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Abstract 
Sabah, Malaysia, has amongst the highest burden of human Plasmodium knowlesi 

infection in the world, associated with increasing encroachment on the parasite’s macaque 

host habitat. However, the genomic make-up of P. knowlesi in Sabah was previously poorly 

understood. To inform on local patterns of transmission and putative adaptive drivers, we 

conduct population-level genetic analyses of P. knowlesi human infections using 52 new 

whole genomes from Sabah, Malaysia, in combination with publicly available data. We 

identify the emergence of distinct geographical subpopulations within the macaque- 

associated clusters using identity-by-descent-based connectivity analysis. Secondly, we 

report on introgression events between the clusters, which may be linked to differentiation 

of the subpopulations, and that overlap genes critical for survival in human and mosquito 

hosts. Using village-level locations from P. knowlesi infections, we also identify associa-

tions between several introgressed regions and both intact forest perimeter-area ratio and 

mosquito vector habitat suitability. Our findings provide further evidence of the complex 

role of changing ecosystems and sympatric macaque hosts in Malaysia driving distinct 

genetic changes seen in P. knowlesi populations. Future expanded analyses of evolving 

P. knowlesi genetics and environmental drivers of transmission will be important to guide 

public health surveillance and control strategies.
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Author summary
The zoonotic P. knowlesi parasite is an emerging, yet understudied, cause of malaria in 
Southeast Asia. Sabah, Malaysia, has amongst the highest burden of human P. knowlesi 
infection in the world, however, the region is currently understudied. We produced a 
collection of high-quality P. knowlesi genomes from Sabah, and in combination with 
publicly available data, performed an extensive population genetics analysis. Our work 
contributes novel insights for Plasmodium knowlesi population genetics and genetic 
epidemiology.

Introduction
Zoonotic transmission of the macaque parasite Plasmodium knowlesi has emerged as the 
most common cause of human malaria in Malaysia and parts of western Indonesia [1–3]. P. 
knowlesi infections can cause severe, life-threatening malaria, with a case fatality similar to 
that of P. falciparum in Southeast Asia despite comparatively lower levels of parasitemia [4,5]. 
The recent increased reporting of P. knowlesi infections in Southeast Asia has been strongly 
linked with the encroachment of humans on previously intact habitats of their natural 
macaque reservoir hosts [6]. Zoonotic transmission of P. knowlesi is thought to occur largely 
in response to increasingly fragmented landscapes as a result of land clearing and associ-
ated agricultural activities, with increased exposure in at-risk workers and local populations 
in endemic areas to both pig-tailed (Macaca nemestrina) and long-tailed (M. fascicularis) 
macaques, and the Anopheles Leucosphyrus Group mosquito vectors [7,8]. Worryingly, in 
contrast to the control of other human Plasmodium species, national WHO malaria elimina-
tion goals in Southeast Asia are threatened by the inability of public health measures to target 
macaque host reservoirs for P. knowlesi [2]. Furthermore, conventional prevention measures 
such as insecticide-treated bed nets used successfully for other Plasmodium species in the 
region are limited for P. knowlesi zoonotic infections, primarily acquired at the forest-edge 
during agricultural work activities [9,10].

Insights gained from genomic analyses of human malaria parasites have advanced our 
understanding of basic disease biology, drug resistance and malaria epidemiology [11]. Large-
scale, collaborative efforts to produce publicly available population-level whole genome data 
for Plasmodium species of interest, have produced over 20,000 P. falciparum [12] and ~1,800 
P. vivax [13] genomes. In contrast, P. knowlesi currently has fewer than 200 whole genomes 
available from a limited geographic distribution [14–18]. Only 16 reported P. knowlesi genomes 
are described from the state of Sabah in East Malaysia, despite this area representing among the 
highest reported number of P. knowlesi cases and disease burden globally to date [19].

Previous studies of P. knowlesi population genetics in Malaysia have identified three 
genetically divergent populations using a combination of whole-genome sequencing [20] and 
microsatellite genotyping [21]. One of these populations is restricted to Peninsular Malay-
sia, whilst the other two are found in Malaysian Borneo. The two overlapping clusters in 
Malaysian Borneo are derived from the separate macaque reservoir hosts: from long-tailed 
macaques (Macaca fascicularis [Mf]) and pig-tailed macaques (M. nemestrina [Mn]) [22]. We 
refer to these clusters as Mf (cluster 1), Mn (cluster 2) and Peninsular (cluster 3) throughout 
this manuscript. Despite these clearly-defined, genetically divergent populations, previ-
ous work further identified distinct subpopulations within the different clusters [15], with 
evidence of recent positive directional selection [20] and large genetic introgression events 
between the subpopulations linked to mosquito vectors [15]. In this context, introgression 
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refers to the transfer of genetic information from one cluster to another, resulting from 
hybridisation and repeated backcrossing. This evidence suggests that P. knowlesi population 
structure is changing, with changes hypothesised to occur as a result of rapidly altering forest 
and agricultural ecosystems in Malaysia.

To expand our understanding of the evolving population structure of P. knowlesi across 
Malaysia, we performed whole genome sequencing on 94 new human infections from diverse 
landscapes across Sabah, East Malaysia [19]. The newly produced data were combined with 
108 (100 included in the analysis) publicly available P. knowlesi genomes derived from clinical 
infections across Malaysia [14,20]. Leveraging the additional isolates from Sabah, our objec-
tive was to perform a comprehensive evaluation of P. knowlesi population structure with a 
dataset that better represents the distribution of symptomatic infections from passive case 
detection across Malaysia. We combined genomic data with environmental land cover clas-
sification data surrounding knowlesi malaria case villages to better explore the relationship 
between the genomic and ecological features in Sabah associated with the transmission of P. 
knowlesi populations. These integrated analyses aim to provide insights to assist in the devel-
opment of future public health interventions and genomic surveillance efforts.

Methods

Ethics statement
The research was performed in accordance with the Declaration of Helsinki and ethics 
approval was obtained from the medical research ethics committees of the Ministry of Health, 
Malaysia and Menzies School of Health Research, Australia.

Sample collection and preparation
We used a combination of newly generated P. knowlesi whole genome sequencing data (n = 
94) [23] and archived FASTQ files (n = 108) from P. knowlesi-infected patients in Malaysia. 
Newly processed samples were collected as part of prospective clinical studies conducted 
through the Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health 
Research collaboration from 2011 to 2016 across multiple hospital sites in Sabah [4,5]. 
Patients of all ages presenting with microscopy-diagnosed malaria were enrolled following 
informed consent. Single species, P. knowlesi infections were confirmed through validated 
PCR (targeting the 18S small-subunit RNA gene) [24,25] and parasitemia quantified by expert 
research microscopists. These 94 clinical isolates underwent Illumina whole genome, paired-
end sequencing (150 bp), with library preparation conducted using the NEBNext Ultra IIDNA 
Library Prep Kit (from New England BioLabs Inc., Cat No. E7645). The further 108 samples 
from a broader geographic range within Malaysia were downloaded from the National Center 
for Biotechnology Information (PRJEB33025, PRJEB23813, PRJEB1405, PRJEB10288 & 
PRJN294104) [14,20] (Table A in S1 Text).

Read mapping, variant discovery and genotyping
Variants were detected using a modified version of a previously described workflow [26]. Raw 
reads were processed using FastQC and cutadapt [27] to determine quality, with subsequent 
filtering and trimming of reads. The Burrows-Wheeler Aligner (bwa) was then used to map 
reads to the PKA1-H.1 reference genome [28]. BAM pre-processing steps were applied using 
Picard version 2.26.1 and the Genome Analysis Toolkit (GATK) version 3.8-1-0 [29]. Notably, 
two steps in the GATK workflow (base recalibration and indel realignment) require a set of 
high-quality known variants. As recommended by the Broad Institute for non-model organ-
isms without a reference dataset [30], we took a bootstrapping approach, where we passed a 
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subset of 39 samples through a simplified version of the pipeline and applied hard filtering 
based on quality score distribution (FS<=2, MQ>=59 & QD>=20), and then passed this con-
servative variant set into the recalibration steps of the pipeline for another round of variant 
calling.

SNPs and indels were called using a consensus approach applied to outputs from GATK 
and bcftools variant callers using a modified version of a previously described workflow 
[31,32]. A consensus approach was taken to improve accuracy and reduce false positives by 
filtering for the overlap between the two commonly used tools, which use distinct algorithms 
and heuristics. For GATK, HaplotypeCaller was used to identify potential variants in each 
sample, with the resulting GVCF files merged using CombineGVCFs, and joint-genotyping 
performed using GATK’s GenotypeGVCFs. A similar joint-calling approach was imple-
mented with bcftools using the mpileup and call subcommands. A consensus was taken of 
the resulting VCF files generating a conservative list of high-quality variants. Finally, SNPs 
and small indels were filtered using GATK’s VariantFiltration using the same thresholds 
outlined above.

Data filtering
To reduce noise, errors, and avoid bias in statistical estimates from rare variants, further fil-
tering was applied based on clonality (FWS), genotypic missingness and minor allele frequency 
(MAF), depending on the downstream analysis. For clonality, within-isolate fixation index FWS 
[33] was calculated on the full dataset (n = 201) using the moimix package (github.com/bahlo-
lab/moimix) and samples with FWS<0.85 were removed from downstream analyses [15]. FWS is 
a measure of genetic diversity within an isolate, where the genetic variation within individuals 
is compared to the genetic variation across and entire population. Prior to filtering samples 
based on FWS, the non-reference allele frequency (NRAF) was also plotted across the genome 
for individual samples using ggplot2 [34]. Genotypic missingness and MAF were then calcu-
lated using PLINK2 [35,36]. SNPs with MAF <5% or genotypic missingness >25% across the 
population, and samples with >25% genotypic missingness, were filtered from downstream 
analyses, as well as those SNPs located in hypervariable regions (Table B in S1 Text).

Characterising population structure
To determine overarching population structure, several complementary strategies were 
employed including neighbour joining analysis based on identity-by-state (IBS), connectiv-
ity based on identity-by-descent (IBD) [37], and ADMIXTURE analysis [38]. IBS, a mea-
sure of genetic similarity where two alleles at a given locus are identical, was calculated with 
PLINK and visualised with neighbour-joining trees (NJT) [39] in R using ggplot2 and ggtree 
[40]. IBD, a measure of genetic similarity where alleles are considered identical if they were 
inherited from a common ancestor, was calculated with hmmIBD [41], which implements a 
hidden Markov model to determine sequence segments of shared ancestry. Base R and igraph 
[42] were used for IBD visualisation at a variety of thresholds (represent the percentage of 
the genome that is IBD between pairs of samples). To determine the proportions of mixed 
ancestry, ADMIXTURE was used to implement a maximum likelihood estimation, which was 
then visualised in R using ggplot2. CV error was calculated prior to ADMIXTURE analysis to 
identify the optimal K value. As K=3 was deemed optimal, exhibiting a low cross-validation 
error compared to other K values determined by ADMIXTURE’s cross-validation procedure, 
and the distribution of samples aligned with the NJT, the K clusters were referred to through-
out the manuscript with the previously defined Peninsular- and macaque-associated cluster 
names (Macaca fascicularis (Mf), Macaca nemestrina (Mn) & Peninsular).
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Identifying the presence of introgression events
We performed a bespoke analysis to identify possible genomic regions of introgression. First, 
we identified the major allele for each cluster at each genomic coordinate. Then using a sliding 
window approach (10kb windows), we determined the genetic distance for each sample to each 
cluster. Genetic distance was defined as the proportion of mismatched SNPs per sliding win-
dow (10kb) when comparing the called allele in the sample to the major allele for a cluster at 
each position. The genetic distances were then plotted on a two-dimensional axis, with differ-
ent clusters along the x and y axis, and two-dimensional kernel density estimations (contours) 
were calculated for the genomic clusters using ggplot2 (github.com/tidyverse/ggplot2) and 
MASS (github.com/cran/MASS) packages, and the density contours overlayed on the plot. The 
points.in.polygon function (github.com/edzer/sp) was used to determine in which contours the 
windows are spatially located. Windows located within the contours of another cluster whilst 
outside the major contours of their own were defined as introgressed. To be conservative, can-
didate windows underwent several filtering steps, including those that appear in>= 5% of the 
population and the removal of windows that overlap hypervariable regions (Table B in S1 Text).

Exploring links between introgression and environmental land types
We performed subsequent regression analyses to explore whether surrounding village-level 
environmental land types and predicted vector habitat suitability are associated with P. 
knowlesi introgression. The primary residential addresses for deidentified P. knowlesi cases 
for the preceding 3 weeks before health facility presentation was first used to obtain centroid 
village-level location coordinates cross-checked for accuracy using Google Earth (version 7.3). 
Selected environmental classification metrics of forest fragmentation (percentage of Land-
scape – tree cover and Perimeter-Area Ratio – tree cover) within a 5km radius surrounding 
village locations were then calculated from a composite landscape metrics tool encompassing 
ESRI 2020 and Sentinel-2 GIS data at 10-metre resolution [43] (Figs A and B in S1 Text). The 
relative predicted Anopheles Leucosphyrus Complex mosquito vector occurrence surface from 
Moyes et al. [44] based on boosted regression tree models encompassing mosquito sampling 
presence/absence data (1999-2014) and environmental covariates indicating habitat suitability 
was obtained through the malariaAtlas R package [45]. The mosquito vector habitat suitabil-
ity surface was averaged within a 5x5km grid around the geolocated village sites. Moran’s I 
[46] was calculated to exclude spatial autocorrelation of the environmental land types and 
predicted vector habitat suitability at the selected grids. Univariate regression analyses were 
initially used to assess potential associations between these environmental parameters and 
the macaque-derived clusters. Tertiles were then generated representing the degree of intro-
gression in samples, with samples categorised as having low, medium, or high introgression. 
Logistic regression models were subsequently implemented to assess if landscape fragmenta-
tion indices or Anopheles Leucosphyrus Complex habit suitability were associated with either 
the presence of the top ten most frequently introgressed windows (binomial) or the degree of 
introgression (ordinal). The Akaike Information Criterion (AIC) [47] was compared to deter-
mine the optimal model design (scripts available in the attached GitHub repository).

Identification of orthologous antimalarial drug resistance markers
Antimalarial drug resistance markers for P. falciparum and P. vivax (putative) were collated 
using multiple sources [48,49] and their orthologues in P. knowlesi identified. This includes 
dihydrofolate reductase (dhfr), dihydropteroate synthase (dhps), chloroquine resistance trans-
porter (crt), multidrug resistance protein 1 (mdr1), multidrug resistance-associated proteins 
1 (mrp1), plasmepsin 4 (pm4), kelch 13 (k13), reticulocyte binding protein 1a (rbp1a) and 
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reticulocyte binding protein 1b (rbp1b). P. falciparum and P. vivax orthologues were identified 
using PlasmoDB’s [50] Orthologue and synteny tool, which is based on the OrthoMCL data-
base, a genome-scale algorithm for grouping orthologous protein sequences [51]. Multiple 
sequence alignment was then performed on PlasmoDB sequences, comparing the P. knowlesi 
amino acid sequences against the relevant orthologues in P. falciparum and P. vivax to identify 
shared mutations between orthologue genes.

Characterising subpopulations within Malaysian Borneo
Once the larger P. knowlesi population structure was characterised, we investigated dif-
ferences between sub-population clusters within Malaysian Borneo and interrogated the 
genomes of all relevant samples for signs of differentiation. Samples were subset to the major 
genomic clusters (Mf and Mn) of Malaysian Borneo, using their distribution on the NJT 
and major population assigned by ADMIXTURE. Then, both IBS and IBD analyses were 
repeated on these subsets (Mf and Mn specific subsets) to determine whether subpopulations 
exist within these larger populations. PLINK was used to calculate the fixation index (FST), 
a measure of population differentiation due to genetic structure, specifically, the variance of 
allele frequencies between populations. ggplot2 was used to visualise FST across the genome 
using a non-overlapping sliding window (1-kb) approach. This allowed the identification 
of outlier regions, which were annotated to identify potential genes of interest. Further 
details and scripts for the methods described can be found at https://github.com/JacobAFW/
Pk_Malaysian_Population_Genetics.

Results
The 94 newly sequenced P. knowlesi whole genomes all originated from the state of Sabah, 
encompassing human infections from 11 administrative districts, including 22 infections 
from Kota Marudu and 14 from Kudat (Table A in S1 Text), collected between May 2011 and 
February 2016. These genomes had an average of 66,415,402.53 reads per sample, with 30.27% 
mapping to the PKA1-H.1 reference genome [28]. The average sequencing depth (excluding 
mitochondria and apicoplast) of these new genomes was 80X (2 to 362X across samples), 
with 82.5% (18.9 to 97.2% across samples) of the bases in the reference genome covered. The 
distribution of reads across chromosomes was relatively even, with the mean sequencing depth 
ranging from 70 to 87X, and the mean percentage of bases covered ranging from 80.3% to 
84.0%. The 108 high-quality publicly available P. knowlesi genomes from NCBI were derived 
predominantly from human infections (with six laboratory strains passaged through macaques) 
across different districts from both Peninsular Malaysia (n=33) and East Malaysia on the 
island of Borneo, including the geographically distinct neighbouring state of Sarawak (n=59) 
in addition to a small number from Sabah (n=16). FWS analysis was performed on 201 samples, 
with additional filtering based on clonality, missingness, and minor allele frequency, used to 
generate a subset for other analyses. 52 of the newly sequenced genomes remained after the 
additional filtering, and another 100 genomes from the publicly available data. The combined 
152 P. knowlesi genomes consisted of: 61 from Sabah, 59 from Sarawak, and 32 from Peninsu-
lar Malaysia. Joint genotyping initially identified 1,542,627 single nucleotide polymorphisms 
(SNPs), which after filtering (clonality, missingness and minor allele) resulted in 357,379 SNPs.

Complex P. knowlesi infections in Malaysian Borneo
Given that P. knowlesi parasites are haploid in the blood stage of host infection, the presence of 
multiple alleles at given loci is indicative of a multiple clone (polyclonal) infection. The within- 
isolate fixation index (FWS) was used to measure the genetic complexity of all infections (n = 201). 

https://github.com/JacobAFW/Pk_Malaysian_Population_Genetics
https://github.com/JacobAFW/Pk_Malaysian_Population_Genetics
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The FWS score ranges from 0 to 1, with increasing values reflecting increasing clonality [52]. At a 
commonly applied threshold of FWS < 0.95, 13.4% (n=27/201) of infections were polyclonal. The 
highest proportion of polyclonal infections was observed in Sarawak (17.6%, n=13/74), followed by 
Peninsular Malaysia (12.1%, n=4/33) and Sabah (10.6%, n=10/94). Sarawak had significantly lower 
FWS than both Sabah (p < 0.05) and Peninsular Malaysia (p < 0.05) (Figs 1A and C in S1 Text).

Non-reference allele frequency (NRAF) plots illustrate a variety of within-host diversity 
patterns. This includes distinct clones (18.5% [n=5/27]) (e.g., ERR985376 [FWS = 0.93]) and 
genetically mixed clones (e.g., ERR985395 [Fws = 0.54]). Samples with distinct clones could 
be the result of either superinfection (multiple mosquito inoculations) or co-transmission 
(single mosquito inoculation). However, those that are genetically mixed are likely the result 
of co-transmission events, as given adequate genetic diversity in a population (not inbred), 
superinfections with highly related clones are unlikely.

P. knowlesi genomes from Sabah belong predominantly within the Mf cluster
Previous genetic studies have described distinct genetic clustering of P. knowlesi into a geo-
graphic Peninsular-Malaysia sub-population, and two Malaysian-Borneo macaque-associated 
subpopulations; M. fascicularis (Mf) and M. nemestrina (Mn) [17,22,21]. We sought to deter-
mine the genetic clustering patterns of the Sabah genomes relative to infections from Sarawak 
and Peninsular Malaysia. Neighbour-joining analysis based on identity-by-state (IBS) was 
undertaken on the 152 low complexity P. knowlesi genomes from across Malaysia, revealing 

Fig 1.  Comparable within-isolate genetic complexity across geographic regions. A: Boxplots depicting the distribution of within-infection diversity (FWS) across 
three regions (Sabah, Sarawak, and Peninsular). B: Dot plots of the within-isolate non-reference allele frequencies (NRAF) across the genome for six Malaysian P. 
knowlesi infections ranging from low diversity (FWS=0.99) to high diversity (FWS=0.54) and with varying levels of within-host relatedness.

https://doi.org/10.1371/journal.pntd.0012885.g001

https://doi.org/10.1371/journal.pntd.0012885.g001
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three clusters (Fig 2A). The newly sequenced P. knowlesi samples originating from Sabah group 
predominantly within the Mf cluster (82.7%, n=43/52); the remaining (17.3%, n=9/52) infec-
tions clustered within the Mn clade, similar to the proportions of the 164 samples from Sabah 
previously described by Divis et al. 2017 [21] (Mf = 86.6%, Mn = 13.4%) [21]. ADMIXTURE 
analysis revealed the greatest likelihood of 3 sub-populations amongst the 152 infections (Fig F 
in S1 Text), confirming the patterns observed with neighbour-joining analysis (Fig 2C).

Despite substantial genetic divergence between the Mf and Mn clusters (mean FST = 0.2), 
there is also substantial geographic overlap (Fig 2B) and evidence of shared ancestry (>1% 
ancestry to two or more groups) amongst 6.6% (n=10/152) of infections (Fig 2C). This obser-
vation extends beyond the newly sequenced Sabah samples and to those previously reported 
in neighbouring Sarawak, with the separate genomic Mf and Mn clusters and several samples 
of Mf and Mn ancestry being identified in both geographic locations. P. knowlesi infections 
with shared ancestry originated from the Sarikei and Betong districts in the state of Sarawak 
and four of the newly sequenced Sabah infections (from Papar, Ranau and Kota Marudu 
districts). Although several Malaysian-Borneo P. knowlesi infections had evidence of shared 
ancestry, samples from Peninsular-Malaysia and the district of Kapit in Sarawak (both Mn 
and Mf) are descendants of single ancestral populations (Fig 2C).

Fig 2.  Geographic overlap and evidence of shared ancestry between the Mf and Mn P. knowlesi clusters. A: Unrooted neighbour-joining tree based on  
identity-by-state (IBS) depicting three predominant genomic clusters of P. knowlesi across Malaysia, specifically the Peninsular Malaysia sub-population (Peninsular), 
and Malaysian-Borneo macaque-associated subpopulations of Macaca fascicularis (Mf) and M. nemestrina (Mn). The new isolates from Sabah are labelled separately 
(Sabah). B: Map of Malaysia showing the geographic distribution and number of samples, and genomic clusters across Malaysian-Borneo (right) and Peninsular- 
Malaysia (left). C: Bar plot illustrating the proportionate ancestry to each of 3 (K) subpopulations determined by ADMIXTURE for each sample (bars on x-axis),  
sectioned by geographic region. The three K populations identified aligned perfectly with the clustering in the NJ tree; K=1 with Mf, 
K=2 with Mn and K=3 with Peninsular as per the colour-coding. Shapefile made with Natural Earth: https://www.naturalearthdata.com/
downloads/50m-cultural-vectors/50m-admin-1-states-provinces/.

https://doi.org/10.1371/journal.pntd.0012885.g002

https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-1-states-provinces/
https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-1-states-provinces/
https://doi.org/10.1371/journal.pntd.0012885.g002
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Greater genetic diversity within the Mf than Mn and Peninsular clusters
Since malaria parasites are recombining organisms, neighbour-joining analysis can miss 
recent connectivity between infections where outcrossing has taken place. To further elucidate 
the relatedness between isolates, both within and across clusters, we performed identity- 
by-descent (IBD) analysis on the 152 low complexity infections. In IBD analysis, genomic 
segments are characterised as identical by descent in pairwise comparisons when identical 
nucleotide sequences have been inherited from a common ancestor. The Mf cluster had the 
highest genetic diversity, with a median IBD of 7.0%, and as such, we see most of the connec-
tivity break down at a relatively low threshold of 10% (Fig 3). In contrast, the Mn (median 
IBD = 0.5) and Peninsular (median IBD = 0.3) clusters maintain tight networks at 25% IBD, 
reflective of more recent common ancestry and a greater number of shared haplotypes, and in 
turn, lower transmission intensity (Fig 3). An Mf isolate (PK_SB_DNA_028 – Papar, Sabah) 
also maintains connectivity with the Mn cluster at an IBD threshold of 10%, with the regions 
of IBD between the Mf isolate and the Mn isolates consistent across pairwise comparisons (Fig 
G in S1 Text). The Mf isolate was collected in Papar (Sabah), and the Mn isolates from Kapit, 
Sarikei and Betong (Sarawak). To confirm the high IBD values in Mn and Peninsular clusters 
were not inflated by the SNPs used (i.e., being biased by strong population structure), we tri-
alled multiple filtering combinations and re-calculated the median IBD values for comparison, 
confirming our initial findings (Table C in S1 Text).

Fig 3.  Identity-by-descent (IBD)-based analysis reveals greater relatedness amongst Mn and Peninsular than 
Mf samples. Each circle reflects an infection, colour-coded by genomic clustering group, and the number of lines 
between infections reflects relatedness (more lines reflect greater relatedness) at the given connectivity threshold of 
minimum IBD. Where two circles are not connected by a line, the estimated IBD between those infections was below 
the given threshold. The three samples from Peninsular Malaysia with >95% IBD represent laboratory-based strains 
from the 1960s that have been passaged through macaques (SRR2222335, SRR2225467 & SRR3135172).

https://doi.org/10.1371/journal.pntd.0012885.g003

https://doi.org/10.1371/journal.pntd.0012885.g003
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Greater relatedness within state-level P. knowlesi subpopulations
It was hypothesised that P. knowlesi clinical infections derived from the separate states of 
Sabah and Sarawak in Malaysian Borneo are likely to have distinct genetic ancestry due to 
factors such as differences in the primary Anopheles Leucosphyrus Group mosquito vector 
species and other large-scale environmental features that may have restricted historical gene 
flow [53]. To test this, we leveraged the newly sequenced genomes to perform additional 
analyses on a subset of the data comprising isolates from Sabah and Sarawak. We examined 
the potential impact of geographical regions on population structure and genetic relatedness 
within each of the separate Mf and Mn clusters, performing IBD analyses on the clusters sepa-
rately. IBD analyses of Mf and Mn subsets suggest that most samples have greater connectivity 
within their respective states (Fig 4). Two Sabah samples within the Mf cluster had a high 
degree of connectivity with Sarawak samples (Fig 4A). The samples (PK_SB_DNA_028 and 
PK_SB_DNA_053) are P. knowlesi infections collected from residents of the Papar and Kudat 
districts in Sabah.

Population differentiation within Mf and Mn clusters of geographic 
subpopulations
Given that sampling sites of the P. knowlesi geographic subpopulations are isolated by several 
hundred kilometres, with spatially heterogenous environmental pressures, we performed 
genome-wide scans for differentiation between the geographic subpopulations within Mf 
and Mn subsets. Genome-wide scans within Mf highlighted several regions of significant 

Fig 4.  Infection connectivity is partly driven by geography at the state-level administrative boundary. A & B: Identity-by-descent (IBD)-based cluster network 
illustrating the distant relatedness for samples within Mf (A) and Mn (B) clusters collected in two adjacent states; Sabah and Sarawak, at different cut-offs for the pro-
portion of IBD in a paired comparison. C: Map of East Malaysia on the island of Borneo with colours representing the two states being compared in the IBD analysis. 
Shapefile made with Natural Earth: https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-1-states-provinces/.

https://doi.org/10.1371/journal.pntd.0012885.g004

https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-1-states-provinces/
https://doi.org/10.1371/journal.pntd.0012885.g004
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differentiation across the genome, appearing as peaks of multiple tightly clustered windows 
of high FST against a background of low differentiation (mean FST = 0.007, Fig 5A). The most 
notable peaks within the Mf cluster were observed on chromosomes 8, 11 and 12. The peak on 
chromosome 8 covers a region containing the gene encoding for the oocyte capsule protein, 
with a complete list of genes found in the peak available in Tables H and I in S1 Text. Unfortu-
nately, due to substantial noise, it was not possible to appropriately identify peaks for the Mn 
cluster (mean FST = 0.036, Fig 5B).

Substantial evidence for introgression between Mn and Mf clusters
Previous studies have described the occurrence of chromosomal-segment exchanges between 
the Mn and Mf subpopulations, suggesting that they are not genetically isolated [15]. We 
therefore sought evidence for introgression events in our large collective cohort, and specif-
ically, in the previously underrepresented state of Sabah. Comparisons of genetic distance 
between 10kb sliding windows in individual P. knowlesi-infected samples and different clusters 
reveal evidence of substantial genetic exchanges across genomic clusters, chromosomes, and 
geographical regions (Fig 6 and Table D in S1 Text). The degree of introgression, represented 
by the number of introgressed windows identified in a sample, also varied between all of the 
above-mentioned features.

Fig 5.  Genetic differentiation reveals candidate adaptations. Genome-wide scans of differentiation between Sabah 
and Sarawak subpopulations within the (A) Mf and (B) Mn clusters using the between-population fixation index 
(FST). Only the Mf cluster shows clear differences in diversity with peaks of differentiation clear at several chromo-
somes (most notably on chromosomes 8, 11 and 12), whilst the Mn cluster has substantial ‘noise’ across the genome, 
with high levels of differentiation across the genome.

https://doi.org/10.1371/journal.pntd.0012885.g005

https://doi.org/10.1371/journal.pntd.0012885.g005
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Of the 152 individual P. knowlesi samples analysed, 71.1% (111/152) had introgressed 
windows (10kb). Given the complexity of distinguishing single biological introgression events, 
due to potential ambiguity when grouping adjacent windows with varying start and stop posi-
tions across samples (Fig H in S1 Text), we define the 10kb windows identified in our analysis 
as introgressed windows without making assumptions about the underlying biological events. 
Approximately 29.5% (n=46/152) of samples demonstrated a high degree (>5 10kb windows) 
of introgression. Within the subset of newly generated genomes from Sabah, 82.7% (n=43/52) 
samples had two or more introgressed windows, including 20 with >5 windows. The Mf clus-
ter had a higher median number of introgressed windows per sample (median 5, IQR ± 9.27
) compared to Mn (median 1, IQR –0.88 ). Introgressed windows across ten chromosomes 
for Mf and six chromosomes for Mn. For the Mf cluster, chromosomes 8 (n = 35) and 11 (n = 
21) had the greatest number of introgressed windows, with several windows on chromosome 
8 overlapping the large peak observed in the Fst analysis (Fig 5). For Mn, all six chromosomes 
contained a single window.

The district of Betong in Sarawak had the highest median number of introgressed win-
dows per individual P. knowlesi sample (median 29, IQR ± 2.2 ) followed by the district of 
Papar in Sabah (median 19, IQR ± 25.46 ). 85% (n =12/14) of samples from Betong and 50% 
(n=1/2) from Papar had high levels of introgression, with all but one Betong sample from the 
Mf cluster. The Mf isolate from Papar with high levels of introgression (PK_SB_DNA_028), 
had the greatest number of windows overall (n = 37), followed by ten Mf samples from Bet-
ong that had greater than 20 introgressed windows (Table D in S1 Text). This same sample, 
(PK_SB_DNA_028) is also the Mf isolate that shared a higher degree of IBD (10%) with the 
Mn cluster relative to its own cluster (Fig 3), suggesting that introgression events may be a 
contributing factor to shared regions of IBD between samples (Fig G in S1 Text). Furthermore, 
this mechanism also explains the IBD-based connectivity between the two Sabah samples 
(PK_SB_DNA_028 and PK_SB_DNA_053) and Sarawak samples in the cluster-specific IBD 
analysis (Fig 4A), as both samples also exhibit substantial patterns of introgression, in a simi-
lar pattern (the same or proximal windows) to that seen in the samples from Sarawak (Table G 
in S1 Text).

Several candidate introgressed regions identified in the Mf clusters overlap putative genes 
involved in host interactions. Within Sabah, the most common candidate window (win-
dow 1504, chromosome 11: 2080000 - 2089999), observed in both Sabah (n = 17) and Sar-
awak (n = 7) isolates, overlaps a gene encoding for the parasite DNA repair protein RAD50 
(PKA1H_110050600), which may aid survival within the host [54]. Focusing on the top 
10 most abundant windows in both Sabah and Sarawak, several other genes encoding for 
proteins essential for survival or invasion in the human, macaque or mosquito hosts were 
also identified to overlap candidate windows (Table 1). Amongst windows more prevalent 
in samples from Sarawak were several genes that encode for mosquito-related proteins. 
This includes the oocyst capsule protein (PKA1H_080026000), CPW-WPC family protein 
(PKA1H_080026200) and the microneme-associated antigen (PKA1H_080031400). The 
inclusion of the new Sabah isolates expands the distribution of the introgression event asso-
ciated with the oocyst-expressed cap380 gene, previously only observed in Betong, Sarawak 
[15,18]. The oocyst capsule protein is essential for the maturation of ookinete into oocyst 
in P. berghei and is assumed to assist in immune evasion in mosquito hosts [55]. The CPW-
WPC proteins are zygote/ookinete stage-specific surface proteins and appear to be involved 
in mosquito-stage parasite development [56] and micronemes are critical for host-erythrocyte 
invasion [57]. The number of candidate regions in Mn was minimal (n = 6), with even fewer 
involved in host interactions. The exception being window 807 on chromosome 08 (760000-
769999), overlapping the PKA1H_080021900 gene, which is essential for erythrocyte invasion 
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Fig 6.  Determination of introgressed windows between the Mf and Mn P. knowlesi clusters. A: Dot and contours plot describing potential introgression events 
within an Mf sample, where x and y axes represent the genetic distance of the sample to the Mf and Mn clusters, respectively. Genetic distance is the proportion of 
mismatched SNPs per sliding window (10kb) when comparing the called allele in the sample to the major allele for a cluster at each position. The contours represent 
the density of genetic distances for the three clusters. B: Dot and contours plot of the same sample above, subset to those windows deemed to be introgressed from 
the Mn cluster. Possible introgression events are sliding windows that fall outside the major contours of the samples own cluster and within the major contours of 
another, representing greater similarity in genetic distance to the other cluster. C: Unrooted neighbour-joining tree based on identity-by-state (IBS) of window 1504 
on chromosome 08 (950000-959999) and overlapping the PKA1H_080026000 gene (encodes the oocyst capsule protein). The Mf samples/branches clustering within 
the Mn branches (depicted by asterisk) provides further evidence that introgression of this window has occurred in these samples. D: SNP barcode plot of window 
1504 on chromosome 08 (950000-959999) showing greater genetic similarity between several Mf samples (depicted by asterisk) and the Mn cluster, where the colours 
reflect those in the legend on panel C, and the alpha represents the allele.

https://doi.org/10.1371/journal.pntd.0012885.g006

https://doi.org/10.1371/journal.pntd.0012885.g006
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in P. falciparum [58]. It should be noted that although the biology of these putative genes is 
well understood in other human-only Plasmodium species, they may not directly translate to 
the biologically and genetically distinct P. knowlesi.

Ecological pressures driving introgression
In order to evaluate whether the cluster distribution or the introgression events are associated 
with ecological changes that might impact either macaque host or vector adaptations, we 
collated satellite-based surrounding forest fragmentation data and mosquito vector habitat 
suitability for 37 P. knowlesi samples in Sabah where village locations could be obtained (Figs 
A and B in S1 Text). These samples included 29 (78.4%) with two or more windows where 
introgression was observed, and 13 (35.1%) with high introgression (>5 windows).

Firstly, we performed univariate regression analyses of the P. knowlesi genomic clusters 
against proportional forest cover, intact forest perimeter-area ratio and Anopheles Leucos-
phyrus Complex mosquito vector habitat suitability metrics, with no statistically significant 
associations. Secondly, univariate regression analyses (optimal model as determined by AIC 
comparisons) suggested a limited relationship between two introgression windows, 859 (chro-
mosome 08: 1280000 – 1289999) and 1236 (chromosome 10: 920000 – 929999) and the intact 

Table 1.  Putative genes overlapping the ten most common introgression windows in Mf and Mn.

Window Gene Chromosome: start - end Protein Sabah (n [%]) Sarawak (n [%])
1504 PKA1H_110050600 11: 2080000 – 2089999 DNA repair protein RAD50 17

[27.78]
7
[10.78]

1216 PKA1H_100020600 10: 723,246 – 723,968 Apicortin 8
[14.81]

1
[1.54]

1216 PKA1H_100020800 10: 720000 – 729999 F-actin-capping protein subunit beta 8
[14.81]

1
[1.54]

1223 PKA1H_100022400 10: 790000 – 799999 NLI interacting factor-like phosphatase 8
[14.81]

1
[1.54]

1236 PKA1H_100025500 10: 923,327 – 924,091 Orotate phosphoribosyltransferase 8
[14.81]

2
[3.08]

1359 PKA1H_110018600 11: 629,218 – 635,353 Patatin-like phospholipase 8
[14.81]

7
[10.77]

1309 PKA1H_110008500 11: 138,605 – 141,595 Secreted ookinete protein 6
[11.11]

9
[13.85]

1309 PKA1H_110008100 11: 128,971 – 130,944 ABC transporter E family member 1 6
[11.11]

9
[13.85]

31 PKA1H_010010000 01: 299,231 – 301,798 DNA mismatch repair protein MSH2 6
[11.11]

3
[4.62]

826 PKA1H_080026000 08: 940,469 – 950,653 Oocyst capsule protein 1
[1.85]

10
[15.38]

826 PKA1H_080026200 08: 954,493 – 956,175 CPW-WPC family protein 1
[1.85]

10
[15.38]

826 PKA1H_080026300 08: 956,849 – 958,271 Protein transport protein SEC22 1
[1.85]

10
[15.38]

827 PKA1H_080026700 08: 968,445 – 976,496 ABC transporter I family member 1 1
[1.85]

10
[15.38]

854 PKA1H_080031400 08: 1,229,556 – 1,230,530 Microneme associated antigen 3
[5.56]

10
[15.38]

819 PKA1H_080024200 08: 878,480 – 880,896 ATP-dependent RNA helicase DDX6 1
[1.85]

9
[13.85]

Description of gene name, position, encoded protein, and the isolate counts and proportions for the two Malaysian Borneo states.

https://doi.org/10.1371/journal.pntd.0012885.t001

https://doi.org/10.1371/journal.pntd.0012885.t001
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forest perimeter-area ratio and mosquito vector habitat suitability, respectively (Tables E and 
F in S1 Text). The introgression window 859, which contains no identifiable genes on Plas-
moDB and was identified in three Sabah and ten Sarawak isolates, was positively associated 
with intact forest perimeter-area ratio (ꭓ2 = 6, df = 1, p = 0.02, r2 = 0.69). The introgression 
window 1236, which was identified in eight Sabah and two Sarawak isolates, was negatively 
associated with the predicted mosquito vector habitat suitability (χ2 = 8.17, df = 1, p < 0.01, r2 
= 0.71). Putative genes overlapping this region include two encoding for unknown proteins, 
one encoding for ras-related protein Rab-1B and another for orotate phosphoribosyltransfer-
ase (Table 1).

Investigation of antimalarial drug resistance candidates in P. knowlesi 
orthologues
The presence of antimalarial drug resistance determinants in P. knowlesi infections could 
be considered a surrogate marker of human-human transmission given the absence of drug 
pressure in the macaque hosts and fitness costs that are often associated with resistance- 
conferring alleles [59]. We therefore investigated the prevalence of non-synonymous variants 
in P. knowlesi orthologues of genes that have previously been associated with P. falciparum and 
P. vivax resistance to antimalarial drugs [48,49]. Within low complexity infections (n=152), 
six non-synonymous variants were detected within the P. knowlesi orthologue of pvdhps 
(PKA1H_140035100) (Table 2), which may be linked to sulphadoxine resistance, although 
very few studies associate genotype and phenotype [49]. The most common variants occurred 
at codon Y308H (58.4%) and K66E (11.9%). A G422S variant was present in 4.3% of samples 
overall, although was found exclusively in 25% of isolates from Peninsular Malaysia. Sim-
ilar to previous work [59], 13 non-synonymous mutations were also detected within the P. 
knowlesi orthologue to pvdhfr (PKA1H_050015200) (Table 2). This includes 17 samples with 
greater than one mutation, and two samples with three mutations. Dihydrofolate-reductase 
mutations, associated with resistance to pyrimethamine, arise readily in both P. falciparum 
[60] and P. vivax [61,62]. The most common mutations were at codon N272S (97.9%) and 
E262D (22.7%), with N272S occurring 3 amino acid positions from the P. vivax orthologue. 
Six mutations were also observed exclusively in isolates from Peninsular Malaysia, with a 
mean frequency of 10.6%. Lastly, several non-synonymous mutations were also observed in 
the PKA1H_140054000 gene (Table 2), resulting in several amino acid changes near those 
observed in P. vivax, and associated with the multidrug resistance protein 1 (pvmrp1). This 
includes seven amino acid substitutions that occur <3 amino acids from non-synonymous 

Table 2.  Summary of identified drug resistance orthologue mutations.

Gene Pv gene ID Pk gene ID AA – Pv AA – Pk Anti-malarial
pvdhps PVP01_1429500 PKA1H_140035100 C422W G422S Sulphadoxine
pvdhfr PVP01_0526600 PKA1H_050015200 N273K N272K+++ Pyrimethamine

N273K N272S+++

pvmrp1 PVP01_0203000 PKA1H_140054000 I1620T C1908S+ Multi-drug
C1018Y V1283I+

K542E N620K++

R259T G316D+++

R259T G316S+++

T234M M251K++

T234M E250G+++

https://doi.org/10.1371/journal.pntd.0012885.t002

https://doi.org/10.1371/journal.pntd.0012885.t002
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mutations present in pvmrp1, which has a potential yet unconfirmed role in primaquine 
failure in P. vivax liver-stage infection relapse. However, the biology and significance of these 
SNPs in these putative genes may not translate directly from P. falciparum and P. vivax.

Drug resistance orthologues from P. vivax (putative) and P. falciparum (none identified 
from P. falciparum) identified in this P. knowlesi dataset. +Designates the number of amino 
acid positions the identified P. knowlesi mutation is from the corresponding P. vivax ortho-
logue mutation position (proximal mutations may retain the potential to cause similar down-
stream effects). AA: amino acid change; Pk: P. knowlesi. Pv: P. vivax.

Discussion
This study expands current understanding of P. knowlesi population genetics by incorporating 
additional whole genomes from Sabah, a key transmission area in Malaysia. We identified 
distinct geographical subpopulations within Mf- and Mn-associated clusters, with evidence of 
introgression between these clusters potentially driving differentiation. Preliminary ecological- 
genomic analysis suggests possible associations between genomic patterns and environmen-
tal features affecting host or vector adaptation. Additionally, we detected non-synonymous 
mutations in antimalarial drug resistance-related orthologous genes arising de novo given the 
zoonotic transmission mode and lack of drug selection pressure [63,64].

Within-host Plasmodium genetic diversity reflects transmission intensity, with superinfec-
tions arising from multiple mosquito bites or co-transmission of related parasite strains in a 
single bite [11,65,66]. The prevalence of human polyclonal P. knowlesi infections were lower 
than in P. falciparum or P. vivax endemic regions [67,68], although are likely higher in natural 
macaque hosts [69]. The zoonotic nature of P. knowlesi complicates infection complexity, with 
multiple underlying parasite, host and epidemiological factors potentially influencing the 
establishment of successful erythrocytic replication of multiple inoculated P. knowlesi strains 
within humans. These factors include specific parasite proteins involved in human red blood 
cell invasion including PkDBPαII and PkNBPXa [70], transmission intensity and the relation-
ship with parasite genetic diversity in macaque hosts, and the impact of land use change on 
mosquito distribution and host biting preferences [71,72]. Inter-infection diversity can also 
be exacerbated by recombination between genetically distinct parasites within the mosquito 
(coinfections) [11]. Being a natural reservoir for multiple zoonotic Plasmodium species, 
macaques have been shown to be co-infected with up to five simian Plasmodium species [69] 
and multiple P. knowlesi clones [73,74]. Although it cannot be confirmed with the methods 
used here, the isolates with distinct clones could represent superinfections. While there is 
no evidence of sustained human-to-human transmission to date [75], high-risk groups like 
forestry and plantation workers face greater exposure to infected vectors and reservoir hosts 
[9,10,76]. The five individuals harbouring multiple distinct clones could belong to these 
at-risk groups, warranting further research with integrated epidemiological and genomic 
datasets.

Both neighbour-joining and IBD-based cluster analyses identified the three major known 
P. knowlesi genomic clusters in Malaysia. The majority of new isolates from Sabah belong to 
the Mf cluster, aligning with reports of higher prevalence of Mf-derived infections and the 
restricted habitat of M. nemestrina in intact forests [22,44]. The low median IBD in the Mf 
cluster suggests high transmission intensity and genetic diversity, typical of endemic Plasmo-
dium populations with minimal inbreeding. In contrast, the higher IBD values in the Mn clus-
ter suggests greater parasite relatedness and possible inbreeding, however, as the median IBD 
reduces substantially when down sampling to the Mn cluster, these values may be skewed by 
population structure [14]. The broad ecosystem range and adaptability of M. fascicularis [44] 
may contribute to the Mf cluster’s higher genetic diversity, which could hinder malaria control 
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efforts by enhancing the parasite’s ability to adapt to environmental changes and broaden 
efficient zoonotic transmission scenarios.

Deforestation and agricultural expansion have altered macaque and Anopheles habitats, 
likely driving recent genetic exchanges in human infections [14,72,76,77]. Regression analyses 
revealed significant associations between two introgressed windows and both forest fragmen-
tation (perimeter-area ratio) and habitat suitability of the Anopheles Leucosphyrus Complex 
mosquito vector, broadly supporting this hypothesis at a population-level. These genomic 
regions contain putative genes critical for parasite survival and transmission, such as the 
microneme-associated antigen, which facilitates erythrocyte entry [78], and the oocyst- 
expressed cap380 gene, essential for vector-stage transmission, previously identified in Bet-
ong, Sarawak [14,55]. Apicortin protein, vital for cytoskeletal stability, replication, and host 
erythrocyte invasion in P. falciparum and P. vivax, was also identified [79,80]. The presence 
of several human- and vector-related genes in introgressed windows suggests strong selective 
pressure from both hosts. However, while these genes are well-characterized in other Plasmo-
dium species, their functions may not directly translate to P. knowlesi.

Introgression events occurring across large geographic distances suggest independent 
occurrences driven by similar environmental drivers, like deforestation and shifting vector 
populations. This is supported by the non-overlapping introgressed windows among isolates 
from different geographic regions (Fig I in S1 Text). However, this integrated genomic and 
spatial analysis is limited by the small subset of isolates and landscape metrics used [81], as 
well as the lack of temporal alignment between P. knowlesi isolate collection and environ-
mental data, especially when one considers ongoing deforestation, reforestation and land use 
change in Sabah. Future work should involve larger sample sizes and a systematic approach to 
landscape classification, including accounting for temporal land-use changes.

Sampling of P. knowlesi infections in Malaysian Borneo occurred across two large geo-
graphical areas. While macaque host infection prevalence and transmission intensity at a 
troop level is the likely primary driver of P. knowlesi population structure, environmental fac-
tors likely influence structure across heterogenous landscapes. To assess geographical impacts, 
we analysed the Mf and Mn clusters separately, comparing Sabah and Sarawak subpopula-
tions. As expected, samples collected in closer proximity showed higher relatedness, albeit 
less so than across the three major genomic clusters. Notably, within Mf two Sabah P. knowlesi 
isolates with a high degree of introgression clustered with Sarawak samples. One individual 
was from a village in Kudat but has a history of recent travel to Hutan Long Pasia in Sipitang 
district for work, which is located close to the Sarawak border. However, the other individual 
has no history of recent travel, suggesting this could be the result of independent introgression 
events arising across regions or the small possibility of an onwards human transmission event.

The stronger relatedness between geographically proximal samples suggests ecological 
pressures, alongside macaque hosts, influence P. knowlesi genomes. FST analysis of the Mf 
cluster identified several vector-related genes, also found in introgression analysis, including 
the oocyst-expressed cap380 gene on chromosome 08. This finding may suggest regional dif-
ferences in the mosquito vector species within the Anopheles Leucosphyrus Complex [82] con-
tributes to P. knowlesi subpopulation variation. In Sabah, human land use change has altered 
vector behavior, breeding sites, and biting preferences in the primary vector A. balabacensis 
[83]. Future studies may benefit from using cluster-specific reference genomes for FST analysis 
[84], particularly for the Mn cluster.

As P. knowlesi transmission appears exclusively zoonotic [2], and therefore without 
drug-pressure, resistance mutations are unlikely to arise. The dhfr and dhps mutations 
may be associated with resistance to pyrimethamine and sulphadoxine, previously used to 
treat P. falciparum in Malaysia [85]. However, artemisinin-combination therapy is now the 
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recommended treatment for uncomplicated malaria in Malaysia, including P. knowlesi, elim-
inating the potential for ongoing sulphadoxine-pyrimethamine selection pressure [86,87,88]. 
We have also previously showed that dhfr mutations in P. knowlesi are unlikely to be due to 
sulphadoxine-pyrimethamine selection pressure due to not occurring in the drug binding 
domain [59], and no dhps mutations associated with resistance have been identified [17]. The 
absence of proven natural human-to-human transmission and sulphadoxine-pyrimethamine 
use for P. knowlesi infections, suggests that these mutations likely reflect the polymorphic 
nature of these genes rather than drug selection pressure. The highly prevalent N272S muta-
tion in dhfr appears fixed in the population, with the reference allele (A) found only in older 
lab-adapted lines, originally collected in the 1960’s, and the A1.H.1 strain, while the alternate 
allele (G) dominates recent populations and the PKNH reference genome [89,90]. Lastly, 
although mrp1 variants have been reported [16], the functional impact of the SNPs observed 
here remains unclear, as the biology may not directly translate from P. falciparum or P. vivax.

The addition of 52 high-quality P. knowlesi genomes from Sabah, Malaysia enhances our 
understanding of this unique parasite’s evolving genomic landscape. We identify polyclonal 
infections and describe novel regional P. knowlesi within-cluster subpopulations, likely driven 
by introgression between the Mf- and Mn-associated clusters. These genomic introgression 
events in turn may reflect ecological influences from host or vector adaptations. Human 
encroachment on ecosystems through anthropogenic deforestation and agriculture appears 
to align with these genetic changes. Additionally, non-synonymous mutations were found in 
dhps, dhfr and mrp1 putative drug-resistant genes. Insights from P. falciparum and P. vivax 
highlight the importance of expanding and adapting integrated genetic, epidemiological and 
environmental surveillance efforts to address the zoonotic context of P. knowlesi when devel-
oping future public health control strategies.

Supporting information
S1 Text.  Masked genomic regions and supplementary outputs. 
(DOCX)

Acknowledgements
We thank the study participants, and the research team at the Infectious Disease Society Kota 
Kinabalu Sabah including Sitti Saimah binti Sakam, Azielia Elastiqah binti Salamth and Mohd 
Rizan Osman. We thank the Director-General, Ministry of Health, Malaysia, for permission to 
publish this manuscript. We thank Dr Freya Shearer and Dr David Duncan from the Univer-
sity of Melbourne for their consultation on specific analyses.

Author contributions
Conceptualization: Jacob A.F. Westaway, Ernest Diez Benavente, Sarah Auburn, Roberto 

Amato, Nicholas M. Anstey, Zbynek Bozdech, Matthew Field, Matthew J. Grigg.
Data curation: Jacob A.F. Westaway, Sourav Nayak, Danshy A. Alaza, Matthew J. Grigg.
Formal analysis: Ernest Diez Benavente, Sarah Auburn, Edwin Sutanto, Hidayat Trimarsanto, 

Matthew Field, Matthew J. Grigg.
Funding acquisition: Timothy William, Giri S Rajahram, Bridget E. Barber, Chris Drakeley, 

Nicholas M. Anstey, Zbynek Bozdech, Matthew Field, Matthew J. Grigg.
Investigation: Jacob A.F. Westaway, Michal Kucharski, Nicolas Aranciaga, Sourav Nayak, 

Kim A. Piera, Kamil Braima, Angelica F. Tan.

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0012885.s001


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012885  March 12, 2025 19 / 24

PLOS Neglected Tropical Diseases Genomic epidemiology of Plasmodium knowlesi.

Methodology: Jacob A.F. Westaway, Sarah Auburn, Roberto Amato, Nicholas M. Anstey, 
Zbynek Bozdech, Matthew Field, Matthew J. Grigg.

Project administration: Jacob A.F. Westaway, Sarah Auburn, Nicholas M. Anstey, Zbynek 
Bozdech, Matthew Field, Matthew J. Grigg.

Resources: Timothy William, Giri S. Rajahram, Bridget E Barber, Jenarun Jelip, Nicholas M 
Anstey, Zbynek Bozdech, Matthew Field, Matthew J. Grigg.

Software: Jacob A.F. Westaway, Ernest Diez Benavente, Sarah Auburn, Edwin Sutanto, 
Hidayat Trimarsanto, Matthew Field.

Supervision: Ernest Diez Benavente, Sarah Auburn, Nicholas M. Anstey, Matthew Field, 
Matthew J. Grigg.

Validation: Jacob A.F. Westaway, Matthew Field.
Visualization: Jacob A.F. Westaway, Ernest Diez Benavente, Sarah Auburn, Edwin Sutanto, 

Hidayat Trimarsanto, Matthew Field, Matthew J. Grigg.
Writing – original draft: Jacob A.F. Westaway.
Writing – review & editing: Jacob A.F. Westaway, Ernest Diez Benavente, Sarah Auburn, 

Michal Kucharski, Nicolas Aranciaga, Kamil Braima, Chris Drakeley, Edwin Sutanto, 
Hidayat Trimarsanto, Jenarun Jelip, Nicholas M. Anstey, Zbynek Bozdech, Matthew Field, 
Matthew J. Grigg.

References
	1.	 Cooper D, Rajahram G, William T, Jelip J, Mohammad R, Benedict J. Plasmodium knowlesi malaria in 

Sabah, Malaysia, 2015–2017: Ongoing increase in incidence despite near-elimination of the human-
only Plasmodium species. Clinical Infectious Diseases. 2020;70(3):361–7.

	2.	 Fornace KM, Drakeley CJ, Lindblade KA, Jelip J, Ahmed K. Zoonotic malaria requires new policy 
approaches to malaria elimination. Nat Commun. 2023;14(1):5750. https://doi.org/10.1038/s41467-023-
41546-6 PMID: 37717079

	3.	 Lubis IND, Wijaya H, Lubis M, Lubis CP, Divis PCS, Beshir KB, et al. Contribution of Plasmodium 
knowlesi to Multispecies Human Malaria Infections in North Sumatera, Indonesia. J Infect Dis. 
2017;215(7):1148–55. https://doi.org/10.1093/infdis/jix091 PMID: 28201638

	4.	 Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, et al. A prospective comparative study 
of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: high proportion with severe disease 
from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate 
therapy. Clin Infect Dis. 2013;56(3):383–97. https://doi.org/10.1093/cid/cis902 PMID: 23087389

	5.	 Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al. Age-Related Clinical Spec-
trum of Plasmodium knowlesi Malaria and Predictors of Severity. Clin Infect Dis. 2018;67(3):350–9. 
https://doi.org/10.1093/cid/ciy065 PMID: 29873683

	6.	 Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, et al. Updating estimates of Plas-
modium knowlesi malaria risk in response to changing land use patterns across Southeast Asia. PLoS 
Negl Trop Dis. 2024;18(1):e0011570. https://doi.org/10.1371/journal.pntd.0011570 PMID: 38252650

	7.	 Brock PM, Fornace KM, Parmiter M, Cox J, Drakeley CJ, Ferguson HM, et al. Plasmodium knowlesi 
transmission: integrating quantitative approaches from epidemiology and ecology to understand 
malaria as a zoonosis. Parasitology. 2016;143(4):389–400. https://doi.org/10.1017/S0031182015001821 
PMID: 26817785

	8.	 Fornace KM, Abidin TR, Alexander N, Brock P, Grigg MJ, Murphy A, et al. Association between land-
scape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerging 
Infectious Diseases. 2016;22(2):201–8.

	9.	 Grigg MJ, Cox J, William T, Jelip J, Fornace KM, Brock PM, et al. Individual-level factors associated 
with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: a case-control study. Lan-
cet Planet Health. 2017;1(3):e97–104. https://doi.org/10.1016/S2542-5196(17)30031-1 PMID: 28758162

https://doi.org/10.1038/s41467-023-41546-6
https://doi.org/10.1038/s41467-023-41546-6
http://www.ncbi.nlm.nih.gov/pubmed/37717079
https://doi.org/10.1093/infdis/jix091
http://www.ncbi.nlm.nih.gov/pubmed/28201638
https://doi.org/10.1093/cid/cis902
http://www.ncbi.nlm.nih.gov/pubmed/23087389
https://doi.org/10.1093/cid/ciy065
http://www.ncbi.nlm.nih.gov/pubmed/29873683
https://doi.org/10.1371/journal.pntd.0011570
http://www.ncbi.nlm.nih.gov/pubmed/38252650
https://doi.org/10.1017/S0031182015001821
http://www.ncbi.nlm.nih.gov/pubmed/26817785
https://doi.org/10.1016/S2542-5196(17)30031-1
http://www.ncbi.nlm.nih.gov/pubmed/28758162


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012885  March 12, 2025 20 / 24

PLOS Neglected Tropical Diseases Genomic epidemiology of Plasmodium knowlesi.

	10.	 Fornace KM, Brock PM, Abidin TR, Grignard L, Herman LS, Chua TH, et al. Environmental risk 
factors and exposure to the zoonotic malaria parasite Plasmodium knowlesi across northern Sabah, 
Malaysia: a population-based cross-sectional survey. Lancet Planet Health. 2019;3(4):e179–86. 
https://doi.org/10.1016/S2542-5196(19)30045-2 PMID: 31029229

	11.	 Neafsey DE, Taylor AR, MacInnis BL. Advances and opportunities in malaria population genomics. 
Nat Rev Genet. 2021;22(8):502–17. https://doi.org/10.1038/s41576-021-00349-5 PMID: 33833443

	12.	 Abdel Hamid M, Abdelraheem M, Acheampong D, Ahouidi A, Ali M, Almagro-Garcia J. Pf7: an open 
dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples. Wellcome Open 
Research. 2023;8(22):22.

	13.	 , Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, et al. An open dataset of Plasmodium 
vivax genome variation in 1,895 worldwide samples. Wellcome Open Res. 2022;7:136. https://doi.
org/10.12688/wellcomeopenres.17795.1 PMID: 35651694

	14.	 Benavente ED, Gomes AR, De Silva JR, Grigg M, Walker H, Barber BE. Whole genome sequencing 
of amplified Plasmodium knowlesi DNA from unprocessed blood reveals genetic exchange events 
between Malaysian Peninsular and Borneo subpopulations. Scientific Reports. 2019;9(1):.

	15.	 Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, et al. 
Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient 
population structure and recent recombination among host-specific subpopulations. PLoS Genet. 
2017;13(9):e1007008. https://doi.org/10.1371/journal.pgen.1007008 PMID: 28922357

	16.	 Pinheiro MM, Ahmed MA, Millar SB, Sanderson T, Otto TD, Lu WC, et al. Plasmodium knowlesi 
genome sequences from clinical isolates reveal extensive genomic dimorphism. PLoS One. 
2015;10(4):e0121303. https://doi.org/10.1371/journal.pone.0121303 PMID: 25830531

	17.	 Assefa S, Lim C, Preston MD, Duffy CW, Nair MB, Adroub SA, et al. Population genomic structure 
and adaptation in the zoonotic malaria parasite Plasmodium knowlesi. Proc Natl Acad Sci U S A. 
2015;112(42):13027–32. https://doi.org/10.1073/pnas.1509534112 PMID: 26438871

	18.	 Turkiewicz A, Manko E, Oresegun DR, Nolder D, Spadar A, Sutherland CJ, et al. Population genetic 
analysis of Plasmodium knowlesi reveals differential selection and exchange events between Borneo 
and Peninsular sub-populations. Sci Rep. 2023;13(1):2142. https://doi.org/10.1038/s41598-023-
29368-4 PMID: 36750737

	19.	 Hussin N, Lim YA-L, Goh PP, William T, Jelip J, Mudin RN. Updates on malaria incidence and profile 
in Malaysia from 2013 to 2017. Malar J. 2020;19(1):55. https://doi.org/10.1186/s12936-020-3135-x 
PMID: 32005228

	20.	 Hocking SE, Divis PCS, Kadir KA, Singh B, Conway DJ. Population Genomic Structure and Recent 
Evolution of Plasmodium knowlesi, Peninsular Malaysia. Emerg Infect Dis. 2020;26(8):1749–58. 
https://doi.org/10.3201/eid2608.190864 PMID: 32687018

	21.	 Divis PCS, Lin LC, Rovie-Ryan JJ, Kadir KA, Anderios F, Hisam S, et al. Three Divergent Subpopula-
tions of the Malaria Parasite Plasmodium knowlesi. Emerg Infect Dis. 2017;23(4):616–24. https://doi.
org/10.3201/eid2304.161738 PMID: 28322705

	22.	 Divis PCS, Singh B, Anderios F, Hisam S, Matusop A, Kocken CH, et al. Admixture in Humans of Two 
Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species. PLoS 
Pathog. 2015;11(5):e1004888. https://doi.org/10.1371/journal.ppat.1004888 PMID: 26020959

	23.	 Westaway J, Benavente E, Auburn S, Kucharski M, Aranciaga N. Plasmodium knowlesi whole 
genomes from Sabah, Malaysia. 2024.

	24.	 Imwong M, Tanomsing N, Pukrittayakamee S, Day NPJ, White NJ, Snounou G. Spurious amplifi-
cation of a Plasmodium vivax small-subunit RNA gene by use of primers currently used to detect 
P. knowlesi. J Clin Microbiol. 2009;47(12):4173–5. https://doi.org/10.1128/JCM.00811-09 PMID: 
19812279

	25.	 Padley D, Moody AH, Chiodini PL, Saldanha J. Use of a rapid, single-round, multiplex PCR to detect 
malarial parasites and identify the species present. Ann Trop Med Parasitol. 2003;97(2):131–7. https://
doi.org/10.1179/000349803125002977 PMID: 12803868

	26.	 Field MA, Cho V, Andrews TD, Goodnow CC. Reliably Detecting Clinically Important Variants Requires 
Both Combined Variant Calls and Optimized Filtering Strategies. PLoS One. 2015;10(11):e0143199. 
https://doi.org/10.1371/journal.pone.0143199 PMID: 26600436

	27.	 Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinfor-
matics. 2011;27(1):3.

	28.	 Benavente ED, de Sessions PF, Moon RW, Grainger M, Holder AA, Blackman MJ, et al. A reference 
genome and methylome for the Plasmodium knowlesi A1-H.1 line. Int J Parasitol. 2018;48(3–4):191–6. 
https://doi.org/10.1016/j.ijpara.2017.09.008 PMID: 29258833

https://doi.org/10.1016/S2542-5196(19)30045-2
http://www.ncbi.nlm.nih.gov/pubmed/31029229
https://doi.org/10.1038/s41576-021-00349-5
http://www.ncbi.nlm.nih.gov/pubmed/33833443
https://doi.org/10.12688/wellcomeopenres.17795.1
https://doi.org/10.12688/wellcomeopenres.17795.1
http://www.ncbi.nlm.nih.gov/pubmed/35651694
https://doi.org/10.1371/journal.pgen.1007008
http://www.ncbi.nlm.nih.gov/pubmed/28922357
https://doi.org/10.1371/journal.pone.0121303
http://www.ncbi.nlm.nih.gov/pubmed/25830531
https://doi.org/10.1073/pnas.1509534112
http://www.ncbi.nlm.nih.gov/pubmed/26438871
https://doi.org/10.1038/s41598-023-29368-4
https://doi.org/10.1038/s41598-023-29368-4
http://www.ncbi.nlm.nih.gov/pubmed/36750737
https://doi.org/10.1186/s12936-020-3135-x
http://www.ncbi.nlm.nih.gov/pubmed/32005228
https://doi.org/10.3201/eid2608.190864
http://www.ncbi.nlm.nih.gov/pubmed/32687018
https://doi.org/10.3201/eid2304.161738
https://doi.org/10.3201/eid2304.161738
http://www.ncbi.nlm.nih.gov/pubmed/28322705
https://doi.org/10.1371/journal.ppat.1004888
http://www.ncbi.nlm.nih.gov/pubmed/26020959
https://doi.org/10.1128/JCM.00811-09
http://www.ncbi.nlm.nih.gov/pubmed/19812279
https://doi.org/10.1179/000349803125002977
https://doi.org/10.1179/000349803125002977
http://www.ncbi.nlm.nih.gov/pubmed/12803868
https://doi.org/10.1371/journal.pone.0143199
http://www.ncbi.nlm.nih.gov/pubmed/26600436
https://doi.org/10.1016/j.ijpara.2017.09.008
http://www.ncbi.nlm.nih.gov/pubmed/29258833


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012885  March 12, 2025 21 / 24

PLOS Neglected Tropical Diseases Genomic epidemiology of Plasmodium knowlesi.

	29.	 Van der Auwera G, O’Connor B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st 
Edition): O’Reilly Media; 2020.

	30.	 Base quality score recalibration (BQSR). 2024.

	31.	 Waardenberg AJ, Field MA. consensusDE: an R package for assessing consensus of multiple RNA-
seq algorithms with RUV correction. PeerJ. 2019;7e8206. https://doi.org/10.7717/peerj.8206 PMID: 
31844586

	32.	 Hamzeh AR, Andrews TD, Field MA. Detecting Causal Variants in Mendelian Disorders Using 
Whole-Genome Sequencing. Methods Mol Biol. 2021;2243:1–25. https://doi.org/10.1007/978-1-0716-
1103-6_1 PMID: 33606250

	33.	 Auburn S, Campino S, Miotto O, Djimde AA, Zongo I, Manske M, et al. Characterization of within-host 
Plasmodium falciparum diversity using next-generation sequence data. PLoS One. 2012;7(2):e32891. 
https://doi.org/10.1371/journal.pone.0032891 PMID: 22393456

	34.	 Wickham H. Elegant graphics for data analysis. 2016.

	35.	 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to 
the challenge of larger and richer datasets. Gigascience. 2015;47. https://doi.org/10.1186/s13742-015-
0047-8 PMID: 25722852

	36.	 Purcell S, Chang C. PLINK 2.0. n.d.

	37.	 Stevens EL, Heckenberg G, Roberson EDO, Baugher JD, Downey TJ, Pevsner J. Inference of 
relationships in population data using identity-by-descent and identity-by-state. PLoS Genet. 
2011;7(9):e1002287. https://doi.org/10.1371/journal.pgen.1002287 PMID: 21966277

	38.	 Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individu-
als. Genome Res. 2009;19(9):1655–64. https://doi.org/10.1101/gr.094052.109 PMID: 19648217

	39.	 Gascuel O, Steel M. Neighbor-joining revealed. Molecular Biology and Evolution. 
2006;23(11):1997–2000.

	40.	 Xu S, Li L, Luo X, Chen M, Tang W, Zhan L, et al. Ggtree: A serialized data object for visualization of 
a phylogenetic tree and annotation data. Imeta. 2022;1(4):e56. https://doi.org/10.1002/imt2.56 PMID: 
38867905

	41.	 Schaffner SF, Taylor AR, Wong W, Wirth DF, Neafsey DE. hmmIBD: software to infer pairwise identity 
by descent between haploid genotypes. Malar J. 2018;17(1):196. https://doi.org/10.1186/s12936-018-
2349-7 PMID: 29764422

	42.	 Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. n.d.;-
Complex Systems1695.

	43.	 Hulthen A, Waha K. Indonesian landscape metrics. 2022.

	44.	 Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, et al. Predicting the geographical 
distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested 
and non-forested areas. Parasit Vectors. 2016;9:242. https://doi.org/10.1186/s13071-016-1527-0 PMID: 
27125995

	45.	 Pfeffer DA, Lucas TCD, May D, Harris J, Rozier J, Twohig KA, et al. malariaAtlas: an R interface to 
global malariometric data hosted by the Malaria Atlas Project. Malar J. 2018;17(1):352. https://doi.
org/10.1186/s12936-018-2500-5 PMID: 30290815

	46.	 Zhou X, Lin H. Moran’s I. In: Shekhar S, Xiong H, editors. Encyclopedia of GIS. Boston, MA: Springer 
US; 2008. 725 p.

	47.	 Cavanaugh JE, Neath AA. The Akaike information criterion: Background, derivation, properties, 
application, interpretation, and refinements. WIREs Computational Stats. 2019;11(3):. https://doi.
org/10.1002/wics.1460

	48.	 Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, et al. Implementing parasite geno-
typing into national surveillance frameworks: feedback from control programmes and researchers in 
the Asia-Pacific region. Malar J. 2020;19(1):271. https://doi.org/10.1186/s12936-020-03330-5 PMID: 
32718342

	49.	 Benavente ED, Manko E, Phelan J, Campos M, Nolder D, Fernandez D, et al. Distinctive genetic 
structure and selection patterns in Plasmodium vivax from South Asia and East Africa. Nat Commun. 
2021;12(1):3160. https://doi.org/10.1038/s41467-021-23422-3 PMID: 34039976

	50.	 Kissinger JC, Brunk BP, Crabtree J, Fraunholz MJ, Gajria B, Milgram AJ, et al. The Plasmodium 
genome database. Nature. 2002;419(6906):490–2. https://doi.org/10.1038/419490a PMID: 12368860

	51.	 Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS. OrthoMCL-DB: querying a comprehensive multi- 
species collection of ortholog groups. Nucleic Acids Res. 2006;34(Database issue):D363-8. https://
doi.org/10.1093/nar/gkj123 PMID: 16381887

https://doi.org/10.7717/peerj.8206
http://www.ncbi.nlm.nih.gov/pubmed/31844586
https://doi.org/10.1007/978-1-0716-1103-6_1
https://doi.org/10.1007/978-1-0716-1103-6_1
http://www.ncbi.nlm.nih.gov/pubmed/33606250
https://doi.org/10.1371/journal.pone.0032891
http://www.ncbi.nlm.nih.gov/pubmed/22393456
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
http://www.ncbi.nlm.nih.gov/pubmed/25722852
https://doi.org/10.1371/journal.pgen.1002287
http://www.ncbi.nlm.nih.gov/pubmed/21966277
https://doi.org/10.1101/gr.094052.109
http://www.ncbi.nlm.nih.gov/pubmed/19648217
https://doi.org/10.1002/imt2.56
http://www.ncbi.nlm.nih.gov/pubmed/38867905
https://doi.org/10.1186/s12936-018-2349-7
https://doi.org/10.1186/s12936-018-2349-7
http://www.ncbi.nlm.nih.gov/pubmed/29764422
https://doi.org/10.1186/s13071-016-1527-0
http://www.ncbi.nlm.nih.gov/pubmed/27125995
https://doi.org/10.1186/s12936-018-2500-5
https://doi.org/10.1186/s12936-018-2500-5
http://www.ncbi.nlm.nih.gov/pubmed/30290815
https://doi.org/10.1002/wics.1460
https://doi.org/10.1002/wics.1460
https://doi.org/10.1186/s12936-020-03330-5
http://www.ncbi.nlm.nih.gov/pubmed/32718342
https://doi.org/10.1038/s41467-021-23422-3
http://www.ncbi.nlm.nih.gov/pubmed/34039976
https://doi.org/10.1038/419490a
http://www.ncbi.nlm.nih.gov/pubmed/12368860
https://doi.org/10.1093/nar/gkj123
https://doi.org/10.1093/nar/gkj123
http://www.ncbi.nlm.nih.gov/pubmed/16381887


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012885  March 12, 2025 22 / 24

PLOS Neglected Tropical Diseases Genomic epidemiology of Plasmodium knowlesi.

	52.	 Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, et al. Analysis of Plasmo-
dium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487(7407):375–9. 
https://doi.org/10.1038/nature11174 PMID: 22722859

	53.	 van de Straat B, Sebayang B, Grigg MJ, Staunton K, Garjito TA, Vythilingam I, et al. Zoonotic malaria 
transmission and land use change in Southeast Asia: what is known about the vectors. Malar J. 
2022;21(1):109. https://doi.org/10.1186/s12936-022-04129-2 PMID: 35361218

	54.	 Gupta D, Patra A, Zhu L, Gupta A, Bozdech Z. DNA damage regulation and its role in drug-related 
phenotypes in the malaria parasites. Scientific Reports. 2016;6(1):23603. https://doi.org/10.1038/
srep23603

	55.	 Srinivasan P, Fujioka H, Jacobs-Lorena M. PbCap380, a novel oocyst capsule protein, is essential for 
malaria parasite survival in the mosquito. Cell Microbiol. 2008;10(6):1304–12. https://doi.org/10.1111/
j.1462-5822.2008.01127.x PMID: 18248630

	56.	 Kangwanrangsan N, Tachibana M, Jenwithisuk R, Tsuboi T, Riengrojpitak S, Torii M, et al. A member 
of the CPW-WPC protein family is expressed in and localized to the surface of developing ookinetes. 
Malar J. 2013;12:129. https://doi.org/10.1186/1475-2875-12-129 PMID: 23587146

	57.	 Tomley FM, Soldati DS. Mix and match modules: structure and function of microneme proteins 
in apicomplexan parasites. Trends Parasitol. 2001;17(2):81–8. https://doi.org/10.1016/s1471-
4922(00)01761-x PMID: 11228014

	58.	 Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte binding protein PfRH5 
polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host 
Microbe. 2008;4(1):40–51. https://doi.org/10.1016/j.chom.2008.06.001 PMID: 18621009

	59.	 Grigg MJ, Barber BE, Marfurt J, Imwong M, William T, Bird E, et al. Dihydrofolate-Reductase Muta-
tions in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-
Human Transmission in Sabah, Malaysia. PLoS One. 2016;11(3):e0149519. https://doi.org/10.1371/
journal.pone.0149519 PMID: 26930493

	60.	 Peterson DS, Walliker D, Wellems TE. Evidence that a point mutation in dihydrofolate reductase- 
thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci U 
S A. 1988;85(23):9114–8. https://doi.org/10.1073/pnas.85.23.9114 PMID: 2904149

	61.	 Imwong M, Pukrittakayamee S, Looareesuwan S, Pasvol G, Poirreiz J, White NJ, et al. Association of 
genetic mutations in Plasmodium vivax dhfr with resistance to sulfadoxine-pyrimethamine: geograph-
ical and clinical correlates. Antimicrob Agents Chemother. 2001;45(11):3122–7. https://doi.org/10.1128/
AAC.45.11.3122-3127.2001 PMID: 11600366

	62.	 Tjitra E, Baker J, Suprianto S, Cheng Q, Anstey NM. Therapeutic efficacies of artesunate- 
sulfadoxine-pyrimethamine and chloroquine-sulfadoxine-pyrimethamine in vivax malaria pilot studies: 
relationship to Plasmodium vivax dhfr mutations. Antimicrob Agents Chemother. 2002;46(12):3947–
53. https://doi.org/10.1128/AAC.46.12.3947-3953.2002 PMID: 12435700

	63.	 Fornace KM, Topazian HM, Routledge I, Asyraf S, Jelip J, Lindblade KA, et al. No evidence of sus-
tained nonzoonotic Plasmodium knowlesi transmission in Malaysia from modelling malaria case data. 
Nat Commun. 2023;14(1):2945. https://doi.org/10.1038/s41467-023-38476-8 PMID: 37263994

	64.	 van Schalkwyk DA, Blasco B, Davina Nuñez R, Liew JWK, Amir A, Lau YL, et al. Plasmodium 
knowlesi exhibits distinct in vitro drug susceptibility profiles from those of Plasmodium falciparum. 
Int J Parasitol Drugs Drug Resist. 2019;993–9. https://doi.org/10.1016/j.ijpddr.2019.02.004 PMID: 
30831468

	65.	 Das S, Muleba M, Stevenson JC, Pringle JC, Norris DE. Beyond the entomological inoculation rate: 
characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in 
Anopheles mosquitoes in northern Zambia. Parasit Vectors. 2017;10(1):45. https://doi.org/10.1186/
s13071-017-1993-z PMID: 28122597

	66.	 Wong W, Schaffner S, Thwing J, Seck M, Gomis J, Diedhiou Y, et al. Evaluating the performance of 
Plasmodium falciparum genetics for inferring National Malaria Control Program reported incidence in 
Senegal. Res Sq. 2023;Volume Number Placeholder(Issue Number Placeholder):Page Range Place-
holder. https://doi.org/DOIPlaceholder

	67.	 Zhu SJ, Hendry JA, Almagro-Garcia J, Pearson RD, Amato R, Miles A, et al. The origins and 
relatedness structure of mixed infections vary with local prevalence of P. falciparum malaria. Elife. 
2019;8e40845. https://doi.org/10.7554/eLife.40845 PMID: 31298657

	68.	 Kebede AM, Sutanto E, Trimarsanto H, Benavente ED, Barnes M, Pearson RD, et al. Genomic 
analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in 
Ethiopia. Scientific Reports. 2023;13(1):20788. https://doi.org/10.1038/s41598-023-20788-0

https://doi.org/10.1038/nature11174
http://www.ncbi.nlm.nih.gov/pubmed/22722859
https://doi.org/10.1186/s12936-022-04129-2
http://www.ncbi.nlm.nih.gov/pubmed/35361218
https://doi.org/10.1038/srep23603
https://doi.org/10.1038/srep23603
https://doi.org/10.1111/j.1462-5822.2008.01127.x
https://doi.org/10.1111/j.1462-5822.2008.01127.x
http://www.ncbi.nlm.nih.gov/pubmed/18248630
https://doi.org/10.1186/1475-2875-12-129
http://www.ncbi.nlm.nih.gov/pubmed/23587146
https://doi.org/10.1016/s1471-4922(00)01761-x
https://doi.org/10.1016/s1471-4922(00)01761-x
http://www.ncbi.nlm.nih.gov/pubmed/11228014
https://doi.org/10.1016/j.chom.2008.06.001
http://www.ncbi.nlm.nih.gov/pubmed/18621009
https://doi.org/10.1371/journal.pone.0149519
https://doi.org/10.1371/journal.pone.0149519
http://www.ncbi.nlm.nih.gov/pubmed/26930493
https://doi.org/10.1073/pnas.85.23.9114
http://www.ncbi.nlm.nih.gov/pubmed/2904149
https://doi.org/10.1128/AAC.45.11.3122-3127.2001
https://doi.org/10.1128/AAC.45.11.3122-3127.2001
http://www.ncbi.nlm.nih.gov/pubmed/11600366
https://doi.org/10.1128/AAC.46.12.3947-3953.2002
http://www.ncbi.nlm.nih.gov/pubmed/12435700
https://doi.org/10.1038/s41467-023-38476-8
http://www.ncbi.nlm.nih.gov/pubmed/37263994
https://doi.org/10.1016/j.ijpddr.2019.02.004
http://www.ncbi.nlm.nih.gov/pubmed/30831468
https://doi.org/10.1186/s13071-017-1993-z
https://doi.org/10.1186/s13071-017-1993-z
http://www.ncbi.nlm.nih.gov/pubmed/28122597
https://doi.org/DOIPlaceholder
https://doi.org/10.7554/eLife.40845
http://www.ncbi.nlm.nih.gov/pubmed/31298657
https://doi.org/10.1038/s41598-023-20788-0


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012885  March 12, 2025 23 / 24

PLOS Neglected Tropical Diseases Genomic epidemiology of Plasmodium knowlesi.

	69.	 Sam J, Shamsusah NA, Ali AH, Hod R, Hassan MR, Agustar HK. Prevalence of simian 
malaria among macaques in Malaysia (2000-2021): A systematic review. PLoS Negl Trop Dis. 
2022;16(7):e0010527. https://doi.org/10.1371/journal.pntd.0010527 PMID: 35849568

	70.	 Moon RW, Sharaf H, Hastings CH, Ho YS, Nair MB, Rchiad Z, et al. Normocyte-binding protein 
required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi. Proc 
Natl Acad Sci U S A. 2016;113(26):7231–6. https://doi.org/10.1073/pnas.1522469113 PMID: 27303038

	71.	 Hawkes F, Manin B, Cooper A, Daim S, R H, Jelip J, et al. Vector compositions change across 
forested to deforested ecotones in emerging areas of zoonotic malaria transmission in Malaysia. 
Scientific Reports. 2019;9(1):13312.

	72.	 Wong ML, Chua TH, Leong CS, Khaw LT, Fornace K, Wan-Sulaiman W-Y, et al. Seasonal and 
Spatial Dynamics of the Primary Vector of Plasmodium knowlesi within a Major Transmission Focus 
in Sabah, Malaysia. PLoS Negl Trop Dis. 2015;9(10):e0004135. https://doi.org/10.1371/journal.
pntd.0004135 PMID: 26448052

	73.	 Putaporntip C, Thongaree S, Jongwutiwes S. Differential sequence diversity at merozoite surface 
protein-1 locus of Plasmodium knowlesi from humans and macaques in Thailand. Infect Genet Evol. 
2013;18:213–9. https://doi.org/10.1016/j.meegid.2013.05.019 PMID: 23727342

	74.	 Saleh Huddin A, Md Yusuf N, Razak MRMA, Ogu Salim N, Hisam S. Genetic diversity of Plasmo-
dium knowlesi among human and long-tailed macaque populations in Peninsular Malaysia: The 
utility of microsatellite markers. Infect Genet Evol. 2019;75:103952. https://doi.org/10.1016/j.mee-
gid.2019.103952 PMID: 31279818

	75.	 Ruiz Cuenca P, Key S, Lindblade KA, Vythilingam I, Drakeley C, Fornace K. Is there evidence of 
sustained human-mosquito-human transmission of the zoonotic malaria Plasmodium knowlesi? A 
systematic literature review. Malar J. 2022;21(1):89. https://doi.org/10.1186/s12936-022-04110-z PMID: 
35300703

	76.	 Fornace KM, Alexander N, Abidin TR, Brock PM, Chua TH, Vythilingam I, et al. Local human 
movement patterns and land use impact exposure to zoonotic malaria in Malaysian Borneo. Elife. 
2019;8e47602. https://doi.org/10.7554/eLife.47602 PMID: 31638575

	77.	 Stark DJ, Fornace KM, Brock PM, Abidin TR, Gilhooly L, Jalius C, et al. Long-Tailed Macaque 
Response to Deforestation in a Plasmodium knowlesi-Endemic Area. Ecohealth. 2019;16(4):638–46. 
https://doi.org/10.1007/s10393-019-01403-9 PMID: 30927165

	78.	 Hans N, Singh S, Pandey AK, Reddy KS, Gaur D, Chauhan VS. Identification and characteri-
zation of a novel Plasmodium falciparum adhesin involved in erythrocyte invasion. PLoS One. 
2013;8(9):e74790. https://doi.org/10.1371/journal.pone.0074790 PMID: 24058628

	79.	 Chakrabarti M, Joshi N, Kumari G, Singh P, Shoaib R, Munjal A, et al. Interaction of Plasmodium 
falciparum apicortin with α- and β-tubulin is critical for parasite growth and survival. Sci Rep. 
2021;11(1):4688. https://doi.org/10.1038/s41598-021-83513-5 PMID: 33633135

	80.	 Chakrabarti M, Garg S, Rajagopal A, Pati S, Singh S. Targeted repression of Plasmodium apicortin 
by host microRNA impairs malaria parasite growth and invasion. Disease Models & Mechanisms. 
n.d.;13(6):e04212.

	81.	 Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, et al. Predictive analysis across spa-
tial scales links zoonotic malaria to deforestation. Proc Biol Sci. 2019;286(1894):20182351. https://doi.
org/10.1098/rspb.2018.2351 PMID: 30963872

	82.	 Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al. New vectors in northern 
Sarawak, Malaysian Borneo, for the zoonotic malaria parasite, Plasmodium knowlesi. Parasit Vectors. 
2020;13(1):472. https://doi.org/10.1186/s13071-020-04345-2 PMID: 32933567

	83.	 Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al. Environmental and spa-
tial risk factors for the larval habitats of Plasmodium knowlesi vectors in Sabah, Malaysian Borneo. 
Sci Rep. 2021;11(1):11810. https://doi.org/10.1038/s41598-021-90893-1 PMID: 34083582

	84.	 Oresegun DR, Thorpe P, Benavente ED, Campino S, Muh F, Moon RW, et al. De Novo Assembly of 
Plasmodium knowlesi Genomes From Clinical Samples Explains the Counterintuitive Intrachromo-
somal Organization of Variant SICAvar and kir Multiple Gene Family Members. Frontiers in Genetics. 
2022;13.

	85.	 Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al. High prevalence of 
mutation in the Plasmodium falciparum dhfr and dhps genes in field isolates from Sabah, Northern 
Borneo. Malar J. 2013;12:198. https://doi.org/10.1186/1475-2875-12-198 PMID: 23758930

	86.	 Grigg MJ, William T, Menon J, Dhanaraj P, Barber BE, Wilkes CS, et al. Artesunate-mefloquine 
versus chloroquine for treatment of uncomplicated Plasmodium knowlesi malaria in Malaysia (ACT 

https://doi.org/10.1371/journal.pntd.0010527
http://www.ncbi.nlm.nih.gov/pubmed/35849568
https://doi.org/10.1073/pnas.1522469113
http://www.ncbi.nlm.nih.gov/pubmed/27303038
https://doi.org/10.1371/journal.pntd.0004135
https://doi.org/10.1371/journal.pntd.0004135
http://www.ncbi.nlm.nih.gov/pubmed/26448052
https://doi.org/10.1016/j.meegid.2013.05.019
http://www.ncbi.nlm.nih.gov/pubmed/23727342
https://doi.org/10.1016/j.meegid.2019.103952
https://doi.org/10.1016/j.meegid.2019.103952
http://www.ncbi.nlm.nih.gov/pubmed/31279818
https://doi.org/10.1186/s12936-022-04110-z
http://www.ncbi.nlm.nih.gov/pubmed/35300703
https://doi.org/10.7554/eLife.47602
http://www.ncbi.nlm.nih.gov/pubmed/31638575
https://doi.org/10.1007/s10393-019-01403-9
http://www.ncbi.nlm.nih.gov/pubmed/30927165
https://doi.org/10.1371/journal.pone.0074790
http://www.ncbi.nlm.nih.gov/pubmed/24058628
https://doi.org/10.1038/s41598-021-83513-5
http://www.ncbi.nlm.nih.gov/pubmed/33633135
https://doi.org/10.1098/rspb.2018.2351
https://doi.org/10.1098/rspb.2018.2351
http://www.ncbi.nlm.nih.gov/pubmed/30963872
https://doi.org/10.1186/s13071-020-04345-2
http://www.ncbi.nlm.nih.gov/pubmed/32933567
https://doi.org/10.1038/s41598-021-90893-1
http://www.ncbi.nlm.nih.gov/pubmed/34083582
https://doi.org/10.1186/1475-2875-12-198
http://www.ncbi.nlm.nih.gov/pubmed/23758930


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012885  March 12, 2025 24 / 24

PLOS Neglected Tropical Diseases Genomic epidemiology of Plasmodium knowlesi.

KNOW): an open-label, randomised controlled trial. Lancet Infect Dis. 2016;16(2):180–8. https://doi.
org/10.1016/S1473-3099(15)00415-6 PMID: 26603174

	87.	 Grigg MJ, William T, Menon J, Barber BE, Wilkes CS, Rajahram GS, et al. Efficacy of Artesunate- 
mefloquine for Chloroquine-resistant Plasmodium vivax Malaria in Malaysia: An Open-label, Random-
ized, Controlled Trial. Clin Infect Dis. 2016;62(11):1403–11. https://doi.org/10.1093/cid/ciw121 PMID: 
27107287

	88.	 Barber BE, Grigg MJ, Cooper DJ, van Schalkwyk DA, William T, Rajahram GS, et al. Clinical man-
agement of Plasmodium knowlesi malaria. Adv Parasitol. 2021;113:45–76. https://doi.org/10.1016/
bs.apar.2021.08.004 PMID: 34620385

	89.	 Moon RW, Hall J, Rangkuti F, Ho YS, Almond N, Mitchell GH, et al. Adaptation of the genetically trac-
table malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc Natl 
Acad Sci U S A. 2013;110(2):531–6. https://doi.org/10.1073/pnas.1216457110 PMID: 23267069

	90.	 Pain A, Böhme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian 
and human malaria parasite Plasmodium knowlesi. Nature. 2008;455(7214):799–803. https://doi.
org/10.1038/nature07306 PMID: 18843368

https://doi.org/10.1016/S1473-3099(15)00415-6
https://doi.org/10.1016/S1473-3099(15)00415-6
http://www.ncbi.nlm.nih.gov/pubmed/26603174
https://doi.org/10.1093/cid/ciw121
http://www.ncbi.nlm.nih.gov/pubmed/27107287
https://doi.org/10.1016/bs.apar.2021.08.004
https://doi.org/10.1016/bs.apar.2021.08.004
http://www.ncbi.nlm.nih.gov/pubmed/34620385
https://doi.org/10.1073/pnas.1216457110
http://www.ncbi.nlm.nih.gov/pubmed/23267069
https://doi.org/10.1038/nature07306
https://doi.org/10.1038/nature07306
http://www.ncbi.nlm.nih.gov/pubmed/18843368
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

