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Abstract

Background: To demonstrate the application and utility of geostatistical modelling to
provide comprehensive high-resolution understanding of the population’s protective
immunity during a pandemic and identify pockets with sub-optimal protection.
Methods: Using data from a national cross-sectional household survey of 6620 indi-
viduals in the Dominican Republic (DR) from June to October 2021, we developed
and applied geostatistical regression models to estimate and predict Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (anti-S) antibodies
(Ab) seroprevalence at high resolution (1 km) across heterogeneous areas.

Results: Spatial patterns in population immunity to SARS-CoV-2 varied across the
DR. In urban areas, a one-unit increase in the number of primary healthcare units per
population and 1% increase in the proportion of the population aged under 20 years
were associated with higher odds ratios of being anti-S Ab positive of 1.38 (95% confi-
dence interval [CI]: 1.35-1.39) and 1.35 (95% CI: 1.32-1.33), respectively. In rural
areas, higher odds of anti-S Ab positivity, 1.45 (95% CI: 1.39-1.51), were observed
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INTRODUCTION

The impact of the ongoing Coronavirus disease (COVID)-19
pandemic, caused by Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2), has highlighted the need for better
preparedness against pathogens with pandemic potential. The
ability to rapidly assess and understand population-level
immune response and the resulting protective immunity is
essential for the design and implementation of prevention and
control interventions during a pandemic [1]. A key challenge is
the timely availability of reliable and accurate epidemiologic
data, especially in areas with sub-optimal population immunity
that could represent a risk of fuelling localised outbreaks [1]. To
address this limitation, research has explored the use of disease
mapping and predictive modelling to maximise the usefulness
of available data [2]. Geostatistical modelling provides a flexible
framework that enables the combination of a variety of spatial
datasets to make predictive inferences, including the ability to
describe and detect areas where the population-level immunity
against emerging (novel) pathogens is likely to be low [2].

COVID-19 spread rapidly across the Dominican Republic
(DR) since the first laboratory confirmed case was identified
on 1 March 2020. As of 29 November 2023, there were
approximately 667,075 cumulative cases of COVID-19 in the
DR with 4384 related deaths [3], representing one of the high-
est disease burden for countries in the Caribbean region. As
part of the national emergency response, the DR adopted strict
public health policies to address the pandemic [4]. The extent
and impact of the implementation of the national public health
measures against COVID-19 have been highly variable across
the country [4]. A national COVID-19 vaccination campaign
was launched in late February 2021, and by August 2021, the
COVID-19 vaccine coverage was 52.3% for one dose, 36.2%
for two doses and 5.3% for three doses [5]. At that time, the
most widely administered COVID-19 vaccines in the DR were
Sinovac (~90% of doses), Oxford/AstraZeneca and the Pfizer/
BioNTech vaccines [6].

Our previous studies conducted in the DR at national
and regional levels estimated that 85.0% (95% CI 82.1-88.0)
of the population aged =5 years had SARS-CoV-2 spike
(anti-S) antibodies (Ab), which could result from infection,
vaccination, or both, with seroprevalence varying from
78.7% (95% CI 75.0-82.2) to 90.4% (95% CI 86.1-93.8)
between regions [7,8]. Our current study extends the previ-
ous work by using geostatistical methods to estimate and

with increasing temperature in the hottest month (per°C), and 1.51 (95% CIL
1.43-1.60) with increasing precipitation in the wettest month (per mm).

Conclusions: A geostatistical model that integrates contextually important socioeco-
nomic and environmental factors can be used to create robust and reliable predictive
maps of immune protection during a pandemic at high spatial resolution and will
assist in the identification of highly vulnerable areas.

COVID-19, immunity against SARS-CoV-2, model-based geostatistics, pandemic, predictive mapping,

predict population immunity for the whole country at high
spatial resolution. The identification of sub-national areas
with predicted low anti-S Ab seroprevalence may help
national authorities to assess future epidemic risks and guide
the targeting of interventions such as vaccine prioritisation
and health messaging. The primary aim of this study was to
demonstrate the application and utility of geostatistical
modelling to describe and predict the geographical distribu-
tion of population immunity to SARS-CoV-2 during a pan-
demic and identify areas that are likely to have sub-optimal
population immunity. Specifically, the objectives were (i) to
identify, characterise and model geographical patterns of
anti-S Ab seropositivity at the household level using envi-
ronmental and sociodemographic risk factors and (ii) to
predict anti-S Ab seroprevalence in the DR in locations
where seroprevalence data were not available.

METHODS
Study area

The DR is located in the eastern part of the island of
Hispaniola in the Caribbean. Most of the country’s area
(48,671 km?) corresponds to the mainland and 159.4 km? to
adjacent islands. The 31 provinces and the Santo Domingo
national district are divided administratively into municipal-
ities, district municipalities, sections and barrios/parajes
(Figure 1). In 2021, the total population was approximately
11 million [9]. Approximately 20% of the population reside
in rural areas [9].

The DR has a tropical climate, with varying topography
and a large variety of microclimates [10]. The average
annual temperature is 25°C, with August being the hottest
month and January the coldest. The areas with the highest
humidity are in the north because they are influenced by the
Atlantic Ocean [10].

SARS-CoV-2 spike antibody (anti-S) data

Data on anti-S Ab status (positive/negative) were obtained
from a three-stage cross-sectional nationwide serosurvey
conducted in the DR to identify the most common causes of
acute febrile illness between 30 June and 12 October 2021.
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FIGURE 1 Administrative map of the Dominican Republic at the province level (insert showing the location in the Americas. Base layers from:

(https://www.diva-gis.org/gdata).

Full details about survey design and sampling methods have
been reported elsewhere [7]. Briefly, the centroids of the
12,565 communities (locally called barrios or parajes,
referred to here as clusters) in the DR were calculated using
administrative shapefiles for these units. A spatially repre-
sentative sampling method was implemented in R soft-
ware [11] to select 134 clusters. This strategy for selection of
clusters was conducted to ensure a wide spatial distribution
of sampled communities across the country, that both urban
and rural environments were equally represented, and that
the two large urban areas of Santo Domingo and Santiago
(approximately 35% and 10% of the national population,
respectively) were not over-sampled. Household selection in
urban clusters, where buildings are spread almost evenly
within the cluster, was conducted using a grid sampling
design. A grid with approximately 15 equally sized cells was
created and overlaid over each cluster, with 15 households
selected in closest proximity to the grid nodes. A second set
of 8 households located in near proximity to a subgroup
(every second location) of the 15 households was also
selected (for a total of 23 households per cluster). In rural
clusters, the spatially representative sampling method that

was used to select the 134 clusters was implemented to select
23 households from a geo-referenced list of buildings generated
in Google Earth Pro version 7.3.6.9345 [12]. Two provinces
(containing 23 out of the 134 selected clusters) that were also
participating in a linked study (prospective clinical surveillance
of acute febrile infections (AFI) at two regional hospitals in San
Pedro de Macoris and Espaillat provinces) were over-sampled
with 60 households per cluster. A national target sample size of
7000 participants was estimated assuming a community-level
seroprevalence of the most common AFI pathogens of ~20%
and a probable stratification of the final sample based on seven
age groups (2-4, 5-9, 10-14, 15-19, 20-39, 40-59 and 60+
years), three major ethnic groups (70% mixed, 16% white and
13% black) and two residential settings (20% rural, 80% urban
and peri-urban).

All household members aged =5 years were invited to
participate in the survey. Standardised electronic question-
naires were administered to all participants using the
Kobo Toolbox software (www.kobotoolbox.org) to collect
self-reported demographics individual-level data including
number, date and type of COVID-19 vaccine received. The
Global Positioning System coordinates were captured for
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each household location. Venous blood samples were
collected, processed as sera, and frozen at —80°C. Pan-
immunoglobulin antibodies against SARS-CoV-2 spike were
measured on Roche Elecsys SARS-CoV-2 electrochemilumi-
nescence immunoassays that use a recombinant protein
modified double-antigen sandwich format (Roche Diagnos-
tics, Indianapolis, IN, USA). Assay performance measures
were based on large non-manufacture-sponsored studies
with specificity and sensitivity of 99.8% (CI 99.3-100) and
98.2% (CI 96.5-99.2), respectively [13,14].

This study was reviewed and approved by the National
Council of Bioethics in Health, Santo Domingo (013-2019),
the Institutional Review Board of Pedro Henriquez Ureia
National University in Santo Domingo, and the Mass Gen-
eral Brigham Human Research Committee, Boston, USA
(2019P000094). The study was registered at the Human
Research Ethics Committee of The University of Queens-
land (2023/HE001506).

Administrative boundaries, socioeconomic and
environmental data collection and processing

The socioeconomic and environmental covariate data con-
sidered for the analyses were identified based on review of
published literature on drivers of SARS-CoV-2 transmis-
sion in different contexts [15,16]. These spatially refer-
enced covariate layers were downloaded and extracted
from different sources and processed as indicated in Sup-
porting Information S1 and Table S1.

Geo-referenced datasets that included anti-S status,
socioeconomic and environmental covariates were imported,
processed and spatially integrated in ArcGIS software [17].
Data were extracted for each household location to define
input parameters for the geostatistical models. To predict
the probability of anti-S Ab positivity at unsampled loca-
tions, data on the covariates were extracted at the nodes of a
regular 1 km x 1 km grid across the DR.

Exploratory methods and variable selection

Survey weighted seroprevalence of anti-S status and vaccination
coverage by province were estimated, accounting for survey
sampling design and probability weights. Individual COVID-19
vaccination status was used only for descriptive mapping and
exploratory purposes and was not considered for prediction
since there were no data available for individuals at unsampled
locations. Correlations between environmental covariates were
visually inspected using scatterplots and assessed using Spear-
man correlation coefficients. Non-spatial univariable logistic
regression models were developed using R software R-4.0.3 [11]
to examine the association between anti-S Ab (outcome vari-
able) and the socioeconomic and environmental factors (covari-
ates). For the highly correlated covariates (Spearman correlation
coefficient p >0.7), those with the highest Akaike Information
Criterion (AIC) value (ie., lowest predictive power) in the

univariable regression models were excluded. Covariates were
normalised (centred around 0 with a standard deviation of 1)
for scaling purposes by subtracting the mean from each value
and dividing them by the standard deviation. Separate non-
spatial multivariable logistic regression models were fitted for
urban and rural areas, including the remaining explanatory
variables as fixed effects and without considering the spatial
dependence structure of the data. Variables with a p-value <0.2
in the non-spatial regression models were selected for inclusion
in the final geostatistical models. Non-linear associations
between predictors and the outcome variables were modelled
using a piecewise approach and allowing the slope to varying
across segments of the covariate values.

Geostatistical multivariable regression models

Spatially-explicit models of anti-S Ab positivity were built in a
geostatistical framework using the R package PrevMap [18].
Separate models were fit for urban and rural areas to allow for
differences in the slope of covariate effects on anti-S Ab sero-
prevalence between these areas. To improve the computational
efficiency of the models, households were aggregated to grid
cells of 200 m x 200 m (anti-S positive cases were summed
and divided by the total number of tested individuals in each
grid cell). The models utilised the proportion of anti-S positives
(binomially distributed) as the outcome variable, along with
significant explanatory variables (variables with a p-value <0.2
in the non-spatial regression models), and spatially structured
random effects. We estimated 95% confidence intervals
(95% CI) and p-values for the odds ratios (OR) for the covari-
ates in the final models.

The mathematical representation of the geostatistical
model is provided below. It was assumed that the proportion
of anti-S Ab positivity at each location j followed a binomial
distribution, where Y; is the number of positive anti-S Ab
tests, 1; is the number of individuals tested for anti-S Ab,
and p; is the predicted seroprevalence of anti-S Ab at loca-
tion j. The model structure was as follows:

Y; ~ Binomial (nj,pj) ,

logit (pj) =a+ ) P, X Aj+s,

z=1

where « is the intercept, # is a matrix of covariate coeffi-
cients, 4 is a matrix of z socioeconomic and environmental
variables (fixed effects) at location j, and s; are the geostatis-
tical random effects to account for spatial variation in anti-S
Ab  positivity  seroprevalence between locations not
explained by the fixed effects. Parameter estimates for each
model were obtained using the Monte Carlo maximum like-
lihood (MCML) method [18], which is a convolution-based
low-rank approximation to the full Gaussian spatial process
and is more computationally efficient for large spatial data.
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FIGURE 2 Geographical distribution of (a) adjusted Severe Acute Respiratory Syndrome Coronavirus 2 spike (anti-S) antibody seroprevalence and (b)
Coronavirus disease (COVID)-19 vaccine coverage by province in the Dominican Republic, June-October 2021.

For both models, a burn-in of 5000 MCML iterations was
used followed by 55,000 iterations, sampled at every 10th
iteration to reduce autocorrelation. Predicted seroprevalence
and exceedance probability based on threshold probability
of 0.8 (represents the probability that the predicted sero-
prevalence of anti-S is above a threshold of 80%) at the sam-
pled and predicted locations were generated. Convergence
for all models was assessed visually based on inspection of
Monte Carlo chains and autocorrelation plots.

Predicted seroprevalence of anti-spike ab

The predicted anti-S Ab positivity seroprevalence at the
unsampled locations was estimated by fixing the model param-
eters at the corresponding MCML estimates from the fitted
model [18]. ArcGIS was used to generate smoothed risk maps
of the posterior distributions of the predicted seroprevalence
and exceedance probability of anti-S Ab positivity of 0.8.

To determine the predictive performance of the models, a
validation dataset was created for urban and rural locations
separately by randomly withholding 25% of the data, fitting
the model based on 75% of the data and then predicting anti-S
Ab seroprevalence (with estimates of uncertainty) for the with-
held subset. We estimated the root mean squared error
(RMSE) by comparing the model-predicted seroprevalence in
the withheld subset to the actual observed seroprevalence.

RESULTS
Sample description and sample site locations

The dataset included 6620 participants aged >5 years from
3785 unique household locations in 134 clusters. Overall,
4131 (62.4%) were female and over half (3576, 54.0%) lived
in urban areas. The mean age was 41.4 years with median

and interquartile range of 40 and 35 years, respectively
(range 6-97). The adjusted anti-S Ab positivity seropreva-
lence was above 65% for all provinces (Figure 2a). However,
there was significant geographical heterogeneity across prov-
inces, with lower anti-S Ab seroprevalence in the south-east
and high anti-S Ab seroprevalence across the south-west
regions (El Valle and Enriquillo Provinces). COVID-19 vac-
cine coverage (two or more doses) followed a similar pattern
with the lowest coverage in the north and south-east of the
country (Figure 2b).

The geographical distributions of the environmental and
socioeconomic covariates are shown in Figures 3 and 4,
respectively. Descriptive statistics of all covariates consid-
ered for the analyses are presented in Table S2. Based on
data extracted at household locations, daily precipitation
averaged over a year ranged from 0.11 to 0.27 mm with an
average of 0.17 mm. The annual average of monthly temper-
ature was 34.2°C, ranging from 25.9-41.3°C. The mean ele-
vation and distance to water bodies were 157 m (range 0-
1352 m), and 2.47 km (range 0-14.40 km), respectively. The
most densely populated areas correspond to the two major
urban areas of Santo Domingo in the south and Santiago in
the north central region.

Five pairs of variables (annual average of monthly tem-
perature/temperature in the coolest month, annual average of
monthly temperature/temperature in the hottest month, pop-
ulation density/proportion of the population aged under
20 years, percentage of population without access to indoor
toilet/adult illiteracy percentage and motorised travel time to
healthcare facilities/walking only travel time to healthcare
facilities) were identified with Spearman correlation coeffi-
cients 20.7. Results of the assessment of bivariate associations
between the highly correlated covariates and anti-S seropreva-
lence are provided in Figure S1 and Table S3. Covariates sig-
nificantly associated with the outcome, and also highly
correlated were removed, retaining those with the lowest AIC
(best predictive covariates). The socioeconomic and
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Information S1. Base layers from: (https://www.diva-gis.org/gdata).

environmental covariates included in the final urban model
were distance to provincial capital, walking only travel time
to healthcare facilities, proportion of population aged
<20 years, precipitation in the wettest month (August), built-
up areas, unemployment rate and number of primary care
units (PCU) per population (Table S5). Scatter plots of anti-S
seroprevalence against covariates are presented in Figure 5.
The final rural model included the following covariates: dis-
tance to inland water bodies, distance to provincial capital,
distance to education facilities, elevation, precipitation in the
wettest month, temperature in the hottest month (May),
unemployment rate and number of PCU per population. An
exploratory non-spatial model incorporating vaccination sta-
tus was developed and is provided in Table S4.

Geostatistical model for anti-S seroprevalence

In the urban model, higher number of PCU per population
was associated with the highest odds of being anti-S Ab

positive (1.38, 95%CI: 1.35-1.39). Higher proportion of indi-
viduals aged <20 years was significantly associated with
increased odds of anti-S positivity (OR: 1.35, 95%CI: 1.32-
1.41). Odds of anti-S positivity increased by 1.33 (95%CI:
1.29-1.37) for each km increase in distance to the provincial
capital. Odds of anti-S Ab positivity decreased significantly
with longer walking travel time to the nearest healthcare
facility and precipitation in the wettest month, with ORs of
0.86 (95%CI: 0.83-0.89) and 0.88 (95%CI: 0.86-0.90) for
each 1 min increase in walking travel time and 1 mm in pre-
cipitation, respectively. Residing in built-up areas and,
higher unemployment rates were not significant in the final
urban model (Table 1).

In rural areas, odds of anti-S positivity were 1.45 (95%
CI: 1.39-1.51) and 1.51 (95%CI: 1.43-1.60) with each 1°C
increase in temperature in the hottest month and 1 mm
increase in precipitation in the wettest month, respectively.
Higher odds of anti-S Ab positivity were significantly associ-
ated with increasing PCU per population (OR: 1.44, 95%CI:
1.37-1.52). Distance to inland water bodies (per km) and
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FIGURE 5 Scatter plots of Severe Acute Respiratory Syndrome Coronavirus 2 spike antibody seroprevalence against the covariates included in the
models. The blue and grey dots and lines are for urban and rural areas, respectively.
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TABLE 1

QOdds ratios (ORs) and 95% confidence interval (95%CI)

from the geostatistical models for anti-S positivity in urban and rural areas

in the Dominican Republic, 2021.

Variables

Urban areas

Rural areas

OR (95% CI)

OR (95% CI)

Sociodemographic factors

Distance to provincial
capital (km)

Distance to provincial
capital (km) (non-linear
spline)

Distance to education
facilities (km)

Distance to education
facilities (km) (non-linear
spline)

Walking only travel time
to healthcare facilities
(min)

Primary care units per
population (ratio)

Proportion of population
aged <20 years (%)

Unemployment rate (%)
Environmental factors

Distance to inland water
bodies (km)

Elevation (m)

Average precipitation in

1.33 (1.29-1.37)

0.74 (0.68-0.80)

NA

NA

0.86 (0.83-0.89)

1.38 (1.35-1.39)

1.35 (1.32-1.41)

0.93 (0.91-0.95)

NA

NA
0.88 (0.86-0.90)

0.87 (0.83-0.92)

NA

0.80 (0.73-0.88)

0.86 (0.69-1.07)

NA

1.44 (1.37-1.52)

NA

0.79 (0.75-0.83)

1.21 (1.16-1.26)

1.16 (1.11-1.22)
1.51 (1.43-1.60)

the wettest month
(August) (mm)

Temperature in the NA 1.45 (1.39-1.51)

hottest month (May) (°C)
1.20 (0.80-1.09) NA
0.003 (0.003-0.01) 0.04 (0.03-0.06)

Built-up area

Variance of the spatially
structured random effect

¢ (Decay of spatial 38.94 (9.25-163.87) 3.43 (1.93-6.11)

correlation)

Note: Statistically significant ORs are highlighted in blue (positive associations) and
grey (negative associations).

elevation (per m) were also positively associated with anti-S Ab
positivity, with ORs of 1.21 (95%CI: 1.16-1.26) and 1.16 (95%
CL: 1.1-1.22), respectively. In contrast to urban areas, odds of
anti-S positivity decreased significantly with increasing distance
to the provincial capital, OR 0.88 (95%CI: 0.83-0.92). Further-
more, there was a significant negative association between
anti-S positivity and increasing distance to the nearest educa-
tional facility (OR: 0.80 [95%CI: 0.73-0.88]) as well as increas-
ing unemployment (OR: 0.80 [95%CI: 0.75-0.83]).

Predictive mapping of anti-S seropositivity

A national-level map was created by combining the urban
and rural maps (Figure S2) for mean posterior distributions

of predicted anti-S ab seroprevalence (Figure 6a). The model
predicted significant spatial heterogeneity in anti-S Ab sero-
prevalence, with highest predicted seroprevalence (295%) in
the south-west (particularly in Independencia and Barahona
Provinces), and high predicted seroprevalence (90%-95%)
in the south-central part of the country. Predicted seroprev-
alence was lowest (<80%) in the north and in the far south-
west. The exceedance probability for anti-S Ab positivity
seroprevalence greater than 0.8 is depicted in Figure 6b,
showing that the predicted seroprevalence of anti-S Ab for
most locations in the DR was highly likely to exceed 80%.
The RMSE for the urban model was 9.11 and for the rural
model was 6.81. Full R code for the geostatistical models is
provided in https://github.com/Angelamcr2203/COVID-109.

DISCUSSION

In this study, we demonstrated the utility of a geostatistical
approach to estimate and predict population immunity at
high spatial resolution, identify pockets of lower population
immunity that could be used to help guide targeted inter-
ventions, particularly vaccination campaigns. This approach
and findings are valuable for improving our understanding
of the immunological vulnerability of the local population at
the time of the survey, as well as for informing preparedness
strategies for future pandemics. While seroprevalence of
anti-S Ab was generally high across the country at the time
of the survey, there were areas with low predicted seropreva-
lence, with varying risk factor profiles, that could benefit
from targeted interventions, particularly vaccine campaigns.
Variations in COVID-19 vaccination efforts and the effec-
tiveness of mitigation strategies may be attributed to differ-
ences in primary healthcare coverage and healthcare system
organisation [19]. Similar to other studies that have assessed
socioeconomic vulnerabilities to COVID-19 [20], we found
that in the DR, increasing number of PCU per population
(i.e., proxy for access to healthcare) in both urban and rural
areas, had a positive association with anti-S positivity. This
suggests that improving access to PCU may support a better
structure and organisation of the COVID-19 vaccination pro-
gramme, improving equitable immune protection particularly
for vulnerable populations with less equitable access. Similar
to other countries, in the DR, there is limited availability of
healthcare facilities in rural areas and/or challenging geo-
graphic accessibility including longer travel distances to
healthcare and vaccination providers [21]. This situation may
also impact vaccination coverage and resultant population
immunity. It is therefore not surprising to discover that in
urban areas, where there is potentially higher density of
PCUs, anti-S Ab seroprevalence demonstrated a positive asso-
ciation with increasing distance to provincial capital and a
negative association with increasing walking only travel time
to healthcare facilities. In contrast, in rural settings, increasing
distance to provincial capital and education facilities and
higher unemployment rates were associated with lower odds
of anti-S positivity. This finding is also supported by the low
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FIGURE 6 Spatial distribution of predicted seroprevalence (a) of Severe Acute Respiratory Syndrome Coronavirus 2 spike (anti-S) antibody
seroprevalence in the Dominican Republic 2021 (b) and of exceedance probability of 80% seroprevalence.

predictive seroprevalence of anti-S Ab in mountainous areas
in provinces located on the border with Haiti such as Elias
Pifia, where military carts had to facilitate transportation of
medical supplies during the vaccination programme [22].

Precipitation during the wettest month (August) was
found to be a significant environmental factor influencing
anti-S Ab positivity. However, the association exhibited a
contrasting pattern between urban and rural areas, with
higher precipitation significantly reducing the odds of
anti-S positivity in urban areas, while rural areas showed
significantly higher odds. Furthermore, higher tempera-
ture during the hottest month displayed a positive associ-
ation with anti-S positivity only in rural areas. Several
studies have examined the effect of climatic variables on
COVID-19 incidence with mixed results that varied con-
siderably in effect sizes, significance levels, weather indi-
cators, regions and time periods [15,16,23]. To date, there
is still limited evidence on how environmental factors
may be influencing transmission risk, vaccination cover-
age or other factors underlying COVID-19 immunity [24].
This contrasting evidence reinforces that drivers influenc-
ing transmission and access to health care might vary
between settings.

There was a positive association between anti-S sero-
positivity, and the proportion of the population aged
<20 years. Because those aged <16 years did not have
access to the COVID-19 vaccine in the DR by the time of
our survey [6], this relationship may be explained
partially by the likelihood of infection in the younger
population [25]. Also, it has been observed that younger
populations may have increased likelihood of being
infected relative to older age groups as a result of greater
social connectivity. Generally, older people exhibit
greater awareness of the pandemic and are more likely to
comply with suggested behaviours and regulations
because infection may result in a higher risk of severe and
fatal outcomes for them [26].

This study had several strengths, including the spatial
sampling design that allowed us to maximise the spatial dis-
persion of the selected clusters. Also, the availability of accu-
rate geo-referenced anti-S Ab data at the household level,
facilitating analysis at a fine spatial scale. However, there
were several limitations, such as challenges in interpreting a
positive anti-S result, as it was difficult to determine whether
this was due to infection, vaccination, or both; nevertheless,
it serves as an indicator of immune protection. Also, anti-S
seroprevalence constantly evolves as a result of the complex
interplay between further vaccine doses, repeated infections
and waning immunity from both vaccination and infections.
Lastly, while our data provide granular spatial insight into
SARS-CoV-2 infection or vaccination, substantial transmission
of Delta and Omicron variants between survey sampling and
the present time has likely markedly impacted population
immunity and seroprevalence [27]. While our findings may
not reflect the current spatial epidemiology of anti-S Ab in the
DR, we have demonstrated the value of predictive risk map-
ping for informing pandemic response.

CONCLUSIONS

Identifying areas with low population immunity helps high-
light areas in need of additional resources, investment and
targeted interventions, and provide valuable insights into
the adequacy and equity of vaccine provision during a pan-
demic and how this needs to be addressed for subsequent
outbreaks of other emerging infectious diseases. These find-
ings pave the way for further research aimed at enhancing
our understanding of the dynamics of anti-S over time and
across diverse settings.
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