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Abstract
Background: The World Health Organization (WHO) clinical case definitions for pneumonia were designed to prioritize sensitivity over specific
ity. In sub-Saharan Africa, the disease that is most likely to be misclassified as pneumonia is Plasmodium falciparum malaria.
Methods: By using chest X-ray positivity as an indicator for pneumonia, we estimated the extent of pneumonia misclassification due to malaria 
in the Pneumonia Etiology Research for Child Health (PERCH) study. Additionally, we developed a simple model to predict the proportion of 
pneumonia cases as defined by the WHO that could be attributed to malaria in settings with varying levels of malaria parasitaemia prevalence.
Results: In the PERCH study, the prevalence of malaria parasitaemia was low (4.7% among WHO pneumonia cases and 1.4% among controls) 
and we estimate that only 2.5% of WHO pneumonia cases were misclassified. However, when assuming a prevalence of malaria parasitaemia 
of 24%, corresponding to the average for malaria-endemic areas in Africa, we estimate that 28% of WHO pneumonia cases are misclassified. 
Among malaria-slide-positive WHO pneumonia cases in PERCH, lower chest wall indrawing [adjusted odds ratio (aOR) ¼18.1, 95% confidence 
interval (95% CI): 1.9, 175.8, P¼0.012], crackles on chest auscultation (aOR¼13.1, 95% CI: 1.4, 127.4, P¼ 0.027), and nasal flaring (aOR¼ 5.9, 
95% CI: 1.1, 32.8, P¼0.041) were associated with chest X-ray positivity.
Conclusion: In settings that are typical of sub-Saharan Africa, we predict that one-quarter of WHO-defined pneumonia cases are malaria rather 
than pneumonia. Among children with WHO pneumonia who also test positive for malaria parasitaemia, clinical features that favour pneumonia 
include lower chest wall indrawing, nasal flaring, and crackles on chest auscultation.
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Key Messages 
� There is a significant overlap in symptoms between malaria and pneumonia, which can lead to the misdiagnosis of both conditions. 
� In malaria-endemic settings in sub-Saharan Africa, as many as one in four cases of clinical pneumonia, as defined by the World Health 

Organization, is misdiagnosed due to malaria. 
� Certain clinical features such as lower chest wall indrawing, nasal flaring, and crackles on chest auscultation indicate pneumonia in 

children with malaria parasitaemia. 
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Introduction
In 2019, pneumonia and malaria were estimated to cause 
14% and 7.1%, respectively, of all childhood deaths world
wide [1–3]. In malaria-endemic countries in sub-Saharan 
Africa, a large proportion of acute febrile illnesses in children 
are caused by malaria or pneumonia. Differentiating between 
these causes is challenging, particularly in primary care, in 
which diagnoses rely entirely on symptoms and clinical signs 
[4–9]. For many years, febrile illness has been treated pre
sumptively as malaria whereas cough/breathing difficulty ac
companied by fast breathing has been treated as pneumonia 
[10–12].

Following clinical research in the 1980s and 1990s, the 
World Health Organization (WHO) derived a three-category 
clinical case definition for pneumonia that applied to children 
with cough or difficulty breathing [13]. Non-severe pneumo
nia was defined by fast breathing, severe pneumonia by lower 
chest wall indrawing, and very severe pneumonia by the pres
ence of at least one danger sign (i.e. central cyanosis, inability 
to breastfeed/drink, vomiting everything, convulsions, leth
argy, unconsciousness, or severe respiratory distress). In 
2013, the WHO revised the classification of pneumonia, us
ing the same signs, into two categories: non-severe and se
vere. Under this revised classification, the condition that was 
formerly considered ‘very severe pneumonia’ was reclassified 
as ‘severe pneumonia’, and ‘severe pneumonia’ and ‘non-se
vere pneumonia’ were combined into a single category of 
‘non-severe pneumonia’ [14].

In developing the original pneumonia case definitions, the 
WHO prioritized sensitivity to ensure that no child who 
might benefit from antibiotics is denied treatment [15]. 
However, the trade-off for high sensitivity was poor specific
ity: many children who do not have pneumonia are also cap
tured by the case definition. In sub-Saharan Africa, the 
disease that is most likely to be misclassified as pneumonia is 
Plasmodium falciparum malaria [11, 16]. At an average prev
alence of 24%, malaria infection is common in the region 
[17] and frequently associated with respiratory symptoms 
[12, 18, 19]. Although the mechanism that links malaria with 
respiratory symptoms is unclear, it is thought that metabolic 
acidosis, which is common in malaria patients and often com
pensated for by deep breathing, could provide an explana
tion [6].

Although malaria infection is a potential source of misclas
sification, not all malaria-slide-positive WHO pneumonia 
cases are misclassified: genuine coinfections can also occur. 
In fact, they may be common in malaria-endemic areas, as 
there is evidence to suggest that malaria infection increases 
the risk of coinfection with a respiratory pathogen [20, 21].

Thus, the extent to which pneumonia misclassification 
occurs under the WHO criteria is uncertain [15]. However, 
data from chest X-rays present a possible avenue for gauging 
this misclassification. Here, we use data on chest X-ray 
(CXR) positivity that were collected as part of the 
Pneumonia Etiology Research for Child Health (PERCH) 
study [22, 23]—a multi-country case–control study of pneu
monia aetiology—to estimate the proportion of WHO- 
defined pneumonia that is misclassified. Additionally, we de
scribe the correlation between the WHO danger signs and 
CXR-positivity, and develop a simple model to predict mis
classification in settings that are characterized by different 
levels of malaria parasitaemia prevalence.

Methods
Study sites and population
PERCH was a case–control study that was conducted be
tween August 2011 and January 2014 in seven low- and 
middle-income countries in sub-Saharan Africa and Asia. 
This analysis is restricted to three sites that were malaria- 
endemic, i.e. Kilifi, Kenya; Basse, The Gambia; and Bamako, 
Mali. No malaria was identified in South Africa, Thailand, or 
Bangladesh and only two cases of malaria were identified in 
Zambia. Details on the collection of clinical data and labora
tory tests are provided in the Supplementary material and the 
full study protocol is available at https://publichealth.jhu.edu/ 
ivac/resources [24]. Briefly, cases comprised children who 
were aged 1–59 months and hospitalized with severe or very 
severe pneumonia following the (pre-2013) WHO definitions 
[13, 25]. Children who met the criteria for non-severe pneu
monia were not included, as the focus of PERCH was on hos
pitalized pneumonia, which tends to be severe [25]. CXRs 
were performed on all cases, with CXR-positivity determined 
by evidence of alveolar consolidation or any other infiltrate 
on a chest radiograph that was performed ≤72 hours after 
presentation [26, 27] (more detail on CXR classification is 
provided in table 1 of Cherian et al. [26]). The controls were 
children who were aged 1–59 months, randomly selected 
from the catchment area for cases, and did not meet the 
WHO criteria for severe or very severe pneumonia [28]. 
Controls were frequency-matched to cases by enrolment date 
and age group.

Estimation of positive predictive value of 
WHO-defined pneumonia in PERCH
To estimate the positive predictive value (PPV) of the WHO 
pneumonia definition, we used CXR results from PERCH. 
Additionally, we made three assumptions:

i) The WHO definition of pneumonia is 100% specific 
among malaria-slide-negative hospital admissions in chil
dren aged 1–59 months. 

ii) CXR-positivity is 100% specific for true pneumonia. 
iii) The sensitivity of CXR findings is independent of the 

presence of malaria parasitaemia. 

A formula for PPV was derived by classifying the WHO 
pneumonia cases into four groups based on the unobserved 
true pneumonia status (n) and observed malaria-slide 
result (m): 

Group 0: Double negative (n–, m–)
Group 1: Malaria-slide-negative (nþ, m–)
Group 2: Coinfected (nþ, mþ)
Group 3: Misclassified (n–, mþ)

Let pi denote the proportion of WHO pneumonia cases in 
Group i (i¼ 0;1;2; 3Þ: The PPV can then be expressed as 
the sum of p1 and p2: 

PPV ¼ p1þp2: (1) 

Given the assumption of 100% specificity of the WHO crite
ria among malaria-slide negatives, we expect all malaria-slide 
negatives to be in Group 1 and none in Group 0. This implies 
that p0 ¼ 0 and allows us to estimate p1 as the proportion of 
malaria-slide negatives among the WHO pneumonia cases. In 
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other words, p1 ¼ 1 � v, where v is the proportion of malaria- 
slide-positive cases among the WHO pneumonia cases.

To estimate the coinfected proportion, p2, we make use of 
the CXR data. Let q denote the proportion of WHO pneu
monia cases that are both CXR-positive and malaria-slide- 
positive, and let r denote the proportion that are both 
CXR-positive and malaria-slide-negative. We estimate p2 as 
q multiplied by the factor ð1 � vÞ=r to account for the imper
fect sensitivity of CXR. Note that r=ð1 � vÞ corresponds to 
the proportion that are CXR-positive in the malaria-slide- 
negative group (Group 1). Thus, as this group are true pneu
monia cases by assumption 1, we are inflating q by 1/(CXR 
sensitivity).

Having obtained estimates p1 and p2, we estimate PPV 
from Equation 1:  

PPV ¼ 1 � vð Þþq×
1 � vð Þ

r
: (2) 

The derivation of this formula is depicted graphically in  
Figure 1 and a formal derivation is provided in the 
Supplementary information.

Modelling the relationship between PPV and 
malaria parasitaemia
We obtained PPV estimates for settings with different levels 
of malaria parasitaemia prevalence by making use of our esti
mates of pi from the PERCH cases and data on the prevalence 
of malaria from the PERCH controls. We used the latter as 
an estimate of the prevalence of malaria parasitaemia at the 
PERCH sites.

Let λ denote the average rate of WHO pneumonia across 
the PERCH sites and u denote the prevalence of malaria par
asitaemia in the PERCH controls. Among members of the 
PERCH communities that were negative for malaria parasi
taemia, the expected rate of malaria-slide-negative WHO 
pneumonia cases (Group 1) is λp1=ð1 � u). Similarly, among 
community members that were positive for malaria parasitae
mia, the expected rates of coinfected (Group 2) and misclassi
fied (Group 3) WHO pneumonia cases are λp2=u and λp3=u, 
respectively.

Based on these rates, in a setting in which the prevalence of 
malaria parasitaemia is u�, the PPV is given by: 

PPV ¼
rate of true pneumonia

rate of WHO pneumonia

¼
λp1ð1 � u�Þ=ð1 � uÞþ λp2u�=u

λp1ð1 � u�Þ=ð1 � uÞþ λp2u�=uþ λp3u�=u

¼
p1ð1 � u�Þ=ð1 � uÞþp2u�=u

p1ð1 � u�Þ=ð1 � uÞþp2u�=uþ p3u�=u
:

(3) 

We used this formula to predict PPV at various levels of 
malaria parasitaemia, assuming the same rate of true pneu
monia as in PERCH. As a sensitivity analysis, we also com
puted PPV at rates of true pneumonia that were 0.5 and 2 
times greater than the PERCH rate.

We also used the model to estimate the fraction of WHO 
pneumonias that were caused by malaria infection, i.e. the 
population-attributable fraction. Specifically, we used the 
model to predict the coinfected proportion and then multi
plied that by an estimate of the attributable fraction (AF). To 
compute the AF, we calculated the odds ratio (OR) by 

comparing the prevalence of malaria parasitaemia between 
CXR-positive cases and community controls, and used the 
standard formula AF¼ 1 � 1=OR.

Results
Characteristics of WHO-defined pneumonia cases
A total of 1946 cases of severe or very severe pneumonia fol
lowing the (pre-2013) WHO definitions [13, 25] and 2244 
controls were enrolled in the three PERCH sites in which ma
laria was detected (Figure 2). Meanwhile, 1650 cases had 
both a CXR result and a malaria result, with 798 (48.4%) 
exhibiting radiological signs of pneumonia and 77 (4.7%) 
testing positive for malaria parasitaemia. Among those with a 
positive CXR result, 204 had consolidation only, 435 had 
other infiltrates without consolidation, and 159 had both; 18 
cases had both radiological pneumonia and malaria infection. 
The clinical characteristics of the cases are shown in Table 1. 
Among 2153 community controls with available malaria 
results, 30 (1.4%) had a positive slide: 15/814 (1.8%) in 
Kenya, 7/619 (1.1%) in The Gambia, and 8/720 (1.1%) 
in Mali.

Factors associated with CXR-positivity in malaria- 
slide-positive WHO-defined pneumonia cases
The spectrum of clinical signs and symptoms when CXR- 
positive (n¼18) and CXR-negative (n¼59) malaria-slide- 
positive WHO-defined pneumonia cases are compared is 
shown in Supplementary Table S1 (see online supplementary 

Figure 1. Schematic of the method used to estimate the PPV of clinical 
pneumonia as defined by the WHO. WHO-defined cases are classified 
into four groups that are defined by true pneumonia and malaria-slide 
result, with the proportion in each group denoted pi ði ¼ 0;1;2;3Þ. The 
sum of the middle two bars (p1þp2) represents the proportion of WHO- 
defined clinical cases that are true cases of pneumonia (PPV), whereas 
the last bar (p3) represents the misdiagnosed proportion. Because true 
pneumonia status is unknown, the direct estimation of pi is not possible. 
Instead, we use three observable quantities: (i) the proportion, v , of WHO 
cases that are malaria-slide-positive; (ii) the proportion, q, of WHO cases 
that are both positive on CXR and malaria-slide-positive; and (iii) the 
proportion, r , of WHO cases that are both CXR-positive and malaria-slide- 
negative. First, we estimate p1 by assuming that the WHO pneumonia 
criteria are 100% specific among malaria-slide negatives. This implies that 
p0 ¼ 0 and p1 ¼ 1 � v . Then, to estimate p2, we divide q by an estimate of 
the sensitivity of CXR ( r

1� v) such that p2 ¼ q× ð1� vÞ
r . Here, we assume 

that the sensitivity of CXR is independent of malaria parasitaemia. Finally, 
using the fact that the probabilities sum to one, p3 can be estimated 
as p3 ¼ 1 � p1 � p2.
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material for a colour version of this table). The most impor
tant associations with CXR-positivity were, in rank order: 
lower chest wall indrawing [adjusted odds ratio (aOR) 
¼18.1, 95% confidence interval (95% CI): 1.9, 175.8, 
P¼ 0.012], crackles on chest auscultation (aOR¼13.1, 95% 
CI: 1.4, 127.4, P¼0.027), and nasal flaring (aOR¼5.9, 
95% CI: 1.1, 32.8, P¼0.041). CXR-positivity was nega
tively associated with multiple or prolonged convulsions 
(aOR¼ 0.14, 95% CI: 0.02, 0.95, P¼0.044).

PPV of WHO-defined clinical pneumonia
By applying the three assumptions outlined in the Methods 
and Figure 1, we estimated that, among PERCH cases that 
met the WHO pneumonia criteria, 95.3% were malaria- 
slide-negative (and true pneumonia cases), 2.2% were coin
fected (malaria-slide-positive with pneumonia), and 2.5% 

were misclassified (malaria-slide-positive without pneumo
nia). Therefore, the PPV was calculated as 97.5% (95.3% þ
2.2%). The calculated PPV was slightly lower in children 
aged ≥1 year (95.4%) and in cases of very severe WHO pneu
monia (93.4%) whereas, for malaria-slide-positive cases, it 
was considerably lower, at 47.1% (Table 2).

Based on our model, we estimate that, in a region with a 
typical malaria parasitaemia prevalence of 24% [17], 47.8% 
of WHO pneumonia cases are malaria-slide-negative, 24.6% 
are coinfected, and 27.6% are misclassified (Figure 3). This 
corresponds to a PPV of 72.4%. Among the coinfected 
group, we estimate that the proportion that is attributable to 
malaria is 38.8%. Therefore, the proportion of all WHO 
pneumonia cases that is attributable to malaria is 9.5% 
(38.8% of the coinfected proportion). From our sensitivity 
analysis, we estimate that a true pneumonia incidence of 

Figure 2. Breakdown of children included in the analysis and reasons for exclusion.

Table 1. Characteristics of 1650 patients with clinically defined pneumonia and complete data on malaria slide and CXR results.

Malaria-slide-positive Malaria-slide-negative

CXRþ (n¼18) CXR– (n¼ 59) CXRþ (n¼780) CXR– (n¼793)

Female (%) 56 42 41 40
Age in months [median (range)] 22 (12, 35) 28 (12, 44) 9 (4, 17) 8 (3, 17)
Weight-for-age z-score [median (range)] –1.38 (–2.23, –0.74) –1.60 (–2.41, –0.73) –1.54 (–2.64, –0.5) –1.15 (–2.19, –0.05)
Haemoglobin [median (range)] 7.8 (6.2, 9.9) 8.6 (5.7, 9.9) 9.7 (8.5, 10.6) 9.9 (9.0, 10.9)
White cell count [median (range)] 13.0 (8.6, 15.2) 10.6 (7.6, 14.3) 13.5 (9.5, 17.4) 11.8 (8.8, 15.8)
% Neutrophils [median (range)] 46.1 (32.0, 53.3) 52.6 (37.7, 66.0) 48.0 (33.9, 61.7) 46.4 (32.2, 61.1)

CXRþ, chest-X-ray-positive; CXR–, chest-X-ray-negative. Haemoglobin is given in grams per decilitre. White cell count is measured as thousands of white 
cells per microlitre.
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twice the PERCH incidence increases the PPV to 83.9% and 
an incidence of half the PERCH incidence decreases the PPV 
to 56.7% (Supplementary Figure S1; see online supplemen
tary material for a colour version of this figure).

Discussion
Among clinically diagnosed WHO pneumonia cases from the 
PERCH study, we estimated that 97.5% were true instances 
of pneumonia and 2.5% were misclassified. This high PPV is 
largely attributable to the low prevalence of malaria parasi
taemia in the PERCH WHO pneumonia cases. Indeed, in set
tings that are more representative of malaria endemicity, we 
estimate the PPV to be in the region of 70%.

As countries progress towards malaria elimination, we pre
dict that there will be significant declines in clinical pneumo
nia, due both to fewer misclassified cases and to a reduction 
in cases that are caused by malaria. This prediction is sup
ported by data from Kilifi, Kenya, where surveillance data on 
both malaria parasitaemia and pneumonia are available. 

Between 2002 and 2011, the prevalence of malaria parasitae
mia in children in Kilifi dropped steeply from �35% to 2% 
whereas the incidence of severe or very severe WHO clinical 
pneumonia dropped by �50%, from �2 per 1000 population 
to 1 per 1000 population [29, 30]. Our model predicts a de
cline of �40% in clinical pneumonia cases (30% due to mis
classified malaria and 10% directly attributable to malaria). 
Thus, the decline in clinical pneumonia in Kilifi is largely 
explained by the reduction in malaria.

The assumptions that underlie our estimation of PPV in 
PERCH merit evaluation. By using chest radiography as our 
reference standard, we assumed that CXR is 100% specific. 
Reasonable evidence to support this assumption exists at one 
of our sites [6]; the only convincing exception to this rule is 
pulmonary oedema, which may occur in late stages of severe 
malaria or malaria anaemia [31, 32]. The assumption that 
the CXR result in true pneumonia cases is independent of 
malaria infection is probably also reasonable because, as far 
as we are aware, there is no pathophysiological evidence to 
suggest that malaria coinfection influences the development 
of radiological features of pneumonia. However, our assump
tion of 100% specificity of the WHO pneumonia definition 
among admissions that are negative for malaria parasitaemia 
is potentially open to greater question. In particular, our 
model does not account for loss of specificity due to other 
pathologic processes that can lead to a pneumonia-like 
presentation, including sepsis, anaemia, and kerosene poison
ing [33].

The most important limitation of the study was the rela
tively low prevalence of malaria parasitaemia in the healthy 
populations from which the data were drawn. In both the 
Kenyan and Gambian study sites (Kilifi and Basse), malaria 
has declined significantly since the early 2000s [29, 34] 
whereas the Mali site (Bamako) has less malaria compared 
with other areas of the country [35]. This not only reduced 
the precision of our estimates of PPV in the PERCH study, 
but also meant that it was necessary to extrapolate beyond 
the observed data to estimate PPV in settings with more typi
cal malaria prevalence. In particular, we assumed a linear re
lationship between the prevalence of malaria parasitaemia in 
the community and the incidence of malaria disease. No con
sensus yet exists on the appropriate form for this relationship, 
though a recent analysis suggests that it is approximately lin
ear in children aged <5 years [36]. Although we cannot be 

Table 2. PPV of clinical pneumonia, as defined by the WHO, in the Pneumonia Etiology Research for Child Health study.

Malaria-slide-positive Malaria-slide-negative Proportion of WHO pneumonia cases correctly classified (PPV)

Malaria-slide-positive cases All cases

N All %a CXRþ %b All % CXRþ %c %d 95% CIe %f 95% CIg

All cases 1650 77 4.7 18 1.1 1573 95.3 780 47.3 47.1 25.5–68.8 97.5 96.5–98.5
Severe pneumonia 1026 15 1.5 9 0.9 1011 98.5 539 52.5 100h 100h

Very severe pneumonia 624 62 9.9 9 1.4 562 90.1 241 38.6 33.9 11.9–55.8 93.4 91.2–95.6
<1 year 985 19 1.9 4 0.4 966 98.1 471 47.8 43.2 0.9–85.4 98.9 98.1–99.7
≥1 year 665 58 8.7 14 2.1 607 91.3 309 46.5 47.4 22.8–72.0 95.4 93.3–97.6

a Estimate of v in Equation 2.
b Estimate of q in Equation 2.
c Estimate of r in Equation 2.
d Estimated as qð1 � vÞ=vr.
e CI obtained from the CI for q and neglecting uncertainty in the estimates of r and v.
f Estimated as 1 � vþqð1 � vÞ=r.
g CI obtained from the CI for q and neglecting uncertainty in the estimates of r and v.
h Truncated at 100% because estimate exceeds 100%.

CXRþ, chest X-ray-positive.

Figure 3. Misclassification of clinical pneumonia cases, as defined by the 
WHO, as a function of the community prevalence of malaria parasitaemia 
in children aged 1–59 months. Cases are categorized as either: (i) malaria- 
slide-negative, (ii) coinfected and attributable to malaria, (iii) coinfected 
and not attributable to malaria, and (iv) misdiagnosed. The PPV of the 
WHO pneumonia definition corresponds to the proportion of cases that 
are either malaria-slide-negative or coinfected.
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sure of the direction of bias, a saturating relationship between 
malaria prevalence and incidence, as opposed to the assumed 
linear relationship, would mean that our PPV estimates are 
likely too low.

Our analysis of clinical features of pneumonia revealed 
that nasal flaring, crackles on chest auscultation, and lower 
chest wall indrawing are predictive of CXR-positivity among 
patients with both a clinical diagnosis of pneumonia and 
malaria parasitaemia. Given that CXRs are not routinely 
available to support the diagnosis of pneumonia in many 
malaria-endemic countries, it may be useful to give these 
features added weight in clinical decision-making.

This study highlights and quantifies the extent to which the 
common condition of malaria compromises the specificity of 
the WHO clinical definition of pneumonia. Ultimately, it 
may be possible to solve this problem through the implemen
tation of better pneumonia diagnostics. Ultrasound that is 
carried out at the point of care is particularly promising, as it 
is less expensive than CXR and free from ionizing radiation 
[37]. However, for the foreseeable future, management of 
patients with symptoms of pneumonia and studies of pneu
monia epidemiology must allow for uncertainty in the aetiol
ogy of pneumonia. A child who meets the criteria for severe 
pneumonia under the WHO 2013 classification and also tests 
positive for malaria parasitaemia should be treated for both 
severe pneumonia and severe malaria. This means they 
should receive both parenteral broad-spectrum antibiotics 
and parenteral artesunate, and both treatments should be 
started without delay [38, 39]. Similarly, a child who is diag
nosed with non-severe pneumonia under the 2013 WHO 
classification and tests positive for malaria parasitaemia 
should be managed at home with oral amoxicillin and an oral 
antimalarial medication [14].
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