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ABSTRACT

When estimating heterogeneous treatment effects, missing outcome data can complicate treatment effect estimation, causing certain subgroups
of the population to be poorly represented. In this work, we discuss this commonly overlooked problem and consider the impact that missing at
random outcome data has on causal machine learning estimators for the conditional average treatment effect (CATE). We propose 2 de-biased
machine learning estimators for the CATE, the mDR-learner, and mEP-learner, which address the issue of under-representation by integrat-
ing inverse probability of censoring weights into the DR-learner and EP-learner, respectively. We show that under reasonable conditions, these
estimators are oracle efficient and illustrate their favorable performance through simulated data settings, comparing them to existing CATE es-
timators, including comparison to estimators that use common missing data techniques. We present an example of their application using the
GBSG2 trial, exploring treatment effect heterogeneity when comparing hormonal therapies to non-hormonal therapies among breast cancer

patients post surgery, and offer guidance on the decisions a practitioner must make when implementing these estimators.
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1 INTRODUCTION

When evaluating the effect of an intervention, investigators are
often interested in how the effect may vary within a target pop-
ulation. One approach used to explore treatment effect het-
erogeneity for a binary intervention is to estimate the con-
ditional average treatment effect (CATE), defined as 0 (x) =
E[Y(1)|X = x] — E[Y(0)|X = x], where Y (0) and Y (1) are
potential outcomes under the 2 levels of the treatment (Rubin,
2005) and X represents the individual (pre-treatment) charac-
teristics in which heterogeneity is of interest.

CATEs can be used to explore treatment effect heterogeneity
or to derive individualized treatment rules, aiding in the devel-
opment of precision medicine (VanderWeele et al., 2019). Many
estimators of the CATE have been proposed, with the focus turn-
ing toward non-parametric estimators, using machine learning
(ML) to estimate complex functions of high dimensional data
(Kiinzel et al.,, 2019; Nie and Wager, 2021; Kennedy, 2023; van
der Laan et al., 2024). Of these estimators, each requires that the
training data be fully observed and no data be missing. In this pa-
per, we relax this requirement and propose 2 novel CATE estima-
tors, the mDR-learner and mEP-learner, which demonstrate how
causal ML estimators can be constructed when outcome data is
missing at random (MAR).

MAR outcome data occur frequently in practice, typically
arising when individuals are lost to follow-up. When it occurs,

the observed data may no longer represent the target popula-
tion, and subgroups that have high levels of drop-out can be
under-represented. This presents a challenge for existing non-
parametric CATE estimators, which do not address this under-
representation and are prone to producing biased estimates of
the CATE within these under-represented subgroups. To over-
come this, some authors propose using CATE estimators in
combination with established missing data techniques, such as
imputing missing outcomes (Groenwold et al.,, 2014; Berrevoets
etal.,, 2023), or re-weighting the population using inverse prob-
ability of censoring weights (IPCW) (Robins et al., 1994; Gon-
zalez Ginestet et al., 2021). However, when implementing these
approaches using non-parametric, ML techniques, the inherent
slow convergence of ML algorithms can introduce errors into the
IPCW/imputation predictions, which then propagate through
to the CATE estimates.

Our work aims to overcome this issue, with the mDR-learner
and mEP-learner robustly incorporating IPCWs into the DR-
learner (Kennedy, 2023) and EP-learner (van der Laan et al.,
2024), respectively. We show that these estimators are oracle ef-
ficient under reasonable conditions and demonstrate their em-
pirical performance through a simulation study (Section 4). We
then illustrate their application, exploring treatment effect het-
erogeneity within the GBSG2 trial (Section S), and finish by dis-
cussing potential extensions (Section 6).
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2 BACKGROUND

2.1 Setting

We define a sample of n independent and identically distributed
(i.i.d.) observations drawn from O = (Z, A, CY ), where A are
binary treatments, A € {0, 1} and Y are continuous outcomes.
In this setting, we allow outcome data to be missing and define C
as an indicator of outcome missingness, C € {0, 1}, withC =1
indicating that an individual’s outcome is non-missing. We then
define Z to be a set of baseline covariates that contains all con-
founders between the treatment A and the outcome Y, and suf-
ficient information for missing outcomes to be assumed MAR
(ie, after controlling for Z and A, C, and Y are independent).
Finally, we focus on learning the CATE, 6 (x) = E[Y(1)|X =
x] — E[Y(0)|X = «x], which is conditional on X C Z, where X
are the covariates for which heterogeneity is of interest.

2.2 Estimating the CATE using ML—no missing outcome
data

We first consider how causal ML estimators are constructed
when no outcome data is missing. Under the standard causal
assumptions of (A1) consistency, (A2) no unmeasured con-
founding, Y (a) L A|Z for a € {0, 1}, and (A3) positivity of
treatment exposure, 0 < P(A = 1|Z) < 1 (with probability 1)
(Pearl et al., 2016), the CATE can be identified as:

0(x) = E[E[Y|A = 1,Z] — E[Y|A =0, Z]|X = ], (1)

AY (1—-A)Y
o) = s~ <=

ML can be used to estimate the conditional expecta-
tions/probabilities (nuisance functions) found in Equations
(1) or (2), with these estimators commonly referred to as
plug-in estimators. One common example of a plug-in estimator
is the T-learner (Kiinzel et al., 2019), which requires X = Z
and estimates the conditional expectations from Equation
(1) in the subsets of individuals who are treated/untreated,
ut(2) =E[YIA=1,2Z] and u°(Z) = E[Y|A =0, Z], tak-
ing their difference to obtain CATE estimates. Alternatively,
plug-in estimators based on Equation (2) are often referred
to as inverse probability of treatment weight (IPTW) estima-
tors, as they require the estimation of the propensity score,
7(Z) = P[A = 1|Z] (Kennedy, 2023).

While such ML-based plug-in estimators are simple to under-
stand and implement, they are also prone to bias. This arises
as ML algorithms use regularization to avoid over-fitting to the
training data, reducing the rate at which these estimators con-
verge toward the true parameter. This introduces non-negligible
bias when fit using finite samples, with the errors in these nui-
sance function estimates (eg, 1 (Z), 1°(Z) or #(Z)) directly
propagating through to the estimates of the CATE, known as
“plug-in bias” (Morzywolek et al.,, 2023). Furthermore, the T-
learner does not ensure an optimal bias-variance trade-off is
made for the CATE, as it optimizes predictions for their outcome
functions rather than for the CATE itself (Kennedy, 2023). See
Web Appendix 1 for an illustrative example.

Because the CATE is often much smoother than the nuisance
functions in practice, it should be easier to estimate, provided

the estimator is shielded from the slow convergence rates that
affect the given nuisance-function estimators. Estimators that
have this property are typically constructed using the efficient
influence function (EIF) of the estimand of interest, where the
EIF represents how sensitive a measure of prediction error is
to changes in the data generating distribution. The EIF offers
a useful tool for constructing estimators, allowing estimators to
be approximately insensitive to small changes in their nuisance
functions, meaning estimation errors in the outcome functions
or propensity score affect errors in the estimates of the target
function only through their product. Unfortunately, the EIF of
the CATE is generally not well defined (ie, has infinite vari-
ance) whenever it depends on continuous variables (Hines et al.,
2022). Instead, estimators that achieve these properties can be
constructed based on the EIF of a well-chosen loss function, in
this case, a measure of counterfactual prediction error (Foster
and Syrgkanis, 2023; Morzywolek et al., 2023). Two examples
include the DR-learner (Kennedy, 2023) and EP-learner (van
der Laan et al,, 2024).

The DR-learner is a model-agnostic CATE estimator, mean-
ing the user can choose any estimation strategy, including data
adaptive methods, when estimating any functions within it. It is
constructed using a 2-step procedure (Kennedy, 2023), with the
first step calculating pseudo-outcomes, Ypg, using the EIF of the
mean square error (MSE) for the CATE:

(A—-n(2))

Yon = o Gz T @) i (@) - 1),
3)

where 4(Z2) =A-p'(2)+ (1 —A) - 2°(Z). The second
step then learns the CATE by regressing the pseudo-outcomes
on the covariate set in which heterogeneity is of interest, X.
See Web Appendix 2 for the full algorithm. By using a pseudo-
outcome regression, the DR-learner targets the CATE directly
and benefits from faster convergence rates when the CATE
is smoother than the baseline function. Additionally, these
pseudo-outcomes are derived by considering the components
of the MSE of the CATE that depend on 6(X), Ycars =
E[0(X)* —20(X)(u'(Z) — u°(Z))], using the EIF of this
risk function,

¢ = (0°(X) - 0(X) (n'(2) — 1°(2)))
20(X)(A—7(2))
m(2)(1 -7 (2))

to define its pseudo-outcomes such that the sample average of
the drift term (second term in Equation (4)) goes to 0. These
pseudo-outcomes resemble the EIF from the average treatment
effect and consist of the plug-in estimates and a weighted error
term. By using these pseudo-outcomes, the DR-learner ensures
that the gradient of the MSE risk function, with respect to the
CATE, is less sensitive to errors in its nuisance functions. It also
allows the DR-learner to achieve oracle efficiency, meaning that
when the product of the convergence rates for the outcome pre-
dictions and propensity score estimates is faster than the rate of
the oracle learner, it performs asymptotically as if the nuisance
functions were known (Kennedy, 2023). However, the conver-
gence rate of the DR-learner still depends on the convergence

Y — u(2)} — Yeare, (4)
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rate of its pseudo-outcome regression, which depends on the
complexity of the CATE.

Despite its desirable properties, the DR-learner can be sen-
sitive to extreme propensity scores, with the IPTWs used in
its pseudo-outcomes causing the pseudo-outcomes to grow in-
finitely large when propensity score estimates are near 0/1. To
prevent this, some trim the propensity score estimates, there-
fore stopping the pseudo-outcomes from growing too large.
However, this introduces bias to the propensity score estimates,
which can propagate through to the CATE estimates themselves.
For this reason, we discuss an alternative approach known as
infinite-dimensional targeting (iTMLE) (Luedtke et al., 2017;
Vansteelandt and Morzywolek, 2023; van der Laan et al., 2024).
This technique has been developed for counterfactual outcome
prediction (Vansteelandt and Morzywotek, 2023) and tends to
have less sensitivity to extreme propensity scores, as its tar-
geted learning framework can moderate the impact of outlying
propensity score estimates. In this paper, we discuss a very simi-
lar approach known as the EP-learner (efficient plug-in learner)
(van der Laan et al., 2024), which uses iTMLE in the context of
causal contrasts, including CATE estimation.

The EP-learner is a model-agnostic estimator that also uses a
2 step procedure, first deriving pseudo-outcomes that are later
regressed on X. However, the EP-learner uses an iTMLE proce-
dure to generate its pseudo-outcomes. This iTMLE procedure
plays a similar role to the one-step correction used in the DR-
learner and is motivated by the EIF of the MSE risk function for
the CATE, Equation (4). Using this EIF, the iTMLE procedure
aims to update the initial plug-in outcome estimates, /1°(Z) and
(' (Z) using targeted learning such that the sample average of
the drift term (second term) in Equation (4) goes to 0. Yet, since
the drift term in Equation (4) contains an infinite dimensional
0(X) (when any variables in X are continuous), the classical
targeted learning procedure, which regresses outcomes against a
scalar (known as a clever covariate), would fail to set the sample
average of the drift term to 0. To resolve this, the iTMLE proce-
dure defines a vector of univariate basis functions, referred to as
a sieve, ¢ (X ), which it uses within the targeting step, approxi-
mating 6 (X ) and allowing the updates to the plug-in estimates
to vary by X.

The targeting step then works by regressing the outcomes Y
on the sieve basis, ¢ (X), in a weighted linear regression, with
an offset 1* (Z), and weight, H(A,Z) = ﬁ + %, sug-
gested by the EIF of the risk function, Equation (4). After fit-
ting this model, efficient plug-in estimates, /1°*(Z) and 4'*(Z)
are obtained by adding/subtracting the estimated linear predic-
tor from this model to the plug-in outcome estimates (see Web
Appendix 3 for the full algorithm). As the updated outcome pre-
dictions are defined such that the sample average of the drift term
in Equation (4) converges to 0, the EP-learner achieves the same
oracle efficiency properties as the DR-learner. Additionally, by
using iTMLE, extreme pseudo-outcomes are less common, and
the CATE estimates should be more stable (van der Laan et al.,
2024).

In addition, both learners require the data that is used in the
second stage optimization is i.i.d. To achieve this, sample split-
ting is used when estimating the nuisance functions, preventing
correlations from being introduced into the pseudo-outcomes.
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In this paper, we implement a K-fold cross-fitting procedure
found in Web Appendix 2 and 3.

2.3 Estimating the CATE using ML—with missing outcome
data

Now we consider how MAR outcome data impacts the existing
estimators. To identify the CATE when outcome data is MAR,
we require assumptions Al1-A3 from Section 2.2 and 2 addi-
tional assumptions on the missingness mechanism: (A4) Out-
comes are MAR,Y 1L C|A, Z; (AS) Positivity of outcomes be-
ingnon-missing,0 < P(C = 1|A, Z), with probability 1. Under
assumptions Al-AS, the CATE can be identified as Equations
(5) and (6).

0(x) = E[E[Y]A=1,C =1, Z]

—E[Y|[A=0,C=1,2Z]|X =«], ©)
CAY
Olx) = [P[C — 1A, Z]P[A = 1|Z]

C(1—A)Y
" P[C=1A.2](1-P[A= IIZJ)‘X N x]'(é)

The no unmeasured confounding assumption (A2) and MAR
assumption (A4) need not be conditional on the same covari-
ates; however, for simplicity, we define both assumptions to be
conditional on the same set of covariates, Z. Using Equations (5)
and (6), we see that when all of the covariates in Z are present,
the CATE can be estimated using the observed data. Conse-
quently, the existing CATE estimators, such as the T-learner,
DR-learner, and EP-learner can produce asymptotically unbi-
ased estimates of the CATE by restricting their analyses to com-
plete cases and adjusting for Z through their outcome models
n(z2) =E[Y[A=a,C=1,Z], A€ {0, 1}. We refer to this
approach as an “available case analysis,” and note that while the
outcome regressions are limited to complete cases, the propen-
sity score models should still be estimated using the full dataset.

Available case analyses offer the simplest way of estimating the
CATE in the presence of MAR outcome data; however, their
asymptotic properties do not assure that they perform well when
fit using finite samples. Instead, available case analyses can of-
ten be inefficient, as their outcome regressions restrict the pop-
ulation to those with complete cases, with information being
ignored for individuals who have a missing outcome. Equally,
when the outcome models are fit using ML, they will be prone
to over-smoothing in the subsets of the population that experi-
ence high levels of outcome missingness. This can cause com-
plexnon-linear CATEs to be missed, with these approaches over-
smoothing their outcome predictions due to the missing data,
or can lead to estimators identifying heterogeneity where non-
exists, for instance, when the missingness only occurs within one
treatment arm. Specific examples of data generating processes
(DGPs) where this can occur are presented in Section 4.

Because of these limitations, some authors choose to address
missing outcome data by utilizing missing data techniques. A
common missing data technique is to impute outcomes, replac-
ing the missing outcomes with outcome predictions gained from
an imputation model, E[Y|C =1, A, Z] (Groenwold et al,
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2014; Berrevoets et al, 2023). These are easy to implement
when using the existing non-parametric CATE estimators, as the
estimators can be run using the imputed, complete dataset. How-
ever, as outcome imputations require the estimation of an ad-
ditional nuisance model, plug-in bias can be introduced, with
errors in the outcome imputations propagating through to the
estimates of the CATE. Alternatively, other authors suggest ad-
dressing missing outcome data by re-weighting observed indi-
viduals based on their probability of having a non-missing out-
come, G(A, Z) = P[C = 1|A, Z] (Robins et al., 1994; Gonza-
lez Ginestet et al,, 2021). These weights can be used to estimate
the CATE using a similar approach to the one Kennedy (2023)
uses to incorporate IPTWs, weighting observed individuals to
create pseudo-outcomes, then regressing the pseudo-outcomes
against X to estimate the CATE. However, this estimator, which
we will refer to as the IPTW-IPCW estimator, also suffers from
plug-in bias, as errors in the IPTWs and IPCWs will propagate
through to the CATE estimates. We therefore construct IF based
estimators that incorporate these weights naturally and which
offer greater robustness to errors in the missingness predictions
G(A, 2).

3 DR-LEARNER/EP-LEARNER EXTENSIONS

In this section, we extend the DR-learner (Kennedy, 2023) and
EP-learner (van der Laan et al,, 2024) to handle missing out-
come data, leading to 2 new estimators, the mDR-learner (miss-
ing outcome DR learner) and mEP-learner (missing outcome EP
learner), respectively.

3.1 mDR-learner

We begin by considering an extension of the DR-learner to the
MAR outcome data setting. Recall that the DR-learner does
not account for the under-representation that occurs as a result
of MAR outcomes. This is because the DR-learner’s pseudo-
outcomes are derived using a risk function that assumes com-
plete data. However, when outcomes are MAR, the risk func-
tion takes a new form, Wcarg = E[0(X)? — 20(X)(E[Y|C =
1,A=1,Z] — E[Y|C=1,A =0, Z])], which now involves
the indicator for outcomes being non-missing. It can be shown
(Web Appendix 4) that the EIF is

¢ = (0>(X) —20(X) (' (2) — u°(2)))

20X)(A—7m(2))C
72(2)(1 - 7(2))G(4, 2)

{Y — u(2)} — Years.

(7)

Using this EIF, we can construct pseudo-outcomes for the mDR-
learner as:

_ (A-m(2))C A
e = TG m@yem ) P
+1'(2) = 1(2). (8)

We note that IPCWs now appear alongside IPTWs, allowing
these pseudo-outcomes to account for the shift in covariate dis-
tribution caused by both missing outcome data and confound-
ing. The mDR-learner then proceeds by regressing the estimates

of these pseudo-outcomes Y;,pr against covariates X to obtain
estimates of the CATE (see Figure 1).

As the mDR-learner defines its pseudo-outcomes using the
EIF of the MSE for the CATE (under outcome missingness),
it not only minimizes the MSE risk function but also experi-
ences less sensitivity to errors in its nuisance functions (includ-
ing the IPCWs). We demonstrate this by exploring the excess
risk of the mDR-learner, defined as the difference in MSE risk
function, L(.), when evaluated at 6 (X) and at 6*(X), where
L(6*) = infy L(6). Using the approach laid out by Foster and
Syrgkanis (2023), we provide an upper bound for the excess risk
(see Web Appendix S). This bound demonstrates how the gra-
dient of the MSE risk function for the mDR-learner has reduced
sensitivity to errors in the nuisance functions, which now include
the missingness model, G(A, Z). It also shows how the mDR-
learner can obtain oracle efficiency under similar assumptions to
those of the DR-learner.

For the mDR-learner to obtain oracle efficiency, it requires that
2 conditions hold; firstly, that the product of the convergence
rates for the outcome predictions and propensity score estimates
is faster than the rate for the oracle estimator, and secondly, that
the product of the convergence rates for the outcome predictions
and missingness estimates is also faster than the rate for the ora-
cle estimator. For instance, consider an example where the ora-
cle CATE estimator converges at a /7 rate. In this example, if we
wish to estimate the nuisance functions within the mDR-learner
without impacting the overall convergence rate of our CATE es-
timator, we require that the estimates of each of the nuisance
functions converge at rates faster than /n, hence allowing the
2 products of these rates to converge faster than /n. Equally,
when the outcome predictions converge at rates slower than this,
oracle efficiency can still be obtained as long as the propensity
score estimates and missingness function estimates converge at
rates that are sufficiently fast for the above conditions to hold.
Under these weakened convergence requirements, ML can then
be used when estimating nuisance functions within the mDR-
learner without errors propagating through to the CATE.

3.2 mEP-learner

We now demonstrate how the EP-learner, a targeted-learning-
based framework, can be extended for the setting with MAR
outcome data. When outcomes are MAR, the EP-learner fails
to account for under-representation introduced by missing out-
comes. If we wish to account for this, we must recalculate the EIF
which it uses to derive its pseudo-outcomes, with this EIF taking
a new form, Equation (7). This EIF contains IPCWs within its
drift term (second term), and hence, if we wish to set the sam-
ple average of the drift term to 0, removing plug-in bias, we must
update the iTMLE process used within the EP-learner (see Fig-
ure2).

To do so, we redefine the weight used in the iTMLE al-
gorithm by considering Equation (7), defining the weight to

> _ CA C(1—A)
beH(4,C, 2) = A @ T tana—r@)

sures that the sample average of the second term in Equation (7)
converges to 0, and hence the mEP-learner will also be oracle ef-
ficient when its nuisance function estimates converge sufficiently
fast.

. This weight en-
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Algorithm 1 mDR-learner algorithm

1: Split the data randomly into K (e.g., 10) equal sized folds of n observations from O =

(Z,A,YC), denoted Dy, ..., Dg.

2. For j € 1,..., K and using all folds {D;,i =1,..., K,i# j} except Dj, train models for

m(Z) =

P[A = 1|Z], (propensity score) (11)

P[C = 1|A, Z], (missingness model) (12)

p’(Z) = E[Y|A=0,C =1,Z],(conditional untreated outcome model) (13)

p(z) =

E[Y|A =1,C =1, Z], (conditional treated outcome model).  (14)

3: For all individuals in D; (j € 1, ..., K), obtain predictions of 7, a, A% and ', based on

the models fitted in the remaining folds.

4: Construct the pseudo outcomes for each individual in the data using

(A-7(2))C

}/:mDH — =

7(Z)(1—7(2))G(A, Z)

{y - a%(2)} + 21(2) - p(2Z)

5 Regress the pseudo outcomes Y, pr on covariates X, and obtain predictions of 6(.X):

6)mD‘R(){) = E[KHDR‘X]

FIGURE 1 mDR-learner algorithm.

3.3 Implementation

As both the mDR-learner and mEP-learner are general frame-
works for estimating the CATE with MAR outcome data, their
implementation requires the user to make several key decisions.
In this section, we break these decisions down into 2 groups; (a)
decisions required for obtaining CATE estimates and (b) deci-
sions required for assessing CATE performance.

3.3.1 Decisions required for obtaining CATE estimates

As both learners are model-agnostic, the user must first de-
cide how to estimate the nuisance functions/pseudo-outcome
model. Data adaptive techniques can be chosen; however, if or-
acle performance is to be achieved, the estimates from the nui-
sance models must converge sufficiently fast to the truth. For
this reason, we illustrate their implementation using the Super
Learner (Van der Laan et al., 2007), an ensemble learner that
allows a range of data-adaptive algorithms to be implemented
and which performs asymptotically as well as its best candidate
learner.

Afteralgorithm choice, users are required to decide which type
of sample splitting they will implement within the mDR or mEP
learners, ensuring the data used in the pseudo-outcome regres-
sion is ii.d. Various options exist for achieving this, including K-
fold cross-fitting (see Section 2.2) or independent sample split-
ting (Kennedy, 2023); however, estimators that allocate fully in-

dependent data for each nuisance/target model are typically less
efficient, introducing finite sample bias by reducing sample sizes.
For this reason, we demonstrate the mDR-learner and mEP-
learner using a 10-fold cross-fitting process (see Figure 1), but
note that the appropriate number of folds will depend on the
complexity and smoothness of the underlying nuisance/target
functions. If users wish to explore variations of cross-fitting ap-
proaches, sensitivity analyses could be run using an alternative
number of splits.

We also highlight that when cross-fitting is used, reduced train-
ing sample sizes for each model can introduce positivity viola-
tions, leaving certain subgroups poorly represented within some
folds. To overcome this, the mDR-learner and mEP-learner can
be run multiple times (J times), using a different seed for the
cross-fitting split. This results in a vector of CATE estimates
for each individual, 6,(X), s = 1, .., J. Final CATE estimates
are then obtained by taking the median across these estimates,
5(X) = median{@:(X)} (Jacob, 2020).

Finally, when implementing the mEP-learner, the sieve basis
used within the iTMLE process must be specified. The exist-
ing iTMLE implementations use a univariate trigonometric co-
sine polynomial basis, as it offers strong approximation guaran-
tees under smoothness assumptions (Zhang and Simon, 2023).
We also implement this sieve basis, following the guidance of
Zhang and Simon (2023) to define the dimension of the sieve
and its interaction order. However, alternative options exist, such
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Algorithm 2 mEP-learner algorithm

1: Split the data randomly into K (e.g., 10) equal sized folds of n observations from O =

(Z,A,YC), denoted Dy, ..., Dg.

2 For j €1, ..., K and using all folds {D;;i =1,...,K,i # j} except D;, train models for

w(Z) = P[A=1]Z],(propensity score) (15)

G(A,Z) = P|C =1]A, Z], (missingness model) (16)

u’(Z) = E[Y|A=0,C =1, Z],(conditional untreated outcome model) (17)

p'(Z) = E[Y|A=1,C =1, Z],(conditional treated outcome model).  (18)

a: For all individuals in D, (j € 1, ..., i), obtain predictions of 7, G, fi® and ji', based on

the models fitted in the remaining folds.

4: For all individuals in the data, update the outcome predictions

a) Calculate the clever covariate, H(A,C, Z) = =S4 4 e

b) Choose a sieve basis, ¢(X)

C(1-A)
(AZ)(1-#(Z))"

T G(A2)R(Z)

¢) Run a linear regression of outcomes Y on feature vector ¢(X) with offset i(Z) and

weight H (A, C, Z) in the complete cases.

d) Estimate the coefficients ¢ from ¢) and use these to update i°(Z) and ji'(2)

f(2) = N2 + & G(X), i™(2) = [(Z) — & $(X)

5. Construct the pseudo outcome for all individuals in the data

Yougp = @°(2) = i(2) (19)

6: Regress the pseudo outcomes Y, gp on covariates X, and obtain predictions of 6(X):

bmep(X) = E[Yupp|X]

FIGURE 2 mEP-learner algorithm.

as a cross-validation option for choosing the sieves tuning pa-
rameters (van der Laan et al,, 2024) and a penalized iTMLE im-
plementation, which can improve performance for large sieves
(Vansteelandt and Morzywolek, 2023).

3.3.2 Decisions required for assessing CATE performance

In addition to obtaining CATE estimates, users may also want to
assess the accuracy of these estimates by obtaining measures of
uncertainty or calculating evaluation metrics. Calculating mea-
surements of uncertainty for CATE estimates generated using
non-parametric estimators is challenging, as the theoretical con-
vergence guarantees required for confidence intervals (CIs) to

be derived are often not met. However, recent work by Bonvini
et al. (2023); Takatsu and Westling (2025); and Ritzwoller and
Syrgkanis (2024) offers potential solutions. In this work we ex-
plore how one of these techniques can be used with our esti-
mators, focusing on the half-sample bootstrap approach (Ritz-
woller and Syrgkanis, 2024 ), which can provide CIs when ker-
nel based approaches are used to estimate the pseudo-outcome
regression. Further details on this technique are outlined in Web
Appendix 7, and we evaluate the performance of this approach
within our simulation study in Web Appendix 12.

Additionally, we note that evaluating the performance of
CATE estimators when using real world data is challenging, with
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the right column compare the mDR-learner and mEP-learner to the available case versions of the DR-learner, EP-learner, and T-learner in DGP
1,2, and 3, respectively.
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only one of the 2 potential outcomes, Y (0) and Y (1), ever ob-
served for each individual. This means standard metrics such
as the MSE cannot be calculated and used for estimator com-
parison and equally makes deriving EIF based estimators for
these metrics tricky, as by definition, the MSE metric and its EIF
will be 0 at the true CATE. Alternatively, model performance
can be assessed by reviewing the stability of model estimates
across different sample splitting seeds, enabling users to under-
stand the variability in individual CATE estimates. Additionally,
if choosing between the mDR/mEP learners, users should fo-
cus on the strengths/weaknesses of each learner, with the mDR-
learner performing best when the mEP-learner’s sieve poorly ap-
proximates the CATE, that is, when the CATE is non-smooth
or sparse, while the mEP-learner may perform best when the
mDR-learner’s weights and pseudo-outcomes are highly vari-
able/unstable.

4 SIMULATION STUDY

4.1 Setup

We study the finite sample performance of the mDR-learner and
mEP-learner across 3 DGPs, where each DGP corresponds to a
setting in which missing outcome data can complicate the esti-
mation of the CATE. In each setting, we generate 6 uniformly
distributed covariates Z, a binary treatment A, and a continuous
outcome Y. In the first 2 DGPs, we define a simple unexposed
outcome function 1°(Z), a complex CATE 6(X) and define
outcome missingness such that it occurs with high probability
in only the treatment arm (DGP 1), or in both arms (DGP 2).
This makes the complex CATE challenging to learn. In the third
DGP, we define a complex unexposed outcome function, a sim-
ple CATE and define outcome missingness to occur with high
probability in only the treatment arm, making the simple CATE
difficult to learn (Web Appendix 8).

We vary the training data sample size from 400 to 3200 and use
500 replicates for each scenario. We compare the mDR-learner
and mEP-learner to 4 alternative CATE estimators; the IPTW-
IPCW learner, the DR-learner, EP-learner, and the T-learner,
with the latter 3 implemented using (1) available cases (Sec-
tion 2.3) and (2) imputed outcomes. All estimators were imple-
mented using 10 fold cross-fitting, with the nuisance models fit
using the Super Learner. Additionally, the pseudo-outcome mod-
els were fit using random forests (with S00 bootstrap half sam-
ples), enabling the generation of half-sample bootstrap CIs. To
assess the performance of each estimator, we generated one test
dataset with sample size n = 10 000 per DGP and obtained the
CATE estimates for each individual using each estimator. Per-
formance was measured by calculating the root mean square me-
dian error (RMSME) of each learner (Web Appendix 10), as
mean root mean square error (RMSE) estimates were found to
be skewed when using 500 replications. Conditional CI coverage
was calculated/reported in Web Appendix 12. For comparisons
made using the mean RMSE, see Web Appendix 11.

4.2 Findings
When comparing the mDR-learner and mEP-learner with the
DR-learner and EP-learner using available cases (Figure 3—

right column), we see the mDR-learner and mEP-learner out-
perform the DR/EP learners, respectively, across all 3 DGPs.
Equally, when comparing the mDR-learner and mEP-learner
to the DR-learner and EP-learner fit using imputed outcomes
(Figure 3—left column) both learners outperformed their cor-
responding imputed outcome version when the CATE was
complex (DGP 1 and 2), while when the CATE was simple,
the imputed outcome DR-learner and EP-learner performed
well. We also note how the IPTW-IPCW learner and avail-
able case/imputed outcome T-learner were sensitive to nuisance
function complexity, with their performance depending heav-
ily on the complexity of the outcome functions and propensity
score/censoring functions, respectively. IPTW-IPCW learner
results are excluded from Figure 3 to aid interpretability (see
Web Appendix 11).

Finally, we note how the CATE estimates obtained across
simulations were more stable for the mEP-learner, EP-learner,
and T-learner compared to those obtained by the mDR-learner,
DR-learner, or IPTW-IPCW learner. This demonstrates how
these estimators are prone to producing extreme CATE esti-
mates when their weights are unstable. This can be seen more
clearly when performance is measured using mean RMSE (Web
Appendix 11).

S GBSG2 TRIAL ANALYSIS

5.1 Background and methods

We illustrate the use of the mDR-learner and mEP-learner by ap-
plying them to the German Breast Cancer Study (GBSG2) ran-
domized trial (Schumacher et al., 1994). This trial randomly as-
signed patients to a hormonal therapy (n = 440) or no hormonal
therapy (n = 246) after surgery and recorded baseline covari-
ates on demographics, medical history, and disease progression.
Treatment efficacy was explored by reviewing a binary indica-
tor of having breast cancer recurrence or death within 3 years of
surgery. As some patients leave the study before making it to 3
years, missing outcome data is present, with 158 (46.5%) and
66 (26.8%) of the randomized patients lost to follow-up in each
treatment arm. We conduct an intention-to-treat analysis and es-
timate 2 CATEs: one conditioned on all baseline covariates and
one conditioned solely on progesterone receptor levels (fmol/1),
where higher levels are associated with greater benefits from hor-
monal therapies.

In this trial, patients with non-missing outcomes had higher
average progesterone receptor levels at baseline than the full ran-
domized population, with a greater increase seen in amongst pa-
tients in the hormonal therapy arm. If left unaccounted for, this
may result in CATE estimates that suggest hormonal therapies
have a greater benefit than is true. Instead, we estimate CATEs
using the mDR-learner and mEP-learner and compare these to
estimates from the the DR-learner, EP-learner, T-learner, and
IPTW-IPCW learner, with the first 3 fit using available case
analyses as well as in combination with imputed outcomes. All
nuisance models were fit using all baseline covariates, and all
models, including the pseudo-outcome models, were estimated
using a Super Learner, with the focus on obtaining accurate
point estimates rather than CIs. The DR, EP, and IPTW-IPCW
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FIGURE 4 Median conditional average treatment effect (CATE) estimates plotted by progesterone receptor (fmol/1).

TABLE 1 Mean conditional average treatment effect (CATE) estimates by progesterone receptor groups when allowing the CATE to be condi-

tional on all baseline covariates.

Progesterone receptor mDR  mEP DR EP T IPTW-IPCW
(Categorical) AC Imputation AC Imputation AC Imputation

< 500 0.095 0.080 0.114 0.109 0.081 0.067 0.075 0.061 0.069
500 — 999 0.0s1 0397 —0.074 —0.084 0.402 0.157 0.102 0.149 —0.785
1000 — 1499 0.388  0.405  0.401 0.393 0.408 0.345 0.292 0.282 0.144
1500 — 1999 0452 0336  0.502 0.517 0.358 0.285 0.333 0.304 0.857

> 2000 0.290 0239 0283 0.282 0.244 0.195 0.179 0.166 0.299

AC = available case.

learners are implemented using 10 fold cross-fitting, and we re-
port the median CATE estimate over 10 different sample split-
ting random seeds. Estimates with Cls that were obtained us-
ing untuned random forests (and S00 bootstrap samples) are re-
ported in Web Appendix 13. Additionally, as the GBSG2 dataset
contains event times, we provide an additional comparison to
estimates obtained using causal survival forests in Web Append
ix 14.

5.2 Findings
Figure 4 shows the median CATE estimates conditional on pro-
gesterone receptor levels only. The available case DR and EP
learners produce higher CATE estimates than the mDR and
mEP learners, respectively. This is expected, as the observed hor-
monal therapy arm has higher progesterone receptor levels, and
once adjusted for, we would expect to see smaller CATE es-
timates. Additionally, we note that the estimates from the DR

and EP learners fit using imputed outcomes increase rather than
decrease. We also review the CATE estimates, which are con-
ditional on all baseline covariates, with Table 1 reporting the
mean CATE estimates for individuals in S progesterone receptor
groups. Similar trends are seen in “1500-1999” receptor level cat-
egory; however, trends are less obvious in areas of the population
with good representation. Table 1 also reports estimates from the
IPTW-IPCW learner, which are highly unstable, and estimates
from the T-learner, which suggest smaller treatment effects. Fi-
nally, greater stability is observed for estimates obtained from the
EP-learner variations than the DR-learner variations (Figure S),
highlighting the DR/mDR-learner’s instability.

6 DISCUSSION

In this paper, we discussed the commonly overlooked problem
of estimating the CATE when outcome data is MAR. Our work
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FIGURE $ Conditional average treatment effect (CATE) estimates from single cross-fitting seeds plotted by progesterone receptor (fmol/1).

proposes 2 robust oracle efficient estimators, the mDR-learner
and mEP-learner, which address the population imbalances in-
troduced by missing outcome data by robustly incorporating
IPCWs into the DR-learner and EP-learner, respectively. Our
proposed approaches and implementation guidance have the
potential to help improve CATE estimation in real-world data
settings where outcome data is MAR. However, there remains
considerable scope for further developments in this area.
Firstly, the existing tools for obtaining CIs for non-parametric
CATE:s either restrict the form of the CATE or limit the esti-
mation tools that can be used. We think further development
of these techniques to allow for a wider variation of estima-
tion techniques would greatly improve the utility of these ap-
proaches. Additionally, when generating half sample bootstrap
Cls, we observed very poor coverage for certain individuals,
along with very wide ClIs for others. For these Cls to have util-
ity in practical examples, improved conditional coverage will be
required. We also think there is great scope for further exten-
sions of these techniques to handle more complex data, for ex-
ample, post-baseline covariate information or missing covariate
data. We outline an example of one of these extensions in Web
Appendix 15, where we discuss how the mDR-learner could be
extended to handle post-baseline covariates. Finally, we highlight
that although the CATE can be used to construct individual-
ized treatment rules, estimators that directly target such rules
often prove more efficient than CATE-then-threshold pipelines

(Qian and Murphy, 2011; Luedtke and Chambaz, 2020). For
this reason, missing outcome data extensions of existing esti-
mators, which directly estimate individualized treatment rules,
would also be of great interest.

SUPPLEMENTARY MATERIALS

Supplementary material is available at Biometrics online.

Web Appendices referenced in Sections 2-6 and the R code
used to implement the learners in this paper are available with
this paper at the Biometrics website on Oxford Academic. Addi-
tional R code can be found at https://github.com/Matt-Pryce/
mDR-learner mEP-learner.

FUNDING

This work was supported by the Medical Research Council
[grant number MR/N013638/1]. K.D.O. was funded by a Royal
Society-Welcome Trust Sir Henry Dale fellowship, grant num-
ber 218554/Z/19/Z. R H.K. was funded by UK Research and
Innovation (Future Leaders Fellowship MR/X015017/1). SV.
was supported by Advanced ERC grant ACME (101141305).

CONFLICT OF INTEREST

None declared.

G20z 1snBny 80 U0 1enB Aq G1002Z8/8604EN/E/18/0IE/SOLIBWIOIG /WO dNO™D1WLSPED.//:SA)Y WO PAPEOjUMO]


https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujaf098#supplementary-data
https://github.com/Matt-Pryce/mDR-learner_mEP-learner

DATA AVAILABILITY

The GBSG2 dataset used in this paper can be accessed through
the TH.data package in R: https://cran.r-project.org/web/pac
kages/TH.data/TH.data.pdf.

REFERENCES

Berrevoets, J.,, Imrie, F,, Kyono, T., Jordon, J. and van der Schaar, M.
(2023). To impute or not to impute? Missing data in treatment ef-
fect estimation. In: International Conference on Artificial Intelligence and
Statistics. PMLR.

Bonvini, M., Zeng, Z., Yu, M., Kennedy, E. H. and Keele, L. (2023 .). Flex-
ibly estimating and interpreting heterogeneous treatment effects of la-
paroscopic surgery for cholecystitis patients, arXiv, arXiv:2311.04359,
preprint: not peer reviewed.

Foster, D. J. and Syrgkanis, V. (2023). Orthogonal statistical learning. The
Annals of Statistics, 51, 879-908.

Gonzalez Ginestet, P., Kotalik, A., Vock, D. M., Wolfson, J. and Gabriel, E.
E. (2021). Stacked inverse probability of censoring weighted bagging:
a case study in the InfCareHIV Register. Journal of the Royal Statistical
Society Series C: Applied Statistics, 70, S1-65.

Groenwold, R. H., Moons, K. G. and Vandenbroucke, J. P. (2014). Ran-
domized trials with missing outcome data: how to analyze and what
to report. CMAJ, 186, 1153-1157.

Hines, O., Dukes, O., Diaz-Ordaz, K. and Vansteelandt, S. (2022). Demys-
tifying statistical learning based on efficient influence functions. The
American Statistician, 76, 1-48.

Jacob, D. (2020). Cross-fitting and averaging for machine learning estima-
tion of heterogeneous treatment effects. Report, IRTG 1792 Discus-
sion Paper.

Kennedy, E. H. (2023). Towards optimal doubly robust estimation of
heterogeneous causal effects. Electronic Journal of Statistics, 17, 3008—
3049.

Kiinzel, S. R., Sekhon, J. S., Bickel, P. J. and Yu, B. (2019). Metalearners
for estimating heterogeneous treatment effects using machine learn-
ing. Proceedings of the National Academy of Sciences, 116, 4156-4165.

Luedtke, A. and Chambaz, A. (2020). Performance guarantees for policy
learning. Annales de 'THP Probabilites et statistiques, 56,2162.

Luedtke, A. R., Sofrygin, O., van der Laan, M. J. and Carone, M. (2017).
Sequential double robustness in right-censored longitudinal models,
arXiv, arXiv:1705.02459, preprint: not peer reviewed.

Biometrics, 2025, Vol. 81, No.3 o 11

Morzywolek, P, Decruyenaere, J. and Vansteelandt, S. (2023). On a
general class of orthogonal learners for the estimation of heteroge-
neous treatment effects. arXiv, arXiv:2303.12687, preprint: not peer
reviewed.

Nie, X. and Wager, S. (2021). Quasi-oracle estimation of heterogeneous
treatment effects. Biometrika, 108, 299-319.

Pearl, J., Glymour, M. and Jewell, N. P. (2016). Causal Inference in Statis-
tics: A Primer. Hoboken, NJ: John Wiley and Sons.

Qian, M. and Murphy, S. A. (2011). Performance guarantees for individ-
ualized treatment rules. Annals of Statistics, 39, 1180.

Ritzwoller, D. M. and Syrgkanis, V. (2024). Uniform inference for sub-
sampled moment regression. arXiv, arXiv:2405.07860, preprint: not
peer reviewed.

Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994). Estimation of regres-
sion coeflicients when some regressors are not always observed. Jour-
nal of the American Statistical Association, 89, 846-866.

Rubin, D. B. (2005). Causal inference using potential outcomes: De-
sign, modeling, decisions. Journal of the American Statistical Associa-
tion, 100, 322-331.

Schumacher, M., Bastert, G., Bojar, H., Hiibner, K., Olschewski, M. and
Sauerbrei, e. a. (1994). Randomized 2 x 2 trial evaluating hormonal
treatment and the duration of chemotherapy in node-positive breast
cancer patients. Journal of Clinical Oncology, 12,2086-2093.

Takatsu, K. and Westling, T. (2025). Debiased inference for a covariate-
adjusted regression function. Journal of the Royal Statistical Society Se-
ries B: Statistical Methodology, 87, 33-55.

van der Laan, L., Carone, M. and Luedtke, A. (2024). Combining T-
learning and DR-learning: a framework for oracle-eflicient estimation
of causal contrasts, arXiv, arXiv:2402.01972, preprint: not peer re-
viewed.

Van der Laan, M. ], Polley, E. C. and Hubbard, A. E. (2007). Super
learner. Statistical Applications in Genetics and Molecular Biology, 6,
Article2S.

VanderWeele, T. J., Luedtke, A. R., van der Laan, M. J. and Kessler, R. C.
(2019). Selecting optimal subgroups for treatment using many covari-
ates. Epidemiology, 30, 334-341.

Vansteelandt, S. and Morzywolek, P. (2023). Orthogonal prediction of
counterfactual outcomes. arXiv, arXiv:2311.09423, preprint: not peer
reviewed.

Zhang, T. and Simon, N. (2023). Regression in tensor product
spaces by the method of sieves. Electronic Journal of Statistics, 17,
3660-3727.

Received: December 24, 2024; Revised: June 20, 2025; Accepted: July 10, 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly

cited

G20z 1snBny 80 U0 1enB Aq G1002Z8/8604EN/E/18/0IE/SOLIBWIOIG /WO dNO™D1WLSPED.//:SA)Y WO PAPEOjUMO]


https://cran.r-project.org/web/packages/TH.data/TH.data.pdf
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 BACKGROUND
	3 DR-LEARNEREP-LEARNER EXTENSIONS
	4 SIMULATION STUDY
	5 GBSG2 TRIAL ANALYSIS
	6 DISCUSSION
	SUPPLEMENTARY MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	DATA AVAILABILITY
	REFERENCES

