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Summary
Background Computer-aided detection (CAD) has been recommended as a tuberculosis screening tool. However, 
there are limited data about its utility, specifically in a community-based setting where the targeted population and 
the highest burden of undetected individuals resides. The aim of this study was to evaluate the diagnostic accuracy 
and clinical utility of CAD during community-based active case-finding (ACF) for tuberculosis.

Methods In this case–control study, we used individual patient data from adults aged 15 years or older who resided 
in tuberculosis-endemic or HIV-endemic communities, pooled from five community-based ACF studies in 
South Africa from November, 2016 to August, 2023. Cases were defined as participants who were tuberculosis 
positive (diagnosed with pulmonary tuberculosis by sputum Xpert Ultra or culture positivity, or both) and controls 
were tuberculosis negative. Controls were randomly sampled from each study at an approximate 1:2 ratio (case to 
control). We assessed CAD-interpreted chest radiography (CAD4TB version 7) against a microbiological reference 
standard. Diagnostic accuracy of CAD was determined by sensitivity, specificity, and area under the receiver 
operating curve (AUC). CAD performance was additionally assessed in various subgroups. We evaluated the clinical 
utility of CAD and performed a preliminary cost analysis comparing the cost per tuberculosis case detected and 
initiated on treatment (per 10 000 individuals screened) for two community-based diagnostic strategies: Xpert Ultra 
in everyone screened versus Xpert Ultra only in CAD-positive individuals.

Findings Of the 20 770 individuals enrolled across all studies, 530 (2·6%) had microbiologically proven tuberculosis. 
Data were available for 501 (94·5%) of the individuals with tuberculosis (cases) and 938 tuberculosis-negative 
individuals (controls). CAD achieved an AUC of 0·83 (95% CI 0·80–0·85). At a fixed sensitivity of 90% (threshold: 5) 
specificity was 44·9% (95% CI 42·5–47·3) and at a fixed sensitivity of 85% (threshold: 10) specificity was 
54·1% (51·7–56·5). In the subgroup analysis, CAD performed worse in people living with HIV compared with 
HIV-negative people (AUC of 0·76 [0·71–0·81] vs 0·85 [0·82–0·87]; p=0·0037) and in asymptomatic people 
compared with symptomatic people (0·79 [0·76–0·82] vs 0·85 [0·82–0·88]; p=0·0079. Nevertheless, a CAD-directed 
Xpert Ultra strategy reduced costs by 20–53% compared with a universal Xpert Ultra only strategy (US$2207–$3745 
vs $4698 per tuberculosis case detected and initiated on treatment per 10 000 people screened), at the detriment of 
lower diagnostic yield (40–59% vs 65% per 10 000 individuals screened).

Interpretation In the setting of community-based ACF, CAD did not meet the WHO screening test target product 
profile (>90% sensitivity and >70% specificity) and performed more poorly in some subgroups. However, a context-
specific CAD-directed strategy could still be cost saving. These data inform community-based ACF strategies 
aiming to disrupt the tuberculosis transmission cycle.
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Introduction
Of the 10·8 million people who were estimated to have 
fallen ill with tuberculosis in 2023, approximately 
2·7 million (one in three) were undiagnosed or 
unreported.1 These missing millions are a potential 
source of transmission in their households and 
communities. Moreover, it is estimated that more than 
half of individuals with microbiologically confirmed 
tuberculosis are asymptomatic (ie, subclinical) and yet 

probably sentinels for disease transmission.2 Therefore, 
early detection of tuberculosis through community-
based active case-finding (ACF) might improve access to 
care and circumvent considerable transmission 
compared to symptomatic patients self-reporting to 
health-care facilities (passive case-finding).3,4 However, 
community-based detection requires sensitive, user-
friendly, and economically feasible screening and triage 
tools.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2214-109X(24)00516-3&domain=pdf
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Chest radiography is one of the most sensitive tests 
for detecting active tuberculosis.5 Although there have 
been advances in digital radiography technology, 
limitations still exist including restricted access in low-
resource settings, inter-reader and intra-reader 
variability, and low specificity, especially in endemic 
areas where the prevalence of HIV and history of 
previous tuberculosis is high.6 However, the rise of 
artificial intelligence-based computer-aided detection 
(CAD) has afforded a potential opportunity to streamline 
screening strategies through early detection of 
tuberculosis-related radiological abnormalities. CAD 
makes use of deep neural networks and identifies 
abnormalities on radiological images suggestive of 
tuberculosis. Results are expressed as abnormality 
scores (either 0–100 or 0–1) that are dichotomised 
(tuberculosis likely or not) at a chosen threshold. If 

above the threshold, images are considered positive or 
abnormal, and the individual is deemed at greater risk 
for tuberculosis and should undergo confirmatory 
microbiological testing (nucleic acid amplification test 
or sputum culture, or both). Crucially, threshold 
determination requires careful consideration and 
remains unclarified for community-based individuals 
who generally have a lower burden of disease.

Studies have reported CAD to be a sensitive tool with 
similar or better accuracy compared with expert human 
chest x-ray readers.7,8 In 2021, WHO endorsed the use of 
chest radiography and CAD for pulmonary tuberculosis 
screening.9 However, the recommendation was 
conditional (not mandatory for programmes) with very 
low certainty of evidence, and most published literature 
was obtained in the context of passive case-finding 
(where disease burden is more severe, score thresholds 

Research in context

Evidence before this study
Since the 2021 endorsement by WHO for the use of computer-aided 
detection (CAD) for screening and triage to detect tuberculosis 
there has been great interest in its clinical utility. However, there are 
hardly any data about CAD performance in the very population that 
the test is supposed to target—ie, individuals residing in high 
prevalence communities where CAD will be used as a community-
based screening test. Indeed, most available data pertain to patients 
self-reporting to clinics where the profile and disease burden is 
different (more advanced). Furthermore, there are limited CAD data 
from HIV-endemic settings. We searched PubMed from database 
inception to May 1, 2024, to identify articles in any language that 
evaluated the performance of CAD during community-based 
screening or active case-finding (ACF) for tuberculosis. A search 
with no restrictions using the search terms (“tuberculosis” OR “TB”) 
AND (“computer aided detection” OR “computer assisted 
diagnosis” OR “artificial intelligence”) AND (“active case finding” OR 
“systematic screening”) yielded 299 citations. Most reports either 
(1) recruited participants predominantly during passive case-
finding (PCF: patients self-reporting to health-care facilities), 
including two systematic reviews, (2) focused on technical aspects 
of artificial intelligence, or (3) explored how CAD impacted 
tuberculosis services. 13 articles reported on CAD diagnostic 
accuracy during ACF for tuberculosis (including four studies which 
recruited participants during both ACF and PCF), but study sample 
size was small, and they used various (and older) CAD versions, 
thresholds, and differing reference standards (eg, human reader 
and Xpert Ultra alone). Four articles reported on cost-effectiveness 
highlighting the cost-saving potential of CAD. However, there are 
no large studies that evaluated CAD performance exclusively during 
community-based ACF for tuberculosis and furthermore in an 
HIV-endemic setting.

Added value of this study
To our knowledge, this is the first and largest comprehensive 
study that has evaluated CAD performance exclusively during 

community-based ACF for tuberculosis in an HIV-endemic 
setting. Furthermore, we report CAD accuracy against a robust 
microbiological reference standard (ie, Xpert MTB/RIF Ultra and 
sputum culture) unlike many previous studies and have used 
the latest available CAD version (CAD4TB version 7). This study 
yielded important insights for tuberculosis ACF programmes, 
including evaluating the optimum CAD threshold to be used in 
an endemic setting (which is controversial), and performance in 
various subgroups (eg, people living with HIV, asymptomatic 
individuals, and people with a history of tuberculosis). We have 
shown that with a high sensitivity, CAD could have a major 
impact on diagnostic yield compared with standard approaches. 
Furthermore, despite its modest specificity of approximately 
50% (and not meeting WHO target profiles), CAD could still 
be cost saving without missing too many individuals with 
tuberculosis and reduce the total number of false positive Xpert 
Ultra results (because fewer are tested using the CAD-directed 
strategy). The cost-saving aspect is crucial in the context of 
rolling out large-scale community-based ACF strategies. Finally, 
we also showed for the first time that CAD detected almost all 
individuals with probably infectious tuberculosis, a crucial 
finding in the context of global efforts to interrupt community-
based tuberculosis transmission.

Implications of all the available evidence
Despite not meeting the WHO target product profile for 
tuberculosis, and the modest specificity, our study suggests that 
in the context of community-based screening or ACF, CAD has 
the potential to be a useful and cost-saving screening tool for 
tuberculosis in HIV-endemic and resource-poor settings. 
Furthermore, by detecting most people with probably infectious 
tuberculosis, CAD can probably interrupt the tuberculosis 
transmission cycle. Our findings inform policy makers and 
national tuberculosis programmes about how CAD can be 
implemented in specific contexts.
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higher, and where findings might not apply to 
community-based cohorts). Thus, there are hardly any 
data about CAD performance in the very population that 
the test is supposed to target—ie, individuals residing in 
high prevalence communities where CAD will be used 
as a community-based screening or triage test. There are 
also limited data about the clinical implications of CAD 
accuracy estimates with newer CAD versions, cost 
implications, performance in HIV-endemic settings, 
and whether it can detect probably infectious individuals 
thus interrupting community-based trans mission. To 
address these knowledge gaps, we evaluated the 
diagnostic accuracy and clinical utility of CAD during 
community-based ACF for pulmonary tuberculosis in 
HIV-endemic communities using a robust reference 
standard (often lacking in published studies).

Methods
Study design and participants
In this case–control study, we pooled and analysed 
individual patient data from five multicentre, community-
based ACF for tuberculosis studies conducted in 
South Africa. The data in these five studies were collected 
from November, 2016 to August, 2023. The methods for 
each study have been described previously.10–14 Briefly, 
individuals aged 15 years or older who resided in 
tuberculosis-endemic or HIV-endemic communities 
were included. All participants underwent an initial 
WHO tuberculosis symptom screen (including cough, 
fever, night sweats, and weight loss). Participants from 
two studies10,11 underwent diagnostic sputum sampling if 
they reported any WHO tuberculosis symptom or their 
screening chest x-ray was deemed abnormal by human 
readers or CAD, with or without symptoms. The 
remaining three studies12–14 performed diagnostic sputum 
testing on all eligible participants who reported any 
WHO tuberculosis symptom or had high-risk factors for 
tuberculosis (ie, people living with HIV, contacts, a 
history of previous tuberculosis, or diabetes), and 
whether symptoms were present or not. Three studies10,11,14 
performed chest x-rays on all eligible participants, and 
two studies12,13 only performed chest x-rays on individuals 
who were either HIV positive, household contacts, or 
diagnosed with tuberculosis. Thus, the studies included 
both asymptomatic and symptomatic people.

All included studies received ethical approval, and all 
participants provided informed consent. The current 
study was ethically approved by the University of Cape 
Town Human Research Ethics Committee (UCT HREC 
005/2023). This report follows the STARD guidelines for 
diagnostic accuracy evaluations15 and STROBE guidelines 
for reporting observational studies (appendix pp 3–4).16

Procedures
Demographic, clinical, and microbiological data were 
obtained from each study. The GeneXpert MTB/RIF 
Ultra (Xpert Ultra, Cepheid, Sunnyvale, CA, USA) 

nucleic acid amplification test was used in all studies. 
Similarly, for tuberculosis sputum culture, all 
five studies used liquid culture (Bactec MGIT 960, 
Becton Dickinson, Franklin Lakes, NJ, USA). In 
three studies,12–14 tuberculosis-positive individuals 
under went micro bio logical infectiousness studies, 
including sputum smear microscopy with Ziehl–
Neelsen staining and cough aerosol sampling studies 
(CASS; a validated system that measures culturable 
Mycobacterium tuberculosis in cough aerosol droplets 
<10 μm in diameter17).

Chest x-ray images were anonymised and collected 
in DICOM format from three studies,12–14 with CAD 
analysis subsequently performed using CAD4TB 
version 7 software (Delft Imaging, Hertogenbosch, 
Netherlands). For the remaining two studies,10,11 
investigators of the studies (overseen by TM, ZZQ, 
MvdW, JF, ADG, and EBW) provided CAD scores 
generated by the same software and version. All CAD 
analyses were performed independently and no images 
in the current study were used for CAD training. The 
CAD developers had no access to the images and were 
not involved in the conceptualisation or analysis of this 
study. Chest x-rays were additionally reviewed by expert 
human readers in the original studies (including PG) to 
detect lung abnormalities, including cavitary disease as 
a marker for active disease and probable infectiousness.

In our study, cases were defined as participants who 
were tuberculosis positive—ie, individuals diagnosed 
with pulmonary tuberculosis by Xpert Ultra or sputum 
culture positivity, or both (microbiological reference 
standard). We defined controls as participants who were 
tuberculosis negative—ie, individuals with both a 
negative Xpert Ultra and sputum culture result. For 
controls, we randomly sampled from tuberculosis-
negative individuals in each study and used an 
approximate 1:2 ratio of cases to controls. Random 
sampling was performed by an independent investigator 
using STATA. We additionally evaluated CAD against 
other reference standards: Xpert Ultra (trace only 
excluded) or sputum culture positivity (or both), Xpert 
Ultra positivity only, and sputum culture positivity only.

Statistical analysis
At 90% sensitivity and 70% specificity, as per the WHO 
target product profile (TPP) for a screening or triage 
test,18 and assuming a precision level of plus or 
minus 5%, the minimum required sample size was 
276 (138 tuberculosis cases and 138 non-tuberculosis 
controls: WHO CAD calibration toolkit19).

Categorical variables were compared using χ² test or 
Fisher’s exact test. Continuous variables were compared 
using Student’s t test (parametric data) or the Mann–
Whitney test (non-parametric data). Diagnostic accuracy 
was determined by sensitivity, specificity, and area under 
the receiver operating curve (AUC) of the index test 
(ie, CAD) and expert human reader against the 

See Online for appendix



Articles

e520 www.thelancet.com/lancetgh   Vol 13   March 2025

microbiological reference standard. We analysed the 
performance of CAD against the WHO TPP by first 
calculating the sensitivity and specificity of CAD across 
all thresholds (0–100). Subsequently, we identified the 
threshold that resulted in a sensitivity closest to 90% and 
reported the corresponding specificity. The same analysis 
was then performed in reverse to evaluate the sensitivity 
achieved when specificity was closest to 70%. We also 
evaluated CAD performance at additional fixed 
sensitivities and specificities, and at the developer-
calibrated threshold (50: CAD4TB version 7). CAD 
performance was additionally evaluated in various 
subgroups: age, sex assigned at birth, HIV status, diabetes 
status, history of previous tuberculosis, and presence of 
symptoms. In each subgroup, the AUC was calculated and 
compared. Furthermore, optimal thres holds for achieving 
desired sensitivity and specificity in each subgroup were 
evaluated. Multivariable analyses were conducted to 
investigate the impact of demographic and clinical 
variables on CAD performance (appendix pp 14–15).

In a subanalysis using data from three studies,12–14 we 
investigated the accuracy of CAD to identify patients 

with probably infectious tuberculosis at various 
thresholds. We used a composite measure previously 
described:12 smear positivity, CASS positivity, or cavitary 
disease detected on chest x-ray by the expert human 
reader (only in patients with newly diagnosed 
tuberculosis to limit potential bias of cavities from 
previous tuberculosis).

To determine the potential clinical use of CAD 
programmatically, we determined the number of 
tuberculosis-positive individuals missed (ie, CAD false 
negatives), the number of confirmatory diagnostic tests 
saved or not required (ie, CAD true negatives), and the 
number of falsely required confirmatory diagnostic 
tests (ie, CAD false positives) in a hypothetical 
population of 10 000 individuals screened at various 
accuracy estimates and tuberculosis prevalences.

We conducted a preliminary economic analysis 
comparing the cost per tuberculosis case detected and 
initiated on treatment (per 10 000 individuals screened) 
for two community-based tuberculosis diagnostic 
strategies: Xpert Ultra in everyone screened (Xpert only) 
versus Xpert Ultra only in CAD-positive individuals 
(CAD–Xpert). Test costs were calculated using a 
bottom-up ingredient’s approach where each individual 
test cost was calculated by combining each component 
cost of the test (labour, equipment, and consumables), 
and then multiplied by the calculated number of tests 
performed for each strategy. Tuberculosis treatment 
costs were obtained from published sources.1 Costs 
were expressed in 2024 US$ at the exchange rate 
of ZAR 19·22 to $1.20 Tuberculosis prevalence10 and 
test performance estimates from published12,21 and 
ongoing13,14 studies were used to calculate test outcome 
probabilities. Outcomes included the number of Xpert 
Ultra tests performed, number of tuberculosis cases 
detected, and the diagnostic yield among all people tested 
and diagnosed.22 We performed a univariate analysis to 
assess the impact of uncertainties around input 
parameters. Additional methodological details of the 
preliminary cost analysis are in the appendix (pp 20–24).

Analyses were performed using SPSS Statistics 
(version 28.0), GraphPad Prism (version 10.2.3; GraphPad 
Software Boston, MA, USA), and R (version 4.2.3).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Across all five community-based ACF studies, 52 474 
individuals were screened, of which 20 770 (39·6%) 
screened positive for either the presence of WHO 
tuberculosis-related symptoms or high-risk factors for 
tuberculosis, or an abnormal screening chest x-ray 
(figure 1). 530 (2·6%) individuals were diagnosed with 
tuberculosis. Data from 29 tuberculosis-positive 

Figure 1: Study overview
CAD=computer-aided detection. *Controls randomly sampled from tuberculosis-negative individuals in each 
study in an approximate 1:2 ratio (case to controls). 

530 tuberculosis-positive participants 
across all studies

501 tuberculosis-positive participants 
included in current study (cases)

29 excluded
 16 data unavailable  
 13 digital chest x-ray unavailable 

for CAD analysis

20 770 participants screened positive
 4037 symptoms only 
 8737 abnormal chest x-ray only
 2615 symptoms and abnormal chest x-ray  
 5381 no symptoms or chest x-ray normal 

or unavailable, or both

10 886 with valid chest x-ray and sputum results
included in analysis

9884 without valid chest x-ray 
and sputum results excluded

31 704 screened negative

938 tuberculosis-negative participants 
included in current study (controls)*

52 474 participants from studies10–14 underwent 
community-based screening or active 
case-finding for tuberculosis
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individuals were unavailable. Therefore, 1439 individuals 
were included for analysis in the current study 
(501 tuberculosis positive [cases] and 938 tuberculosis 
negative [controls]; appendix p 5).

Tuberculosis-positive individuals were significantly 
younger (43 years [IQR 31–54] vs 47 years [32–61]; 
p=0·0009) and predominantly male (263 [52·5%] of 501 
vs 425 [45·3%] of 938; p=0·0093) compared with 

Overall (n=1439) Tuberculosis positive (n=501) Tuberculosis negative (n=938) p value

Age, years 45 (32–59) 43 (31–54) 47 (32–61) 0·0009

≤55 983 (68·3%) 385 (76·8%) 598 (63·8%) <0·0001

>55 456 (31·7%) 116 (23·2%) 340 (36·2%) ··

Sex at birth

Female 751 (52·2%) 238 (47·5%) 513 (54·7%) 0·0093

Male 688 (47·8%) 263 (52·5%) 425 (45·3%) ··

Current smoker* 570/1139 (50·0%) 223/402 (55·5%) 347/737 (47·1%) 0·0068

Alcohol user 520 (36·1%) 178 (35·5%) 342 (36·5%) 0·53

HIV positive 354 (24·6%) 141 (28·1%) 213 (22·7%) 0·023

Diabetes† 66/994 (6·6%) 15/354 (4·2%) 51/640 (8·0%) 0·024

History of previous tuberculosis 421 (29·3%) 193 (38·5%) 228 (24·3%) <0·0001

Presence of symptoms ·· ·· ·· 0·0006

Asymptomatic 730 (50·7%) 285 (56·9%) 445 (47·4%) ··

Symptomatic 709 (49·3%) 216 (43·1%) 493 (52·6%) ··

Cough 517 (35·9%) 170 (33·9%) 347 (37·0%) 0·25

Cough >2 weeks 266 (18·5%) 82 (16·4%) 184 (19·6%) 0·13

Fever 184 (12·8%) 58 (11·6%) 126 (13·4%) 0·32

Night sweats 373 (25·9%) 127 (25·3%) 246 (26·2%) 0·72

Unintended weight loss 308 (21·4%) 113 (22·6%) 195 (20·8%) 0·44

Xpert or culture positive, or both 501 (34·8%) 501 (100%) ·· ··

Xpert or culture positive or both (trace only excluded) 461 (32·0%) 461 (92·0%) ·· ··

Xpert positive only 158 (11·1%) 158 (31·5%) ·· ··

Culture positive only 96 (6·7%) 96 (19·2%) ·· ··

Xpert and culture positive 247 (17·2%) 247 (49·3%) ·· ··

CAD4TB version 7 score 17·8 (3·0–59·1) 67·9 (26·2–87·7) 6·6 (1·4–27·4) <0·0001

Any chest x-ray abnormality as assessed by expert 
human reader

900 (62·5%) 429 (85·6%) 471 (32·7%) <0·0001

Chest x-ray features consistent with active 
tuberculosis as assessed by expert human reader

696 (48·4%) 354 (70·7%) 342 (36·5%) <0·0001

Data are median (IQR), n (%) or n/N (%). CAD=computer-aided detection. Xpert=GeneXpert MTB/RIF Ultra. *Not reported in 300 participants. †Not reported in 445 participants. 

Table 1: Demographic, clinical, microbiological, and radiological characteristics of study participants (n=1439)

Threshold 
score

True 
positive

False 
positive

True 
negative

False 
negative

Sensitivity (95% CI) Specificity (95% CI)

Sensitivity

Sensitivity fixed at 90% 5 453 517 421 48 90·4% (88·1–92·7) 44·9% (42·5–47·3)

Sensitivity fixed at 85% 10 428 431 507 73 85·4% (83·0–87·8) 54·1% (51·7–56·5)

Sensitivity fixed at 80% 17 402 332 606 99 80·2% (77·9–82·6) 64·6% (62·3–66·9)

Specificity

Specificity fixed at 70% 24 382 276 662 119 76·2% (73·9–78·6) 70·6% (68·2–73·0)

Specificity fixed at 65% 18 396 320 618 105 79·0% (76·6–81·4) 65·9% (63·5–68·3)

Developer-calibrated threshold* 50 311 97 841 190 62·1% (59·7–64·5) 89·7% (87·3–92·1)

Expert human reader

Any chest x-ray abnormality ·· 429 471 467 72 85·6% (82·3–88·6) 49·8% (46·5–53·0)

Chest x-ray features consistent 
with active tuberculosis

·· 354 342 596 147 70·7% (66·5–74·6) 63·5% (60·4–66·6)

*CAD4TB version 7.

Table 2: Computer-aided detection and expert human reader accuracy estimates (n=1439)
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tuberculosis-negative individuals (table 1). 354 (24·6%) 
participants were HIV positive and 421 (29·3%) had a 
history of previous tuberculosis. A significantly higher 
proportion of tuberculosis-positive individuals were 
asymptomatic at enrolment compared with tuberculosis-
negative individuals (285 [56·9%] of 501 vs 445 [47·4%] 
of 938; p=0·0006). Among the 501 tuberculosis-positive 
individuals, 158 (31·5%) were Xpert Ultra positive only, 
whereas 96 (19·2%) were sputum culture positive only, 

and 247 (49·3%) were both Xpert Ultra and sputum 
culture positive. The median CAD4TB version 7 score 
for the total cohort was 17·8 (IQR 3·0–59·1), with 
significantly higher scores in tuberculosis-positive 
individuals compared with tuberculosis-negative indi-
viduals (67·9 [26·2–87·7] vs 6·6 [1·4–27·4]; p<0·0001). A 
summary of demographic, clinical, microbiological, and 
radiological characteristics within each study is in the 
appendix (p 6).

CAD achieved an AUC of 0·83 (95% CI 0·80–0·85). No 
significant differences were found in AUC between 
various microbiological reference standards (appendix 
p 7) or between studies (appendix p 8). CAD specificity 
was 44·9% (95% CI 42·5–47·3) at a fixed sensitivity of 90% 
(threshold 5), 54·1% (51·7–56·5) at a fixed sensitivity of 
85% (threshold 10), and 64·6% (62·3–66·9) at a fixed 
sensitivity of 80% (threshold 17; table 2). Conversely, the 
CAD sensitivity was 76·2% (73·9–78·6) at a fixed 
specificity of 70% (threshold 24) and 79·0% (76·6–81·4) at 
a fixed specificity of 65% (threshold 18). At the developer-
calibrated threshold (50: CAD4TB version 7), CAD 
sensitivity was 62·1% (59·7–64·5) and specificity was 
89·7% (87·3–92·1). CAD accuracy was similar when 
Xpert Ultra trace only results were excluded (appendix p 9). 
Compared with the expert human reader detecting chest 
x-ray features consistent with active tuberculosis, CAD 
had improved specificity at the same sensitivity of 
approximately 85% (54·1% [51·7–56·5] vs 
49·8% [46·5-53·0]). The accuracy estimates of CAD and 
expert human reader stratified by study are in the 
appendix (p 10).

There were significant differences in AUC between 
subgroups with CAD performing worse in individuals 
older than 55 years compared with individuals aged 
55 years or younger (0·76 [95% CI 0·70–0·81] vs 
0·85 [0·82–0·87]; p=0·0024), HIV-positive compared 
with HIV-negative people (0·76 [0·71–0·81] vs 
0·85 [0·82–0·87]; p=0·0037), individuals with a history 
of previous tuberculosis compared with those without 
(0·77 [0·73–0·82] vs 0·84 [0·81–0·86]; p=0·023), and 
asymptomatic people compared with people with 
symptoms (0·79 [0·76–0·82] vs 0·85 [0·82–0·88]; 
p=0·0079; figure 2). Similar differences in CAD 
sensitivity and specificity were found in the same 
subgroups (appendix pp 11–12). Furthermore, thresholds 
varied considerably between subgroups and required 
adjustment to achieve either 90% sensitivity or 
70% specificity. Sensitivity and specificity of the expert 
human reader between subgroups are in the appendix 
(p 13). Results of the multivariable analyses are in the 
appendix (pp 16–17).

374 participants from three studies12–14 were included in 
a subanalysis evaluating CAD performance in detecting 
probably infectious tuberculosis (ie, smear positive, 
CASS positive, cavitary disease on chest x-ray in patients 
with newly diagnosed tuberculosis, or a combination of 
all three; figure 3). Of participants that were tuberculosis 

Figure 2: AUC subgroup analysis of computer-aided detection against the microbiological reference standard 
(n=1439).
Subgroups include age (A), sex (B), HIV status (C), diabetes status (D), tuberculosis history (E), and presence of 
symptoms (F). AUC=area under the receiver operating curve. 
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HIV negative (n=1085)
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p=0·0037

Diabetes not present (n=928)
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Diabetes present (n=66)
AUC: 0·82 (95% CI 0·69–0·95)

p=0·71

p=0·023
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p=0·079
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positive and underwent all infectiousness testing 
(131 [35·0%] of 374), 44 (33·6%) were probably infectious. 
CAD achieved an AUC of 0·87 (95% CI 0·81–0·93) 
in detecting probably infectious tuberculosis. At a 
threshold of 5 CAD sensitivity was 100·0% (95% CI 
92·0–100·0), at a threshold of 10 CAD sensitivity was 
93·2% (81·8–97·7), and at a threshold of 17 CAD 
sensitivity was 93·2% (81·8–97·7).

The potential clinical implications of CAD accuracy 
estimate per 10 000 individuals screened at various 
tuberculosis prevalences are in the appendix (pp 18–19). 
For example, at a 1% tuberculosis prevalence, and a 
CAD sensitivity of 90·4% and specificity of 44·9% 
(threshold: 5), CAD would miss ten tuberculosis 
positives (ie, false negatives) and would be falsely positive 
(and therefore falsely require confirmatory diagnostic 
testing) in 5455 (54·5%) of 10 000 people screened. 
However, 4445 (44·5%) 10 000 individuals would be truly 
CAD negative (therefore truly not requiring a 
confirmatory diagnostic test and saving cost during 
screening strategies).

A CAD–Xpert strategy was more economical compared 
with an Xpert only strategy (US$2207–$3745 vs $4698 
per tuberculosis case detected and initiated on treatment 
per 10 000 people screened) with savings between 
$953 and $2940 depending on the CAD threshold used 
(table 3). At a lower CAD threshold (threshold: 5), the 
Xpert only strategy had a higher diagnostic yield compared 
with the CAD–Xpert strategy (65% vs 59% per 
10 000 individuals screened). However, the CAD–Xpert 
strategy still had a lower cost per tuberculosis case detected 
and initiated on treatment due to lower overall costs 
associated with false positives (ie, less Xpert Ultra tests 
performed) and fewer people being initiated on treatment. 
At higher CAD thresholds (24 and 50), which favour higher 
test specificities at the expense of sensitivity, strategy costs 
were even lower (due to fewer false positives) but showed 
up to 25% lower diagnostic yield compared to the Xpert 
only strategy (table 3). Nevertheless, using higher CAD 
thresholds yielded the lowest cost per tuberculosis case 
detected and initiated on treatment for the CAD–Xpert 
strategy. Univariate sensitivity analyses revealed that, for 
both Xpert only and CAD–Xpert strategies (using a CAD 
threshold of 5), Xpert Ultra specificity, sensitivity, and 
tuberculosis prevalence were the most influential 
parameters on the cost per case detected and initiated on 
treatment (appendix p 25). However, even at different 
estimates for these parameters, the CAD–Xpert strategy, 
especially at higher thresholds, always had lower cost 
per tuberculosis case detected and initiated on treatment 
compared to the Xpert only strategy (appendix p 26).

Discussion
To our knowledge, this is the largest study evaluating the 
diagnostic accuracy and clinical utility of CAD during 
community-based ACF for tuberculosis. Our study 
suggests that in the context of community-based 

screening or ACF, and despite not meeting the WHO 
TPP, CAD has the potential to be a useful and cost-saving 
screening tool for tuberculosis in an HIV-endemic and 
resource-poor setting. Furthermore, by detecting most 
people with probably infectious tuberculosis, CAD could 
assist in interrupting the tuberculosis transmission 
cycle. Our findings inform policy makers and national 
tuberculosis programmes about how CAD can be 
implemented in specific contexts.

Against a microbiological reference standard, we found 
CAD to have good accuracy (AUC>0·80) which is 
complemented by findings of other ACF studies.23–27 

However, CAD had modest specificity which might be 
attributed to uncertainty of chest x-ray features of active 
tuberculosis, especially in settings with high pre valences 
of HIV, asymptomatic tuberculosis, and history of 
previous tuberculosis. A 2024 study28 estimated CAD 
accuracy during ACF for tuberculosis using 
six methodological approaches, including a latent class 
analysis. The authors suggested that not including 

Figure 3: Subanalysis: accuracy of CAD to detect probably infectious patients with tuberculosis at various 
thresholds (n=374)
CAD=computer-aided detection. CASS=cough aerosol sampling studies. Xpert=GeneXpert MTB/RIF Ultra. *Only data 
from the XACT-2,12 XACT-3,13 and XACT-1914 studies were included. †Cavitary disease detected on chest x-ray by 
expert human readers in patients with newly diagnosed tuberculosis.

44 (33·6%) participants probably had infectious 
tuberculosis 

139 tuberculosis positive (Xpert Ultra or 
culture positive, or both)

374 participants included in subanalysis*

8 excluded because all tests were not performed

87 (66·4%) participants probably had non-infectious 
tuberculosis 

131 with all three tests portending 
infectiousness (CASS, chest x-ray, and 
smear)

7

1

3 1410

72
Smear positive

(n=25)
Cavitary disease†

(n=16)

CASS positive
(n=17)

CAD4TB version 7 threshold: 5
Sensitivity: 100·0% 
(95% CI 92·0–100·0)
Specificity: 26·1% 
(95% CI 21·6–31·1)

CAD4TB version 7 threshold: 10
Sensitivity: 93·2% 
(95% CI 81·8–97·7)
Specificity: 38·5% 
(95% CI 33·4–43·8)

CAD4TB version 7 threshold: 17
Sensitivity: 93·2% 
(95% CI 81·8–97·7)
Specificity: 50·9% 
(95% CI 45·5–56·3)
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individuals with normal appearing chest x-rays or who 
were asymptomatic severely underestimates specificity. 
Therefore, by assuming participants who were not 
microbiologically tested were tuberculosis negative, 
CAD accuracy might be better characterised, but risks 
missing individuals with asymptomatic (ie, subclinical) 
tuberculosis.

Threshold determination is crucial when implementing 
CAD. A high threshold might miss people with 
tuberculosis, whereas a low threshold will detect most 
individuals with tuberculosis but with greater costs due to 
increased confirmatory microbiological testing. Few 
studies have reported on optimal thresholds as they are 
population-specific and context-specific. The current 
study found a CAD4TB version 7 threshold of 5 had a 
sensitivity of 90% or more (compared with the developer-
calibrated threshold of 50). We therefore provide 
important data on CAD threshold use in South Africa, 
and in a HIV-endemic setting where there is a high 
proportion of individuals with a history of previous 
tuberculosis. A previous community-based study in 
South Africa suggested a CAD4TB version 7 threshold of 
20; however, this threshold was determined by comparing 

an assessment by a radiologist.29 Contrastingly, a study 
using data collected during the Lesotho national 
prevalence survey reported a CAD4TB version 7 
threshold of 9 achieving a minimum sensitivity of 
90% with similar specificity to the current study.28 
Importantly, with the technological advances and 
refinements in algorithms and neural networks, 
implementers of CAD should ensure that threshold 
determinations are re-evaluated after newer CAD versions 
are released.

In a subgroup analysis, we found CAD performed 
significantly worse in individuals who were older, were 
HIV positive, had a history of previous tuberculosis, and 
in those who were asymptomatic. These results were 
consistent with previous studies.7,8,23,27,30 The decreased 
performance by CAD in older individuals and people 
living with HIV is especially important as these 
subgroups have higher case fatality and therefore require 
greater urgency in initiating treatment. CAD performed 
worse in females compared with males; however, the 
difference was not significant. Our study found no 
difference in CAD accuracy in individuals with diabetes, 
contrary to findings in previous literature.31 Thresholds 

Xpert only (Xpert in all 
people screened)

CAD–Xpert (Xpert only in CAD-positive individuals)

CAD4TB version 7 
threshold: 5 (sensitivity 
≥90%)

CAD4TB version 7 
threshold: 24 (specificity 
≥70%)

CAD4TB version 7  
developer-calibrated 
threshold: 50

Costs*

Total cost of each strategy $305 338 $220 036 $145 636 $89 086

Total test costs $168 920 $132 968 $89 750 $57 571

Total treatment costs $136 418 $87 068 $55 886 $31 516

Costs incurred due to false positive 
results

$106 047 $58 861 $31 407 $11 003

Costs incurred due to false negative 
results

$591 $697 $649 $601 

Outcomes

Number of Xpert tests performed 10 000 5545 2987 1082

Total people with tuberculosis 
(assuming 1% tuberculosis prevalence)

100 100 100 100

Number of tuberculosis cases detected 
(true positive)

65 59 50 40

Number of tuberculosis cases missed 
(false negative)

35 41 50 60

Number of cases incorrectly 
diagnosed (false positive)

198 109 58 20

Diagnostic yield among all tested† 0·65% (65/10 000) 0·59% (59/10 000) 0·50% (50/10 000) 0·40% (40/10 000)

Diagnostic yield among all diagnosed‡ 65·0% (65/100) 59·0% (59/100) 50·0% (50/100) 40·0% (40/100)

Cost per tuberculosis case detected and 
initiated on treatment*

$4698 $3745 $2940 $2207

Difference (% savings) compared to 
Xpert only strategy

·· $953 (20%) $1757 (37%) $2490 (53%)

Each measure is per 10 000 people screened at a tuberculosis prevalence of 1%. CAD=computer-aided detection. Xpert=GeneXpert MTB/RIF Ultra. *Costs are expressed 
in 2024 US$. †The number of people with a positive diagnosis by the test divided by the total number of people for whom tuberculosis testing was attempted. ‡The number 
of people with a positive diagnosis by the test divided by the total number of people diagnosed with tuberculosis.22 

Table 3: Costs, outcomes, and cost per tuberculosis case detected and initiated on treatment of each diagnostic strategy evaluated in the preliminary 
economic analysis
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varied substantially between subgroups and highlight 
the importance of considering population characteristics 
when implementing CAD into ACF strategies. Studies 
have shown the potential improvement in CAD 
performance when combining demographic or clinical 
factors with continuous CAD scores through multi-
variable modelling.27,32 Future research might look to 
improve and validate these predictive models through 
increased sample sizes, inclusion of more clinical 
variables, and utilising data from prospective, multicentre 
studies that may improve population-specific and 
context-specific generalisability.

A crucial goal of tuberculosis screening is to interrupt 
transmission by detecting infectious patients. Although 
there is no agreed upon definition of tuberculosis 
infectiousness, we used a previously established 
definition incorporating smear positivity, CASS positivity, 
or cavitary disease.12 It is well established and accepted 
that smear positivity and cavitary disease are associated 
with tuberculosis infectiousness (and transmission),33,34 
with CASS being a measure of infectiousness that 
correlates with tuberculin skin test conversion and 
development of active tuberculosis within 2 years.16,35 In 
our subanalysis, we showed that CAD has the potential 
to detect all probably infectious patients with tuberculosis. 
This finding has important public health implications 
because identifying probably infectious people allows for 
close follow-up and targeted interventions for these 
individuals, while also interrupting community-based 
transmission. Although CAD4TB only provides a CAD 
score and a binary classification of whether tuberculosis 
is likely present or not, other CAD software have the 
capability to report on lung abnormalities (eg, cavities) 
which has the potential to identify probably infectious 
individuals, which is an important basis for future work.

Limited data exist evaluating the clinical utility of CAD 
as a screening tool, including clinical implications of its 
accuracy estimates and economic feasibility. With CAD 
showing modest specificity, screening strategies are at 
risk for increased costs due to high numbers of people 
requiring confirmatory diagnostic testing. However, as a 
screening tool, it could be argued that the benefits of 
high sensitivity outweigh the limitations of a lower 
specificity. Indeed, the WHO TPP report noted the 
importance of considering the trade-off between cost and 
specificity, in addition to the potential burden on the 
health system when large numbers of patients who are 
false positive are tested.18 Based on our findings, and at a 
1% tuberculosis prevalence (like South Africa’s national 
tuberculosis prevalence),10 approximately half of all 
people screened would be falsely positive. However, 
approximately 45% would be truly negative and not 
require confirmatory testing, thereby saving overall costs. 
In our preliminary economic analysis, we found that a 
CAD-directed Xpert strategy (ie, performing Xpert Ultra 
only if CAD is positive) had a lower cost per case 
diagnosed and initiated on treatment when compared 

with performing Xpert Ultra in all people in an ACF 
setting, which is because less Xpert Ultra tests are 
performed, and overall false positive numbers are 
reduced. Our findings are corroborated by other 
studies,36–38 and suggest that CAD could be a useful and 
cost-saving tool, especially during community-based 
ACF for tuberculosis in endemic settings. This approach 
could be combined with other cost-saving approaches 
such as sputum pooling strategies for Xpert testing.39 
However, the model did not account for the potential 
long-term benefits of early tuberculosis detection or the 
impact of missed tuberculosis cases, in terms of onward 
transmission and development of additional tuberculosis 
cases. These factors would need to be considered in 
future cost-effectiveness analyses using empirical data or 
more in-depth modelling, because it will probably affect 
the cost savings of these strategies. Other considerations 
(eg, settings, tuberculosis prevalence rates, combination 
of ACF screening tests, and choice of CAD threshold) 
also need to be addressed for optimal resource allocation.

Our study had several strengths. These included 
focusing on a community-based population where the 
test will be used, evaluation in HIV-endemic populations 
and other subgroups, inclusion of a preliminary cost 
analysis, and using a robust reference standard. 
However, there were also several limitations. We used a 
case–control design which might have introduced 
biased estimates of CAD diagnostic accuracy. Further-
more, studies with both observational and interventional 
study designs were included, which might have 
impacted results. However, study-specific populations 
were similar (ie, individuals who resided in tuberculosis-
endemic or HIV-endemic communities at high risk 
for tuberculosis) and this was the largest community-
based ACF for tuberculosis study that evaluated 
CAD performance against a microbiological reference 
standard. We only assessed one CAD product due to data 
availability and differences in individual study designs. 
However, we used the latest available CAD4TB version. 
We only included participants aged ≥15 years and could 
therefore not comment on the diagnostic accuracy of 
CAD in children and young adolescents, an important 
population that contributes approximately 5–10% of the 
global tuberculosis burden. However, WHO only 
recommends CAD as a screening or triage tool in 
individuals aged 15 years or older. Data were not 
collected evaluating participant or operator feedback 
and preferences on CAD. This important but often 
overlooked area of the research field should be the basis 
for future research. Not all participants underwent all 
infectiousness studies. Additionally, the composite 
measure for probably infectious tuberculosis included 
cavitary disease detected on chest x-ray, which might 
have preselected for a subset of infectious tuberculosis 
cases where CAD is likely to perform better (ie, x-ray 
identifiable disease). Nevertheless, this was a sub-
analysis, and the aim was to determine whether CAD 
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could not just detect microbiologically proven 
tuberculosis, but also detect probably infectious 
tuberculosis at the same threshold. Future larger studies 
are planned to corroborate our findings. Finally, we 
conducted a preliminary economic analysis showing 
the potential cost savings of CAD and could therefore 
not report on overall cost-effectiveness. However, 
prospective studies13,14 performing comprehensive cost 
analyses are ongoing, which might verify our findings.

In conclusion, during community-based ACF for 
tuberculosis in an HIV-endemic setting, CAD did not 
meet the WHO TPP and performed more poorly in some 
subgroups. However, CAD might still be a useful 
screening tool that could detect not just people with 
microbiologically proven tuberculosis, but also people 
who are probably infectious. Furthermore, despite 
modest specificity and a high false positivity rate, a 
context-specific CAD-directed strategy could still be cost 
saving, especially during large-scale screening. Our 
findings inform community-based ACF strategies, 
national tuberculosis programmes, and global health 
bodies engaged in tuberculosis care and prevention, with 
the goal to disrupt the tuberculosis transmission cycle 
and end tuberculosis.
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