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REVIEW ARTICLE                         
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review
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ABSTRACT 
Monitoring chlorophyll-a content is crucial for irrigation water 
quality, as excessive levels can harm water bodies and reduce 
their volumetric capacity due to algal growth. While satellite data 
enhances monitoring, its coarse resolution limits application in 
small water bodies. Unmanned Aerial Vehicles (UAVs) offer high- 
resolution, near-real-time data, bridging this gap. This review 
explores global progress, gaps, and recommendations on UAV- 
based chlorophyll-a monitoring in small inland water bodies, 
focusing on sensor characteristics, platforms, validation data and 
retrieval algorithms, using the Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis (PRISMA) approach. 
Multispectral sensors onboard DJI UAVs are the most widely used 
and, machine learning methods like random forest dominate 
chlorophyll-a inversion models. However, gaps remain in Africa 
due to high UAV costs, limited expertise and stringent regula
tions. Additionally, a universal chlorophyll-a retrieval method is 
also lacking. This review serves as a reference for future studies, 
highlighting UAVs’ potential in water quality monitoring.
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1. Introduction

Small water bodies between 1 m2 and 20,000 m2 with a maximum depth of no more than 
8 m (Biggs et al. 2005) support over 70% of the world’s population in arid and semi-arid 
areas, and this proportion is increasing. These small inland water resources store scarce 
and reliable water for crop irrigation during dry spells (Wisser et al. 2010). They are 
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among the most vulnerable ecosystems and any changes due to anthropogenic activities 
can affect specific water uses and endanger aquatic habitats. The major water quality 
threat in small water bodies is the excessive growth of cyanobacteria. The disposal of 
phosphorous, nitrogen and nutrients from rivers and streams, as well as prolonged sun
light hours and warm temperatures, accelerates cyanobacteria blooms. Understanding the 
quantity of cyanobacteria, also known as blue-green algae, in inland water resources is 
essential for the level of treatment required for agricultural, domestic and industrial use. 
Therefore, it is more important than ever to consider water quality and strictly monitor 
the number of harmful bacteria in inland water bodies.

Cyanobacteria is a photosynthetic and toxin-producing bacteria, that significantly 
impairs water quality (Aranda et al. 2023). These bacteria are characterised by their single 
chlorophyll type termed Chlorophyll-a (chl-a) and a variety of carotenoids, including the 
blue pigment phycobilin and the red pigment phycoerythrin. Chl-a is often used as a 
proxy for phytoplankton biomass (Gregor and Mars�alek, 2004; Søndergaard et al. 2011; 
Stengel et al. 2023). Cyanobacteria are the predominant form of phytoplankton respon
sible for harmful algal blooms (HABs) in freshwater environments (Cook et al. 2023). 
This issue has escalated into a global concern, as emphasised by Paerl and Barnard 
(2020), necessitating increased attention and action to mitigate its impacts. Climate 
change-induced factors like elevated temperatures and erratic rainfall further exacerbate 
cyanobacteria blooms (Rankinen et al. 2019). Cyanobacteria blooms can severely degrade 
water quality, causing increased turbidity, reduced dissolved oxygen levels and decreased 
water transparency (Liu and Qiu, 2007). Therefore, monitoring chl-a levels, a reliable 
proxy for estimating cyanobacteria, is essential, as demonstrated by numerous studies 
(Song et al., 2022; Zhao et al., 2022a; Bunyon et al., 2023). Chl-a is widely employed as a 
proxy for assessing cyanobacterial harmful algal blooms (cyano-HABs) due to its role as a 
primary pigment in photosynthetic organisms. However, accurately discriminating cyano
bacteria from other phytoplankton often requires complementary approaches, such as 
phycocyanin and green algae detection (Schalles, 2006; Hunter et al. 2008; Salmi et al. 
2021; Cook et al. 2023). Moreover, chl-a may not always accurately represent cyano- 
HABs, particularly in systems with mixed algal communities or during bloom phases 
characterised by low pigment concentrations (Becker et al. 2009; Paerl et al. 2011; 
Adejimi et al. 2023; Li et al. 2023; Pamula et al. 2023; Fournier et al. 2024). Furthermore, 
challenges inherent to inland waters, including high turbidity, interference from dissolved 
organic matter (DOM) and overlapping pigment signatures, can complicate chl-a sensing 
(Kutser, 2009; Matthews, 2011).

Traditional methods for determining chl-a levels involve collecting field samples and 
conducting laboratory analysis (Ritchie et al. 2003; Batur and Maktav, 2018; Morgan et al. 
2020), a time-consuming, labour-intensive, and costly process. Moreover, these in situ 
techniques are limited in their ability to provide comprehensive spatial and temporal 
coverage, hindering the issuance of timely warnings for intense blooms (Kuhn et al. 2019; 
Modiegi et al. 2020). Due to their reliance on point sampling, these methods lack spatial 
representativeness, highlighting the need for robust, spatially explicit and synoptic 
approaches to detect and monitor chl-a concentrations as a proxy for water quality.

Remote sensing is one approach that is robust and spatially explicit and has been used 
to estimate chl-a (Su & Chou, 2015; Arango & Nairn, 2019; Xiao et al., 2022). Chl-a 
exhibits unique optical and spectral properties that enable its detection using remote sens
ing technologies (Wu et al. 2010; Gao et al. 2015). Remote sensing offers several advan
tages for measuring chl-a concentration, including extensive coverage, cost-effectiveness, 
and capturing temporal, spatial and dynamic changes, making it an effective method for 
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comprehensive monitoring (Yang et al. 2022; Tian et al. 2023). Research has shown that 
chl-a has distinct optical properties, with high absorption rates at 443 nm and 665 nm 
(Gilerson et al. 2010; Gurlin et al. 2011; Yu et al. 2014; Johan et al. 2018; Warren et al. 
2021; Wang et al. 2022) and strong reflectance in the green and red edge spectra 550– 
555 nm and 685–710 nm, respectively (Gitelson, 1992; Kirk, 1994; Mobley, 1994). High 
chl-a concentrations are characterised by increased reflectance in the green (G) and red 
(R) bands and decreased reflectance in the blue (B) band (Pulliainen et al. 2001). The 
maximum reflectance associated with chl-a occurs at 580 nm (Dekker, 1993) and peak 
reflection at 700 nm (Gitelson, 1992). Therefore, monitoring changes in reflectance within 
these specific bands can effectively identify high concentrations of chl-a.

Numerous studies have successfully utilised airborne hyperspectral data to estimate 
chl-a concentration in inland waters (Moses et al. 2012; Pyo et al. 2018; Kolluru et al. 
2023). However, airborne hyperspectral sensors are expensive, limiting their adoption for 
small water bodies. The freely available multispectral satellite data has been used to esti
mate chl-a concentration in large water bodies using ocean chlorophyll wavelength-based 
algorithms (412, 443, 490, 510, 555 nm). These algorithms were originally developed for 
oceanic monitoring and have since been adapted for use in inland water bodies. The 
foundation of chl-a algorithms emanated from satellite data and oceans as the primary 
study area, as reflected in key studies (O’Reilly et al. 1998; O’Reilly et al. 2000; Lins et al. 
2017; Markogianni et al. 2018; O’Reilly and Werdell, 2019; Cao et al. 2020; Lai et al. 2021; 
Kolluru and Tiwari, 2022). On the other hand, freely available multispectral satellite data 
has limitations such as coarse resolution, limited data control and untimely collection 
(Yang et al. 2022). Unmanned aerial vehicles (UAVs) offer a promising alternative, ena
bling remote monitoring of chl-a in small water bodies with higher spatial resolutions, 
controlled temporal scales and flexible data collection at a relatively low cost (Wu et al. 
2019; Xiang et al. 2019; Yao et al. 2019). UAVs address satellite-based limitations, provid
ing enhanced precision and flexibility for effective cyanobacteria monitoring in small 
water bodies like lakes, rivers, dams, reservoirs, streams and wetlands (Cillero Castro 
et al., 2020; Silveira Kupssinsku et al., 2020; Xiao et al., 2022; Fu et al., 2023; Lo et al., 
2023). Studies have demonstrated UAV-acquired remote sensing data’s potential in detect
ing and monitoring chl-a with high accuracy, including (Cillero Castro et al. (2020), who 
used empirical approaches and band indices to detect chl-a in a Spanish reservoir and 
Silveira Kupssinsk€u et al. (2020), who employed machine-learning models in Brazil. 
Similarly, Xiao et al. (2022) estimated chl-a downstream of a river using machine learning 
and traditional regression. Fu et al. (2023) estimated chl-a levels in a Chinese karst wet
land using partial least squares and adaptive ensemble algorithms. These studies showcase 
UAV-acquired remote sensing data’s promise in accurately detecting and monitoring chl- 
a in small water reservoirs.

While there is evidence of using UAVs to monitor chl-a in small water bodies, there is 
a notable gap in the assessment of of existing literature. Little research has focused on sys
tematically and comprehensively assessing studies that monitored chl-a in small water 
bodies using UAVs. A comprehensive review is required to assess, evaluate and select the 
most appropriate method that can be used for chl-a estimation in small inland waters 
using UAVs. To boost and enhance the knowledge on using UAVs to monitor chl-a levels 
in small inland waters, this paper took the initiative to track and evaluate the existing lit
erature and document in detail the current progress, challenges and opportunities centred 
around this subject. The objectives of this paper were to (1) identify and systematically 
review the literature on UAV remote sensing of chl-a concentrations in small water 
bodies, (2) evaluate and analyse the methodologies and technologies employed in UAV- 
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based remote sensing for measuring chl-a concentrations, including sensor types, imaging 
techniques and data processing methods, and (3) assess the progress, challenges, gaps and 
opportunities in using UAV technology for monitoring chl-a in small inland water bodies. 
Addressing this gap is important for establishing effective monitoring and management 
strategies for water resources.

2. Materials and methods

2.1. Literature search Strategy

A literature search was conducted to find global studies on estimating chl-a in small water 
bodies using UAVs. The first step entailed identifying and compiling keywords and 
phrases commonly used in the previous UAV remote sensing studies of chl-a. The follow
ing key terms were used in the search string “Unmanned aerial vehicle” OR Drone OR 
“unmanned aerial systems” AND “remote sensing” AND “chlorophyll-a” OR “algae" OR 
"phytoplankton" OR cyanobacteria blooms" AND "inland waters" OR "lakes" OR "reser
voir". A database was then constructed by searching these key terms from research data
bases: Science Direct, Scopus, Web of Science (WOS), IEEE Xplore and Google Scholar. 
While the publication end date of papers searched was restricted to December 31, 2023, 
the publication start date was unrestricted. All articles with a published status were con
sidered, regardless of their geographical location. Due to the variations in the configur
ation settings in Scopus and Web of Science, the key search strings were slightly different 
(Table 1).

2.2. Screening and selection strategy

A total of 3295 studies were retrieved: 2262 from WOS, 900 from Google Scholar, 84 
from Science Direct, 44 from Scopus and 5 from IEEE Xplore. Retrieved articles were 
then exported in the Endnote software, where the bibliographic information of articles, 
including the year, article title, name of the journal, author names, abstract, keywords, 
Digital Object Identifier (DOI) and Uniform Resource Locator (URL) was compiled. The 
search was refined by screening titles and abstracts using relevant keywords. The 
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting 

Table 1. Number of articles retained using five search engines.

Search engine Search criterion Number of articles retained

Web of Science All fields (“Unmanned aerial vehicle” OR “Drone”) AND (“remote 
sensing”) AND (“chlorophyll-a”) AND (“algae") AND ("phytoplankton") 
AND ("cyanobacteria”) AND (“inland waters”) AND ("lakes") AND (“small 
water bodies”) AND ("multispectral")

2262

Google Scholar (“Unmanned aerial vehicle” OR Drone OR “unmanned aerial systems”) 
AND (“remote sensing”) AND (“chlorophyll-a” OR “algae" OR 
"phytoplankton" OR "cyanobacteria”) AND (“inland waters”)

900

Science Direct TITLE-ABS-KEY (“Unmanned aerial vehicle” OR Drone OR “unmanned 
aerial systems”) AND (“remote sensing”) AND (“chlorophyll-a” OR 
“algae" OR "phytoplankton" OR "cyanobacteria”) AND (“inland waters”)

84

Scopus TITLE-ABS-KEY ("Unmanned aerial vehicles" OR "drone") AND ("remote 
sensing") AND ("chlorophyll-a" OR "algae" OR "phytoplankton" OR 
"cyanobacteria blooms") AND ("inland waters" OR "lakes" OR "reservoir")

44

IEEE Xplore ALL METADATA (“Unmanned aerial vehicle” OR Drone AND “remote 
sensing” AND chlorophyll-a OR algae OR phytoplankton OR 
“cyanobacteria blooms” AND “inland waters” OR lakes OR reservoir)

5
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checklist (https://www.prisma-statement.org/, accessed 20 February 2024) was used as a 
guide to eliminate bias reporting and structure the review. The articles that qualified for 
the meta-analysis were those that met the following criteria:

1. The scope of the study focused on the estimation of chl-a or assessment of cyanobac
teria in a small water body

2. The study utilised data from UAV-based remotely sensed data
3. The results of the study and the accuracy assessment are clearly stated
4. The study is from an accredited journal and is peer-reviewed
5. The study paper is written in English.

The first exclusion step was to remove duplicates. In total, 132 articles were removed 
as duplicates. The remaining 3163 articles were screened using titles and abstracts to 
determine their eligibility for this study. Three thousand one hundred twenty-two articles 
were excluded at this stage for one of the following reasons: beyond the scope of the 
review, not peer-reviewed, missing full article and imprecise or not clearly stated results. 
Finally, the remaining 41 studies and 14 studies obtained from backward referencing 
(Horsley et al. 2011) underwent full-text assessment for eligibility. In total, 55 studies met 
the final selection criteria and were carried on to the data extraction step. The selection 
process and screening outcomes are illustrated in a PRISMA flowchart, as shown in 
Figure 1.

The selected articles were exported from Endnote to Microsoft Excel and downloaded 
as PDF documents to extract comprehensive data. In addition to the bibliometric data 
from Endnote, details such as the year and country of study, type of water body, 
eutrophication water quality parameter monitored, sensor and UAV platform characteris
tics, vegetation indices, regression models and remote sensing algorithms were retrieved. 
These categorical attributes were subsequently transformed into measurable variables in 
preparation for the data analysis phase, and the relevance of the systematic review was 
evaluated by assessing the quality of the articles. The coefficient of determination (R2) was 

Figure 1. PRISMA flow diagram indicating the article selection process.
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extracted from each study for the accuracy assessment, as it measures the goodness fit 
between predicted and observed values.

2.3. Data analysis

In this review paper, both quantitative and qualitative analyses were conducted on the 
extracted data. Statistical frequencies and trend analysis were employed to determine 
the progress of using UAVs to monitor water quality, specifically chl-a in inland water 
bodies. Microsoft Excel was used to delineate the statistical frequencies (Carlberg and 
Carlberg, 2014). Additionally, a bibliometric analysis identified trends in the co-occur
rence of key terms and interlinkages between keywords related to monitoring chl-a in 
small water bodies using UAV-derived data. The VOSviewer software (https://www.vos
viewer.com/) was used to mine text and quantitatively examine the occurrence and co- 
occurrence of keywords in the titles and abstracts of the reviewed studies (Van Eck 
and Waltman, 2007). VOSviewer also illustrated the evolution of concepts and topics 
related to chl-a from remotely sensed data in small water bodies. Although bias is 
common in literature analysis, a specific bias assessment was not conducted since the 
focus was on the occurrence, co-occurrence and frequency distribution of key terms.

To meet the research objectives, this review was structured into two sections. The first 
section explored the spatial distribution of studies, keyword analysis, types of water bodies 
and their uses, parameters and quantitative analysis of the algorithms, sensors, platforms 
and indices employed by the reviewed studies. The second section outlined the challenges, 
gaps and opportunities identified in the reviewed literature on on estimating chl-a using 
UAV remotely sensed data in small inland waters.

3. Results

3.1. Evolution and analysis of keywords in UAV-derived chl-a literature

In assessing the evolution and topical concepts of monitoring chl-a in small water bodies 
using UAV-derived data, the results showed that “unmanned aerial vehicle”, 
“chlorophyll”, “algae”, “reservoir”, and “multispectral imagery” were the most utilised key
words around 2019 (Figure 2). This indicates the wide use of multispectral cameras dur
ing that time to monitor algae in water bodies such as reservoirs. The period between 
2020 and 2021 indicates the wide application of remote sensing in water quality to moni
tor chl-a leveraging on the reflection of water bodies such as rivers. This period also rep
resents the introduction of deep learning algorithms in water quality monitoring. The 
2021 to 2022 period was marked by keywords such as “hyperspectral imaging”, “machine 
learning, “multispectral image”, “uav remote sensing”, “water quality monitoring”, “linear 
regression”, “cyanobacteria” and “inland waters”. This highlights the growing trend of 
using UAVs for water quality monitoring, the adoption of advanced methods for model 
development, such as machine learning and the investment into high-resolution sensors, 
such as hyperspectral cameras. This significant evolution of key terms can be attributed to 
the recent technological advancements in analysis techniques and the widespread applica
tion of UAVs in monitoring chl-a.

A total of 303 keywords were identified from the reviewed literature. To analyse the 
trends, the minimum number of occurrences was set to three, which narrowed down the 
number of keywords to a threshold of 23. These keywords were then grouped into five 
clusters: red, purple, green, blue and yellow (Figure 3). The red cluster emerged as the 
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biggest, representing the keywords most used during the search period. It comprised the 
keywords such as “remote sensing”, “reflection”, “chlorophyll”, “cyanobacteria” and “drone”. 
This also shows, the interlinkages between the water quality parameters, water body and 
imagery. The second cluster (purple) had the following key terms, “water quality”, 
“multispectral imagery”, and “unmanned aerial vehicle”, indicating a strong association 
between the use of UAVs equipped with multispectral imaging sensors for monitoring 
water quality. The third cluster (green) had the keywords “machine learning”, “water quality 
monitoring”, “uav remote sensing”, “multispectral image”, and “hyperspectral images”. This 
highlights integrating cutting-edge remote sensing technologies including multispectral and 
hyperspectral imaging, with machine learning algorithms to monitor water quality. The 
blue cluster had the following key terms, “uav”, “reservoir”, “river”, and “reflectance”, indi
cating the use of UAVs to monitor various types of water bodies by leveraging water 
reflectance. Finally, the yellow cluster is associated with terms like “linear regression”, inland 
water”, “hyperspectral imaging” and “unmanned aerial vehicles”. This indicates that UAVs 

Figure 2. Evolution and direction of topical concepts on chl-a monitoring in small water bodies using UAV remote 
sensing, derived from abstracts, title and keywords of the selected literature.

Figure 3. Topical concepts in mapping and monitoring of chl-a in small water bodies.
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equipped with hyperspectral imaging technology commonly estimate chl-a levels in inland 
water bodies, often utilising linear regression models for analysis.

3.2. Spatial, temporal distribution and trends of publications

To assess trends in articles published on the application of UAV-acquired remotely sensed 
data for monitoring chl-a, this review revealed that the first study was conducted in 2015 
(Su & Chou, 2015). A notable surge in research activity was then observed in 2021 and 
2023, accounting for 21% and 25% of the studies, respectively, focusing primarily on riv
ers, lakes and reservoirs (Ahn et al., 2021; Lu et al., 2021; Hong et al., 2022; Xiao et al., 
2022; Cai et al., 2023). A slight decline (22%) in research articles was observed between 
2015 and 2019 (Jang et al., 2016; Guimar~aes et al., 2017; Choo et al., 2018; Arango & 
Nairn, 2019; Pyo et al., 2022). However, from 2019 to 2023, the adoption of UAVs for 
chl-a monitoring became increasingly popular, as evidenced by the gradual increase in 
published studies, as shown in Figure 4.

In terms of the spatial distribution, the retrieved studies were conducted across thirteen 
different countries, with 66% in Asia, 19% in North America, 9% in Europe and 6% in 
South America (Figure 5). In Asia, most of the studies were conducted in China (42%) 
(Zhang et al., 2020a; Chen et al., 2021; El-Alem et al., 2021; Liu et al., 2021; Song et al., 
2022; Zhao et al., 2022b; Xiao et al., 2023), followed by South Korea (23%) (Kim et al., 
2016; Kwon et al., 2020; Hong et al., 2023). In North America, 12% of the studies were 
done in the United States of America (USA), while Canada and Brazil (South America) 
had a limited number of studies, 5% and 7%, respectively (Zeng et al., 2017; Silveira 
Kupssinsk€u et al., 2020; El-Alem et al., 2021). Only 2% of studies were conducted per 
country in the remaining countries of Asia and Europe. The high volume of studies in 
China can be attributed to several factors. China has extensive and diverse water bodies, 
including numerous large rivers, lakes and reservoirs, providing ample opportunities for 
water quality monitoring research using UAV technology. Additionally, China has 
invested heavily in UAV technology and remote sensing research, leading to more studies. 
The fewer studies in other regions could be due to various reasons, including less avail
ability of advanced UAV and remote sensing technology and limited research funding. 
Notably, no studies in the retrieved literature were conducted in Africa.

Regarding temporal distribution, most (75%) of the selected studies focused exclusively on 
summer-season research (Su & Chou, 2015; Jang et al., 2016; Kwon et al., 2020; El-Alem et al., 
2021; Hong et al., 2022; Lo et al., 2023). This preference may stem from constraints such as lim
ited funding, shorter research timelines and the seasonal nature of specific research grants. 

Figure 4. Annual frequency of UAV-based studies that monitored chl-a in inland open water bodies.
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Despite these limitations, single-season studies can still provide valuable insights, especially dur
ing peak periods of algal growth. In contrast, 25% of the studies addressed temporal variations 
by collecting data across multiple seasons (summer, autumn and winter) (Arango & Nairn, 
2019; Chen et al., 2021; Liu et al., 2021; Sharp et al., 2021; Zhao et al., 2022b; Bunyon et al., 
2023; CieR _zkowski et al., 2023). Such multi-season studies are advantageous as they provide a 
more comprehensive view of seasonal patterns and trends in water quality.

3.3. Chl-a and associated water quality parameters in various water bodies

The included articles focused on various aspects of algal dynamics, including chl-a, cyano
bacteria, harmful algal blooms (HABs) and phytoplankton, often examining these parame
ters individually or, in some cases combined with other eutrophication parameters. 60% 
of the articles exclusively focused on the chl-a, underscoring its importance as a key indi
cator of algal biomass, while 20% examined both chl-a and nutrients such as total nitro
gen (TN) and total phosphorus (TP) (Arango & Nairn, 2019; Cillero Castro et al., 2020; 
Zhang et al., 2020b; Chen et al., 2023). These nutrients are primary drivers of eutrophica
tion, which leads to increased algal growth and potential HABs (Rankinen et al. 2019). 
Additionally, 9% of the articles explored the relationship between chl-a and dissolved oxy
gen (DO) (Bunyon et al., 2023; Hong et al., 2023; Yang et al., 2023). This relationship is 
important because excessive algal growth, indicated by high chl-a levels, can lead to oxy
gen depletion. Regarding correlations between chl-a and other water quality parameters, 
9% of the studies indicated a positive correlation between chl-a and TP (Arango & Nairn, 
2019; Zhang et al., 2020a; Zhang et al., 2022), 5% demonstrated a positive correlation 
between chl-a and TN (Arango & Nairn, 2019; Zhang et al., 2020a; Zhang et al., 2020b) 
and 2% revealed a positive correlation between chl-a and DO (Morgan et al., 2020).

Regarding the type of water bodies, 39% of the retrieved studies were conducted in riv
ers (Jang et al., 2016; Choo et al., 2018; Son et al., 2020; Ahn et al., 2021; Liu et al., 2021; 

Figure 5. Global spatial distribution of studies that utilised UAVs for chl-a monitoring in inland water bodies.
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Xiao et al., 2022), 25% on lakes (Guimar~aes et al., 2017; Silveira Kupssinsk€u et al., 2020; 
El-Alem et al., 2021) and 14% on reservoirs (Stoyneva-G€artner et al., 2019; Lu et al., 2021; 
Pokrzywinski et al., 2022). Interestingly, 2% of the studies focused on a dam, highlighting 
a significant gap in the literature.

Based on the findings (Figure 6), approximately 26% of the studies focused on water 
bodies for potable water supply (Su & Chou, 2015; Stoyneva-G€artner et al., 2019; Son 
et al., 2020; Zhao et al., 2022b; Xiao et al., 2023), 15% on multi-purpose use (industrial, 
agricultural, living and drinking purposes) (Kim et al., 2016; Becker et al., 2019; 
Pokrzywinski et al., 2022) and, 11% directed their focus towards water bodies designated 
for multipurpose and or irrigation purposes (Morgan et al., 2020; Hong et al., 2022; 
CieR _zkowski et al., 2023). This gives an understanding of the practical applications and 
relevance of the research findings. It also shows how UAVs are being utilised in differ
ent sectors. A considerable portion of studies (28%) did not articulate the intended pur
pose of the water bodies under investigation, revealing a significant gap in the literature.

3.4. In situ methods of measuring and analysing chl-a data in small water bodies

As shown in Figure 7, the results indicate that 22% of the included articles employed 
spectrophotometers for chl-a analysis in a laboratory environment (Su & Chou, 2015; 
Morgan et al., 2020; T�oth et al., 2021). While 22% of the studies utilized both spectroradi
ometers and spectrophotometers to gather in situ data (Kwon et al., 2020; Zhang et al., 
2021; Hong et al., 2022). 11% of the articles used spectroradiometers only (Lu et al., 2021; 
De Keukelaere, 2023) and 9% of the studies used a variety of multiparameter probes, 

Figure 6. Articles categorised by water body purpose, showing the frequency of studies for each purpose.
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including the YSI EXO-2 and HX-200 meters (Hong et al., 2022; Zhao et al., 2022b; Lo 
et al., 2023). The rest of the studies used an integration of either a multiprobe or a spec
troradiometer to allow for versatile, comprehensive, enhanced accuracy, automated meas
urements and real-time data collection.

3.5. UAV characteristics and platforms

This review identified two primary UAV platform types used for chl-a monitoring: fixed- 
wing and multicopters. Multicopters dominated, with 75% of studies employing them, 
followed by fixed-wing drones (21%) and 4% unspecified. DJI platforms (60%) were the 
predominant choice among multicopter platforms (Choo et al., 2018; Zhang et al., 2020a; 
Song et al., 2022; De Keukelaere, 2023), while SenseFly eBee (13%) platforms accounted for 
a significant share of the fixed-wing vehicles (Jang et al., 2016; Su, 2017; Silveira Kupssinsk€u 
et al., 2020). Fixed-wing UAVs offer aerodynamic benefits, enabling longer flight times, 
larger bloom surveillance and multiple sensor deployment for enhanced chl-a concentration 
accuracy. They suit mapping wider spatial extents. Multicopters excel in closer proximity 
analysis due to their vertical take-off and landing (VTOL) capabilities (Zaludin and 
Harituddin, 2019). This capability makes them easily employed in different environments 
than fixed-wing platforms, which require substantially flat and dry areas to deploy and 
launch successfully near water bodies. Other UAV platforms included Aytges (2%) (Cillero 
Castro et al., 2020), FireFLY BirdsEyeView (2%) (Choo et al., 2018), Begren RC (2%) 
(Becker et al., 2019), G4 SkyCrane (2%) (Pokrzywinski et al., 2022), ATI AgBot (2%) 
(Arango & Nairn, 2019), 3DR Solo(2%) (Morgan et al., 2020) and Remo-M (2%) (Kim 
et al., 2021). Additionally, 23% of the reviewed studies combined UAV and satellite 
acquired data from sensors which include Sentinel-2 & 3, Landsat 7, 8 & 9, PlanetScope, 
GF-1 (Gaofen-1), Orbita Hyperspectral Satellite (OHS) and ZY-3 satellite (Jung et al., 2017; 
Cillero Castro et al., 2020; El-Alem et al., 2021; Fu et al., 2023; Yang et al., 2023). This 

Figure 7. Instruments and methods for measuring in situ chl-a data, including field and laboratory techniques, and 
their frequency of use in the selected studies.
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synergistic approach enhances spatial and temporal coverage, improves data accuracy, and 
allows for continuous monitoring, event detection and more comprehensive analysis.

3.6. Sensors and spectral bands

In remote sensing, the characteristics of sensors play a pivotal role in estimating water qual
ity parameters. They impact the monitoring system’s accuracy, reliability, and effectiveness 
(Modiegi et al. 2020). Thirteen different sensors and cameras were used in the reviewed 
studies (Figure 8). These sensors comprised multispectral and hyperspectral types, catering 
to various spectral bands. Approximately 55% of the studies utilised multispectral sensors, 
spanning the visible to near-infrared spectrum, including red, green, blue, red edge and 
near-infrared bands (Su & Chou, 2015; Guimar~aes et al., 2017; Morgan et al., 2020; Chen 
et al., 2021; Zhao et al., 2022b; Lo et al., 2023). These sensors predominantly utilised the 
near-infrared (NIR; 708 nm-842nm) and red (640 nm-668nm) bands as the optimal bands 
for detecting chl-a. Some studies also incorporated the green band (560 nm) and blue band 
(475 nm-497nm) and very few used the red edge band (730 nm-740nm) (Xiao et al., 2022; 
Zhao et al., 2022a). The most commonly used multispectral sensor was the MicaSense 
Rededge, utilised by 18% of the studies (Figure 8). On the other hand, 36% of the studies 
employed hyperspectral sensors, which captured data across a wavelength range of 350 nm 
to 1700 nm (Jang et al., 2016; Kwon et al., 2020; Pokrzywinski et al., 2022; Cai et al., 2023), 
with the 400 nm-755nm band being the most utilised segment for chl-a detection. A signifi
cant number of the studies (16%) used the Nano-Hyperspec hyperspectral sensor (Figure 
8), making it highly effective for detecting chl-a in various ecosystem environments. 
Notably, two studies (Wu et al., 2023; Xiao et al., 2023) employed a synergistic approach by 
concurrently utilising multispectral and hyperspectral sensors. This approach leveraged the 
strengths of both types of sensors: the broad spectral coverage and high spatial resolution of 
the multispectral sensors, detailed spectral information, and high precision offered by hyper
spectral sensors. By combining these sensors, the studies enhanced the accuracy and reliabil
ity of chl-a monitoring and mapping.

Figure 8. Types of sensors used in chl-a monitoring, showing their frequency in the selected studies.
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3.7. Algorithms utilised for detecting chl-a concentrations in small water bodies

3.7.1. Spectral indices and band combinations
This study observed a variety of indices and band combinations for chl-a estimation in 
inland water bodies (Table 2). The indices comprise the normalised difference vegetation 
index (NDVI) (Douglas Greene, 2021), normalised difference red edge index (NDRE) 
(Kim et al., 2021), normalised difference chlorophyll index (NDCI) (Mishra and Mishra, 
2012; Pokrzywinski et al., 2022), surface algal bloom index (SABI) (Douglas Greene, 
2021). Although each of these indices was tailored to the specific aquatic environment for 
which it was developed, the fluorescence line height blue (FLH B), three-band algorithms 
(3BDA), and the NDCI indices were observed to be more effective, each gave a coefficient 

Table 2. Accuracy measure for chl-a vegetation indices and band algorithms.

Index name Abbreviation Formula Metric (R2) References

Fluorescence line height blue FLHB G−ðRþ ðB−RÞÞ 0.75–0.86,  
average 0.805

Pokrzywinski (2022); 
Olivetti (2023)

Three band algorithms 3BDA 0.67–0.86,  
average 0.765

Pokrzywinski (2022); 
Cai (2023); Olivetti 
(2023)

Normalized Difference 
Chlorophyll Index

NDCI
708−665

708þ 665
0.5–0.82,  

average 0.707
Pokrzywinski (2022); 

Olivetti (2023); 
Xiao (2023)

INDEX
SR665

−1−SR708
−1

SR753
−1 þ SR708

−1
� 0.670 Olivetti (2023)

Two band algorithms 2BDA 0.63–0.96,  
average 0.646

Hong (2022); Logan 
(2023); Xiao (2023)

Ratio normalized difference 
vegetation index

RNDVI
NIR−R

NIRþ R

� �

�
NIR

R

� �

0.611 Zhao (2022b)

NFH560
700

560 or 675
0.610 Xiao (2023)

Red, Rededge and NIR band 
ratio

0.586 Maravilla (2019)

Excess green minus excess red EXGR EXG−1:4 � R–G 0.580 Zhao (2022b)

Brute-Force Method
684
674

0.570 Logan (2023)

Brute-Force Method 
Normalized difference

684−674
684þ 674

0.570

Fluorescence line height violet FLH Violet 530 – (644þ [430 – 644]  
� SS (0.467))

0.550 Pokrzywinski (2022)

Ocx
443 or 490 or 510

555
0.550 Xiao (2023)

Green Normalized Difference 
Vegetation Index

GNDVI
NIR−G

NIRþ G
0.312 − 0.74,  

average 0.519
Kim (2021); Olivetti 

(2023); Zhao 
(2022b)

Ratio vegetation index RVI
NIR

R
0.508 Zhao (2022b)

Normalized difference 
vegetation index

NDVI
NIR−Redð Þ

NIRþ Redð Þ
0.04–0.72,  

average 0.497
Choo (2018); Zhao 

(2022b); Chen 
(2023)

Green Two Band blue G2B 0.470 Xiao (2023)

Two-band enhanced 
vegetation index

EVI2
2:5 � N IR−Rð Þ

NIRþ 2:4 � Rþ 1
0.440 Zhao (2022b)

Modified single ratio MSR MSR ¼
NIR

R

� �
−1

NIR
R

� �
þ 1

0.425

Normalized difference red 
edge index

NDRE
NIR−RE

NIRþ RE
0.04–0.0418,  

average 0.0409
Kim (2021); Zhao 

(2022b)

B, blue; G, green; NIR, near-infrared; R, red; RE, red edge, SR – spectral reflectance, SS¼ Spectral Shape coefficient 
calculated as ðk−k−Þ

ðkþ−k−Þ
. 
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of determination, R2 value of greater than 0.7. Also, the results showed that 34% of the 
studies utilised two-band algorithms (2BDA) while 15% utilised 3BDA.

The NDVI index was the most employed (25%) spectral index; however, its R2 values 
ranged from as low as 0.04 to 0.72. The NDVI was the most utilised index because it uses 
NIR and red bands which are suitable for estimating chl-a. However, the NDCI index, 
which combines the red and Rededge bands, demonstrated moderately higher accuracy 
than the NDVI index. This is because varying depths can affect the reflectance in the red 
and NIR bands, leading to lower accuracy and lower R2 values for NDVI. Hence, alterna
tive indices like the NDCI index (Mishra and Mishra, 2012; Olivetti et al., 2023) offer a 
solution as they are specially designed for chlorophyll estimation in water. The red and 
red edge bands of the NDCI index exhibit stronger and more reliable correlations, yield
ing higher R2 values. The NDCI’s targeted sensitivity to chlorophyll reduces the impact of 
confounding factors such as water turbidity and suspended particles (Chien et al. 2016), 
hence the higher accuracy.

Additionally, the literature revealed that 3BDA gave a higher precision than 2BDA. 
3BDA remarkably exhibited R2 values, averaging at 0.765, in comparison to 2BDA, which 
yielded an average of 0.646 for R2 values. This is because 3BDA leverages extra spectral 
information from the extra band, enhancing its ability to discern target parameter charac
teristics. Also, the interaction between different water components can be slightly elimi
nated by using multiple bands (Gitelson 2003). Therefore, indices like the FLH B and 
INDEX demonstrate improved performance (Table 2) but only when hyperspectral sen
sors capture a wide range of the electromagnetic spectrum. Additionally, poor-performing 
indices (R2: 0.0001 − 0.16) were computed from the green, red and blue bands, for 
example, the visible atmospherically resistant index (VARIGREEN) and green–red ratio 
index (GRRI) while the moderate-performing indices (R2: 0.4 − 0.6) computed from the 
red and NIR bands, vegetation indices such as NDVI, DVI and green NDVI.

3.7.2. Machine learning
This study revealed that linear regression (LR), followed by random forest (RF), extreme 
gradient boosting (XGBoost) and support vector machine (SVM), were the most widely 
used algorithms for the prediction of chl-a from UAV imagery (Figure 9). Linear 

Figure 9. Machine learning algorithms used by the selected studies to estimate chl-a concentration from UAV data.
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regression was used in 40% of the studies due to its simplicity in computation. While, 
22% of the studies employed RF, which offers several significant advantages. It is quicker 
than bagging and highly accurate, effective in handling large data dimensionality and mul
ticollinearity, making it suitable for complex datasets. As a non-parametric algorithm, RF 
does not assume a specific data distribution, adding to its versatility and ability to work 
with diverse sample types. Its built-in feature selection mechanism reduces overfitting, 
improving predictive performance. RF is also robust to outliers and noise, enhancing reli
ability, and can effectively handle imbalanced data. It is also easy to implement, can be 
parallelised, and significantly speeds up the training process (Breiman, 2001; Pal, 2005; 
Belgiu and Dr�aguţ, 2016; Herrera et al. 2019).

Regarding the performance of these algorithms (Table 3), the Catboost, Adaboost 
regression, Artificial Neural Network (ANN), Deep Neural Network (DNN) and 
K-Nearest Neighbors (KNN) demonstrated high R2 values over 0.8 and were used in 

Table 3. Accuracy measure for chl-a machine learning and predictive modelling methods.

Algorithm Abbreviation Metric (R2) References

Self-Adapting Selection of Multiple  
Neural Networks

SSNN 0.984 Zhang (2020b)

Ensemble-Based System EBS 0.940 El-Alem (2021)
Hybrid Feedback Deep Factorization  
Machine

HF-DFM 0.930 Zhang (2021)

Chen Method 2023 0.917 Chen (2023)
Gradient Boost Regression Tree GBRT 0.900 (Lu 2021)
Catboost Regression CBR 0.808–0.96,  

average 0.88
Chen (2021); Lu (2021);  
Fu (2023)

Extremely Randomized Trees ERT 0.870 Lu (2021)
Genetic Algorithm_XGBoost GA _XGBoost 0.855 Chen (2023)
Genetic Algorithm_AdaBoost Regression GA_ABR 0.826
AdaBoost Regression ABR 0.784–0.89,  

average 0.819
Chen (2021); Lu (2021);  
Chen (2023)

Artificial Neural Network ANN 0.73–0.9014,  
average 0.816

Silveira Kupssinsku et al. (2020);  
Wu (2023)

Adaptive Ensemble Learning Regression AELR 0.814 Fu (2023)
Deep Neural Network DNN 0.805–0.817,  

average 0.811
Chen (2021); Chen (2023)

K-Nearest Neighbors KNN 0.703–0.8964,  
average 0.8

Silveira Kupssinsku et al. (2020);  
Chen (2021)

Particle Swarm Optimization Algorithm PSO–LSSVM 0.778 Liu (2021)
Regression trees RT 0.77 Morgan (2020)
Partial Least Squares Algorithm PLS 0.764 Liu (2021)
Extreme Learning Machine ELM 0.7299–0.7609,  

average 0.745
Zhao (2022b, 2022a)

Extreme Gradient Boosting XGBoost 0.415–0.92,  
average 0.737

Chen (2021); Lu (2021);  
Xiao (2022); Chen (2023)

Genetic Algorithm Partial Least Squares GA-PLS 0.730 Zhang (2021)
Random Forest RF 0.317–0.874,  

average 0.705
Chen (2021); Xiao (2022);  
Fu (2023); Yang (2023)

Linear regression LR 0.203–0.980,  
average 0.7

Su (2017); Silveira Kupssinsku et al. (2020);  
Yi (2023)

1 Dimensional - Convolutional  
Neural Network

1D-CNN 0.1932–0.91,  
average 0.691

Hong (2022); Pyo (2022);  
Zhao (2022a); Lo (2023)

Transformer 0.650 Yang (2023)
Mixture Density Network MDN 0.650
Support Vector Machine SVM 0.4813–0.759,  

average 0.623
Silveira Kupssinsku et al. (2020);  
Zhao (2022a); Lu (2021)

Multi-Layer Perceptron Regression MLPR 0.620 Lu (2021)
Integrated Data Fusion and Mining IDFM 0.620 Zhang (2021)
Multiple Linear Regression MLR 0.101–0.860,  

average 0.62
Arango (2019); Zhang (2020b);  
Xiao (2023)

ResNet-182 0.610 Hong (2022)
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more than three studies, establishing them as high-performing techniques. LR, RF, 
XGBoost and Extreme Learning Machine (ELM) had average R2 values greater than 0.7, 
positioning them as strong performers. Despite being used by numerous studies, multiple 
linear regression (MLR) yielded an average R2 value of 0.62. This performance can be 
considered moderate compared to other high-performing algorithms and indicates limited 
performance in chl-a mapping. Conversely, Self-Adapting Selection of Multiple Neural 
Networks (SSNN), Ensemble-Based System (EBS), Hybrid Feedback Deep Factorisation 
Machine (HF-DFM), the Chen method (2023) and Gradient Boost Regression Tree 
(GBRT) achieved R2 values exceeding 0.9, while Genetic Algorithm_AdaBoost Regression 
(GA_ABR), Ensemble Learning Regression (ELR), Genetic Algorithm_XGBoost and 
Extremely Randomised Trees (ERT) surpassed 0.8. However, comparing these models is 
challenging due to their use in singular studies. Notably, Neural Networks (NN) emerged 
as a low-performing algorithm, with an accuracy of 0.093, rendering it challenging to 
assess its efficacy in chl-a estimation.

One of the methods used by the reviewed literature to estimate chl-a from UAV 
images was the use of stacked models. The Artificial Neural Network_Bayesian probabilis
tic (ANN-BP) stacked model exhibited the highest performance, achieving an average R2 

value of 0.84 (Zhang et al., 2020a; Zhang et al., 2020b). This was followed by the Random 
Forest_XGBoost (RF_XGB) model which gave an R2 value of 0.504 for the testing data 
and a near-perfect score of 0.999 for its training data (Xiao et al., 2022). Additionally, 
other estimation models including Environmental Fluid Dynamics Code - Recursive Least 
Squares (Ahn et al., 2021; Hong et al., 2023), the Bio-optical algorithm approach (Hong 
et al., 2022), and the matching pixel-by-pixel (MPP) algorithm (Su, 2017) were found in 
the reviewed literature. These methods demonstrated moderately high accuracies, ranging 
from 0.7 to 0.85.

4. Discussion

4.1. Progress in the mapping monitoring of chl-a using UAVs

The reviewed studies reveal that between 2015 and 2018, the use of UAV applications in 
small water bodies was limited. This could be attributed to the high cost of UAVs 
(Sibanda et al. 2021) during this period, limiting access for research purposes. However, 
the usage of UAVs has gained traction over the last five years, which can be attributed to 
several factors such as improved UAV technologies, miniaturing of sensors, cost effi
ciency, increase in research funding, high-resolution data and real-time monitoring.

The findings showed that most studies were conducted in China, South Korea and the 
USA (Figure 5). This stems from the fact that UAV technology in these countries/regions 
evolved as far back as the twentieth century (Sibanda et al. 2021). Also, the world’s lead
ing UAV manufacturer, DJI, is based in Shenzhen, China, and this platform emerged as 
the most used from the reviewed studies. This proximity and ease of access to UAV tech
nology have likely contributed to the region’s high concentration of research studies. 
Additionally, South Korea’s strong technology industry and innovative culture have facili
tated the adoption and application of UAVs in various fields such as water quality moni
toring, leading to more studies in the area. Overall, these countries are well-developed 
and can fund water quality monitoring programs.

Using a spectrophotometer in in situ data collection (Figure 7) indicates a preference 
for controlled, precise measurements as laboratory settings allow for meticulous calibra
tion and control of experimental conditions, leading to highly reliable data. While 
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spectrophotometers provide high precision, their use is often limited by the need to trans
port samples to the laboratory, which can introduce delays and potential sample degrad
ation. This justifies why 21% of the studies utilised both spectroradiometers and 
spectrophotometers to gather in situ data. Spectroradiometers are capable of rapid, non- 
destructive measurements directly in the field and allow for real-time monitoring and 
immediate data availability (Guimar~aes et al., 2017). Unlike spectrophotometers, spectror
adiometers determine chl-a concentration indirectly using radiances computed in an 
equation. The combined use of spectroradiometers and spectrophotometers reflects an 
approach that balances field applicability with data accuracy.

Regarding platforms and sensors, multi-copters were the most prevalent used in 
mapping chl-a. According to Zaludin and Harituddin (2019), multi-copters are preferred 
to fixed-wing drones in water quality mapping because of their cost-effectiveness. In 
this review, multispectral sensors were adopted by most of the studies relative to hyper
spectral sensors, because of their cost-effectiveness (Adjovu et al. 2023). The MicaSense 
sensor was widely used in chl-a monitoring in small water bodies because it can capture 
images in five distinct bands: red, green, blue, near-infrared and Rededge. These bands 
are crucial in the estimation of chl-a. On the other hand, according to Shafique et al. 
(2003), hyperspectral sensors exhibit high spectral resolution which allows them to pro
vide detailed and high-accuracy information on water quality of surface waters. As a 
result, hyperspectral sensors are considered very useful in water quality as they can 
detect changes in water quality more appropriately than multispectral sensors. Despite 
these merits, hyperspectral sensors have drawbacks, including high costs associated with 
sensor procurement and operational maintenance, limited depth penetration and sensing 
capabilities due to water absorption and scattering and complex data processing and 
analytical requirements (Bangira et al. 2024). Some reviewed studies utilised multispec
tral and hyperspectral sensors to achieve comprehensive datasets leveraging the wide 
range of the electromagnetic spectrum and cost-effective solutions (Topp et al. 2020; 
Yang et al. 2022).

4.2. Application of chl-a estimation algorithms

The findings of this review highlight the strengths and limitations of various algorithms 
used for chl-a estimation in UAV remote sensing applications. While linear regression is 
widely used due to its simplicity, it has limitations in accuracy evaluation. As Arias- 
Rodriguez et al. (2021) noted, linear regression assumes a linear relationship between pre
dictor variables and the response variable, which may not always be the case. If the actual 
relationship is non-linear, linear regression may fail to capture the true pattern, leading to 
poor accuracy.

In this study, random forest was the most popular machine learning algorithm but it 
exhibited inconsistent performance. Despite an average R2 value of 0.7, it showed good 
results in training data (R2 > 0.7) but poor generalisation in testing data (R2 as low as 
0.3) (Su & Chou, 2015; Xiao et al., 2022; Lo et al., 2023). This inconsistency may be attri
buted to the weak correlation between chl-a and spectral indices, which limits model per
formance (Lo et al., 2023). In contrast, algorithms like XGBoost demonstrate high 
accuracy due to their operational efficiency, flexibility and ability to handle small sample 
sizes, control model complexity and reduce bias. For instance, Chen et al. (2021), Lu et al. 
(2021), Chen et al. (2023) and (Fu et al., 2023) achieved R2 values greater than 0.8 using 
sample sizes of 44, 33, 59 and 31, respectively, showcasing the superior performance of 
XGBoost in chl-a estimation. The SVM algorithm was also widely used due to its 

GEOCARTO INTERNATIONAL 17



robustness, ability to handle nonlinear relationships and accuracy in predicting results 
with small sample sizes (Raghavendra & Deka, 2014; Zhao et al., 2022a). However, its 
moderate accuracy (R2 ¼ 0.62) highlights the need for alternative approaches.

Probabilistic methods such as BPNN are suitable for large study areas, as they can 
accurately estimate water quality parameters even with imbalanced datasets and handle 
non-linear relationships. For example, Zhang et al. (2020a) successfully applied BPNN to 
a 0.42 km2 river section with 35 samples. However, BPNN has drawbacks like convergence 
issues and local minimisation. Liu et al. (2021) observed significant deviations between 
predicted and true values with the BPNN algorithm, reducing model accuracy and per
formance. Convolutional Neural Networks (CNN) were the most adopted deep learning 
method, with reliable feature extraction capabilities from multi-dimensional data (Sothe 
et al. 2020). However, deep learning algorithms are based on black box models, making it 
challenging to interpret their outputs (Koh and Liang, 2017; Lee et al. 2021).

Neural networks and supervised machine learning algorithms performed strongly due 
to their stability, speed and limited overfitting. Stacked machine learning models achieved 
higher R2 values than single models (Zhang et al., 2020a; Zhang et al., 2020b), but may be 
susceptible to overfitting. This overfitting issue suggests that stacked models may become 
overly specialised in the training data, failing to generalise effectively to new data. 
Therefore, using stacked models with caution on small datasets is crucial to avoid becom
ing too focused on specific dataset characteristics rather than learning underlying patterns 
and relationships (Rocha et al. 2017; Wang et al. 2019).

4.3. Gaps, challenges and opportunities

Research on mapping chl-a in small water bodies using UAVs has been gaining momen
tum in recent years, driven by advancements in UAV sensor technologies. This study 
extensively reviewed existing literature and identified several key gaps, challenges and 
opportunities related to using UAVs for chl-a mapping in small water bodies.

Previous studies of chl-a estimation using UAV-remotely sensed have not done any 
work in Africa. This may have been impeded by the high costs of UAVs and piloting 
licenses, as well as legal restrictions on UAV usage in many African countries (Rhee et al. 
2018; Wang et al. 2020; Sibanda et al. 2021). Most affordable UAVs are also designed for 
recreational use, rather than research (Sibanda et al. 2021).

In addition to the geographical gap, literature revealed that the mapping and monitor
ing chl-a in small inland reservoirs is still rudimentary. This is because inland small reser
voirs are too small, making them challenging to map using satellite remote sensing with 
coarse-resolution sensors. However, UAV-borne hyperspectral and multispectral sensors 
could address this gap by acquiring ultra-high resolution suitable for mapping chl-a in 
small reservoirs.

Moreover, several studies have successfully used UAVs to monitor chl-a in small water 
bodies. However, several challenges hinder the effectiveness of UAVs in chl-a mapping, 
such as the lack of robust models that can be trusted across multiple studies. While sev
eral models (EBS, Chen method, PSO-LSSVM, GA_ABR, GA_XGB, AELR, GBRT, ERT, 
GA_PLS and SSNN) have shown strong predictive power (R2>0.7), each has only been 
evaluated in a single study, raising concerns about their reliability and generalisability. 
Furthermore, the limited number of comparative studies makes it difficult to determine 
the best-performing algorithm.

The use of thirteen different cameras, ten different UAV platforms, several different 
algorithms and overall methodology study by study highlights UAVs’ flexibility and 
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customised application in estimating chl-a for different geographical settings. While this is 
a merit, it also reveals a lack of standardisation in the processes involved in UAV-based 
remote sensing of chl-a. A solution to this will be to provide a standardised framework 
and simplified inversion models (Shen et al. 2012) for different case scenarios (based on 
the type of water body and size of the water body). This will assist in reducing the time 
spent testing and evaluating multiple UAVs, sensors and algorithms.

The performance of some algorithms may have been affected by single-date or single- 
image approach disadvantages because a small sample size can affect the algorithm’s 
accuracy (Wasehun et al. 2024). Few studies collected data across multiple times or sea
sons, highlighting the need for more robust datasets to improve model accuracy. This 
review emphasises the importance of multi-temporal data collection to enhance the reli
ability of water quality predictions.

4.4. Limitations of the study

Some articles were unavailable in full text/length, limiting the review’s comprehensive
ness. Non-English articles were excluded, which may negatively impact the total number 
of studies reviewed on estimating chl-a concentrations. The accuracy of remote sensing 
data is crucial for reliability. This review used R2 values as the primary measure for 
accuracy, which was limiting. Different studies used various accuracy measures with 
non-universal and variable International System of Units (SI unit). Additionally, R2 val
ues are influenced by factors such as sample size, sensor type, algorithm used and vege
tation indices applied. These factors should be considered in the final analysis. 
However, since only peer-reviewed studies were included, it is assumed that the accur
acy measures used in each study have been verified and deemed credible by peer 
reviewers.
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