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A B S T R A C T  

Whe n es t imat ing he tero g eneous tre atme n t effe cts, missing outc ome data can c omplica te tr ea tme n t effect es t imat ion, causing certain subgroups 
of the population to be poorly r epr ese n te d. In this w ork, w e d isc uss this c ommonly ov erlooke d proble m a nd conside r the impact that missing at 
random outcome data has on causal machine learning estimators for the conditional average tr ea tme n t effect (CATE). We propose 2 de-biased 

ma chine learnin g estimator s for the C ATE, the mDR-lea rne r, a nd mEP-lea rne r, which addres s the is sue of under- re pre se n tation b y in tegrat- 
ing inverse probability of censoring wei gh ts in to the DR-lea rne r a nd EP-lea rne r, respe ctiv ely. We show th a t under r eas onab le condition s, thes e 
es timators a re oracle efficie n t a nd i l lustr ate their favor able pe rforma nce through sim ul ated d ata s e ttin gs, comparin g them to existing CATE es- 
timator s, includ ing comparison to estimators that use common missing data te chniques . We prese n t a n exa mple of their application using the 
GBSG2 tri al, exp loring tr ea tme n t effect he tero ge neity whe n compa ring hormonal the ra pies to non-hormonal the ra pies a mong breas t ca nce r 
patie n ts pos t surge ry, a nd offe r guida nc e on the de cisions a pract it ione r m us t make whe n imple me n ting the se e stim ators . 

KEY W OR DS : causal machine learning; he tero g eneous tre atme n t effects; influence functions; missing outcome data. 
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1 I N T R O D U C T I O N 

hen evaluating the effect of an interv ention, inv estiga tors ar e
fte n in te res ted in how the effect may vary within a target pop-
l ation . One approach used to explore treatme n t effect het-
 roge neity for a binary intervention is to estimate the con-
ition al av erag e tre atme n t effect (CATE), defined as θ (x ) =
 [ Y (1) | X = x ] − E [ Y ( 0) | X = x ] , where Y ( 0) and Y ( 1) are
ote n tial outcomes under the 2 levels of the tr ea tme n t (Rubin,
005 ) and X r epr ese n ts the individual (pr e-tr ea tme n t) cha rac-

e ris tics in which he tero geneity is of interest. 
CATEs can be used to explore treatme n t effect hete roge neity

r to derive ind ividual ized tr ea tme n t rules, aiding in the devel-
pme n t of precision medicine (Va nde rWeele et al., 2019 ). Ma ny
stimators of the CATE h av e be en propose d, with the focus turn-
ng toward non-parametric estimators, using machine learning
ML) t o estimat e comp lex function s of hi gh dime n sional d ata
Künzel et al., 2019 ; Nie and Wager, 2021 ; Kennedy, 2023 ; van
e r Laa n e t al., 2024 ). Of thes e estima tors, each r equir es tha t the

raining data be fully observ e d and no data be missing. In this pa-
er, we relax this require me n t a nd propose 2 novel CATE estima-

ors, the mDR-lea rne r a nd mEP-lea rne r, which de mons trate how
ausal ML estimators can be c onstructe d when outc ome data is
issing at random (MAR). 
MAR outcome data occur freque n tly in practice, typically

 rising whe n individuals a re los t to follo w -u p. When it occ ur s,

e c eiv e d: D e c e mbe r 24, 2024; Revise d: June 20, 2025; Ac c epte d: July 10, 2025 
The Author(s) 2025. Published by Oxford University Press on behalf of The In te rn ation a
 re ative Common s A ttribution Licen s e ( https://creativ ec ommons .org/lic ense s/by/4.0/ ), wh

he original work is properly cited 
he o bs erv e d data m ay no longer r epr ese n t the target popula-
ion, and s ubgroups th at h av e high lev els of drop-out can be
nder- re pre se n ted. This prese n ts a challenge for existing non-
a ra metric CATE es timators, which do not address this under-
e pre se n tation a nd a r e pr one to pr oducing bi as e d estim ates of
he CATE within these under-r epr ese n te d s ubgroups . To ov er-
ome this, some authors propose using C ATE estimator s in
 ombin ation with e st abli shed mi ssing dat a technique s, such as
mputin g missin g outcomes (Gr oen wo ld e t al., 2014 ; Berrevoe ts
t al., 2023 ), or re-wei gh ting the population using inverse prob-
bility of cen s oring wei gh ts ( IPCW) ( Ro bin s e t al., 1994 ; Gon-
alez G ineste t e t al., 2021 ). How ev e r, whe n imple me n ting these
pproa ches usin g non-pa ra metric, ML techniques, the inhe re n t
low c onv e rge nce of ML al gorithms ca n in troduce e rrors in to the
 PCW/imputat ion predict ions, which then propagate through
o the CATE e stimate s. 

Our work aims to ov erc ome thi s i ssue, with the mDR-lea rne r
 nd mEP-lea rne r robus tly incorporat ing I PCWs into the DR-
ea rne r (Ke nnedy, 2023 ) a nd EP-lea rne r (va n de r Laa n et al.,
024 ), respe ctiv ely. We show th at the se e s timators a re oracle ef-
cie n t unde r reas onab le condition s a nd de mons trate their e m-
irical pe rforma nce through a sim ulation s tudy (Section 4 ). We

hen i l lustrate their app lication, exp loring treatme n t effect het-
 roge neity within the GBSG2 trial (Section 5 ), and finish by dis-
ussing pote n tial exte nsions (Section 6 ). 
l Biome tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the 
ich permits unre stricted re use, dis tribution, a nd reproduction in any me dium, provide d 
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2 B A C KG R O U N D  

2.1 Setting 

We define a s amp le of n independent and identically distributed
(i .i .d .) o bs erv ation s drawn from O = (Z, A, CY ) , where A are
binary tr ea tments, A ∈ { 0 , 1 } and Y are continuous outc omes .
In this s e tting, w e allow outc ome d ata to be mis sing and define C
as an indicator of outcome mis singnes s, C ∈ { 0 , 1 } , with C = 1
indica ting tha t an individual’s outcome i s non-mi ssing. We then
define Z to be a s e t of baseline covariates that contains all con-
founders betw e en the tr ea tment A and the outcome Y , and suf-
ficie n t information for missing out comes t o be assumed MAR
(ie, afte r con trolling for Z and A , C, a nd Y a re indepe nde n t).
Fin ally, w e focus on learning the CATE, θ (x ) = E [ Y (1) | X =
x ] − E [ Y (0) | X = x ] , which is c ondition al on X ⊆ Z, where X 

are the cov ari ates for which he tero geneity is of interest. 

2.2 Est imat ing th e CATE us ing ML—n o miss ing outcom e 
data 

We firs t conside r how causal ML es timators a re cons tructed
when no outcome data is missing. Under the standard causal
as sumption s of (A1) consis te ncy, (A2) no unmeas ure d c on-
founding, Y (a ) ⊥⊥ A | Z for a ∈ { 0 , 1 } , and (A3) positivity of
tr ea tme n t exposure, 0 < P (A = 1 | Z) < 1 (with probability 1)
(Pearl et al., 2016 ), the CATE can be identified as: 

θ (x ) = E [ E [ Y | A = 1 , Z] − E [ Y | A = 0 , Z] | X = x ] , (1)

or 

θ (x ) = E 

[
AY 

P [ A = 1 | Z] 
− (1 − A ) Y 

1 − P [ A = 1 | Z] 

∣∣∣∣ X = x 
]

. (2)

ML can be used to estimate the conditional expect a -
tion s/pro babilities (nuis ance function s) found in Equations
( 1 ) or ( 2 ), with these estim ators c ommonly referre d to as
plu g-in e s timators. One common exa mp le of a p lu g-in e stimator
is the T-lea rne r (Künzel et al., 2019 ), which r equir es X = Z
a nd es timates the c ondition al expe cta tions fr om Equa tion
( 1 ) in the subs e ts of individuals who ar e tr ea ted/untr ea ted,
μ1 (Z) = E [ Y | A = 1 , Z] and μ0 (Z) = E [ Y | A = 0 , Z] , tak-
ing their diffe re nce to obt ain CATE e stimate s. A lter natively,
plu g-in e stimators based on Equation ( 2 ) are often referred
to as inverse probability of tr ea tme n t wei gh t (IPTW) es tima-
tors, as they r equir e the est imat ion of the propensity score,
π (Z) = P [ A = 1 | Z] (Kennedy, 2023 ). 

While s uch ML-base d plug -in estim a tors ar e simple to under-
s ta nd a nd imple me n t, they a r e also pr one to bias. Thi s ari ses
as ML algorithm s us e regul ari zation to avo id over- fitting to the
training da ta, r educing the rate at which these estimators con-
verg e to ward the true parameter. This introduces non-negligible
bias when fit using finite samples, with the errors in these n ui -
sance function e stimate s (eg, ˆ μ1 ( Z) , ˆ μ0 ( Z) or ˆ π (Z) ) directly
pr opaga ting thr ou gh to the e stimate s of the CATE, known as
“p lug-in bi as” (Morzywo lek e t al., 2023 ). Furthermore, the T-
lea rne r does not e nsure a n optimal bi as-v ari ance trade-off is
made for the CATE, as it optimizes predictions for their outcome
functions rathe r tha n for the CATE itself (Kenne dy, 2023 ). Se e
Web Appendix 1 for an i l lustrative example. 

Because the CATE is often much smoother than the nuisance
functions in practice, it should be easier to estima te, pr ovided
the estimator is shielded from the slow conve rge nce rates that 
affect the given nuisance-function estim ators . Estim ators th at 
h av e this property are typically c onstructe d using the efficient 
influence function (EIF) of the es tima nd of in te res t, whe re the 
EIF r epr ese n ts how se nsitiv e a meas ur e of pr ediction err or is
to changes in the data ge ne rating dis tribution. The EIF offe rs 
a useful tool for constructing estimators, allowing estimators to 

be appr oxima tely in s en sitiv e to sm all ch a nges in their n uisa nce
functions, mea ning es timation e rrors in the outcome functions 
or propen sity s c ore affe ct errors in the e stimate s of the target 
function only through their product. Unfortunately, the EIF of 
the CATE is ge ne rally not well defined (ie, has infinite va ri - 
a nce) whe neve r it depe nds on con tin uous va riable s (Hine s et al., 
2022 ). Ins tead, es tim ators th at achiev e these prope rties ca n be 
c onstructe d base d on the EIF of a well -chose n loss function, in 

this case, a measure of coun te rfactual prediction e rror (Fos te r 
a nd Syrgka nis, 2023 ; Morzywo lek e t al., 2023 ). Two examp les 
include the DR-lea rne r (Ke nnedy, 2023 ) a nd EP-lea rne r (va n 

de r Laa n et al., 2024 ). 
The DR-lea rne r is a model -agnos tic CATE es timator, mea n- 

ing the use r ca n choose any est imat ion stra tegy, including da ta 
ad aptive me thods, when est imat ing any functions within it. It is 
c onstructe d using a 2-step proc e dure (Kenne dy, 2023 ), with the 
firs t s tep calcul ating ps e udo-outcome s, Y DR , using the EIF of the 
mea n squa re e rror (MSE) for the CATE: 

Y DR = 

( A − π (Z) ) 
π (Z) ( 1 − π (Z) ) 

{
Y − μA (Z) 

} + μ1 (Z) − μ0 (Z) , 

(3) 

where ˆ μA (Z) = A · ˆ μ1 (Z) + (1 − A ) · ˆ μ0 (Z) . The se c ond 

s tep the n lea rns the CATE b y r egr es sing the ps e udo-outcome s
on the cov ari ate s e t in which he tero geneity is of interest, X .
See Web Appendix 2 for the full algorithm. By using a pseudo- 
outc ome re gression, the DR-lea rne r ta rgets the C ATE d irectly 
a nd be nefits from fas te r c onv e rge nce rates whe n the CATE 

is smoothe r tha n the bas eline function . Additionally, thes e 
pse udo-outcome s a re de rived b y conside ring the compone n ts 
of the MSE of the CATE that depend on θ (X ) , ψ CATE = 

E 

[
θ (X ) 2 − 2 θ (X )(μ1 (Z) − μ0 (Z)) 

]
, using the EIF of this 

risk function, 

φ = 

(
θ 2 (X ) − θ (X ) 

(
μ1 (Z) − μ0 (Z) 

))
+ 

2 θ ( X )( A − π (Z)) 
π ( Z)( 1 − π (Z)) 

{ Y − μA (Z) } − ψ CATE , (4) 

to define its pse udo-outcome s such that the s amp le average of 
the drift term (se c ond term in Equation ( 4 )) goes to 0. These 
pse udo-outcome s re semble the EIF from the average treatme n t 
effe ct and c onsist of the plu g-in e stimate s and a w eighte d error 
term . By using thes e ps e udo-outcome s, the DR-lea rne r e nsures 
that the gradie n t of the MSE risk function, with respect to the 
CATE, is less sensitive to errors in its n uisa nc e functions . It also 

allows the DR-lea rne r to achieve oracle efficie ncy, mea ning that 
when the product of the c onv ergenc e rates for the outcome pre- 
dictions and propen sity s c ore estim ates is faster than the rate of 
the oracle lea rne r, it pe rforms asymptotically as if the n uisa nce 
functions were known (Kenne dy, 2023 ). How ev er, the c onv er- 
gence rate of the DR-lea rne r s ti l l depends on the c onv e rge nce 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
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ate of its pseudo-outcome r egr e ssion, which de pends on the
omplexity of the CATE. 
De spite its de sirable propertie s, the DR-lea rne r ca n be se n-

itive to extreme propensity scores, with the IPTWs used in
ts pse udo-outcome s causing the pse udo-outcome s to grow in-
nitely large when propensity score e stimate s a re nea r 0/1. To
reve n t this, some trim the propensity sc ore estim ates, there-

ore stopping the pse udo-outcome s from growing too large.
ow ev e r, this in troduces bias to the propensity score e stimate s,
hich can pr opaga te thr ou gh to the CATE e stimate s them s e lve s.
or this reason, we d isc uss an altern ativ e approach known as

nfinite-dime nsional ta rgetin g (iT MLE) (L uedtk e et al., 2017 ;
a ns teela ndt a nd Morzywo łek, 2023 ; v a n de r Laa n et al., 2024 ).
his technique has been developed for coun te rfactual outcome
rediction (Va ns teela ndt a nd Morzywołek, 2023 ) a nd te nds to
 av e les s s en sitivity to extr eme pr open sity s core s, as its t ar-
 eted le a rning fra mework ca n mode rate the impa ct of outlyin g
ropen sity s c ore estim ates . In this pa pe r, we d isc uss a very simi-

a r a pproach kno wn as the EP-le a rne r (efficie n t plug-in lea rne r)
va n de r Laa n et al., 2024 ), which us es i TMLE in the context of
ausal con tras ts, includ ing C ATE est imat ion. 
The EP-lea rne r is a model -agnos tic es tim ator th at als o us es a
 step proc e dure, firs t de riving pse udo-outcome s tha t ar e la ter
 egr es s ed on X . However, the EP-learner uses an iTMLE proce-
ure to ge ne rate its pse udo-outcome s. This iTMLE pr ocedur e
 l ays a simil ar ro le to the one-step c orre ction use d in the DR-

ea rne r a nd is motivated by the EIF of the MSE risk function for
he CATE, Equation ( 4 ). Using this EIF, the iTMLE proc e dure
im s to upd ate the initi al p lug -in outc ome estim ates, ˆ μ0 (Z) and

ˆ 1 (Z) using targeted learning s uch th at the s amp le average of
he dri ft ter m (se c ond term) in Equation ( 4 ) goes to 0. Yet, since
he drift term in Equation ( 4 ) contains an infinite dimensional
(X ) (when any v ari ab les in X are continuous), the cl as sical

arg eted le arning proc e dure, which re gres s es outcomes again st a
 cal ar (known as a clev er c ov ari at e), would fail t o s e t the s amp le
verage of the dri ft ter m to 0. To res o lve this, the i TMLE proce-
ure defines a v e ctor of univ ari ate basis function s, referred to as
 sieve, ϕ(X ) , which it use s within the t a rgeting s tep, a pproxi -
ating θ (X ) and allowing the updat es t o the plug-in estimates

o vary by X . 
T he tar geting step then works by r egr e ssing the outcome s Y 

n the sieve basis, ϕ(X ) , in a wei gh ted linea r r egr ession, with
n offs e t μA (Z) , a nd wei gh t, ˆ H (A, Z) = 

A 
ˆ π (Z) + 

1 −A 
( 1 − ˆ π (Z) ) , sug-

es ted b y the EIF of the risk funct ion, Equat ion ( 4 ). After fit-
ing this model, efficie n t plug-in estimates, ˆ μ0 ∗(Z) and 

ˆ μ1 ∗(Z)
re obtained by a ddin g/subtra ctin g the estim ate d linear predic-
or from this model to the plug-in out come estimat es (see Web
ppendix 3 for the full algorithm). As the updat ed out come pre-
ictions are defined such that the s amp le average of the drift term

n Equation ( 4 ) c onv erg es to 0, the EP-le a rne r achieves the same
racle efficie ncy prope rties as the DR-lea rne r. Additionally, b y
sin g iT MLE, extreme pse udo-outcome s are le ss common, and

he CATE e stimate s should be more st ab le (v a n de r Laa n et al.,
024 ). 
In addition, both lea rne rs r equir e the da ta tha t is used in the

e c ond stage opt imizat ion is i .i .d . To achieve this, s amp le sp lit-
ing is used when est imat ing the nuisance functions, preve n ting
orr ela tions fr om being intr oduc e d into the pse udo-outcome s.
n this pa pe r, we imple me n t a K-fold cr oss-fit ting pr oc e dure
ound in Web Appendix 2 and 3 . 

2.3 Est imat ing th e CATE us ing ML—with miss ing outcom e 
data 

ow w e c onsider how MAR outc ome data impacts the existing
stim ators . To identify the CATE when outcome data is MAR,
 e re quire ass umptions A1-A3 from Section 2.2 and 2 addi-

ion al ass umptions on the missingness me ch anis m : (A4) Out-
omes are MAR, Y ⊥⊥ C| A, Z; (A5) Positivity of outcomes be-
n g non-missin g, 0 < P (C = 1 | A, Z) , with probability 1. Under
s sumption s A1-A5, the CATE can be identified as Equations
 5 ) and ( 6 ). 

θ (x ) = E [ E [ Y | A = 1 , C = 1 , Z] 

−E [ Y | A = 0 , C = 1 , Z] | X = x ] , (5)

or 

θ (x ) = E 

[
CAY 

P [ C = 1 | A, Z] P [ A = 1 | Z] 

− C(1 − A ) Y 

P [ C = 1 | A, Z](1 − P [ A = 1 | Z]) 

∣∣∣∣X = x 
]
. (6)

The no unmeas ure d c onfounding ass umption (A2) and MAR
ssumption (A4) need not be conditional on the same cova ri -
tes; how ev er, for simplicity, w e define both ass umptions to be
 ondition al on the s ame s e t of cov ari a tes, Z. Using Equa tions ( 5 )
nd ( 6 ), we see that when all of the cov ari ates in Z are prese n t,
he CATE can be estim ate d using the o bs erv e d d ata. Con s e-
ue n tly, the exis ting CATE es tim ators, s uch as the T-lea rne r,
R-lea rne r, a nd EP-lea rne r ca n produce as ymptotically unb i-

se d estim ates of the CATE b y res tricting their analyses to com-
 le te cas es a nd adjus ting for Z through their outcome models
a (Z) = E [ Y | A = a, C = 1 , Z] , A ∈ { 0 , 1 } . We refer to this
 pproach as a n “av ail ab le cas e a nalysis,” a nd note that while the
utc ome re gres sion s are limited to comp le te cas es, the propen-
ity score models should sti l l be estim ate d using the full d atas e t.

Av ail ab le cas e analys es offer the simp lest w ay of est imat ing the
ATE in the presence of MAR outc ome data; how ev er, their

symptot ic propert ies do not ass ure th at they perform w ell when
t using finite s amp les. In stead, av ail ab le cas e analys es can of-

e n be inefficie n t, as their outc ome re gres sion s restrict the pop-
l ation to thos e with comp le te cas es, with information being

gnored for individuals who h av e a missing outcome. Equally,
hen the outcome models are fit using ML, they wi l l be prone

o o ver-smoothin g in the subs e ts of the popul a tion tha t expe ri -
 nce hi gh levels of outcome mis singnes s. This can caus e com-
lex non-l inear C ATEs to be mis s ed, with thes e approa ches o ver-

smoothing their outcome predictions due to the missing data,
r can lead t o estimat ors identifying het er ogeneity wher e non-

exis ts, for ins ta nce, whe n the mis singnes s only occ ur s within one
r ea tme n t a r m. Spec i fic examples of data ge ne rating proces s es
DGPs) where this can occur are prese n ted in Section 4 . 
Because of the se limit ations, some authors choose to address
is sing outcome d ata by ut iliz in g missin g dat a technique s. A

ommon mis sing d ata t echnique is t o imput e out come s, re p l ac-
n g the missin g out comes with out c ome pre dictions gaine d from
n imput ation mode l, ˆ E [ Y | C = 1 , A, Z] (Gr oen wo ld e t al.,
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2014 ; Berrevoe ts e t al., 2023 ). Thes e are easy to implement
when using the existing non-parametric C ATE estimator s, as the
es timators ca n be run using the impute d, c omp le te d atas e t. Ho w -
ev er, as outc ome imputa tions r equir e the estima tion of an ad-
ditional n uisa nce mode l, plu g-in bias can be introduc e d, with
errors in the outcome imputations propagating through to the
e stimate s of the CATE. A lter n ativ ely, other authors suggest ad-
dres sing mis sing outcome d a ta by r e-weighting o bs erv e d indi-
viduals based on their probability of having a non-missing out-
come, G (A, Z) = P [ C = 1 | A, Z] (Ro bin s e t al., 1994 ; Gonza-
lez G ineste t e t al., 2021 ). Thes e wei gh ts ca n be used to estimate
the CATE using a similar approach to the one Kennedy ( 2023 )
uses t o incorporat e IPTWs, wei gh ting o bs erv e d individuals to
cr ea t e pseudo-out c omes, then re gres sing the ps eudo-outcomes
against X to estimate the CATE. How ev e r, this es timator, which
we wi l l refer to as the I PTW-I PCW est im ator, also s uffers from
p lug-in bi as, as e rrors in the IPTWs a nd IPCWs wi l l pr opaga te
through to the CATE estim ates . We ther efor e construct IF based
estim ators th at inc orporate these wei gh ts naturally a nd which
offer gr ea ter r o bustnes s to errors in the mis singnes s prediction s
G (A, Z) . 

3 D R- L E A R N E R / E P-  L E A  R N E R E X  T E N S I O N S  

In this se ction, w e exte nd the DR-lea rne r (Ke nnedy, 2023 ) a nd
EP-lea rne r (va n de r Laa n et al., 2024 ) to ha ndle missing out-
come data, lea din g to 2 ne w e s timators, the mDR-lea rne r (miss-
ing outcome DR lea rne r) a nd mEP-lea rne r (missing outcome EP
lea rne r ), r espe ctiv ely. 

3.1 mDR-lea rne r 
We begin by conside ring a n exte nsion of the DR-lea rne r to the
MAR outcome d ata s e tting. Re call th at the DR-lea rne r does
not ac c oun t for the unde r- re pre se n tation that occ ur s as a result
of MAR outc omes . Thi s i s because the DR-lea rne r’s pseudo-
outcomes are deriv e d using a risk function that assumes com-
p le te d ata. How ev e r, whe n outcomes a re MAR, the risk func-
tion t ake s a ne w form, ψ CATE = E [ θ (X ) 2 − 2 θ (X )( E [ Y | C =
1 , A = 1 , Z] − E [ Y | C = 1 , A = 0 , Z])] , which now inv olv es
the indicator for outcomes being non-missing. It can be shown
( Web Appendix 4 ) that the EIF is 

φ = 

(
θ 2 (X ) − 2 θ (X ) 

(
μ1 (Z) − μ0 (Z) 

))
− 2 θ ( X )( A − π (Z)) C 

π ( Z)( 1 − π ( Z)) G ( A, Z) 
{ Y − μA (Z) } − ψ CATE . 

(7)

Using this EIF, we can con struct ps e udo-outcome s for the mDR-
lea rne r as: 

Y mDR = 

( A − π (Z) ) C 

π ( Z) ( 1 − π (Z) ) G ( A, Z) 
{

Y − μA (Z) 
}

+ μ1 (Z) − μ0 (Z) . (8)

We note that IPCWs now a ppea r alon gside IPTWs, allowin g
thes e ps eudo-out comes t o ac c ount for the shift in cov ari ate dis-
tribution caused by both missing outcome data and confound-
ing. The mDR-lea rne r the n proc e e ds by re gre ssing the e stimate s
of these pse udo-outcome s Y mDR against covariates X to obtain 

e stimate s of the CATE (see Figure 1 ). 
As the mDR-lea rne r defines its pseudo-outcomes using the 

EIF of the MSE for the CATE (under outcome mis singnes s), 
it not only minimizes the MSE risk function but also expe ri - 
ence s le s s s en sitivity to e rrors in its n uisa nce functions (includ -
ing the IPCWs). We de mons trate this by exploring the excess 
risk of the mDR-lea rne r, defined as the diffe re nce in MSE risk 
function, L (. ) , when evalua ted a t ˆ θ (X ) and a t θ∗(X ) , wher e
L (θ∗) = inf θ L (θ ) . Usin g the approa ch laid out b y Fos te r a nd
Syrgkanis ( 2023 ), we provide an upper bound for the excess risk 
(see Web Appendix 5 ). This bound de mons trates how the gra- 
die n t of the MSE risk function for the mDR-lea rne r has reduced 

s en sitivity to errors in the nuis ance function s, which now include 
the mis singnes s model, G (A, Z) . It als o sho ws ho w the mDR- 
lea rne r ca n obtain oracle efficie ncy unde r simila r as sumption s to 

those of the DR-lea rne r. 
For the mDR-lea rne r to obtain oracle efficiency, it r equir es tha t 

2 condition s ho ld; firstly, tha t the pr oduct of the c onv e rge nce 
rates for the outcome predictions and propensity score e stimate s 
is fas te r tha n the r ate for the or acle es timator, a nd secondly, that
the product of the c onv e rge nce rates for the outcome predictions 
and mis singnes s estimates is also fas te r tha n the rate for the ora- 
cle estimator. For instanc e, c on sider an examp le where the ora- 
cle CATE estimator converges at a 

√ 

n rate. In this example, if we 
wish t o estimat e the n uisa nce functions within the mDR-lea rne r 
without impa ctin g the o v erall c onv ergenc e rate of our CATE es- 
tim ator, w e re quire th at the estim ates of each of the n uisa nce 
functions c onv erge a t ra t es fast er than 

4 
√ 

n , hence allowing the 
2 products of these rat es t o c onv e rge fas te r tha n 

√ 

n . Equally,
when the outcome predictions converge at rates slower than this, 
oracle efficiency can sti l l be obtained as long as the propensity 
sc ore estim ates and mis singnes s funct ion est im ates c onv erge at 
ra tes tha t ar e su ffic iently fast for the abov e c onditions to hold. 
Under these w eakene d c onv ergenc e re quire me n ts, ML ca n the n
be used whe n es t imat ing n uisa nce functions within the mDR- 
lea rne r without errors propagating through to the CATE. 

3.2 mEP-lea rne r 
We now de mons trate ho w the EP-le a rne r, a ta rgeted -lea rning- 
based frame work, ca n be exte nded for the s e tting with MAR 

outcome data. When outcomes are MAR, the EP-learner fails 
to ac c oun t for unde r- re pre se n tation in troduc e d by missing out-
c omes . If w e wish to ac c ount for this, w e m us t r ecalcula te the EIF
which it uses to derive its pse udo-outcome s, with this EIF t aking 
a new form, Equation ( 7 ). This EIF contains IPCWs within its 
dri ft ter m (se c ond te rm), a nd he nc e, if w e wish to s e t the s am-
ple average of the drift t erm t o 0, remo vin g p lug-in bi as, we m us t
update the iTMLE process used within the EP-lea rne r (see Fig- 
ure 2 ). 

To do so, we redefine the wei gh t used in the iTMLE al- 
gorithm by considering Equation ( 7 ), defining the wei gh t to 

be ˆ H (A, C, Z) = 

CA 
ˆ G ( A,Z) ̂ π ( Z) + 

C(1 −A ) 
ˆ G ( A,Z) ( 1 − ˆ π ( Z) ) . This wei gh t e n- 

s ures th at the s amp le average of the s e c ond term in Equation ( 7 )
c onv erges to 0, and hence the mEP-learner wi l l also be oracle ef- 
ficie n t whe n its n uisa nce function es tim ates c onv erge s u ffic iently 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data


Biometrics , 2025, Vol. 81, No. 3 � 5 

FIGURE 1 mDR-lea rne r al gorithm. 
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3.3 Imple me ntatio n 

s both the mDR-lea rne r a nd mEP-lea rne r a re ge ne r al fr ame-
 orks for estim ating the CATE with MAR outcome data, their

mple me n ta tion r equir es the user to make several key de cisions .
n this se ction, w e break these decisions down into 2 groups; (a)
e cisions re quire d for obtaining CATE es timates a nd (b) deci -
ions r equir ed for as s es sing CATE pe rforma nce. 

3.3.1 Dec i si o ns re quire d for obtai ni ng CATE e stimate s 
s both lea rne rs a re model -agnos tic, the use r m us t firs t de-

ide how to estimate the n uisa nc e functions/pseudo-outc ome
ode l. Dat a adaptive techniques can be chosen; how ev er, if or-

cle pe rforma nce is to be achiev e d , the est ima tes fr om the n ui -
a nce models m us t c onv erge s u ffic iently fast to the truth. For
his reason, we i l lus trate their imple me n tation using the Super
ea rne r (Va n de r Laa n et al., 2007 ), a n e n s emb le lea rne r that
llows a range of dat a -ada ptive al gorithms to be imple me n ted
 nd which pe rforms asymptotical ly as wel l as its bes t ca ndidate
ea rne r. 

Afte r al gorithm choice, use rs a r e r equir ed to decide which type
f s amp le sp litting they wi l l imple me n t within the mDR or mEP

ea rne rs, e n suring the d ata us ed in the pseudo-outc ome re gres-
ion is i .i .d . Various opt ions exist for a chievin g this, includin g K-
o ld cros s-fitting (s e e Se ction 2.2 ) or indepe nde n t sa mple split-
ing (Kenne dy, 2023 ); how ev er, estim ators th at al locate ful ly in-
epe nde n t data for each n uisa nce/ta rget model a re typically less
fficie n t, in troducing finite sa mple bias by reducing sample sizes.
or this reason, we de mons trate the mDR-lea rne r a nd mEP-

ea rne r using a 10-fold cr oss-fit ting pr oc ess (se e Figure 1 ), but
ote that the a ppropriate n umbe r of folds wi l l depend on the
omplexity and s moothne ss of the underlying nuis ance/targe t
unction s. If us ers wish to exp lore v ari ation s of cross-fitting ap-
roaches, s en sitivity analys es could be run using a n alte rnative
 umbe r of splits. 
We also hi ghli gh t that when cross-fitting is use d, re duc e d train-

ng s amp le sizes for each model ca n in troduce positiv ity v io l a-
ions, leaving certain subgroups poorly re pre se n ted within some
olds . To ov erc ome this, the mDR-lea rne r a nd mEP-lea rne r ca n
e run multiple times ( J times), using a diffe re n t se e d for the
r oss-fit ting split. This results in a vector of CATE e stimate s
or each individual, ˆ θs (X ) , s = 1 , .. , J. Fin al CATE estim ates
 re the n obtained b y taking the media n acros s thes e e stimate s,
 (X ) = median { ̂  θs (X ) } ( Jacob, 2020 ). 
Finally, whe n imple me n ting the mEP-lea rne r, the sieve basis

sed within the iTMLE process m us t be spec i fied. The exist-
n g iT MLE imple me n tations use a univariate tr igonometr ic co-
ine po lynomi al basis, as it offe rs s trong a ppr oxima tion gua ra n-
ees under smoothness assumptions (Zhang and Simon, 2023 ).

e also imple me n t this sieve basis, following the guidance of
ha ng a nd Simon ( 2023 ) to define the dimension of the sieve
 nd its in te raction orde r. How ev e r, alte rn ativ e options exist, s uch
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FIGURE 2 mEP-lea rne r al gorithm. 
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as a cros s-v alid at ion opt ion for choosin g the sieves tunin g pa-
ra mete rs (va n de r Laa n et al., 2024 ) a nd a pe n alize d iTMLE im-
ple me n tation, which ca n improve pe rforma nce for lar ge sie ves
(Va ns teela ndt a nd Morzywołek, 2023 ). 

3.3.2 Dec i si o ns re quire d for a sse ssing CATE perf orma nce 
In addition to obtaining CATE e stimate s, users may als o w ant to
as s es s the a ccura cy of these estimates by obtaining measures of
unce rtain ty or calcul ating ev aluation me trics. Calcul ating mea-
sure me n ts of unce rtain ty for CATE es timates ge ne rated using
non-pa ra metric es tim ators is ch allen gin g, as the the oretical c on-
ve rge nce gua ra n tees r equir ed for confidence in te rvals (CIs) to
be deriv e d a re ofte n not met. How ev er, re c ent w ork by Bonvini
et al. ( 2023 ); Takatsu and Westling ( 2025 ); and Ritzwoller and 

Syrgkanis ( 2024 ) offers potential solutions. In this work we ex- 
plore how one of these techniques can be used with our es ti - 
mator s, foc using on the half-s amp le bootstrap approach (Ritz- 
wolle r a nd Syrgka nis, 2024 ), which ca n pr ovide CI s whe n ke r-
nel b ased appro aches are used to estimate the pseudo-outcome 
r egr es sion . Further de tails on this technique are outlined in Web 

Appendix 7 , and we evaluate the pe rforma nce of this approach 

within our simulation study in Web Appendix 12 . 
Addition ally, w e note tha t evalua ting the pe rforma nce of 

C ATE estimator s when using real world data i s challeng ing, with 
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FIGUR E 3 R oot mea n squa re media n e rror (RMSME) for mDR-lea rne r, mEP-lea rne r, DR-lea rne r, EP-lea rne r, a nd T-lea rne r in 3 data 
ge ne ra ting pr oces s es (DGPs) plotted by training sample size. Plots in the left column compare the mDR-learner and mEP-learner to the 
DR-lea rne r, EP-lea rne r, a nd T-lea rne r whe n use d in c ombin ation with an outc ome imput ation mode l in DGP 1, 2, and 3, re spe ctiv ely. P lots in 

the ri gh t c olumn c ompa re the mDR-lea rne r a nd mEP-lea rne r to the av ail ab le cas e version s of the DR-lea rne r, EP-lea rne r, a nd T-lea rne r in DGP 

1, 2, and 3, respe ctiv ely. 
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only one of the 2 pote n tial outcomes, Y (0) and Y (1) , ever ob-
serv e d for each individual. This means standard metrics such
as the MSE cannot be calculated and used for estimator com-
pa rison a nd e qually m akes deriving EIF base d estim ators for
thes e me tr ics tr icky, as by definition, the MSE metric and its EIF
wi l l be 0 at the true CATE. A lter n ativ e ly, mode l pe rforma nce
can be as s es s ed by rev iew ing the stability of model estimates
acr oss differ ent s amp le sp litting s e e ds, en ab ling us e rs to unde r-
s ta nd the va riabil ity in ind ividual C ATE e stimate s. Additionally,
if choosing betw e e n the mDR/mEP lea rne rs, use rs should fo-
cus on the s tre ngth s/weaknes s es of e ach le a rne r, with the mDR-
lea rne r pe rforming bes t whe n the mEP-lea rne r’s sieve poorly a p-
pr oxima tes the CATE, that is, when the CATE is non-smooth
or sparse, while the mEP-learner may perform best when the
mDR-lea rne r’s wei gh ts a nd pse udo-outcome s a re hi ghly va ri -
ab le/un stab le. 

4 S I M U L AT I O N  ST U DY  

4.1 Set up 

We study the finite s amp le perform anc e of the mDR-learner and
mEP-lea rne r across 3 DGPs, where each DGP corresponds to a
s e tting in which missing outcome data can complicate the es ti -
mation of the CATE. In each s e tting, we ge ne rate 6 uni for mly
distribute d c ov ari ates Z, a binary tr ea tment A , and a continuous
outcome Y . In the first 2 DGPs, we define a simple unexposed
outcome function μ0 (Z) , a complex CATE θ (X ) and define
outcome mis singnes s such that it occ ur s with high probability
in only the tr ea tme n t a rm (DGP 1), or in both a rms (DGP 2).
This makes the complex CATE challen gin g to learn. In the third
DGP, we define a comp lex unexpos ed outcome function, a sim-
ple CATE and define outcome missingness to occur with high
probability in only the treatme n t a rm, making the simple CATE
d iffic ult to learn ( Web Appendix 8 ). 

We vary the training data sample size from 400 to 3200 and use
500 r eplica tes for each sc en ario. We c ompare the mDR-learner
a nd mEP-lea rne r t o 4 alt ern ativ e CATE estim ators; the IPTW-
IPCW lea rne r, the DR-lea rne r, EP-lea rne r, a nd the T-lea rne r,
with the la t te r 3 imple me n ted using (1) av ail ab le cas e s (Sec -
tion 2.3 ) and (2) imput ed out c omes . All estim ators w ere imple-
me n ted using 10 fo ld cros s-fitting, with the nuis ance models fit
using the Sup er Lea rner . Addition ally, the pseudo-outc ome mod-
els were fit using random forests (with 500 bootstrap half sam-
p les), enab ling the generation of half-s amp le bootstrap CIs. To
as s es s the pe rforma nce of each estimator, we ge ne rated one test
d atas e t with s amp le size n = 10 000 pe r DGP a nd obtained the
CATE e stimate s for each individual using each es timator. Pe r-
form anc e was meas ure d by calculating the root mean square me-
d i a n error (RMSME) of each lea rne r ( Web Appendix 10 ), as
me an root me an squar e err or (RMS E) estim ates w ere found to
be skew e d when using 500 r eplica t ions. Condit ional C I coverag e
w as calcul a ted/r eported in Web Appendix 12 . For comparis on s
ma de usin g the mean RMS E, se e Web Appendix 11 . 

4.2 Findings 
Whe n compa ring the mDR-lea rne r a nd mEP-lea rne r with the
DR-lea rne r a nd EP-lea rne r using av ail ab le cas es (Figure 3 —
ri gh t c olumn), w e se e the mDR-lea rne r a nd mEP-lea rne r out-
perform the DR/EP learners, respe ctiv ely, across all 3 DGPs. 
E qually, when comp aring the mDR-learner and mEP-learner 
to the DR-lea rne r a nd EP-lea rne r fit using imput ed out comes 
(Figure 3 —left column) both learners outperformed their cor- 
responding imput ed out come ve rsion whe n the CATE was 
complex (DGP 1 and 2), while when the CATE w as simp le, 
the imput ed out come DR-lea rne r a nd EP-lea rne r pe rformed 

well. We also note how the I PTW-I PCW lea rne r a nd avail - 
ab le cas e/imput ed out come T-lea rne r we re se nsitive to n uisa nce 
function complexity, with their pe rforma nce depe nding he av - 
ily on the complexity of the outcome functions and propensity 
sc ore/c ensoring functions, respe ctiv ely. I PTW-I PCW lea rne r 
r esults ar e excluded fr om Figur e 3 t o aid int erpre tability (s ee 
Web Appendix 11 ). 

Fin ally, w e note how the CATE e stimate s obt ained across 
simul ation s wer e mor e stable for the mEP-lea rne r, EP-lea rne r, 
a nd T-lea rne r compa red to those obtained by the mDR-learner, 
DR-lea rne r, or I PTW-I PCW lea rne r. This de mons trates how 

the se e s timators a r e pr one to pr oducing extr e me CATE es ti -
mates when their wei gh ts a re uns ta ble. T his can be seen more 
clea rly whe n pe rforma nce is measured using mean RMSE ( Web 

Appendix 11 ). 

5 G B S G 2 T R I A L A N A LY  S  I S  

5.1 B a c kgrou n d an d m eth ods 
We i l lustrate the use of the mDR-lea rne r a nd mEP-lea rne r b y a p-
plying them to the Germ an B reast Canc er Study (GBSG2) ran- 
domize d trial (Schum acher et al., 1994 ). This trial randomly as- 
si gned patie n ts to a hormonal the ra p y ( n = 440) or no hormonal 
the ra p y ( n = 246) afte r surge ry a nd re c orde d baseline cova ri -
ates on de mogra phics, medical history, and dis eas e pro gres sion . 
Tr ea tme n t efficacy was explored by rev iew ing a binary indica- 
tor of having breast canc er re currenc e or death within 3 years of 
surge ry. As some patie n ts leave the s tudy before making it to 3 

years, mis sing outcome d a ta is pr ese n t, with 158 (46.5%) a nd 

66 (26.8%) of the r andomiz ed patients lost to follo w -up in e ach 

tr ea tme n t a rm. We conduct a n in te n tion-to-tr ea t analysis and es- 
timate 2 CATEs: one conditioned on all bas eline cov ari ates and 

one c onditione d s o lely on pro ges te rone re c eptor lev els (fmol/l), 
whe re hi ghe r levels a re as s oci a ted with gr ea te r be nefits from hor-
monal the ra pies. 

In this trial , pat ie n ts with non- missing outcome s had hi ghe r 
averag e prog ester one r e c eptor lev els at baseline than the full ran- 
domized population, with a greater increase seen in amongst pa- 
tie n ts in the hormonal the ra p y a rm. If left un ac c ounte d for, this
m ay res ult in CATE estim ates th at s uggest hormon al therapies 
h av e a gr ea te r be nefit tha n is true. Ins tead, we es timate CATEs
using the mDR-lea rne r a nd mEP-lea rne r a nd compa re these to 

e stimate s from the the DR-lea rne r, EP-lea rne r, T-lea rne r, a nd 

I PTW-I PCW lea rne r, with the first 3 fit using av ail ab le cas e 
an alyses as w ell as in c ombin ation with imput ed out c omes . All 
n uisa nce models were fit using all baseline cov ari ates, and all 
models, including the pseudo-outc ome models, w e re es tim ate d 

using a Sup er Lea rner , with the focus on obtainin g a ccurate 
poin t es tima tes ra the r tha n CIs. The DR, EP, a nd I PTW-I PCW
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FIG URE 4 Medi an c ondition al av erag e tre atme n t effect (CATE) e stimate s plotted by proges te rone re c eptor (fmol/l). 

TAB LE 1 Mean c ondition al av erag e tre atme n t effect (CATE) e stimate s by proge s te rone re c eptor groups when allowing the CATE to be condi- 
tional on all baseline cov ari ates. 

P rog e steron e receptor mDR mEP DR EP T I PTW-I PCW 

(Cate goric a l) AC Imputation AC Imputation AC Imputation 

< 500 0.095 0.080 0.114 0.109 0.081 0.067 0.075 0.061 0.069 
500 − 999 0.051 0.397 −0.074 −0.084 0.402 0.157 0.102 0.149 −0.785 
1000 − 1499 0.388 0.405 0.401 0.393 0.408 0.345 0.292 0.282 0.144 
1500 − 1999 0.452 0.336 0.502 0.517 0.358 0.285 0.333 0.304 0.857 
≥ 2000 0.290 0.239 0.283 0.282 0.244 0.195 0.179 0.166 0.299 
AC = av ail ab le cas e. 
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ea rne rs a re imple me n ted using 10 fo ld cros s-fitting, and we re-
ort the median CATE estimate over 10 different s amp le sp lit-

ing random se e ds . Estim ates with CIs that were obtained us-
ng un tuned ra ndom fores ts (a nd 500 boots tra p sa mples) a r e r e-
orted in Web Appendix 13 . Additionally, as the GBSG2 d atas e t
 ontains ev ent times, w e pro vide an a ddition al c omparison to
 stimate s obt ained using causal survival forests in Web Append
x 14 . 

5.2 Findings 
igure 4 shows the med ian C ATE e stimate s conditional on pro-
es te r one r e c eptor lev els only. The av ail ab le cas e DR and EP

ea rne rs produce hi ghe r CATE es tim ates th a n the mDR a nd
EP lea rne rs, respe ctiv ely. Thi s i s expe cte d, as the o bs erv e d hor-
onal the ra p y a rm has hi ghe r proges te rone re c eptor lev els, and

nc e adjuste d for, w e w ould expe ct to se e sm aller CATE es-
im ates . Addition ally, w e note that the e stimate s from the DR
 nd EP lea rne rs fit using imputed outcomes increase rathe r tha n
ecreas e. We als o revie w the CATE e stimate s, which are con-
itional on all baseline cov ari ates, with Tab le 1 reporting the
ea n CATE es timates for individuals in 5 proges te rone re c eptor

r oups. Similar tr ends ar e seen in “1500-1999” re c eptor lev el cat-
g ory; ho weve r, tre nds a re les s o bvious in areas of the population
ith good r epr ese n tation . Tab le 1 als o re ports e stimate s from the

 PTW-I PCW lea rne r, which a re hi ghly uns table, a nd es timates
rom the T-lea rne r, which su gge st s maller tr ea tment effe cts . Fi-
ally, gr ea te r s tability is o bs erv e d for estim ate s obt ained from the
P-lea rne r va riations tha n the DR-lea rne r va riations (Fi gure 5 ),
i ghli gh ting the DR/mDR-lea rne r’s ins tability. 

6 D I S  C U S S  I O N 

n this pa pe r, we d isc ussed the commonly overlooked pro b lem
f est imat ing the CATE when outc ome data is MAR. Our w ork
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FIGURE 5 Conditional average tr ea tme n t effect (CATE) e stimate s from single cross-fitting se e ds plotte d by proges te rone re c eptor (fmol/l). 
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pr oposes 2 r obust oracle efficient estimators, the mDR-learner
a nd mEP-lea rne r, which addres s the popul ation imbal ances in-
troduc e d by missing outcome data b y robus tly incorporating
IPCWs into the DR-learner and EP-learner, respe ctiv ely. Our
pr oposed appr oache s and implement ation guidanc e h av e the
pote n tial to help improv e CATE estim ation in real-world data
s e t tings wher e outcome da ta is MAR. How ev e r, the r e r emains
con siderab le s cope for further developme n ts in this area. 

Firstly, the exi sting tool s for obtaining CIs for non-pa ra metric
CATEs either restrict the form of the CATE or limit the es ti -
mation tools that can be used. We think further developme n t
of the se technique s to allow for a wide r va riation of es tima-
tion techniques would gr ea tly impr ove the utility of these ap-
proaches . Addition ally, whe n ge ne rating half sa mple boots tra p
CIs, we o bs e rved ve ry poor cove rage for ce rtain individuals,
along with very wide CIs for others. For these CIs to h av e util-
ity in pra ctical examples, impro v e d c ondition al c ov erage wi l l be
r equir ed. We also think there is gr ea t scope for further exten-
sion s of thes e t echniques t o handle more comp lex d ata, for ex-
a mple, pos t -b aseline c ovariate inform ation or missing cov ari ate
data. We outline an example of one of these extensions in Web
Appendix 15 , where we d isc uss how the mDR-lea rne r could be
ext ended t o ha ndle pos t -b as eline cov ari ates . Fin ally, w e hi ghli gh t
that although the CATE can be used to construct individual-
ized tr ea tme n t rule s, e stim ators th a t dir e ctly target s uch rules
often prove more efficie n t tha n CATE-the n-thre shold pipe line s
(Qia n a nd Murphy, 2011 ; L uedtk e a nd Cha mb a z, 2020 ). For
thi s reason, mi ssing outcome data extensions of existing esti- 
mator s, which d ire ctly estim ate ind ividual ized treatme n t rules, 
would also be of gr ea t in te res t. 

S U P P L E M E N TA  RY  M AT E R I A  L S  

Supple me n ta ry mate rial is available at Biometrics online. 
Web Appe ndices refe re nc e d in Sections 2 - 6 and the R code 

used to imple me n t the lea rne rs in this pa pe r a re av ail ab le with
this pa pe r at the B iometrics we bsite on Oxford Aca de mic . Addi - 
tion al R c ode can be found at htt ps://g ithub.com/Matt-Pryce/ 
mDR- learner _ mEP- learner . 
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