mo-DCs matured with limited cocktail only,
mo-DCs matured with ECAT + C, mo-DCs matured with PE/PPE + C, and mo-DCs matured with
HN878 + C. The cell culture supernatants were analysed for the expression of the TNF-α (A), IL-6 (B),
IL-13 (C), and RANTES (D) using a Miliplex Luminex assay (Merck, Germany). Statistical analysis
was performed using GraphPad Prism. One-way ANOVA with Dunnett’s post-test was used to
compare experimental groups to the control group (immature mo-DCs). For paired comparisons
between mo-DCs matured with M. tb antigens only and mo-DCs with M. tb antigens + C, the Wilcoxon
signed-rank test was applied. Significance levels are indicated as *, **, and *** for p < 0.05, p < 0.01
and p < 0.005 respectively. Outliers are represented by symbols, which indicate data points that
fall significantly outside the interquartile range. Abbreviations: ECAT = peptide pool consisting of
ESAT-6, CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE
peptides; HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail containing
IFN-γ, IFN-α, IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L,
Ampligen (TLR3 agonist), and R848 (TLR7/8 agonist).
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In pre-XDR/XDR-TB patients, effector cells primed by mo-DCs matured with ECAT +
C secreted higher levels of IL-6 and RANTES compared to effector cells primed by mo-DCs
matured with ECAT only (IL-6: p = 0.008; RANTES: p = 0.05). Effector cells primed by
mo-DCs matured with PE/PPE + C secreted higher levels of IL-6 and IL-13 compared to
effector cells primed by mo-DCs matured with PE/PPE only (IL-6: p = 0.02; IL-13: p = 0.03).
Effector cells primed by mo-DCs matured with HN878 + C secreted higher levels of TNF-
α, IL-6, and RANTES compared to effector cells primed by untreated mo-DCs (TNF-α:
p = 0.02; IL-6: p = 0.01; RANTES: p = 0.003). The effector cells primed by mo-DCs matured
with HN878 lysate only were not tested for soluble cytokine secretion. The effector cells
primed by mo-DCs from LTBI participants were not tested for soluble cytokine secretion.

IL-13, TNF-α, IL-6, and RANTES secretion by the effector cells primed by mo-DCs
matured with ECAT + C, PE/PPE + C, or HN878 + C was compared. Mo-DCs matured
with ECAT + C primed effector cells secreted higher levels of TNF-α compared to effector
cells primed by mo-DCs matured with PE/PPE + C (IL-13: p = 0.02; TNF-α: p = 0.2; IL-6:
p = 0.02).

3.7. Matured mo-DCs from Pre-XDR/XDR-TB Patients Primed Antigen-Specific CD8+ T-Cells

Next, we wanted to determine if the mo-DCs have the ability to present M. tb antigens,
and prime T-cell receptors (TCRs) of CD8+ T-cells using a tetramer assay. The ESAT-6
tetramer detected the TCR on CD8+ T-cells primed by mo-DCs matured with HN878 lysate
only (p = 0.02) or HN878 + C (p = 0.008) compared to unstimulated PBMCs (Figure 8).
ESAT-6 recognition was superior to Ag85B recognition. The Ag85B tetramer detected the
TCRs on CD8+ T-cells primed by mo-DCs matured with HN878 only (p = 0.02), or HN878
+ C (p = 0.008) compared to unstimulated PBMCs. Additionally, compared to unprimed
CD8+ T-cells, Ag85B tetramer significantly detected the TCR on CD8+ T-cells primed by
mo-DCs matured with HN878 only (p = 0.018) or HN878 + C (p = 0.008). CD8+ T-cells
primed by mo-DCs from LTBI participants were not tested for antigen specificity.
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Figure 8. The TCRs of CD8+ T-cells primed with matured mo-DCs can recognize ESAT-6 and Ag85B
tetramers. Autologous PBMCs were co-cultured with pre-XDR/XDR-TB patient-derived, matured
mo-DCs (n = 4) for seven days to generate effector cells. The experimental conditions are immature
DC, negative control (DCs matured without M. tb antigens or cocktail), mo-DCs matured with ECAT
only, mo-DCs matured with HN878 only, mo-DCs matured with ECAT + C, and mo-DCs matured
with HN878 + C. The CD8+ T-cells were stained for ESAT-6- (A) and Ag85B (B)-specific tetramers on
day seven. Flow cytometry data were analysed using FlowJo. Statistical analysis was performed using
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GraphPad Prism. One-way ANOVA with Dunnett’s post-test was used to compare experimental
groups to the control group (immature mo-DCs). For paired comparisons between mo-DCs matured
with M. tb antigens only and mo-DCs with M. tb antigens + C, the Wilcoxon signed-rank test was
applied. Significance levels are indicated as * and ** for p < 0.05 and p < 0.01, respectively. Outliers
are represented by symbols, which indicate data points that fall significantly outside the interquartile
range. Abbreviations: ECAT = peptide pool consisting of ESAT-6, CFP-10, AG85b, and TB10.4
peptides; PE/PPE = peptide pool consisting of PE and PPE peptides; HN878 = sonicated lysate of
M. tb HN878; LC = limited maturation cocktail containing IFN-γ, IFN-α, IL1-β, and CD40L; C = full
maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L, Ampligen (TLR3 agonist), and R848
(TLR7/8 agonist).

3.8. Matured mo-DCs from Pre-XDR/XDR-TB Patients Primed Effector Cells That Were
Bactericidal to M. tb In Vitro

Using a mycobacterial containment assay, the DC-primed effector cell responses were
assessed for their ability to prime a functional and protective effector response (Figure 9B).
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Figure 9. In pre-XDR/XDR-TB patients, the effector cells primed by matured mo-DCs were bacte-
ricidal to M. tb in vitro. M. tb-infected MDMs were incubated with/without DC-primed effector
cells for 24 h (n = 14). Colony-forming units/mL were determined on Middlebrook H9/OADC agar.
Mycobacterial containment is shown as a percentage and was determined relative to reference control.
The dotted line represents a relative level of containment by reference control (M. tb-infected MDMs
only, i.e., no M. tb containment). The grouped containment response from DC matured with M. tb
antigen is shown in (A) and the containment response for all experimental conditions is shown in (B).
The experimental conditions are immature DC, negative control (DCs matured without M. tb antigens
or cocktail), mo-DCs matured with ECAT only, mo-DCs matured with PE/PPE only, mo-DCs matured
with HN878 only, mo-DCs matured with limited cocktail only, mo-DCs matured with ECAT + C,
mo-DCs matured with PE/PPE + C, and mo-DCs matured with HN878 + C. Statistical analysis was
performed using GraphPad Prism. One-way ANOVA with Dunnett’s post-test was used to compare
experimental groups to the control group (immature mo-DCs). For paired comparisons between
mo-DCs matured with M. tb antigens only and mo-DCs with M. tb antigens + C, the Wilcoxon
signed-rank test was applied. Significance levels are indicated as *, **, and *** for p < 0.05, p < 0.01,
and p < 0.005 respectively. Outliers are represented by symbols, which indicate data points that fall
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significantly outside the interquartile range. Abbreviations: ECAT = peptide pool consisting of
ESAT-6, CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE
peptides; HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail containing
IFN-γ, IFN-α, IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L,
Ampligen (TLR3 agonist), and R848 (TLR7/8 agonist).

In pre-XDR/XDR-TB patients, mo-DCs matured with M. tb antigens only (collective
responses from the ECAT peptide pool, PE/PPE peptide pool, and HN878 lysate) were
compared to mo-DCs matured with M. tb antigens + C (grouped) to determine the impact
of the cocktail on the containment efficacy (Figure 9A). Only mo-DCs matured with M.
tb-antigen + C were effective at priming an effector response that restricted M. tb growth
in vitro (p = 0.0002). Lastly, the containment effects of the ECAT + C and PE/PPE + C were
compared (Figure 9B). Effector cells primed by mo-DCs matured with PE/PPE + C were
more effective at containing the growth of M. tb in vitro compared to effector cells primed
by mo-DCs matured with ECAT + C (p = 0.02).

In LTBI participants, the effector cells primed by mo-DCs matured with ECAT + C,
PE/PPE + C, or HN878 + C did not significantly contain the growth of M. tb in vitro
compared to mo-DCs matured with the peptide pool and lysate-only controls (Figure A6).
However, when the containment effects of ECAT + C were compared to those of PE/PPE +
C, the DC-primed effector responses from ECAT + C mediated a higher degree of contain-
ment than the DC-primed effector from PE/PPE + C (p = 0.02).

4. Discussion
We wanted to determine the feasibility of a DC immunotherapeutic intervention

against M. tb in patients with pre-XDR/XDR-TB. Mo-DCs were successfully matured
with either ECAT peptide pool, PE/PPE peptide pool, or sonicated HN878 lysate and
the full maturation cocktail. The matured mo-DCs (i) upregulated key migratory and co-
stimulatory molecules, (ii) produced high levels of the Th1 polarizing cytokine, IL-12p70,
(iii) polarized a dominant Th1 response, (iv) primed CD4+ T-cells that produced high
levels of expressed and soluble cytokines, (v) primed antigen-specific CD8+ T-cells that
recognized ESAT-6 and Ag85B, and (vi) expressed high levels of cytolytic markers. The
DC-primed effector cell response was shown to be functional, and, most importantly, had
the ability to contain the growth of M. tb-infected macrophages in vitro.

We show that matured mo-DCs expressed a higher level of CCR7 compared to the
peptide pool and lysate-only controls. CCR7 mediates the migration of DCs from the
sites of antigen entry to the lymphoid organs for T-cell priming [33,34]. Its expression
is a pre-requisite in DC immunotherapy [34,35] because high levels of CCR7 expression
directly translate to survival benefits in cancer patients [36]. Effective T-cell priming at the
lymph nodes requires the upregulation of co-stimulatory signalling and the secretion of
Th1 polarizing cytokines [13,37,38]. The matured mo-DCs from pre-XDR/XDR-TB patients
were shown to express high levels of CD80, CD83, and CD86 and secrete IL-12p70, a key Th1
polarizing cytokine. IL-12p70 secretion promotes sustained antigen-specific CTL activity
of NK cell responses and positively correlates with favourable clinical outcomes such
as overall survival in cancer patients [39–41]. The mo-DCs secreted only trace amounts
of IL-10, a key Th2 polarizing cytokine; hence, a dominant Th1 response was shown.
Importantly, the DC maturation results show that irrespective of the M. tb antigen/s used, it
was the presence of the maturation cocktail that promoted the generation of phenotypically
matured DCs.

Next, we characterized the DC-primed effector cells for cytokine secretion and cy-
tolytic marker expression. CD4+ T-cells primed by matured mo-DCs expressed high levels
of IFN-γ, IL-2, and TNF-α and primed high levels of polyfunctional T-cells, predominately



Microorganisms 2025, 13, 345 17 of 31

IFN-γ, IL-2, and/or TNF-α. Several recent TB vaccine studies have utilized the induction of
polyfunctional T-cells as a measure of a proxy for vaccine efficacy [16,42–45]. The MVA85A
vaccine was a promising candidate for a novel TB vaccine as it induced potent polyfunc-
tional CD4+ T-cell responses [21], yet it was unsuccessful in a phase 2a study [46]. Even
though polyfunctional T-cells might not correlate with protective immunity, they are likely
to be one part of a complex response that defines protective immunity against TB [47,48]. In
our study, the DC-primed effector cells were shown to secrete high levels of soluble TNF-α,
IL-6, and RANTES, highlighting that matured mo-DCs from pre-XDR/XDR-TB patients
polarize a Th1 response. Even though IL-13 was detected, the cytokine secretion profile for
the DC-primed effector cells skewed towards a dominant pro-inflammatory response. The
matured mo-DCs from pre-XDR/XDR-TB patients had the ability to prime antigen-specific
T-cell responses. The DC-primed CD8+ T-cells recognized ESAT-6- and Ag85B-specific
tetramers, proving that patient-derived mo-DCs did present the selected antigens. Lastly,
the DC-primed CD8+ T-cells expressed high levels of perforin and granulysin, which are
essential for the effective neutralization of M. tb [49,50].

In pre-XDR/XDR-TB patients, mo-DCs matured with PE/PPE + C achieved a higher
magnitude of containment compared to the mo-DCs matured with ECAT + C (50% versus
46%, p = 0.02). PE/PPE was, therefore, the most effective at promoting a functional immune
response that restricted the growth of M. tb in vitro. This is in contrast to the data presented
for the DC-primed effector cell responses, which suggested that the ECAT peptide pool
was the more immunogenic peptide pool in terms of CD4+ cytokine expression and soluble
secretion. Due to the nature of the ECAT and PE/PPE peptide pools, specifically that they
consisted of 15mer or 9mer peptides, there is a binding affinity towards the MHC-II and
MHC-I, respectively (Table A6). This could explain the contradictory results and provide
a rationale for the slightly better containment efficacy of the PE/PPE peptide pool. The
containment results further suggest that patient-specific cells from the pre-XDR/XDR-TB
group may be contributing to their effector cell responses. In LTBI participants, the matured
mo-DCs displayed variable and overall minimal efficacy at containing M. tb growth in vitro.
Nevertheless, LTBI-derived mo-DCs, matured with ECAT + C, were able to mediate a
higher degree of containment than mo-DCs matured with PE/PPE + C (p = 0.05). In both
LTBI participants and XDR-TB patients, mo-DCs matured with M. tb antigens only were
not successful in promoting effector responses that contained M. tb in vitro. It is, therefore,
clear that M. tb antigens in conjunction with the full maturation cocktail are necessary for
the maturation of mo-DCs that are able to promote a functional immune response.

The selection of the peptides used in this study was based on proven immunogenicity
in the literature. ESAT-6, CFP-10, Ag85B, and TB10.4 used in the ECAT peptide pool are
highly immunogenic and known to polarize a Th1 response [16–18]. These secreted pep-
tides are associated with the ESX type VII secretion systems and have been incorporated
in previous TB vaccine candidates [51]. ESAT-6 and CFP-10 are highly recognized by
T- and B-cells in active TB patients and induce strong IFN-γ responses [44,52–56], while
Ag85B is broadly recognized by CD4+ T-cell epitopes in active TB patients [20,44,56,57].
Similarly, TB10.4 elicits a strong response from both CD4+ and CD8+ T-cells in TB pa-
tients [18,57–60]. The PE/PPE peptide pool used in this study consisted of peptides from
PE_PGRS33, PE_PGRS62, PE18, PPE25, PPE33, and PPE46. PE_PGRS33, PE_PGRS62, and
PPE46 have been investigated as potential vaccine targets. They were shown to induce
substantial antigen-specific proliferation and IFN-γ production [23–25] as well as induce
strong humoral responses in patients with TB [61,62]. PE18 and PPE25, associated with
ESX5, are potent immunodominant T-cell antigens [27] with high sequence homology to
related proteins [27]. ESX-associated PE/PPE proteins exhibit cross-reactivity with nu-
merous PE/PPE proteins and induce Th-1 polarizing cytokines in mice [26,27]. PPE33, a
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non-secreted protein, associated with ESX5, activates T-cells [63] and is expressed at higher
levels in M. tb compared to M. bovis [64–66].

The mo-DCs were assessed for their involvement in the immune-suppressive PD-
L1/PD-1 pathway (Figures A7 and A8). Matured mo-DCs from LTBI participants showed
no differences in PD-L1 compared to mo-DCs matured with M. tb antigens only (Figure A7).
However, in pre-XDR/XDR patients, matured mo-DCs upregulated PD-L1 expression com-
pared to mo-DCs matured with M. tb antigens only (p < 0.0001), but not significantly more
when compared to LTBI. While PD-L1 expression is associated with immune-suppressive
pathways, on DCs, it was shown to protect them from cytotoxic-mediated T-cells [67]. It is,
therefore, possible that the upregulation of PD-L1 on matured mo-DCs serves a regulatory
function. Furthermore, CD4+ T-cells primed by matured mo-DCs from pre-XDR/XDR-TB
patients (p ≤ 0.05) and LTBI participants (p ≤ 0.05) upregulated PD-1 (Figure A8). The up-
regulation of PD-1 has been shown to occur on activated, antigen-presenting T-cells [68,69].

This study has several limitations. We did not show that PE/PPE-matured mo-DCs
could present antigens using PE/PPE-specific tetramers, as these are not commercially
available. The roles of regulatory T-cells (Tregs) upregulated in active TB patients [70] and
other immunoregulatory pathways were not investigated. However, we did investigate
PD1/PD-L1 regulatory pathways. Despite showing that PD1 and PD-L1 were upregulated
on T-cells and DCs respectively, mo-DCs are associated with in vivo clinical efficacy [35,39],
and our results show that XDR-TB patient-derived DCs can restrict mycobacterial growth
in vitro. The containment assay could not distinguish between killed or non-replicating
organisms or quantify anti-mycobacterial activity by cell type. However, containment is
a much more biologically meaningful outcome measure than immunological biomarkers.
The ECAT and PE/PPE peptide pools present with an affinity towards MHC-II and MHC-I,
respectively. We do, however, show that both peptide pools achieved containment of
M. tb-infected monocyte-derived macrophages, albeit better in the PE/PPE pool. HLA
typing for patients was limited to resource constraints. This study included HIV co-infected
patients (CD4 > 200 cells/mL), who constitute as much as 77% of cases in South Africa [71],
to establish proof-of-concept for a cellular intervention in the vulnerable group. In general,
the cytokine responses were lower in the HIV-infected versus uninfected persons, but this
was only significant for IL-2. The levels of containment were slightly lower for ECAT + C
in the HIV-infected versus HIV-uninfected persons, but this was not significant (Table A5).

5. Conclusions
In conclusion, we have cultured mo-DCs using PBMCs from patients with pre-

XDR/XDR. Our most important finding was that the mo-DCs matured with an ECAT
peptide pool, a PE/PPE peptide pool, or a HN878 lysate, and a full maturation cocktail was
bactericidal to M. tb in vitro. The PE/PPE peptide pool was the most effective M. tb-specific
peptide pool at containing M. tb in vitro. mo-DCs have been utilized as immunotherapeutic
agents in a number of studies, albeit mostly cancer but, to our knowledge have not been
investigated for their potential in patients with TB.
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Appendix A
Appendix A.1. Materials and Methods

Study Participants

For LTBI participants and pre-XDR/XDR-TB patients, exclusion criteria included
(i) patients who had received any immunotherapy, (ii) patients receiving immunosuppres-
sive medication, (iii) patients with any autoimmune disease, (iv) participants with clinically
significant concurrent medical conditions or genetic disorders, (v) participants who were
immunocompromised due to conditions such as, but not limited to, diabetes mellitus,
advanced renal failure, and advanced liver failure, (vi) healthy participants who had not
recovered from an acute illness and/or had not completed antibiotic treatment two weeks
prior to blood donation, (vii) for HIV patients, a CD4 count of <200 and a haemoglobin
count of <10 g/dL, and (viii) patients with active malignancy. All pre-XDR/XDR-TB
patients were on treatment at the time of blood collection.
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Figure A1. The recruitment and sample schematic for participants with latent TB infection (LTBI).
Eighteen individuals with latent TB infection were asked to consent to the study. All participants
met the inclusion criteria, were healthy upon consent, and samples for 18 participants were collected.
Twelve LTBI participants were used for the phenotypic assessment of mature mo-DCs using flow
cytometry, the determination of soluble cytokine secretion by mature mo-DCs using ELISA, and the
M. tb containment assay. Six LTBI participants were used for the characterization of the DC-primed
CD4+ and CD8+ T-cell responses.
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Figure A2. The gating strategy used to identify the monocytic-derived DCs for assessment of their
maturation phenotype. The lymphocyte population was gated according to SSC-A and FSC-A (A).
Only single cells were included (B); monocytic-derived DCs were identified by HLA-DR+.
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gated on SSC-A and FSC-A (A). The doublets (B) and dead cells (C) were removed from selection, and single cell T-cells were identified according to CD4+ and CD8+

surface marker (D). Boolean combination gating was applied for identifying polyfunctional effector cells.
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Figure A4. Matured mo-DCs from LTBI participants expressed high levels of co-stimulatory
molecules (A–D). Immature DCs (n = 12) were differentiated from monocytes in the presence of
IL-4 and GM-CSF for five days. After five days, the immature DCs were matured with M. tb anti-
gens and with/without the maturation cocktail for 48 h. The mo-DCs were characterised for the
expression of the co-stimulatory markers by flow cytometry. Statistical analysis was performed using
GraphPad Prism. One-way ANOVA with Dunnett’s post-test was used to compare experimental
groups to the control group (immature mo-DCs). For paired comparisons between mo-DCs matured
with M. tb antigens only and mo-DCs with M. tb antigens + C, the Wilcoxon signed-rank test was
applied. Outliers are represented symbols, which indicate data points that fall significantly outside
the interquartile range. Significance levels are indicated as *, *** and **** for p < 0.05, p < 0.005 and
p<0.0001 respectively. Abbreviations: ECAT = peptide pool consisting of ESAT-6, CFP-10, AG85b,
and TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE peptides; HN878 = sonicated
lysate of M. tb HN878; LC = limited maturation cocktail containing IFN-γ, IFN-α, IL1-β, and CD40L;
C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L, Ampligen (TLR3 agonist), and
R848 (TLR7/8 agonist).
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Figure A5. Matured mo-DCs from LBTI participants expressed high levels of IL-12p70 and polarized
a dominant Th1 response (A–C). Immature DCs (n = 6) were differentiated from monocytes in the
presence of IL-4 and GM-CSF for five days. After five days, the immature DCs were M. tb antigens,
with/without the maturation cocktail for 48 h. IL-12p70 and IL-10 from the culture supernatants
were determined using the ELISAPRO IL-12p70 and IL-10 detection kit from Mabtech. Statistical
analysis was performed using GraphPad Prism. One-way ANOVA with Dunnett’s post-test was used
to compare experimental groups to the control group (immature mo-DCs). For paired comparisons
between mo-DCs matured with M. tb antigens only and mo-DCs with M. tb antigens + C, the Wilcoxon
signed-rank test was applied. Significance levels are indicated as *, *** and **** for p < 0.05, p < 0.005,
and p < 0.001, respectively. Outliers are represented symbols, which indicate data points that fall
significantly outside the interquartile range. Abbreviations: ECAT = peptide pool consisting of
ESAT-6, CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE
peptides; HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail containing
IFN-γ, IFN-α, IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L,
Ampligen (TLR3 agonist), and R848 (TLR7/8 agonist).
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Figure A6. In LTBI, effector cells primed by matured mo-DC did not mediate a containment against
M. tb in vitro. Effector cells, primed by mo-DCs matured with ECAT + C were shown to mediate a
better containment response compared to effector cells primed by mo-DCs matured with PE/PPE
+ C. Statistical analysis was performed using GraphPad Prism. One-way ANOVA with Dunnett’s
post-test was used to compare experimental groups to the control group (immature mo-DCs). For
paired comparisons between mo-DCs matured with M. tb antigens only and mo-DCs with M. tb
antigens + C, the Wilcoxon signed-rank test was applied. Significance levels are indicated as *
for p < 0.05, respectively. Outliers are represented symbols, which indicate data points that fall
significantly outside the interquartile range. Abbreviations: ECAT = peptide pool consisting of
ESAT-6, CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE
peptides; HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail containing
IFN-γ, IFN-α, IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L,
Ampligen (TLR3 agonist), and R848 (TLR7/8 agonist).
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Figure A7. Matured mo-DCs from pre-XDR/XDR-TB patients expressed high levels of PD-L1
compared to peptide pool and lysate-only matured DCs. Statistical analysis was performed using
GraphPad Prism. One-way ANOVA with Dunnett’s post-test was used to compare experimental
groups to the control group (immature mo-DCs). For paired comparisons between mo-DCs matured
with M. tb antigens only and mo-DCs with M. tb antigens + C, the Wilcoxon signed-rank test was
applied. Significance levels are indicated as *** and **** for p < 0.005 and p < 0.0001 respectively.
Outliers are represented symbols, which indicate data points that fall significantly outside the
interquartile range. Abbreviations: ECAT = peptide pool consisting of ESAT-6, CFP-10, AG85b, and
TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE peptides; HN878 = sonicated
lysate of M. tb HN878; LC = limited maturation cocktail containing IFN-γ, IFN-α, IL1-β, and CD40L;
C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L, Ampligen (TLR3 agonist), and
R848 (TLR7/8 agonist).
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Figure A8. Matured mo-DCs from XDR-TB patients primed effector T-cells that expressed high levels
of CD69 and PD-1. PBMCs were co-cultured with pre-XDR/XDR-TB patient-derived DCs (n = 9),
matured with M. tb antigens, with/without the maturation cocktail for 48 h. The T-cells were stained
for immunofluorescent characterization on day seven. Flow cytometry data were analysed using
FlowJo. Statistical analysis was performed using GraphPad Prism. One-way ANOVA with Dunnett’s
post-test was used to compare experimental groups to the control group (immature mo-DCs). For
paired comparisons between mo-DCs matured with M. tb antigens only and mo-DCs with M. tb
antigens + C, the Wilcoxon signed-rank test was applied. Significance levels are indicated as * and
** for p < 0.05 and p < 0.01, respectively. Outliers are represented symbols, which indicate data points
that fall significantly outside the interquartile range. Abbreviations: ECAT = peptide pool consisting
of ESAT-6, CFP-10, AG85b, and TB10.4 peptides; PE/PPE = peptide pool consisting of PE and PPE
peptides; HN878 = sonicated lysate of M. tb HN878; LC = limited maturation cocktail containing
IFN-γ, IFN-α, IL1-β, and CD40L; C = full maturation cocktail containing IFN-γ, IFN-α, IL1-β, CD40L
and Ampligen (TLR3 agonist), and R848 (TLR7/8 agonist).
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Appendix A.3. Tables

Table A1. A list of the peptide sequences from ESAT-6, CFP-10, Ag85B, and TB10.4 used in the ECAT
peptide pool.

Protein Peptide Locus Peptide Sequence References

ESAT-6
(Rv3875)

11 aa 51–65 YQGVQQKWDATATEL

[16,72,73]
12 aa 56–70 QKWDATATELNNALQ

15 aa 71–85 NLARTISEAGQAMAS

17 aa 81–95 QAMASTEGNVTGMFA

CFP-10
(Rv3874)

11 aa 51–65 AQAAVVRFQEAANKQ

[16,72]
12 aa 56–70 VRFQEAANKQKQELD

15 aa 71–85 EISTNIRQAGVQYSR

16 aa 76–90 IRQAGVQYSRADEEQ

Ag85B
(Rv1886c)

13 aa 61–75 DIKVQFQSGGNNSPA

[17,20,21,72,74]
27 aa 131–145 GCQTYKWETFLTSEL

61 aa 301–315 THSWEYWGAQLNAMK

Ag85 Tetramer aa 236–250 QIPKLVANNTRLWVY

TB10.4
(Rv0288)

P1 aa 1–18 MSQIMYNYPAMLGHAGDM

[18,58,59]P2 aa 11–28 MLGHAGDMAGYAGTLQSL

P3 aa 21–38 YAGTLQSLGAEIAVEQAA

Table A2. A list of the peptide sequences from PE_PGRS33, PE_PGRS62, PE18, PPE25, PPE33, and
PPE46 used in the PE/PPE peptide pool.

Protein Locus Sequence References

PE_PGRS33
(Rv1818c)

aa 6–14
aa 385–393

TIPEALAAV
ALGGGATGV [23,24]

PE_PGRS62 (Rv3812) aa 260–268 NLLVTGFDT [23–25]

PE18 (Rv1788) aa 4–12 TTQPEALAA [26,27]

PPE25 (Rv1787) aa 4–12 GALPPEINS [26,27]

PPE33 (Rv1809) aa 4–12 GLQPPEITS [22,75]

PPE46 (Rv3018c) aa 254–262 AQLLTEFAI [23–25]

Table A3. List of the fluorescently conjugated monoclonal antibodies used for the assessment of the
dendritic cell maturation phenotype.

Antibody Fluorophore Isotype Company Catalogue Volume

Fixable Viability Kit Zombie Aqua™ BioLegend (San
Diego, CA, USA) 423101 0.5 µL

HLA-DR PerCP/Cyanine 5.5 Mouse IgG2a. κ BioLegend 307630 1 µL

CD40 FITC Mouse IgG1. κ BioLegend 334306 1 µL

CD80 PE/Cyanine 7 Mouse IgG1. κ BioLegend 305218 2 µL

CD83 APC Mouse IgG1. κ BDPharmingen (San
Diego, USA) 551073 5 µL
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Table A3. Cont.

Antibody Fluorophore Isotype Company Catalogue Volume

CD86 PE/Dazzle™ 594 Mouse IgG2b. κ BioLegend 305434 2 µL

CD197
(CCR7) Phycoerythrin Mouse IgG2a. κ BioLegend 353204 2 µL

CD274
(PD-L1) Brilliant Violet 421™ Mouse IgG2b. κ BioLegend 329714 1 µL

CD206
(MMR) Brilliant Violet 786 Mouse IgG1. κ BD Biosciences (San

Diego, CA, USA) 740999 1 µL

CD209
(DC-SIGN) APC/Fire™ 750 Mouse IgG2a. κ BioLegend 330116 2 µL

TLR-2 Brilliant Violet 711 Mouse BALB/c
IgG2b. κ

BD OptiBuild (San
Diego, CA, USA) 74227 2 µL

Table A4. List of the fluorescently conjugated monoclonal antibodies used for the characterisation of
the DC-primed effector T-cell response.

Antibody Fluorophore Isotype Company Catalogue No. Volume

CD3 Alexa Flour® 700 Mouse IgG2b. κ
BioLegend

(Biolegend, San
Diego, CA, USA

300324 1 µL

CD4 APC/Cyanine Mouse IgG2b. κ BioLegend 317418 2 µL

CD8a PE/Cyanine 5 Mouse IgG2b. κ BioLegend 300910 3 µL

CD45RO Brilliant Violet 650™ Mouse IgG2a. κ BioLegend 304232 2 µL

CD69 PE/Cyanine 7 Mouse IgG1. κ BioLegend 310912 2 µL

CD279
(PD-1) Brilliant Violet 711 Mouse IgG1. κ BioLegend 329950 2 µL

Granulysin Phycoerythrin Mouse IgG1. κ BioLegend 348004 1 µL

Perforin Alexa Flour® 488 Mouse IgG2b. κ BioLegend 308108 1 µL

TNF-α Brilliant Violet 785™ Mouse IgG1. κ BioLegend 502947 2 µL

IL-17A Phycoerythrin/Dazzle™594 Mouse IgG1. κ BioLegend 512336 2 µL

IL-2 Brilliant Violet 421 Rat IgG2. κ BioLegend 500328 2 µL

IFN-γ FastImmune™ APC Mouse BALB/c
IgG2b. κ

BD Biosciences (San
Jose, CA, USA) 341117 5 µL

Table A5. Comparison of key immunological responses from HIV negative patients compared to HIV
positive patients within the pre-XDR/XDR-TB patients used in the M. tb containment experiments.

HIV- HIV+

ECAT + C PE/PPE + C ECAT + C PE/PPE + C

DC maturation
ng/mL/1 × 106/mL

SD ±

IL-12p70 0.3
SD ± 0.25

0.3
SD ± 0.24

0.07
SD ± 0.05

0.09
SD ± 0.007

IL-10 0.047
SD ± 0.045

0.048
SD ± 0.045

0.012
SD ± 0.001

0.0015
SD ± 0.001

DC-primed effector cells
median %, IQR

IFN-γ 3.1%
2.2–8.2

2.5%
2.2–2.8

3.4%
2.2–5.1

2.4%
1.5–5.4

TNF-α 4.4%
1.2–7.6

2.8%
1.0–3.4

2.0%
0.05–2.1

0.6
0.0–1.9

IL-2 49%
(23–57)

35%
(23–41)

6.5%
(4.3–9.4)

7.1%
(2.6–12)

Containment
median %, IQR

50%
(31–68)

44%
(36–72)

29%
(−7.0–63)

54%
(41–86)
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Table A6. HLA Class I phenotype for pre-XDR/XDR-TB patients used in the M. tb containment
experiments.

HLA Class I Typing Binding Affinity to ECAT Peptide Pool Binding Affinity to PE/PPE Peptide

A*01/A*24 1/14 Not available Not available

A*02/A*03 2/14 Number of high binders 0. Number of
weak binders 2.

Number of high binders 0. Number of
weak binders 3.

A*02/A*24 2/14 Number of high binders 1. Number of
weak binders 8.

Number of high binders 0. Number of
weak binders 0.

A*02/A*26 1/14 Number of high binders 1. Number of
weak binders 14

Number of high binders 1. Number of
weak binders 2.

A*02/A*29 2/14 Number of high binders 4. Number of
weak binders 11.

Number of high binders 0. Number of
weak binders 3.

A*02/A*68 1/14 Number of high binders 0. Number of
weak binders 0.

Number of high binders 0. Number of
weak binders 0.

A*03/A*26 1/14 Number of high binders 0. Number of
weak binders 3.

Number of high binders 1. Number of
weak binders 2.

A*11/A*24 1/14 Not available Not available

* The HLA Class I binding affinities were determined using netMHC on URL: https://services.healthtech.dtu.dk/
services/NetMHC-4.0/, accessed on 23 September 2024.
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