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ABSTRACT

Non-randomised studies (NRS) typically assume that there are no differences in unobserved baseline characteristics between the
treatment groups under comparison. Traditionally regression models have been deployed to estimate treatment effects adjust-
ing for observed confounders but can lead to biased estimates if the model is missspecified, by making incorrect functional form

assumptions. A multitude of alternative methods have been developed which can reduce the risk of bias due to model misspecifi-

cation. Investigators can now choose between many forms of matching, weighting, doubly robust, and machine learning methods.

We review key concepts related to functional form assumptions and how those can contribute to bias from model misspecification.
We then categorize the three frameworks for modeling treatment effects and the wide variety of estimation methods that can be
applied to each framework. We consider why machine learning methods have been widely proposed for estimation and review
the strengths and weaknesses of these approaches. We apply a range of these methods in re-analyzing a landmark case study. In

the application, we examine how several widely used methods may be subject to bias from model misspecification. We conclude

with a set of recommendations for practice.

1 | Introduction

Comparative effectiveness research (CER), provides impor-
tant evidence for regulators, reimbursement agencies, clinical
decision-makers, patients, and the public about the relative effec-
tiveness of alternative treatments, which encompasses alterna-
tive drug treatments, but also includes different prevention strate-
gies, diagnostic testing, devices, forms of surgery, rehabilitative
techniques, public health interventions, innovations in health
care delivery, organization, and financing. The primary aim
of CER is to quantify the causal effect of an intervention on

outcomes [1]. For example, is care at a hospital that is certified
to have high quality nursing superior to a hospital that does not?
Answering such questions is challenging since causal inference
requires assessing not just how things are, but how things would
have been. To learn about effectiveness, one must also consider
what would have happened under different circumstances (e.g., if
those treated had taken control). Causal inference offers a frame-
work for formulating these questions mathematically, exploring
whether answers can be gleaned from data, and if so, deter-
mining how well and with what statistical methods. Research
designs and statistical methods for causal inference form a key

Abbreviations: NRS, non-randomized studies; PS, propensity score; RCTs, randomized controlled trials.
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part of CER. While well-conducted randomized controlled trials
(RCTs) are the primary method to estimate causal effects while
avoiding bias due to confounding, in many settings RCTs cannot
be conducted for ethical or practical purposes. As such, evidence
from non-randomized studies (NRS) is a critical component in
decision-making, so it is vital that they are designed, analyzed,
and interpreted appropriately [2].

One key challenge in any NRS, is that when subjects select
into treatments, outcomes may reflect pretreatment differences
between the treatment and control groups rather than treatment
effects [3, 4]. Pretreatment differences between the comparison
groups may be measurable and result in overt bias. A further
concern is that there may be baseline differences in unmeasured
characteristics, for example people’s lifestyle or behavioral char-
acteristics that lead to hidden bias in the estimates of compara-
tive effectiveness. A common strategy in NRS is to assume there
is no hidden bias and apply a statistical adjustment strategy to
remove overt bias. Traditionally, regression models were the only
method of statistical adjustment used for this purpose. That is,
researchers regressed an outcome on a treatment indicator and
adjusted for a set of baseline prognostic measures also known as
control variables to account for pretreatment differences between
the comparison groups in those covariates. However, over the last
twenty years, there has been an explosion in the number and
range of methods that researchers can use for statistical adjust-
ment. For example, one common alternative to regression models
is matching, and there are now many different matching meth-
ods that can be applied, including propensity score matching,
genetic matching [5], optimal matching [6], full matching [7],
mixed integer matching [8], cardinality matching [9], optimal
matching with refined covariate balancing [10], coarsened exact
matching [11, 12], and kernel matching [13, 14]. Moreover, there
are large number of alternatives to matching. These alternatives
include a variety of weighting estimators, outcome modeling via
the parametric g-formula, and doubly robust methods. In addi-
tion, a large number of methods based on machine learning (ML)
have been proposed for statistical adjustment and the estimation
of causal effects.

A critical question in a study of causal effects, is how to choose
from amongst the multitude of methods available for statisti-
cal adjustment? In this tutorial, we review the logic behind the
range of methods available for applications with point treat-
ments. Readers interested in settings with time-varying treat-
ments should refer to Daniel et al. [15]. We begin by review-
ing the concept of model misspecification due to incorrect func-
tional form assumptions, and how it can lead to biased esti-
mates of treatment effects. We discuss how the possibility of
bias from model misspecification has motivated the growth in
methods for statistical adjustment. Specifically, the overall trend
in methodological development has been towards more flexi-
ble non- and semi- parametric forms of adjustment to reduce
the need for a correct model specification. We conduct a sim-
ulation study that provides a clear rationale for considering
more flexible methods of estimation. Next, we review the key
choices for selecting a method of statistical adjustment. First,
we outline the three different modeling approaches for treat-
ment effects. Second, we review the large number of estimation
methods that can be used to implement each approach. We also
focus on why machine learning based methods have become so

widely proposed. We explain both the theoretical and practical
advantages and disadvantages of the options available to applied
researchers. Finally, we re-analyze a case study, to demonstrate
how to implement these methods and highlight the strengths and
weaknesses of these various approaches. In general, our review is
conceptual and seeks to explain how different estimation meth-
ods encode different functional form assumptions. As such, we
do not focus on how to implement all these methods in soft-
ware. That is, our primary goal is to explain the key assump-
tions behind the various choices rather than focus on software
specifics. Other work focuses more directly on software imple-
mentation [16]. However, to help analysts use these methods in
their own research, we include a software appendix, which con-
tains the codes used to generate the results in the application. In
addition, a full set of replication materials are available online at
https://github.com/ljk20/somanychoices. In the next section, we
outline the details of our case study.

1.1 | Application: Right Heart Catherization

We use data from a well-known NRS that aimed to evaluate the
comparative effectiveness of Right Heart Catherization (RHC) a
monitoring device that is used in the management of critically
ill patients [17]. In this study, the researchers included eligi-
ble patients admitted to Intensive Care Units (ICU) in the USA,
and compared the effect of ‘RHC’ versus ‘control’ (no RHC) on
all-cause mortality at 6 months. The study included 5735 criti-
cally ill adult patients of whom 2184 had a RHC inserted (‘RHC’
group), and 3551 who did not have a RHC inserted and form the
control group. For full details about the study readers are referred
to [17]. Here, we outline the key features relevant for the subse-
quent analyses. The data contain a rich set of baseline covariates:
sex, probability of 2-month survival, coma score, an indicator for
do not resuscitate status, the APACHE III acute physiology score,
education, an index of daily activities 2 weeks prior to admission,
Duke Activity Status Index, physiological measurements, ethnic-
ity, income, insurance class, primary disease category, admission
diagnosis, an indicator for cancer, PaO,/FiO, ratio, creatinine,
PaCO,, albumin, number of comorbid illnesses, temperature, res-
piratory rate, heart rate, and white blood cell count. The primary
outcome is 6-month mortality. Previous re-analyses of this case
study have all suggested that, given the richness of the baseline
covariates, it was plausible to assume no unobserved confound-
ing. However, this study exemplifies the major general concern
in such settings, that it is also necessary to make assumptions
about the functional relationships between each of the baseline
covariates, treatment, and the outcome. In trying to address this
concern, it is unclear, how the analyst should proceed in choos-
ing from amongst groups of methods (e.g., outcome, treatment, or
doubly robust models) or indeed from the estimators within the
broad groups. In the next section we review the general concepts
for all of the methods.

2 | Review: NRS

First, we review the relevant concepts for NRS. We primarily
focus on how bias can result from model misspecification in an
NRS. Model misspecification bias is a key concept, since it moti-
vates the wide ranging set of methods that serve as alternatives
to regression models. First, we outline notation and causal
estimands.
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2.1 | Notation and Estimands

In the RHC study, the patient population is indexed by i =
1, ..., n, and we denote a binary treatment using Z; where (Z, =
1(RHC), Z; = 0(control)). We use Y; for the binary mortality out-
come. Next, we use the potential outcomes framework to describe
causal quantities [4, 18]. Prior to treatment, each patient has two
potential responses: (Y;(1), Y;(0)). The outcomes that we actu-
ally observe are a function of potential outcomes and treatment
assignment: Y; = Z,Y;(1) + (1 — Z,)Y;(0). We have a large number
of pre-treatment covariates for each patient, which we describe
with X;. For each patient, there is possibly an unobserved covari-
ate u; that functions as a hidden confounder.

In this framework, we first define the causal effect—that is,
the estimand — of interest. Estimands are defined as contrasts of
potential outcomes. Two common estimands targeted in a NRS
are the average treatment effect (ATE) and the average treatment
effect on the treated (ATT). The formal definition of the ATE is

ATE = E[Y,(1) - Y;(0)] 1)

which is the average difference in the pair of potential outcomes
averaged over the entire population of interest. In the context
of the RHC application, the ATE measures the average differ-
ence in mortality when all patients in the study population are
assigned to RHC versus when all patients are assigned to control.
Often, the average treatment effect is defined for the subpopula-
tion exposed to the treatment or the ATT:

ATT = E[Y,(1) - Y,(0)| Z, = 1] @

The ATT is the average difference in potential outcomes among
those individuals in the population that were actually exposed to
the treatment. These estimands answer different scientific ques-
tions, so investigators must select which to target based on sub-
stantive judgements. In the RHC application, we focus on the
ATT, since as Connors et al. [17] highlight there was strong clin-
ical interest in whether PAC insertion should be stopped for the
subpopulation who had the device. In other settings the ATE may
be the estimand of interest [19]. See Ben-Michael and Keele for
further discussion about the choice of estimand [20].

2.2 | Assumptions

Next, we outline the standard set of assumptions that are invoked
to identify the ATT in a NRS. First, we assume the stable unit
treatment value assumption (SUTVA) holds [21]. SUTVA is com-
prised of two components: (1) the treatment levels of Z (1
and 0) adequately represent all versions of the treatment, often
referred to as the consistency assumption in the epidemiology
literature [22], and (2) a subject’s outcomes are not affected
by other subjects’ exposures. Next, we must assume that treat-
ment assignment is independent of the potential outcomes con-
ditional on the observed covariates. This assumption has a num-
ber of different names, which include “conditional ignorability,”
“conditional exchangeability,” “no unobserved confounding,”
and “no omitted variables.” In the language of causal diagrams,
researchers must identify all backdoor paths between baseline
covariates, treatment and the outcome [23, 24]. Formally, we

assume that treatment assignment only depends on observed
covariates:

Pr(Z, =11Y,(1),Y,(0), X;,u;) = Pr(Z; = 1|X,)

If this assumption is implausible, other study designs might be
more reasonable [25, 26]. Next, we assume the probability of
treatment is strictly greater than zero and less than one over the
support of X;:

0< PrZ|X)<1

This assumption is often referred to as overlap, common support,
or positivity. Note that when overlap between the treated and con-
trol populations is limited, the ATT may be identifiable when the
ATE is not. For some data configurations, overlap may be so lim-
ited that even the ATT may not be identifiable. When this occurs,
one strategy is to use an alternative estimand that only targets the
subset of treated units that overlap with the control units [27-29].
One such estimand is the average treatment effect for the overlap
population (ATO) [29]. Under the ATO, the estimand is focused
on the marginal population that might or might not receive the
treatment of interest rather than a known, a priori well-defined
population such as the treated group.

This set of assumptions becomes implausible when units are
selected into treatments based on prognostic factors that indi-
cate who would benefit more from a specific treatment, but not
all those prognostic factors are recorded. While we assume that
there are no unobserved differences in such baseline prognos-
tic measures between the treated and control groups, the broad
aim of the statistical methods that we consider is to adjust,
match or reweight these groups so that they are similar accord-
ing to observed baseline measures. For example, in the RHC
application, there are clear differences in observed baseline char-
acteristics between the treatment and control groups. Table 1 con-
tains balance statistics for the set of covariates with the largest
imbalances. We observe clear differences between the treated and
control groups. For example, prior to PAC insertion patients in
the RHC group are more likely to have a cardiovascular diagno-
sis or multiple organ failure with sepsis than those in the control
group. One rule of thumb is that standardized differences should
be less than 0.20 and preferably 0.10 [30]. Clearly according to this
rule of thumb, many of the baseline differences are quite large. To
estimate the treatment effect for RHC, we must remove such dif-
ferences via statistical adjustment. Next, we review the concept
of model misspecification and demonstrate how it can be a key
threat to valid causal inferences.

3 | Model Misspecification

When investigators estimate treatment effects, there are two pos-
sible sources of bias. We use the following equation to describe
these two possible sources of bias in the estimation of causal
effects:

Estimator — True causal effect

J

= Hidden bias + Misspecification bias
———

. v

Due to design Due to modeling

+ Statistical noise
—_—

Due to finite sample
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TABLE1 | Balance table for baseline covariates in the RHC versus
control groups for the Connors et al. example: RHC: Selected covariates
with largest imbalances.

Mean Mean Std
RHC control dif
Respiratory 0.29 0.42 -0.27
diagnosis (0/1)
Cardiovascular 0.42 0.28 0.29
diagnosis (0/1)
Neurological 0.05 0.16 —-0.35
diagnosis (0/1)
APACHE III 60.74 50.93 0.50
score
Weight (kg) 72.36 65.04 0.26
Mean blood 68.20 84.87 —0.46
pressure
Pa0,/FiO, 192.43 240.63 —-0.43
ratio
PaCO, 36.79 39.95 —-0.25
Hematocrit 30.51 32.70 -0.27
Creatinine 2.47 1.92 0.27
Acute renal 0.03 0.11 —0.34
failure (0/1)
Multiple organ 0.32 0.15 0.41
failure w/
sepsis (0/1)

In a NRS, we assume that under the conditional exchangeability
assumption, hidden bias is not present. Here, we use hidden bias
to refer to bias from unobserved confounders and measurement
error. This bias is hidden, since we cannot know its true magni-
tude. If those assumptions are implausible other study designs
might be more reasonable [25, 26]. Here, we focus on a different
form on bias, misspecification bias that is a consequence of using
an incorrect model for statistical adjustment. Next, we unpack
what it means to use an incorrect model for adjustment. Esti-
mation of treatment effects consists of specifying a model for the
conditional mean function of the outcome. That is, the treatment
effect is the difference in two conditional expectations for the out-
come:
E[Y,|Z, =1] - E[Y,|Z, = 0]

This estimator for this difference in conditional expectations can
be written as the following restriction on the conditional mean
function:

ElY|Z]1=A+ A1 Z;

This restriction on the conditional mean function is a model,
since it places an a priori restriction on the joint distribution of ¥,
and Z,, and it is referred to as the functional form of the model.
Functional form restrictions are often referred to as parametric
models, since the model depends on the terms 4, and 4,, which
are the parameters in this model. This model is saturated, since
the number of parameters in the model is equal to the number
of unknown conditional means. That is, the two means to be
estimated are E[Y;|Z; = 1] and E[Y;|Z; = 0], and there are two

parameters in the model. In an NRS, the model for the condi-
tional mean function is often written as

EY|Z,,X,] =20+ M Z, + A, X,

where X, represents an observed confounder. The functional
form for this conditional mean model is linear, since we assume
that the changes in the conditional mean of Y; as a function of Z,
and X, are best described by a straight line. The functional form of
the model encodes a set of assumptions by the investigator about
how the conditional mean varies with the treatment and con-
founders. Note that if X, is an indicator variable, and if we include
an interaction term between Z; and X;, the model remains sat-
urated and does not impose any additional restrictions on the
conditional mean function. If X; consists of a continuous covari-
ate, X;, the model is no longer saturated and encodes paramet-
ric restrictions on the conditional mean function. To understand
the assumption encoded into this functional form, we write the
model in a more general way:

EY|Z, X1 = Ay + MZ; + 1,8(X))

In this more general specification, g() represents possible func-
tions for X;. In the first model, g() is assumed to be the identity
function, but many other functions are possible. That is, g() could
be quadratic or cubic if Y; varies with X, in a nonlinear fashion.
The choice of g() imposes a functional form restriction, since it
limits how the conditional mean of ¥; varies with X;. Model mis-
specification arises when the investigator selects a model with an
incorrect set of restrictions, for example, the relationship between
Y; and X, is assumed to be linear when it is nonlinear. Another
possible form of model misspecification is when the treatment
effect varies with X;. In this case, model misspecification occurs
when a relevant interaction between Z; and X; is not included
in the model. In sum, misspecification bias refers to bias from
misspecifying the functional form of the statistical model.

Model misspecification can be viewed as under-specification.
For example, if g() is quadratic and only a linear term is
included, the model is under-specified, since an additional
parameter hasn’t been included for the second moment of X,.
See Lenis, Ackerman, and Stuart [31] for a method to measure
the amount of model misspecification. However, one can also
over-specify the model by including irrelevant parameters. For
example, by including a squared term when the relationship
between the covariate and the outcome is linear. The additional
parameter for the squared term, is irrelevant and represents an
over-specification. The consequence of over-specification is to
inflate the variance which will make the 95% confidence intervals
wider.

31 | A Simulated Example

Next, we conduct a simulation study to demonstrate how model
misspecification can bias estimates of treatment effects. The
data-generating process we use is based on one presented in Goff
[32]. In our simulation, the model for the conditional mean of the
outcome has the following form:

Y=Z+gX)+e
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where Z, is the treatment variable, X; is an observed confounder,
g() is the functional form for X;, and ¢ is a normally distributed
error term. We set the ATE to 1, and we specify g() = X f, so that
X has a nonlinear association with Y. Consistent with what we
would expect in a NRS, X; is a confounder that is associated with
both Y; and Z,. We generated Z; and X, as draws from a multi-
variate normal distribution with variances 1.5 and 6 respectively.
We set the correlation between Z and X, to 0.50. Therefore, X;
must be included in the model to consistently estimate the ATE.
We set the sample size and the number of simulation replications
to 1,000. In the simulation, we included three models with differ-
ent specifications. In the first, we omit X, entirely. We expect the
treatment effect Z, to be biased for this specification, since the
key confounder is omitted. In the second specification, we intro-
duce model misspecification by only including X; in the statisti-
cal model. Here, we have incorrectly specified the functional form
of the model by omitting the quadratic functional form for X,.
A quadratic term is often a plausible nonlinear functional form,
since it captures a rapidly changing effect that tapers off after
some threshold is reached. In the final specification, we include
X? in the model so that the functional form of the model is now
correctly specified.

Figure 1 contains the results from the simulation. For each model,
we plot the distribution of estimated treatment effects. First, we
observe that when the key confounder is included in the model
and the correct functional form is used, we recover the true treat-
ment effect as the distribution of estimates is centered at the
true effect. Next, if we omit the key confounder from the model,
the estimated treatment effect is biased as it is uniformly too
small, and the distribution of estimated effects is bound away
from the true treatment effect. Finally, when we mis-specify the
model, the treatment effect is also biased. In fact, the average
bias under model misspecification is somewhat larger than the
bias from omitted confounder. Goff [32] shows analytically that
the bias depends directly on the correlation between X and Z
and the magnitude of the variances for X and Z. The bias also
depends on g(). Hence, under certain conditions, bias from model
misspecification can rival if not exceed the bias from omitted

Simulation results for different specification scenarios. Dashed line represents true treatment effect.

confounders. Avoiding bias from model misspecification is there-
fore a critical step in the estimation of treatment effects. As we
outline below, the possibility of this type of misspecification bias
has driven a number of innovations for the modeling of treatment
effects.

4 | Statistical Modelling of Treatment Effects
Thus far, we have outlined how model misspecification may be
a significant source of bias when estimating treatment effects.
Next, we review the key choices that are necessary for estimat-
ing treatment effects. First, we discuss the choice for the model
of conditional expectations. Next, we focus on the choice of sta-
tistical estimators that can be selected within each framework
of conditional expectations. Here, we focus on how non- and
semi-parametric estimation methods can reduce bias from model
misspecification.

The first step for an analyst is deciding on which conditional
expectation should be modeled. The traditional approach to sta-
tistical adjustment is to model the conditional expectation of
the outcome, Y;, given Z; and X,. More formally, the model
for treatment effects is based on the following conditional
expectation: y(x) = E[Y;|Z;, X;]. Alternatively, one can model
the conditional expectation of treatment, often called the propen-
sity score (PS); that is, Z,; given X,: e(x) = E[Z;|X,]. Finally, one
can model the conditional expectation for both the outcome and
treatment. Under this approach, separate models are fitted for
both y(x) and e(x), and the results are combined to estimate
the treatment effect. Frequently, this approach is called “doubly
robust,” since treatment effects are consistently estimated when
either model for the conditional expectations is correctly spec-
ified [33]. As such, the investigator’s first key choice is which
conditional expectation to estimate.

The analyst also needs to make two additional choices related to
model specification. Using the notation from above, for each vari-
able in X, the investigator needs to select the functional form
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as represented by g(). For multi-valued variables, selection of g()
is focused on whether to include additional terms to allow for
nonlinearity. For all types of variables, specification of g() also
includes whether to include interactions between the variables
in X;. The second model specification choice is with respect to
effect heterogeneity. This refers to whether or not we can assume
that treatment effect is constant with respect to X,. If we assume
the treatment effect is non-constant, we can take a conditional
or marginal approach. Under the conditional approach, one esti-
mates treatment effects at specific values of the variables in X;.
Under the marginal approach, one averages over the variation
in the Z;-X; relationship. As we outline below, different meth-
ods of estimation entail different choices with respect to model
specification.

41 | Estimation Methods

Critically, all three approaches require the use of an estimation
method for one or more of the conditional expectations of inter-
est, but are agnostic as to the specific method of estimation.
Before reviewing specific types of estimation methods, we intro-
duce a distinction between fully parametric and semiparametric
methods for estimating treatment effects. The difference between
fully parametric and semiparametric methods is that semipara-
metric methods do not fully specify the relationship between X;
and Y. For example, in the following model:

ElY,|Z, X1 =4+ 1 Z, + 1, X,

the parameters 4, and A, can be treated as nuisance parame-
ters, since they are incidental and do not describe the treatment
effect of Z; on Y;. Under a fully parametric approach, the rela-
tionship between X; and Y; is specified in the statistical model,
and the parameters A, and A, are estimated. The common fea-
ture of semiparametric approaches, is that these nuisance param-
eters are not estimated. By not fully specifying the model for
the control variables, these approaches may reduce the likeli-
hood of bias from model misspecification for X;. We first focus
on the most widely used parametric and semiparametric meth-
ods and highlight the key differences between various forms of
semiparametric methods.

The traditional approach for estimating treatment effects is based
on regression models for the outcome. We use the term regression
model to encompass linear regression via least squares but also
generalized linear models such as logistic or Poisson regression.
Critically, these regression approaches are the most restrictive in
terms of the functional form, since they are all fully parametric.
That is, with regression models, the analyst must fully specify
the relationship between X; and Y;. As the number of variables
in X; grows the likelihood of model misspecification typically
increases. However, if all the variables in X, can be expressed as
a series of dummy variables, then regression models are closer to
being saturated, and the risk of model misspecification may be
lower. We should note that for regression models the treatment
effect is assumed to be constant, unless the full range of Z;-X; are
include in the model.

There has been a huge expansion in the number of alterna-
tives to parametric regression —all of which are semiparametric

methods. We would argue that there are five main classes
of alternative estimation methods: standardization, matching,
weighting, doubly robust methods, and machine learning meth-
ods. Matching and weighting are the most widely used alterna-
tives to parametric regression models. It is worth noting that
the lines between these three forms of estimation are porous
and often overlap. For example, one can use machine learning
methods to estimate treatment effects via an outcome model or
instead use them to estimate the propensity score and then imple-
ment either matching or weighting methods. In addition, doubly
robust methods can be based on matching, weighting, or machine
learning. However, all of these methods share a commonality
in that they all treat control covariates coefficients as nuisance
parameters.

41.1 | Standardization

Standardization via the parametric g-formula is a semiparamet-
ric method for adjustment using an outcome model that treats
the parameters for control variables as nuisance parameters [34].
Hernan and Robins [35], ch. 13 provide a complete and accessi-
ble introduction to the parametric g-formula. Here, we include a
brief outline. Standardization via the parametric g-formula oper-
ates by fitting separate outcome models by treatment status and
then marginalizing over the predicted outcomes for each of these
models. The difference in these marginalized predictions is the
treatment effect estimate. Inference for the parametric g-formula
proceeds via the bootstrap. Both the parametric g-formula and
standard regression modeling can allow for non-constant treat-
ment effects according to the levels of the covariates. However,
one distinction between these approaches is whether effect het-
erogeneity is treated as marginal (parametric g-formula) or con-
ditional (standard regression modeling).

4.1.2 | Matching Methods

Matching may be the earliest proposed alternative to traditional
regression methods. Matching methods are designed to model
e(x), and the estimated parameters for baseline covariates are
treated as nuisance parameters. Early versions of matching were
unable to control for large numbers of covariates [36, 37], but
matching became a more viable technique with the application of
multivariate distance metrics [6]. In general, matching requires
the calculation of a distance matrix that contains measures of
covariate similarity between each treated unit and all potential
control units. Propensity score distances and the Mahalanobis
distance are frequently used to measure similarity between units.
Early matching methods created pairs by searching over these
distances. Later, optimization methods were used to find treated
to control assignments that minimize the total distances between
two groups [6]. While pair matching is the most common,
matched strata can take many forms depending on the study
design [7, 38-40]. Recently, many different matching methods
have been proposed, from those that more general [5, 8, 12, 40]
to others that focus on specific problems in statistical adjustment
[9, 10]. There are a variety of ways that treatment effects can be
estimated after matching is complete, and most assume the treat-
ment effect is constant.
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4.1.3 | Weighting Methods

The next major class of methods is ‘weighting estimators’
which are commonly based on the traditional inverse probabil-
ity weighting (IPW) estimator [27, 41-45]. The IPW estimator,
like matching, is a semiparametric method based on e(x) and
also treats the parameters for X; as nuisance parameters. The
IPW estimator is based on weighting treated and control units
by the estimated propensity score. Weighting units by the esti-
mated propensity score, in expectation, balances the distribution
of X, across the treated and control groups [42]. Critically, while
the balancing property for the true propensity score weights holds
in expectation, it may not hold in any particular data set. More-
over, if the model for the estimated propensity score is misspeci-
fied then by definition IPW will not achieve the required covari-
ate balance. A newer class of weighting methods solve a convex
optimization problem to find a set of balancing weights [46, 47].
Balancing weights are designed to directly target covariate bal-
ance in the estimation process. Theoretical work has shown that
balancing weights are implicitly estimates of the inverse propen-
sity score, fit via a loss function that guarantees covariate balance
[48-51]. One common way to implement the IPW estimator is via
marginal structural models [52]. Here, the IP weights are used in
a weighted outcome model in which the outcome is regressed on
the treatment indicator. Under this approach, the treatment effect
is assumed to be constant. See Zubizaretta et al. [ 53] for a detailed
overview on both matching and weighting methods.

4.1.4 | Doubly Robust Methods

DR estimators were first developed as extensions of the IPW esti-
mator, and were referred to as the “augmented” inverse propen-
sity score weighted (AIPW) estimator [33]. The AIPW estima-
tor is based on two steps. First, IP weights are estimated. Next,
two outcome models are fitted: one for the outcome under treat-
ment and one for the outcome under control. These two outcomes
are weighted by the propensity score to produce an estimate of
the treatment effect. Note that the AIPW estimator provides a
marginal estimate that does not assume the treatment effect is
constant. However, one can implement DR estimators in alterna-
tive ways. For example, another version of the DR estimator is
based on estimating an outcome model using a matched data set.
This outcome model includes confounders in the specification
to further reduce bias not eliminated by matching [54]. Alter-
natively, when using the IPW estimator, one can include addi-
tional covariates in the marginal structural model for additional
bias correction. See Herndn and Robins [35] for an approachable
review of how DR methods work.

Next, we review how doubly-robust methods can reduce model
misspecification. For this exercise, we outline the following set of
equations for e(x) and y(x) to structure the discussion:

e(x) =1, X, +1,X,
y(x)=pZ+ 1 Xy + 4, X5
Here, treatment assignment depends on X, and X,, and the out-

come on X, and X;. Next, we assume that X, X,, and X do not
have any common causes. What advantages do DR methods offer

in this context? DR methods offer two advantages in this context.
First is with respect to variable specification. That is, if the ana-
lyst were to decide to model e(x) but omit X, from this model,
the treatment effect estimate would be biased. If the analyst were
to model y(x) but omit X, from the model, the estimate of the
treatment effect would be biased. Under the DR framework, the
analyst would be able to consistently estimate the treatment effect
aslongas X, isincluded in either y(x) or e(x). Critically, DR meth-
ods also offer protection against model misspecification. As we
outlined above, analysts needs to specify the correct functional
form for either e(x), y(x), or both. If the analysts decided to take
an outcome focused approach, he or she would need to correctly
specify g() in y(x). For the PS approach, the analyst would need
to correctly specify g() in e(x). However, for the DR approach,
g() needs to be correct in only one of the two models. That is,
as long as the functional form is correct in one of the two models,
the treatment effect will be consistently estimated. The obvious
advantage of the DR approach is that it provides consistent esti-
mates of the treatment effect while allowing for some form of
model misspecification. However, DR methods are not a panacea,
in that g() could be wrong in both models. In this case, it is hard
to predict which approach will be superior. The relative perfor-
mance will strongly depend on the data generating process and
either a y(x) or e(x) approach may very well outperform DR meth-
ods [55]. As such, there are no guarantees that a DR approach is
automatically superior.

One alternative is to implement the outcome and propensity
score based approaches separately. Large differences between
these two estimates will alert the analyst to the presence of serious
model misspecification in one of the approaches. Alternatively,
Mercatanti and Li [56] suggest using DR estimates as a bench-
mark. If the DR estimates are close to those based on e(x) but
far from those based on y(x), then the outcome model is likely
misspecified. If the DR estimates are close to those based on y(x)
but far from those based on e(x), then the propensity score model
is likely misspecified. If the DR estimates are far from both esti-
mates of y(x) and e(x), and the estimates from y(x) and e(x) also
differ from each other, it will be difficult to say which modeling
approach is correct [55]. Ideally, estimates are consistent across
all three approaches. In general, we recommend that analysts
always take this more agnostic approach instead of selecting a sin-
gle approach. What concrete recommendations might we offer in
terms of reporting statistical results? If all three methods agree, it
is still important that the full set of results are available for inspec-
tion albeit with some results as supporting material. When results
disagree, however, readers should include all three sets of results
in the main text. Investigators should also attempt to offer expla-
nations as to the likely reasons for the differences across the sets
of methods in the treatment effect estimates. In the application
section, we demonstrate how differences across the approaches
can be reconciled.

4.1.5 | Machine Learning Methods

While nuisance parameter approaches reduce the likelihood of
model misspecification relative to fully parametric models, they
are not a panacea for model misspecification. As we noted above,
however, nuisance parameter approaches still require impor-
tant model specification choices by the analysis. That is, most
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nuisance parameters approaches require the analyst to specify g()
and decide whether to allow effect heterogeneity. For example,
with matching, the analyst must decide whether to match on
additional terms to account for nonlinearities in continuous
covariates. In addition, the analyst must identify any relevant
interactions between the covariates and include those interac-
tions in the distance matrix. Alternatively, many IPW estima-
tors are often implemented with parametric logistic regression
models. The logistic regression model used for the propensity
score must be correctly specified to avoid model misspecifica-
tion. Specifically, this logistic regression model must include
terms for possible nonlinearities and interactions between covari-
ates. In addition, many common matching and weighting meth-
ods assume the treatment effect is constant with respect to X.
DR methods have the same model specification issues for each
of the underlying models. To prevent model misspecification,
Imbens and Rubin [57], ch. 13 outline an iterative process for
selecting relevant interactions and nonlinear terms. However,
when there are a large number of possible confounders, this
process becomes very time consuming and cumbersome. To fur-
ther reduce the likelihood of model misspecification, researchers
have proposed using nonparametric or semiparametric estima-
tors widely referred to as “machine-learning” (ML) methods.
Next, we review how ML methods have been employed to further
reduce the likelihood of model misspecification.

In general, ML methods are nonparametric estimation methods
that use richly parameterized models to fit conditional expec-
tations. Traditionally, ML methods have employed for statisti-
cal prediction problems, but they are easily adapted to nuisance
parameter approaches to treatment effect estimation. In one early
example using ML methods, McCaffrey, Ridgeway, and Morral
[58] used gradient boosting machines (GBM) to flexibly model
the PS. Here, an ML method is used to estimate the PS, which is
then used with a standard IPW estimator. Why is this advanta-
geous? As we noted above, for an IPW estimator, we must fit a
model for e(x), and this model can be misspecified especially in
terms of selecting interactions and nonlinear terms. Tree based
methods such as random forests and GBM are designed to auto-
matically include relevant interactions for variables included in
the model. As such, using a GBM to estimate the PS model, can
reduce model misspecification, since the analyst is not required
to identify relevant interactions or nonlinearities. Another promi-
nent example of using ML for treatment effect estimation is
Hill, Weiss, and Zhai [59] who proposes using Bayesian addi-
tive regression trees (BART) to flexibly model y(x). This pro-
posal focuses on modeling the outcome, but uses a flexible ML
method instead of a more restrictive parametric model. Finally,
DR estimators have been estimated with various forms of ML
methods [60, 61].

One way to conceptualize how ML methods reduce bias from
model misspecification is to view them as using many parameters
to describe the conditional expectation of interest. For example,
let’s assume that in a model for the outcome, we suspect quadratic
nonlinearity for a covariate. We would then specify a model with
three parameters instead of two for a linear model. If the model
for the outcome is actually linear, adding an additional param-
eter for the quadratic term will not add any bias. However, it
will increase the estimated variance slightly—this model will
have somewhat wider confidence intervals. In general, statistical

models can be made more flexible by estimating additional
parameters, but this comes at a cost of higher variance. More
generally, ML methods can be viewed as a set of statistical meth-
ods that estimate many parameters to flexibly model conditional
expectations. More specifically, ML methods can use the data to
specify g() in y(x), e(x), or both. That is, ML methods can specify
nonlinearity or interaction in g(). This flexibility reduces or may
even eliminate bias from model misspecification, and reduces the
need for analysts to make ad hoc choices for g().

The advantages of ML methods are obvious in terms of reduc-
ing the risk of bias from model misspecification. Unfortunately,
using ML methods for estimating treatment effect raises addi-
tional complexities. In general, ML methods rely on hyperparam-
eters to control the tradeoff between complexity and variance.
That is, letting an ML method select a highly complex functional
form will tend to reduce bias, but may increase the variance dras-
tically. Less complex ML fits will tend to allow some bias but
reduce the variance of the estimate. The hyperparameter(s) con-
trol this tradeoff. For example, the lasso uses a hyperparameter,
typically referred to as A, to control the bias variance tradeoff. If
the analyst specifies large values of 4 this will permit increased
bias but decrease the variance, while specifying smaller values
of 4 allows for more complex models with additional param-
eters and so decreases the bias while increasing the variance.
One common data driven hyperparameter selection method uses
a mean-squared error (MSE) criterion. That is, the analyst can
select a hyperparameter value so as to minimize the squared bias
added to the variance. Let’s say we use a MSE criterion to select
the hyperparamter value. This implies that the fit contains some
amount of bias based on the MSE criterion. Any bias included
in the fit due to this hyperparameter value is often referred to as
smoothing bias [62, 63]. Hence the resultant ML estimates of the
treatment effect will incorporate this smoothing bias, which has
the potential to be quite large [62, 63]. The added flexibility of
ML methods also comes at a cost in terms of inferential prop-
erties. In general, for ML methods it is difficult to obtain valid
inferences. That is, for many ML methods the associated statisti-
cal tests and confidence intervals may not be valid. In addition,
ML methods may be very inefficient relative to less flexible meth-
ods [62, 64-66]. As such, ML methods are no panacea. While ML
methods provide flexible fits for y(x) and e(x), treatment effect
estimates remain biased or have poor inferential properties.

However, a new approach has been developed that uses flexible
nonparametric ML estimation methods, but reduces the threat of
smoothing bias and allows for valid statistical inferences that are
optimally efficient. This framework is built from a combination
of semiparametric theory, doubly robust methods, and machine
learning methods [62, 64, 67, 68]. We refer to this framework
as the doubly robust machine learning (DRML) framework. The
framework starts by constructing bias-corrected, doubly-robust
estimator using influence functions from semiparametric theory.
DR estimators based on influence functions allow for estimation
via ML methods that account for smoothing bias, under mild
conditions. This estimation framework is then combined with
sample-splitting or cross-fitting to obtain doubly robust estimates
based on ML methods that have known statistical properties [65,
66, 69]. One prominent example of a DRML method is targeted
maximum likelihood estimation (TMLE) [70, 71]. Here, we pro-
vide a brief overview of TMLE to illustrate one way that DRML
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estimation methods can be implemented. The first step in TMLE
is based on fitting a model for the outcome. Critically, this out-
come model can be fit via an ML method such as random forests.
Alternatively, the analyst can take a weighted average of fits from
an ensemble of ML methods, one well-known ensemble is the
Superlearner [72]. In the second step, the analyst fits a propen-
sity score model typically via an ML method. In the third step
the analyst estimates what is known as the fluctuation param-
eter. This step uses information in the fitted propensity score to
optimize the bias-variance tradeoff in the estimand of choice. The
fluctuation parameter is used to update the information in step to
provide a final estimate of the treatment effect. Finally, inferential
quantities are computed. See Gruber et al. for an applied guide to
using TMLE [73].

In sum, the DRML framework can allow for the estimation of
treatment effects based on flexible machine learning methods to
reduce bias, and some of these approaches have valid inferential
properties. Critically, this framework does not depend on the type
of ML method used. In sum, the DRML framework offers some
key advantages. It allows the analysts to use flexible ML methods
to reduce model misspecification, but avoid bias due to smooth-
ing bias from those ML methods.

4.2 | Summary

To summarize, researchers must make two broad choices when
estimating treatment effects. The first choice is selecting among
the two conditional expectations. The second choice, which is
more complex, is selecting among the estimation methods that
can be employed. For any of the three sets of conditional expec-
tations, one can then use anything from fully parametric models
to highly flexible ML methods. The general conundrum is that
parametric methods tend to be more familiar to applied inves-
tigators and easier to use in statistical software. If a parametric
model has the correct functional form for the conditional expec-
tation of interest, all these methods will produce consistent esti-
mates of the treatment effect. However, if the functional form is
more complex, more flexible methods can eliminate bias from
model misspecification. While flexible ML methods may intro-
duce bias from smoothing and their inferential properties may be
poor, DRML methods can be used to allow for flexible fits that
reduce smoothing bias and preserve inference.

Given the wide range of choices, the natural question for applied
investigators is: what set of choices is best? Given theoretical
results from the literature, DRML methods appear to be the best
choice. That is, while ML methods are attractive in terms of flex-
ibility, there are few guarantees in terms of inference outside of a
DRML framework. As such, DRML methods would appear to be
the logical choice. However, DRML method tend to be more com-
plex in terms of implementation and can require lengthy com-
puting times, which begs the question of whether less complex
methods might be adequate.

We might ask whether there is any empirical evidence that
sheds light on which method should be the first choice of
applied analysts? While there is some evidence, that evidence
tends to be mixed. Dorie et al. [74] conducted a contest where
participants selected a variety of methods to fit to simulated

data. In the contest, ML based methods were clearly supe-
rior. Notably, DRML methods did not appear to outperform
other ML methods. Next, Keele and Small [75] compared a
variety of ML based methods, including DRML, to match-
ing methods and found little difference across five different
empirical applications. Finally, Keele, OA¢aCnaD¢Neill, and
Grieve [76] applied a wide variety of statistical adjustment
methods seeking to recover an experimental benchmark. In
this study, DRML methods, again, did not tend to outperform
more standard methods—including regression models. Next, we
present the empirical example to identify insights from applying
examples of the alternative approaches to address a clear causal
question. It is worth remembering, however, that an absence
of model misspecification in one application is not an argu-
ment against DRML methods. In those settings, DRML meth-
ods should produce the same results. In some other application,
parametric methods may be biased, while DRML method are
consistent.

5 | Application

We now apply these approaches to an empirical application. As
we outlined above, we use a well-known data set on the effec-
tiveness of RHC for the management of critically ill patients. An
early study applied propensity score matching and found that
compared to ‘usual care’ insertion of a RHC in critical care was
associated with higher mortality rates [17]. A later investigation
used more advanced matching methods to find the same empir-
ical pattern [77]. However, a randomized controlled trial (RCT)
found that RHC did not increase the risk of death [78]. The RCT
reported that the proportion of people who died prior to hospi-
tal discharge was 68.4% for patients assigned to the RHC group,
65.7% for those assigned to the control (usual care) group, with an
(unadjusted) estimated ATE of ‘RHC’ versus ‘control’ on mortal-
ity of 2.7% (95% CI-3.1% to 8.5%) [79]. Note that in appropriately
conducted RCTs the ATE and the ATT are the same, and also
that while the outcome measures are different between the RCT
(in hospital mortality) and the NRS (6-month mortality), they are
highly correlated. We also note that many of the baseline covari-
ates are multi-valued, which may increase the risk of bias from
model misspecification, since parametric models will be unable
to use saturated specifications.

We evaluate different methods of statistical adjustment by
attempting to recover the RCT estimate using the NRS data. That
is, we apply a range of statistical adjustment methods to the RHC
data, and compare these estimates of comparative effectiveness
to those from the RCT. Here, following on from the RCT result,
we anticipate that the true causal effect is that compared to “con-
trol” or “usual care”, insertion of the RHC does not increase
the risk of mortality to an extent that is significantly significant.
This design depends on a number of key assumptions. First, we
must assume that unobserved confounding is not present. Sec-
ond, we have to assume that there are no key effect modifiers
that differ between the RCT and NRS study populations. See
Dahabreh, Robins, and Hernan [80] for a complete discussion
of the key assumptions needed for benchmarking observational
study results to an RCT. These assumptions become particularly
relevant if we find that we cannot recover the RCT benchmark.
For each method, we note the extent to which the observational
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study estimates agree with those from RCT, but do not conduct
formal tests of equivalence.

Next, we outline the methods of statistical adjustment that we
applied. We did not attempt to include a complete set of statisti-
cal adjustment methods. Instead, we selected methods based on
key properties. Moreover, we group the methods in terms of over-
all flexibility. In the first set of statistical adjustment methods, we
include standard regression models, standardization via the para-
metric g-formula, and a IPW estimator, where we estimate the
propensity score using a logistic regression model. These three
methods represent methods of statistical adjustment that rely on
strong function form assumptions and thus are at the most risk
for bias from model misspecification. For these methods, we did
not attempt to expand the specification with nonlinear terms or
interactions.

The next two set of methods are more advanced forms of match-
ing and balancing weights. For matching, we use a form of opti-
mal matching with refined covariate (RC) balancing [10]. RC bal-
ancing is a matching method designed to use fine or near-fine
balance constraints [81, 82] to balance the joint distribution of
many nominal covariates [10]. That is, it seeks to balance the
marginal distributions of a large set of nested nominal covari-
ates. It can also incorporate additional constraints via a caliper on
the propensity score. We used RC balancing for several reasons.
First, it allows analysts to prioritize which covariates have the
smallest imbalances after matching. Next, RC balancing matches
directly on covariate distances, and it provides a principled way
to trim the sample by removing those observations that con-
tribute most to imbalance. As such, RC balancing contains all
the features of recent advances in matching. We should note
that if RC balancing drops treated observations to improve bal-
ance this will change the estimand to a more local version of
the ATT, and analysts should make this change to the estimand
explicit.

For weighting, we use the balancer library in R [83]. This
method of weighting directly targets covariate imbalance mea-
sured as the L? norm of the weighted difference in means of
the covariates, but also includes an L? regularization term on
the sum of the squared weights, which serves as a proxy for
the variance of the weighting estimator. These weights include
a hyperparameter that controls the bias-variance tradeoff which
is set by the user. Application of this weighting method are avail-
able in these publications [20, 84, 85]. As such, this weighting
method directly targets balance. For both of these methods, we
estimated treatment effects with and without outcome adjust-
ment. That is, both matching and weighting are focused on the
conditional expectation of treatment. For both, we can estimate
an outcome model that includes covariates for additional bias
reduction [57, 86]. These two adjustment methods do not impose
the strong function form assumptions as the first two set of meth-
ods, but are not highly flexible like those based on ML methods.
Again, we did not attempt to expand the specification of these two
methods.

Next, we include two different DRML methods. The first DRML
method we use is generalized random forests (GRF) [87, 88].
This DRML method adapted random forests, which are widely
used for statistical prediction problems, to the estimation of

treatment effects. Next, we use a DRML method based on a
Super Learner (SL) combined with targeted maximum likelihood
estimation (TMLE) [60, 71, 89]. For this DRML method, the anal-
ysis selects among a set of ML methods—learners— that will all
be used as methods of statistical adjustment. For example, one
might select GLMs, generalized additive models (GAMs), and
random forests. The set of learners selected by the investigator are
used to make out-of-sample predictions through cross-validation.
The predictions from each learner are combined according to
weights that minimize the squared-error loss from predictions
to observations. These weights are then used to combine the
fitted values from each learner when fit to the complete data.
Then TMLE is applied to produce an estimate of the ATE or
ATT. In the RHC application, we used the following set of
learners: (1) GLMs, (2) GAMs, (3) random forests, (4) lasso,
and (5) GBMs.

51 | Results

Table 2 contains the results from the first set of methods: regres-
sion, standardization, and model-based IP weighting. Interest-
ingly, despite the fact that two of the methods are modeling the
outcome and the other method is modeling the treatment, the
results are nearly identical. All the methods estimate that RHC
increases the risk of death by just over 6%, with the caveat that the
confidence intervals do overlap with those from the RCT. Subject
to the assumptions of our research design, these results indicate
that there may be a substantial amount of bias from model mis-
specification. That is, the functional form assumptions that are
encoded into both of these methods are contributing to a bias that
substantially overstates the effect of RHC compared to the RCT
results.

One concern about applying regression and IPW within this
case study is a lack of overlap in the distribution of baseline
covariates across the treated and control groups. When there is
a lack of overlap, there are often many control units that are
far from the treated units in terms of the observed covariates.
When this happens, it can lead to treatment effect estimates
that are sensitive to statistical model, that is, model misspecifi-
cation. In Figure 2, we plot the propensity scores by treatment
condition. In this plot, we observe that there are many fewer con-
trol units that are close in terms of the propensity score to the
treated units. The next method of statistical adjustment we apply
is specifically designed to increase overlap between treated and
control units.

TABLE 2 | The effect of RHC on mortality: Regression adjustment
and IP weighting.

Mortality
Regression Point estimate 0.063
adjustment 95% Confidence interval [0.037, 0.09]
Parametric Point estimate 0.063
G-Formula 95% Confidence interval ~ [0.036, 0.090]
IP weighting Point estimate 0.061

95% Confidence interval ~ [0.023, 0.099]

Note: Point estimates are differences in proportions who die by 6 months.
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FIGURE2 | Distribution of propensity scores by treatment category.

Next, we report the results from using RC Balance matching.
The match we used include several constraints to improve
balance and increase overlap. First, we included a propensity
score caliper. That is, while the match is based on generalized
distances—using the Mahalanobis distance—we include a
caliper on the propensity score to improve overlap. We iterated
over the match until we found a caliper size that produced high
levels of balance. We also included refined balance constraints to
improve balance on the two disease categories variables, and the
measures of type of insurance and race. These balance constraints
and the propensity score caliper trimmed a substantial portion of
the treated units. Recall that, in the data, there were 2184 RHC
patients. After applying the balance constraints to the match,
we were only able to retain 1547 RHC patients—thus changing
the estimand. However, for this subset of treated patients, we
were able to produce a highly balanced sample, whereby none
of the standardized differences in means exceed 0.10. That is,
none of the mean differences were greater than a tenth of a
standard deviation. Moreover, several discrete covariates had
nearly identical marginal distributions. We found that including
higher numbers of treated units contributed to an imbalanced
matched sample. Table 3 contains two sets of estimates. The
first estimate is based on simply regressing the outcome on the
treatment indicator using the matched data. The second estimate
is based on regressing the outcome on the treatment indicator
and all the baseline covariates for additional bias reduction. Both
estimates indicate that RHC increases the risk of death by more
than 7% points. These results indicate that the source of the
model misspecification does not appear to be related to overlap.
That is, the match ensured that we only estimated the results
based on a highly comparable set of patients. Moreover, adding
an outcome model did not result in any additional substantial
changes in the treatment effect estimates.

Next, we implemented a more advanced form of weighting esti-
mator that relies on balancing weights—weights that target

TABLE 3 | The effect of RHC on mortality: Matching.

Mortality

Point estimate 0.083
95% Confidence interval ~ [0.051, 0.115]

Point estimate 0.073
95% Confidence interval  [0.042, 0.104]

Matching - RC
balance

Matching &
regression adjust.

Note: Point estimates are differences in proportions who die by 6-months. Due to
trimming of treated observations, estimand is no longer the ATT.

specific balance constraints. First, we present a standard diag-
nostic for weights: balance statistics. Weighting methods should
balance the observables, and we can visualize the extent to
which that happens. Figure 3 contains a plot of the standard-
ized differences—the difference in covariate means divided by
the pooled treated and control standard deviation—before and
after weighting. What is clear in the plot is that balancing weights
produce a highly balanced sample.

Table 4 contains the results based on balancing weights both with
and without additional outcome adjustment. Again, both esti-
mates indicate that RHC increases the risk of mortality by over
6%. All four methods have returned estimates that are all highly
comparable in terms of magnitude, but also appear to suffer from
bias due to model misspecification. It is worth noting that thus
far, we have not chosen to add additional interactions or nonlin-
ear terms to any of the methods. Given the number of covariates,
the process of adding the full possible set of interactions and non-
linear terms would be time consuming.

Next, we focus on DRML based methods of statistical adjust-
ment. Of particular interest is whether these more flexible esti-
mation methods based on ML can reduce model misspecification.
Table 5 contains those results. Using GRF, we find that the treat-
ment effect estimate is smaller, 2.6%, with confidence interval
that includes zero. GREF, then, is the first method that moves the
estimate closer to the experimental benchmark. In fact, the GRF
estimate is nearly identical to the RCT estimate of 2.7%. Next, we
applied the TMLE and SL approach. Notably, this collection of
learners produces a point estimate that is farther from the exper-
imental benchmark than the GRF estimate. Given how the close
the GRF estimates are to the RCT benchmark, we re-fit the TMLE
and SL method only including a random forest. Now the estimate
moves closer to the experimental benchmark. Interestingly, this
behavior is similar to that found in Keele, OA¢ACRADENEeilL, and
Grieve [76] where GRF methods outperformed the SL ensem-
ble approach. The ability to include several ML methods in the
SL approach may be unsuccessful in terms of reducing model
misspecification.

To further understand the source of the model misspecifica-
tion, we performed an additional exploratory analysis. In this
secondary analysis, we split the sample into two random par-
titions. In the first partition, comprised of 25% of the data, we
fit a random forest to model e(x). We used the random forest
to identify key interactions. We then added these interactions
to the specification for the balancing weight estimator applied
to the second partition of the data. In this step, we balanced
those interactions along with the main effects using balancing
weights. We found that the balancing weights performed well in
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TABLE 4 | The effect of RHC on mortality: Balancing weights.

Mortality
Balancing weights Point estimate 0.062
95% Confidence [0.038, 0.087]
interval
Balancing weights & Point estimate 0.064

Regression adjust.

95% Confidence
interval

[0.043, 0.086]

TABLE 5 | The effect of RHC on mortality: ML methods.

Mortality
Random forest Point estimate 0.026
95% Confidence interval ~ [—0.001, 0.053]
TMLE & SL-1 Point estimate 0.046
95% Confidence interval [0.025, 0.068]
TMLE & SL-2 Point estimate 0.038

95% Confidence interval [0.019, 0.059]

Note: Point estimates are differences in proportions who die by 6-months.

Note: Point estimates are differences in proportions for Mortality. SL-1: Learners:
GLM, Random Forest, GAM, Lasso, and GBM. SL-2: Learners: Random Forest.
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TABLE 6 | The effect of RHC on mortality: Balancing weights
combined with random forest.

Mortality
Balancing weights Point estimate 0.057
95% Confidence [0.027, 0.088]
interval
Balancing weights & Point estimate 0.017
Regression adjust. 95% Confidence [—-0.019, 0.052]
interval

Note: Point estimates are differences in proportions for Mortality.

terms of balancing both the main effects and the interactions.
We also added these interactions to the regression model used
for outcome modeling. Table 6 contains the results from these
additional analyses. First, we observe that balancing these inter-
actions does little to reduce model misspecification: the reduction
in mortality remains 5.7%. However, when these interactions are
included in an outcome model with the balancing weights, we
find that we can reduce model misspecification: the reduction in
mortality is now 1.7%, quite close to the RCT estimate of 2.7%.
This additional analysis demonstrates the value of ML methods
in terms of reducing model misspecification by identifying key
interactions between variables. Moreover, this demonstrates how
for this more sophisticated use of balancing weights can act as a
compliment or alternative to DRML approaches.

6 | Discussion

This tutorial directly addresses a crucial challenge facing applied
health researchers which is how to choose from amongst the mul-
titude of available methods for statistical adjustment. Rather than
prescribing a specific method, which may be contingent on the
study circumstances, our tutorial offers a set of guiding princi-
ples to help analysts assess the robustness of results across types
of methods that make different assumptions about model specifi-
cation. We recommend that investigators apply outcome-focused,
treatment-focused, and DR-focused methods. Any disagreement
between the three approaches is evidence that at least one of the
methods is subject to model misspecification.

Next, our tutorial provides background on both traditional meth-
ods but also highly flexible ML methods. Recent work has devel-
oped the DRML framework which offers the best theoretical
properties of any of the available options: nonparametric flex-
ibility with optimal inferential properties. In the re-analysis of
the case study, we find that the NRS estimates from applying
DRML methods were closest to those from the RCT benchmark
reflecting the general advantage of ML methods in that they can
flexibly include interactions between key variables. Hence, we
recommend that studies consider applying DRML approaches for
the main analysis.

Unfortunately, DRML methods may be impractical in many set-
tings. DRML methods are relatively new and may be unavail-
able for many data configurations. For example, DRML meth-
ods aren’t widely available in software for many kinds of sur-
vival analysis or longitudinal data applications. DRML software

is generally confined to R, and can be difficult to implement with
large sample sizes. For example, even when applied to the moder-
ate sample size in our case study, the TMLE and SL fit with the full
set of learners required over two hours of computing time. Our
reanalysis and previous theoretical work suggest that in those set-
tings where DRML methods are infeasible or undesirable, balanc-
ing weights are a reasonable alternative. Key advantages of bal-
ancing weights include: highly balanced treated and control dis-
tributions, easy inclusion of outcome models for a DR approach,
and that with large sample sizes these approaches remain compu-
tationally efficient. As we demonstrated in the RHC application,
one can also use ML methods to create a more flexible specifica-
tion for balancing weights. This method could be combined with
other methods such as matching. In general, analysts should be
aware that when there are a larger number of baseline covariates,
many of which are multi-valued, the risk of model misspecifi-
cation increases and the need grows for more flexible methods
of estimation. Moreover, while regression modeling may be the
most prone to misspecification bias, methods such as matching
and weighting often do not protect against misspecification bias
unless nonlinearities or appropriate interactions are included.

This tutorial focused on a selection of alternative approaches for
reducing the risk of bias due to model misspecification in those
settings when it is reasonable to assume that all relevant con-
founders have been measured prior to treatment assignment at a
single timepoint. The general concern about selecting approaches
to reduce the risk of bias from model mispecification applies more
widely to other settings including instrumental variable designs,
or those where major concerns are time-varying confounding,
transporting RCT estimates to target populations, or handling
censoring or missing data. In conclusion, this tutorial provides
a set of guiding principles to help analysts reduce the risk of
bias from model misspecification when providing estimates of
comparative effectiveness. All the methods discussed in this tuto-
rial can be implemented in the open source general-purpose
software for R. In the appendix, we provide an overview of the
code used for each analysis in this paper, with full replication
materials (data and codes) available at https://github.com/1jk20/
somanychoices.
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Appendix A
Annotated Sample Code

Full replication files can be found at https://github.com/ljk20/somanychoices. The replication files include the data and scripts for R to generate every
result in the paper. Note that these commands will not exactly replicate the results in the tables due to handling of missing values. For exact replication
of tables, see the replication codes.

<<>>==
library (foreign)

rhc <— read.dta("rhc_clean.dta”, warn.missing.labels = FALSE)

# Names of Variables For Adjustment

covs <—c("treat","resp", "card", "neuro”, "gastr", "renal”, "meta", "hema", "seps", "trauma",
"ortho", "adld3pc”, "das2d3pc”, "dnrl", "surv2mdl", "apsl"”, "scomal", "wtkilol",
"templ”, "meanbpl”, "respl”, "hrtl", "pafil”, "paco21”, "phl", "wblcl”, "hemal",
"sodl", "potl", "creal", "bilil", "albl", "cardiohx", "chfhx", "dementhx",
"psychhx”, "chrpulhx”, "renalhx", "liverhx", "gibledhx", "malighx", "immunhx",
"transhx", "amihx", "age", "edu", "ur_int", "race_catl”, "race_cat2",
"ins_catl", "ins_cat2", "ins_cat3", "ins_cat4", "ins_cat5",
"catl_duml"”, "catl_dum2”, "catl _dum3", "catl_dum4"”, "catl_dum5"”,
"catl_dumé6", "catl_dum?7”, "catl_dum8", "canc_catl”, "canc_cat2",
"inc_catl", "inc_cat2", "inc_cat3",
"cat2_duml"”, "cat2_dum2"”, "cat2_dum3",
"cat2_dum4", "cat2_dum5", "cat2_dumé6")

@

First, we do simple regression adjustment, we only output the results for the treatment effect.

<<>>==

frmla <— as.formula(paste("dead ~
fs <— Im(frmla, data=rhc)
summary( fs )$coef[2,1]
confint(fs)[2,]

@

"

, paste(covs, collapse = "+"), sep=""))

Next, we implement IPW. First, we load a set of packages that we will use for a robust variance estimator.

<<>>==

## IPW

library (lmtest)
library (sandwich)
library (multcomp)
covs <— covs[-—1]

frmla <— as.formula(paste("treat ~", paste(covs, collapse = "+"), sep=""))
# denominator of ip weights

denom. fit <— glm(frmla, family = binomial(), data = rhc)

denom.p <— predict(denom. fit , type = "response"”)

# numerator of ip weights
numer. fit <— glm(treat~1, family = binomial (), data = rhc)

numer.p <— predict(numer. fit, type = "response”)
rhesw<—ifelse(rhctreat == 0, ((1-numer.p)/(1—-denom.p)),
(numer.p/denom.p))

# Estimate Marginal Structural Model
msm <— Im(dead ~ treat + cluster(id), data = rhc,
weights = sw)

# Robust Variance Estimator Function
msm. out <— function(obj){
SE <— sqrt(diag(vcovHC(obj, type="HC0")))[2] # robust standard errors
beta <— coef(obj)[2]
Icl <— (beta — abs(gqnorm(.025))=*SE)
ucl <— (beta + abs(qnorm(.025))=*SE)
return(c(beta, Icl, ucl))
}

msm. out (msm)

@
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Next, we include the code we used to implement matching. Note that here we include the code but do not execute the actual commands, which are

somewhat time-consuming. Please see the full replication materials for fully executable code.

<<eval = FALSE>>==
## Matching

library (optmatch)
library(rcbalance)

# Build Distance Matrix

my.dist <— build.dist.struct(z=rhc$treat == 1, X=rhc[covs],
calip.option = "propensity",
caliper = 0.05)

# Coarsen continuous health scores for fine balancing
rhc$highApache <— rhc$apsl > mean(rhc$apsl)
rhc$highBps <— rhc$meanbpl > mean(rhc$meanbpl)
rhe$highPafi <— rhce$pafil > mean(rhc$pafil)

# Define fine balance levels — by order of balance priority.
11 <— c("highApache")

12 <= c¢(11, "highBps","highPafi")

13 <= c(12,"neuro"”, "card")

# Perform the Match

match.out <— rcbalance (my. dist, fb.list = list(11,12,13),
treated.info = rhc[rhc$treat == 1,],
control.info = rhc[rhc$treat != 1,],
exclude.treated = TRUE, tol = .001)

## Post Match Processing
# Separate Original Data
t.dat <— rhc[rhc$treat==1,]
c.dat <— rhc[rhc$treat==0,]

# Extract Matched Treated
match.treat <— t.dat[as.numeric(rownames(match.out$matches)),]
n <— nrow(match. treat)

# Create Pair Id
match. treat$pair.id <— 1:n

# Extract Matched Controls
match. ctrl <— c.dat[match.out$matches, ]
match. ctrl$pair.id <— 1:n

# Put Matched Data Back Together
match.data <— rbind (match.treat, match.ctrl)

# Outcome Analysis

# Estimate Effect Via Regression on Matched Data
reg <— Im(dead ~ treat, data=match.data)

# Cluster SEs on Matched Pairs

coeftest.cluster (match.data, reg, clusterl="pair.id")

## Add in Regression Adjustment

vars <— c("treat"”,"resp”, "card", "neuro”, "gastr"”, "renal”, "meta",
"ortho", "adld3pc"”, "das2d3pc”, "dnrl”, "surv2Zmdl", "apsl”,
"templ”, "meanbpl”, "respl”, "hrtl", "pafil", "paco2l”,
"sodl", "potl", "creal”, "bilil", "albl", "cardiohx",
"psychhx", "chrpulhx”, "renalhx", "liverhx", "gibledhx",
"transhx", "amihx", "age", "edu", "ur_{i}nt", "race_{c}atl”,
"ins_{c}atl", "ins_{c}at2", "ins_{c}at3", "ins_{c}at4",
"catl_{d}uml", "catl_{d}um2", "catl_{d}um3", "catl_{d}um4",
"catl_{d}umé6", "catl_{d}um7", "catl_{d}um8", "canc_{c}atl",
"inc_{c}atl", "inc_{c}at2", "inc_{c}at3",
"cat2_{d}uml", "cat2_{d}um2", "cat2_{d}um3",
"cat2_{d}um4", "cat2_{d}um5", "cat2_{d}um6")
frmla <— as.formula(paste("dead ~", paste(vars, collapse = "+"), sep=""))

reg2 <— Im(frmla, data=match.data)

"dementhx",

"race_f{c}at2",
"ins_{c}at5",
"catl_{d}um5",
"canc_{c}at2",

"trauma",
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coeftest.cluster (match.data, reg2, clusterl="pair.id")[2,]

@

Next, we include a balancing weights analysis. Again, we do not execute the code here.

<<eval = FALSE>>==
library(balancer)

X <— scale(rhc[,covs])
trt <— rhc$treat
n <— nrow(rhc)

out.rhc <— multilevel_qp (X, trt, rep(l,n), lambda = 150, verbose= TRUE,
exact_global = FALSE, scale_sample_size = FALSE)

# Add the Weights to the Data
rhc$wts <— pmax(out.rhc$weights, 0)
rhc$wts[rhe$treat == 1] <— 1

# Estimate Treatment Effect via Weigthed Regression
died <— Im(dead ~ treat, data=rhc, weights = wts)
died.out <— msm.out(died)

died.out

@

Next, we run generalized random forests. The key function in this library takes the covariates as a matrix and not a data frame. As such, we process the
data somewhat differently. In our experience, it is also useful to remove variable names that can cause errors.

<<eval = FALSE>>==
## Generalized Random Forest
library (grf)

# Format Data

use = rhc|[,c("dead”," treat”,covs)]

use <— use[complete.cases(use),]

xt = use[,c(=-1:-2)]

colnames(xt) <— NULL

nos <— seq(1:72)

colnames(xt) <— paste("x", nos, sep="")
Xt <— as.matrix(xt)

## Run the Primary Functions

tau.forest = causal_forest(xt, usedead,usetreat, tune.parameters = "all")
RF.out <— average_treatment_effect(tau.forest, target.sample = "treated”, method = "TMLE")
@

Finally, we include a Superlearner example that uses an ensemble of ML methods. Here, the user selects the set of ML methods for fitting the nuisance
functions.

<<eval = FALSE>>==
## TMLE-SL

library (npcausal)
Sl.out <— att(usedead,usetreat, xt, nsplits=10, sl.lib=c("SL.glm", "SL.ranger", "SL.glmnet"))

@
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