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Summary
Background Ultrasound is a widely available, inexpensive, and non-invasive modality for evaluating hepatic steatosis 
(HS). However, the scarcity of radiological expertise limits its utility. Convolutional Neural Networks (CNNs) have 
potential for automated classification of HS using B-mode ultrasound images. We aimed to assess their diagnostic 
accuracy and generalisability across diverse study settings and populations.

Methods We systematically reviewed two biomedical databases up to Dec 12, 2023, to identify studies that applied 
CNNs in the classification of HS using B-mode ultrasound images as input (PROSPERO: CRD42024501483). We 
supplemented this review with a novel analysis of the community-based Andhra Pradesh Children and Parents’ 
Study (APCAPS) in India to address the overrepresentation of hospital samples and lack of data on South Asian 
populations who exhibit a distinct central adiposity phenotype that could influence CNN performance. We 
quantitatively synthesised diagnostic accuracy metrics for eligible studies using random-effects meta-analyses.

Findings Our search returned 289 studies, of which 17 were eligible. All but one of the 17 studies were based in 
hospital or clinical outpatient settings with curated cases and controls. Studies were conducted exclusively in East 
Asian, European, or North American populations. Studies employed varying gold standards: seven studies (41.18%) 
used liver biopsy, three (17.64%) used MRI proton density fat fraction, and seven (41.18%) used clinician-evaluated 
ultrasound-based HS grades. The APCAPS sample included 219 participants with radiologist-assigned HS grades. 
Across the range of study settings and populations, CNNs demonstrated good diagnostic accuracy. Meta-analysis of 
studies with low risk of bias reporting on five unique datasets showed a pooled area under the receiver operating 
characteristic curve of 0.93 (95% CI 0.73–0.98) for detecting any severity and 0.86 (95% CI 0.77–0.92) for 
detecting moderate-to-severe HS severity grades, respectively.

Interpretation CNNs have good diagnostic accuracy and generalisability for HS classification, suggesting potential 
for real-world application.
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Introduction
Hepatic steatosis (HS), also referred to as fatty liver, is 
characterised by excessive intracellular fat accumulation 
in the liver. 1,2 Prolonged HS increases the risk of liver 
cell injury, leading to inflammation, fibrosis, cirrhosis

and its sequelae, including hepatic cancers. 1,2 HS is the 
hallmark pathological feature of non-alcoholic fatty liver 
disease (NAFLD), 1 which is the most prevalent cause of 
chronic liver disease estimated to affect nearly 1 out of 
every 3 adults globally. 3 In addition to clinical

Research in context

Evidence before this study
Convolutional Neural Network (CNN) algorithms have 
become the standard for computer vision tasks such as 
image classification. Recently, there has been considerable 
interest in applying CNNs to medical image evaluation tasks, 
including the ultrasonographic evaluation of hepatic 
steatosis (HS). An initial scoping search (in November 2023) 
revealed six published systematic reviews in the broader field 
of machine learning (ML) in hepatology, which included a 
variety of tasks (diagnostic, therapeutic, and prognostic 
modelling of HS and other liver diseases), model inputs 
(various imaging modalities such as CT, MRI, raw 
radiofrequency or quantitative or B-mode ultrasounds, and 
textual or structured electronic health record data), and 
model types (CNNs and simpler traditional approaches to 
image-feature extraction). These reviews demonstrated that 
ML-assisted systems have significant potential for application 
in chronic liver diseases but did not specifically try to 
synthesise evidence on the diagnostic performance of CNNs 
for classifying HS from B-mode ultrasound images. To 
understand the generalisability of CNNs for this specific task 
it is necessary to study model performances across multiple 
diverse datasets. Therefore, we conducted a systematic 
search of Ovid-MEDLINE and Embase databases up to Dec 12, 
2023, for primary studies which developed or validated CNN-
based algorithms for classifying HS from B-mode ultrasound 
images.

Added value of this study 
As far as we know, this review is the first to systematically 
study the diagnostic capabilities of CNNs for the 
classification of HS using B-mode ultrasound imaging. We 
chose B-mode ultrasound imaging because it is safe, 
relatively inexpensive, and widely accessible. When reviewed 
by medical experts, this modality offers comparable accuracy 
to that of CT or MRI in detecting moderate-to-severe 
histological-grade HS. We excluded studies using ultrasound 
data types like raw radiofrequency or quantitative 
ultrasound, as these are unavailable in routinely used clinical 
scanners and require advanced technical expertise. This 
ensures our review is directly relevant to ML applications in 
low-resource clinical settings. Our review revealed a 
significant underrepresentation of community-based studies 
and a lack of data on south Asian populations. Hospital-
recruited individuals often differ in disease characteristics 
from those in community settings and may not

appropriately represent the full spectrum of disease 
presentation. This spectrum bias could potentially 
overestimate the performance of medical imaging prediction 
algorithms in certain populations. Furthermore, south 
Asians, who constitute a substantial global population, are 
shown to have a distinct phenotype characterised by 
increased visceral adiposity, including HS. It is currently not 
known whether CNN models have comparable diagnostic 
performance in these populations. We addressed these 
research gaps by supplementing our review with validation 
of a popular pre-trained CNN algorithm using data from the 
Andhra Pradesh Children and Parents’ Study (APCAPS), a 
large community-based cohort from South India. Across 
datasets with varying ethnicities and both hospital and 
community-based settings studied, CNNs demonstrated 
good diagnostic performance compared to clinical gold 
standards. The overlapping confidence intervals of the 
reported performance evaluation metrics between different 
populations and across CNN model architectures lend 
credibility to their generalisability and potential for real-
world application. We then performed a meta-analysis only 
including studies with a low risk of bias or applicability 
concerns as per the Quality Assessment of Diagnostic 
Accuracy Research—2 tool. The strong pooled diagnostic 
performance metrics, with an area under the receiver 
operator curve of 0.93 (0.73, 0.98) for detecting any severity 
and 0.86 (0.77, 0.92) in detecting moderate-to-severe HS 
severity grades, provide a benchmark for how well these 
models could be expected to perform in real-world 
applications.

Implications of all the available evidence
We report favourable diagnostic performances of CNNs 
across diverse datasets differing in study populations (age, 
sex, ethnicities, and disease severities) and study settings 
(hospital and community-based across several countries 
utilising different reference standards). This lends credibility 
to the generalisability of this class of algorithms for the HS 
classification task and underscores their potential for real-
world clinical application. However, we also highlight existing 
constraints in methodological approaches and study 
reporting quality. Future research should focus on the 
practical implementation challenges of integrating CNNs into 
clinical workflows and should perform recurrent local 
validations of their diagnostic accuracy and reliability over 
time in real-world settings.
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corroboration, NAFLD diagnosis requires the histo-
pathological or radiological evidence of HS. 1,2,4

The traditional liver biopsy with histopathological 
assessment is regarded as the reference standard for 
demonstrating HS. 1,2 However, given its invasiveness, 
non-invasive medical imaging techniques are becoming 
popular. 1,2,5 Radiation exposure is a significant down-
side of computed tomography (CT). 1 High cost restricts 
the utility of magnetic resonance imaging (MRI). 2,5 

Expert-reviewed ultrasound has accuracies comparable 
to CT or MRI for detecting moderate-to-severe histo-
logical-grade HS. 5–8 Additionally, ultrasounds are safe, 
relatively inexpensive, and broadly accessible. 1,2,5–7 

However, the need for skilled radiologists to interpret 
ultrasound scans can impede medical imaging service 
delivery. 9 Automated medical image evaluation with 
machine learning (ML) tools has the potential to miti-
gate this issue and improve healthcare access. 9,10 ML 
tools like Convolutional Neural Networks (CNNs) have 
demonstrated diagnostic performance equivalent to 
healthcare professionals across medical imaging 
tasks. 11 In their ability to learn inherent spatial patterns 
within data, these algorithms are uniquely suited for 
computer vision tasks such as extracting (medical) im-
age features for downstream analyses. 12,13 Several 
studies have demonstrated favourable performances of 
CNNs in classifying HS from B-mode ultrasound 
images. 14–17 However, to understand their general-
isability for this task, it is necessary to study their per-
formance systematically across several diverse 
datasets. 18 Previous research has largely focussed on 
hospital-based populations, 14–17 who may not capture 
the full spectrum of disease presentations seen in 
community settings, potentially inflating model per-
formance. 19 Conspicuously, South Asians, a substantial 
global population with a distinct phenotype marked by 
increased visceral adiposity, including HS, 20,21 remain 
underrepresented, raising ethical concerns around po-
tential racial or ethnic bias in ML algorithms. 22 Previous 
systematic reviews we identified were in the broader 
field of ML in hepatology, 23–29 which highlighted the 
significant potential of ML-assisted systems in chronic 
liver diseases (including HS) across diagnostic, thera-
peutic, and prognostic tasks. However, none specifically 
examined the diagnostic performances or general-
isability of CNNs in classifying HS from B-mode ul-
trasound images.

We aimed to provide a comprehensive synthesis of 
the diagnostic performance and generalisability of the 
CNN class of algorithms for HS classification tasks 
using B-mode ultrasound imaging. Therefore, we con-
ducted a systematic review and meta-analysis of the 
diagnostic performances of CNNs for classifying HS 
through B-mode ultrasound imaging, supplemented 
with a novel validation analysis from an underrepre-
sented population. We fine-tuned a popular pre-trained 
CNN algorithm, 30,31 using data from the Andhra

Pradesh Children and Parents’ Study (APCAPS), a large 
community-based cohort from South India. 32 To explore 
model transportability between settings, we also report 
this APCAPS-trained model’s diagnostic performance 
on a demographically distinct dataset by Byra and 
colleagues. 17

Methods
Literature search and data extraction
We included studies that used a CNN to classify HS 
grades using conventional B-mode ultrasound im-
ages as input in human participants of any age. We 
excluded studies using other ultrasound data like raw 
radiofrequency or quantitative ultrasound (qUS) 
modalities, because these require dedicated hardware 
or software, are often proprietary, and demand 
advanced technical expertise for their determina-
tion. 6,33 Consequently, they are unavailable in 
routinely used clinical scanners 6,33 and are less rele-
vant to low-resource settings. We only included 
studies that used liver biopsy, MRI proton density fat 
fraction (PDFF), or clinician-evaluated liver ultra-
sounds as the gold standard, as these are widely 
recognised diagnostic modalities for HS. 1,2,5 Original 
research articles (with full-text available in English) 
published in peer-reviewed journals were included. 
Full inclusion and exclusion criteria using the pop-
ulation, intervention, comparison, and outcome 
approach are provided in Table 1.

We searched Ovid-MEDLINE All and Embase for 
studies published in English up to December 12, 2023, 
using search terms based on three concepts: deep 
learning, HS, and ultrasound imaging (full search 
strategy in Supplementary Information p2). The refer-
ence lists of included studies and relevant review arti-
cles were manually searched. Reviewers AJ and CA 
independently screened titles and abstracts of all 
studies and reviewed the full text when inclusion was 
doubtful. Conflicts were resolved through consensus 
reached via discussion or referral to reviewers PM and 
SK (Supplementary Information p3). Study data 
including pre-specified primary outcome measures, 
area under the receiver operating characteristic curve 
(AUC), sensitivity, and specificity values for two binary 
classification tasks, either any severity HS (S1, S2, or S3 
grades) vs absence (steatosis grade 0, S0), or moderate-
to-severe HS (S2/S3) vs normal-to-mild HS (S0/S1) 
were extracted using a predefined data collection form. 
AJ and CA independently assessed the risk of bias and 
applicability concerns for included studies using the 
Quality Assessment of Diagnostic Accuracy Research 
(QUADAS-2) tool adapted to evaluate studies on artifi-
cial intelligence. 23,24,34 Our systematic review and meta-
analysis protocol was registered on PROSPERO 
(CRD42024501483) and reported according to PRISMA 
guidelines. 35
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APCAPS liver ultrasound data and processing
The details of the APCAPS population have been 
described elsewhere. 32 Briefly, it is a prospective, inter-
generational cohort based in the 29 villages of Ranga-
Reddy district in the South Indian state of Telangana. 
For this analysis, we used a subset of participants aged
≥45 years (N = 2057) at the time of the last follow-up 
during 2022–2023. 36

The APCAPS liver ultrasound scanning protocol was 
designed considering the constraints around practical 
data acquisition in real-world settings. Mainly, we 
focused on settings where an automated radiological 
diagnosis could be beneficial. Recognising that such 
settings often lack skilled radiologists, we developed a 
straightforward, single-view (intercostal) scanning pro-
cedure that non-specialist operators, including com-
munity health workers or technicians, could readily 
learn (Supplementary Information p4). Using this 
protocol, each participant contributed a single 3–5 s 
video clip, yielding an average of 61 ± 17 images. 
Among participants with available data as of August 
2022 (n = 889/2057), a random subsample of 261 
was selected for expert review (Fig. 1). This sample size 
was determined based on resource constraints and was 
deemed sufficient as it exceeded that of most other 
studies in the field, which typically included at most 240 
participants. 14,17,37–46 A gold standard binary label, either 
normal-to-mild HS (S0/S1; with S0 indicating no HS) 
or moderate-to-severe HS (S2/S3) was only assigned 
when there was independent agreement between two 
blinded radiologist evaluators (Supplementary 
Information p4). Expert-reviewed ultrasound and 
other modalities may distinguish HS into finer four-
category severity grades. However, this level of granu-
larity offers limited value outside of epidemiological 
research, particularly for patient management or prog-
nosis. 47,48 Ultimately, 219 participants were included in

our gold standard dataset. The initial inter-reader 
agreement calculated among the 247 participants with 
adequate-quality scans between independent radiologist 
graders (HF and SR) for the binary labelling of (S2/S3) 
vs (S0/S1) HS, was moderate, k = 0.44 (Supplementary 
Information p4). This is consistent with estimates from 
routine clinical care ultrasound assessments 16 and pre-
vious CNN validation studies. 41 These agreement levels 
likely reflect the variability in scanner settings and the 
inherent subjectivity of visual grading. 16 We then par-
titioned the dataset into three subsets (training, valida-
tion for hyperparameter optimisation, and test for 
evaluation metric calculation), ensuring similar pro-
portions of classes in each subset. We performed this 
partition at the participant level to prevent data 
leakage. 49

During training and validation, each image was 
treated as independent, with the participant DICOM
label applied to each constituent image. Similar to 
previous studies, 14–17,37,38,40,41,43,45,46,50 this approach served
as a form of data augmentation thought to help improve 
model generalisability. During testing, we calculated 
the classification probability for each image separately 
and derived the ensembled probability at the participant 
level by averaging. Evaluation metrics were calculated 
using the predicted probability threshold corresponding 
to the highest Youden index on the receiver operating 
characteristic (ROC) curve. For details on the image 
processing and fine-tuning of the pre-trained Incep-
tionResNetV2 model for the APCAPS liver ultrasound 
dataset refer Supplementary Information p5-6. The 
protocol and tools for the APCAPS 2022-23 follow-up 
were approved by the ethics committees of ICMR-NIN 
(CR/2/II/2024) and Indian Institute of Public Health 
Hyderabad (IIPHH/TRCIEC/189/2018), India, and the 
London School of Hygiene and Tropical Medicine 
(21771/RR/19113), UK. All participants provided

Population • Humans, general population without clinically diagnosed fatty liver disease (FLD)
• Humans with non-alcoholic FLD or alcohol associated FLD or those clinically deemed to be of high risk of either of them.
• Participants of both sexes (male and female) across all age groups

Intervention • Conventional B-mode ultrasound imaging of the liver—all radiological views and scanning planes
• Any of the following gold standards for the diagnosis of fatty liver disease status in participants:
(a) Grading of the liver ultrasounds by qualified clinicians or radiologists
(b) MRI calculated proton density fat fraction (PDFF) values for quantification of hepatic steatosis
(c) Liver biopsy for quantifying the % of hepatocytes showing steatosis

• Convolutional neural networks for B-mode ultrasound image feature extraction and classification
Comparator • Compare evaluation metrics (described under outcomes) between different convolutional neural network architectures
Outcome • Evaluation metrics calculated via k-fold cross-validation or hold-out (validation or test) sets:

(a) Area under the receiver operating characteristic curve, or
(b) (sensitivity and specificity)
for convolutional neural network-based image classification for either
(a) multi-class target (Normal, Grade 1, Grade 2, or Grade 3 fatty liver disease) or
(b) binary target (any binarisation of the multi-class categories)

No restrictions on study designs were applied.

Table 1: Systematic review selection criteria using the population, intervention, comparator, and outcome approach.
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written informed consent (or thumbprint for people 
who did not have a high school diploma or equivalent 
[possibly due to opportunity gap]) to participate and for 
their data to be used for research purposes. Data used 
for analysis were fully anonymised.

Data synthesis and statistical analysis
For each eligible study, pre-specified data, including 
participant demographics (sample size and age), study 
setting or country, ultrasound-acquisition details, 
model-development and validation procedures, and re-
ported performance metrics (AUC, sensitivity, and

specificity) with their 95% CIs, were extracted and 
collated in tables. For each binary classification task 
(any severity HS vs absence, and moderate-to-severe HS 
vs normal-to-mild HS) we performed a quantitative 
synthesis after excluding studies with a high or uncer-
tain risk of bias or applicability concerns as per the 
QUADAS-2 tool. 34 For outcomes that met the pre-
defined criterion of being reported in at least five 
studies, we fitted random effects meta-analysis models 
to pool logit-transformed evaluation metrics and pre-
sent the results in forest plots (Supplementary 
Information p7). We also provide funnel plots for

Fig. 1: Andhra Pradesh Children and Parents’ Study (APCAPS) liver ultrasound gold standard dataset generation. The binary label refers to (S2/ 
S3) vs (S0/S1). Reported N for images refers to numbers before data augmentation. *As of August 2022.
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visualisation of publication bias and small-study effects 
for all outcomes.

We report our APCAPS-trained model’s evaluation 
metrics on the APCAPS test set (internal-hold-out 
validation) as well as on the open-source dataset by Byra 
and colleagues, 17 both with additional fine-tuning (in-
ternal-hold-out validation), and without (external-hold-
out validation). Confidence Intervals (CI) around AUC 
metrics were determined by the non-parametric 
DeLong’s method, 41 and those around sensitivity and 
specificity were obtained from true positive, true nega-
tive, false positive, and false negative, algebraically. 51 

We quantified model calibration by reporting Brier 
scores. For model explainability, we provide class acti-
vation map (CAM) plots. 52

Role of the funding source
The funders played no role in the study design, data 
collection, analysis, interpretation, or report writing.

Results
A total of 289 studies were identified in the initial 
search. Following the exclusion of duplicates, title and 
abstract screening, and full-text eligibility assessment, 
17 studies (Supplementary Information p8-14), con-
ducted on 14 distinct datasets, met the selection criteria 
(Fig. 2). Key summary statistics for the studies included 
in the review are provided in Table 2. Seven studies 
used liver biopsy as the gold standard, 16,17,37–41 three used
MRI-PDFF, 14,42,43 and seven used clinician-evaluated 
ultrasound grades. 15,44–46,50,53,54 All but one study 54 were
performed in a hospital or outpatient clinical setting, 
with specific recruitment of cases (patients with 
NAFLD or alcohol-associated fatty liver disease) and 
controls (participants without these conditions). 
Geographically, studies were exclusively conducted in
East Asian, 15,16,40,42,44,46,50,53,54 European, 17,37–39,45 or North
American populations. 14,41,43 Studies included total 
populations ranging from 16 to 3158, with most, 12 
(70.59%), including <250 participants. 14,17,37–46 Three 
studies trained their models on relatively large numbers 
of participants, ranging from 742 to 2899, while 
reporting evaluation metrics on hold-out sets that 
included 112–418 participants. 15,16,54 Two studies failed 
to report complete details regarding participant 
numbers. 50,53 The open-source dataset by Byra and col-
leagues 17 with 55 participants was utilised in five 
studies, either alone 17,37,38 or in conjunction with private 
datasets. 50,53

A range of ultrasound scanners was used across 
studies (Supplementary Information p15) though 
studies infrequently reported their ultrasound scanning 
acquisition protocols in sufficient detail to allow for 
replication. Studies employed a variety of standard ul-
trasound imaging views, and three included within-
study comparisons of CNN diagnostic performances

across views. 14,16,42 Two reported some evidence sug-
gesting the superiority of specific views, 14,42 while the 
largest of the three found statistically similar diagnostic 
performance and reliabilities across multiple imaging 
views. 16 Notably, in 12 studies (70.59%), we observed 
that radiology personnel would be required to run 
predictions using an already trained CNN model. This 
radiological expertise would be needed to acquire 
participant images from multiple distinct scanning 
views, 14,16,42,43,54 to select a sequences of images from the 
set of all acquired images, 17,37,38 or for the manual 
delineation of region of interests (ROIs). 39,40,44,50 We 
couldn’t comment on the remaining five (29.41%) 
studies due to insufficient reporting. 15,41,45,46,53

All 14,15,17,37–46,50,53,54 but one study 16 reported internal 
(in-sample, or random split-sample) validation met-
rics 18,19,55 using random split(s) of the same data pool as 
the training dataset (Supplementary Information p16). 
One study 16 conducted internal validation but exclu-
sively reported metrics for external (or out-of-sample) 
validation. 18,55 There was a noticeable variation in the 
reported external validation metrics between the two 
datasets, attributed to lower quality of the older ultra-
sound scanners in one dataset. 16 Notably, the same 
study also compared CNN diagnostic performances 
across three more recent, premium ultrasound scan-
ners and found strong agreement across scanners. 16 We 
could not comment on their model’s transportability 18 

without baseline internal validation metrics. In at 
least 6 (35.29%) studies, we could not definitively 
exclude data leakage between training and test (or folds 
among studies using cross-validation) sets. 37,44–46,50,53 

These studies usually reported inflated evaluation 
metrics (Supplementary Information p17). Nearly half 
the studies, 8 (47.06%), failed to report evaluation
metrics corresponding to the participant-level binary 
classifications of HS. 14,16,17,39,40,42,44,54 Most studies, 14
(82.35%), reported evaluation metrics for the S0 vs (S1 
or higher) classification task, 14–17,37–45,54 while fewer, 6 
(35.29%) reported on the (S0/S1) vs (S2/S3) classifica-
tion task. 15,16,40,41,44,54 While most studies focussed on 
binary classification tasks, only 4 (23.53%) reported 
four-grade multi-class outputs, 15,46,50,53 and the largest of 
these achieved per-grade AUCs ranging from 0.97 to 
0.98. 15 Studies rarely provided the associated standard 
errors or CIs around reported evaluation metrics. No 
study reported calibration plots or metrics. Among 
those that reported sensitivity or specificity, none re-
ported the thresholds used for classification, while few 
noted that the threshold was selected to maximise 
Youden’s index. 14,17,40 One included study 16 compared 
CNNs applied to routine B-mode images with the 
commercially available qUS modality controlled atten-
uation parameter (CAP by FibroScan) and found the 
CNN performance matched or outperformed CAP for 
each of the HS binary classification tasks, S0 vs (S1 or 
higher), (S0/S1) vs (S2/S3), and (S2 or lower) vs S3.
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Diagnostic performance of CNNs for identifying 
any severity HS
Of the 17 included articles in the review, only the nine 
(52.94%) articles deemed to be of low risk of bias and 
applicability concerns (Supplementary Information 
p18-20) plus the novel validation analysis using 
APCAPS dataset were considered for quantitative syn-
thesis (N = 10, Table 3). Among these ten, four 
studies 16,38,40,41 reported AUC with CIs on five distinct 
datasets for any severity HS identification task, (S1 or 
higher) vs (S0), including 407 (unseen) participants. The 
weighted prevalence of gold standard-defined HS (S1 or 
higher) across studies was 72.28% (n = 294). The pooled 
AUC of CNN-based algorithms to detect HS, i.e., (S1 or 
higher) vs S0, from B-mode liver ultrasound images was 
0.93 (0.73, 0.98) indicating a strong discrimination be-
tween classes (Fig. 3). We noted strong evidence for 
inter-study statistical heterogeneity in reported metrics, 
I 2 : 99.9%, Q test p value < 10 −3 , which corroborated the 
observed methodological heterogeneity. Given the small 
sample number of studies per stratum, we could not 
perform any sub-group analyses.

Additionally, among the ten studies considered for 
quantitative synthesis, seven studies, 14,17,40–43,54 each 
conducted on a distinct dataset, reported sensitivities 
and specificities for the same any severity HS identifi-
cation task. Pooled sensitivities and specificities ob-
tained from bivariate diagnostic modelling revealed 
strong discrimination between target classes, 79.30% 
(71.70–85.30) and 81.20% (71.40–88.20), respectively 
(Supplementary Information p21-22).

Diagnostic performance of CNNs for identifying 
moderate-to-severe HS
Among the 10 studies with a low risk of bias considered 
for quantitative synthesis, three reported AUC (with 
associated CIs) for the detection of moderate-to-severe 
HS on four distinct datasets, 16,40,41 with a total N = 5 
including the APCAPS dataset.

The APCAPS gold standard ultrasound dataset 
included 219 participants (aged 58.85 ± 6.69 years, 
61.64% female) with a body mass index of 
22.61 ± 4.25 kg/m 2 and a prevalence of radiologist-
assigned moderate-to-severe (S2/S3) HS of 22.83%

Fig. 2: Study selection. Numbers are accurate as of Dec 12, 2023. US: Ultrasound, MRI-PDFF: Magnetic Resonance Imaging Proton Density Fat 
Fraction.
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Study characteristics Summary
statistics

Total number of studies included in the review 14–17,37–46,50,53,54 N = 17
Number of distinct datasets used for analysis n = 14
Study sites—geographical regions
East Asia 15,16,40,42,44,46,50,53,54 9 (52.94)
Europe 17,37–39,45 5 (29.41)
North America 14,41,43 3 (17.64)

Study setting
Hospital or outpatient clinic 14–17,37–46,50,53 16 (94.12)
Community 54 1 (5.88)

Gold standard methods
Liver histopathology 16,17,37–41 7 (41.18)
MRI-PDFF 14,42,43 3 (17.65)
Radiologist assigned US HS grades 15,44–46,50,53,54 7 (41.18)

Total study population 90 (55–205)
Number of participants on whom evaluation metrics are reported a 55 (24–135)
Ultrasound—data acquisition reporting
Sufficient description including scanning planes or views, and ROIs 14,16,42,43,54 5 (29.41)
Some or no description but insufficient to facilitate replication 15,17,37–41,44–46,50,53 12 (70.59)

Number of ultrasound images per participant
Multiple 14–17,37,38,40–43,45,46,50,53,54 15 (88.24)
Single 39,44 2 (11.76)

Derivation of multiple images per participant
Several distinct ultrasound views were acquired
A single image per view was used 14,42,54 3 (17.65)
Several images per view was used 16,43 2 (11.76)

A single ultrasound view was acquired
A set of 10 consecutive images was chosen from all acquired images 17,37,38,50,53 5 (29.41)
A single ROI (or image patch) was manually chosen from each of the 5 acquired images 40 1 (5.88)
Several non-overlapping ROIs (or image patches) were generated from acquired image/s 45,46,50 3 (17.65)

Unclear 15,41,53 3 (17.65)
Processing of multiple image (or image patch) inputs per participant
Each image (or image patch) was treated as independent: during training the participant label was applied to each constituent image 
(or patch), and during validation/testing, the classification probability for each image (or patch) was calculated
separately 14–17,37,38,40,41,43,45,46,50

12 (70.59)

The two images were concatenated into a single input for the CNN model 54 1 (5.88)
Features from two images were independently extracted using separate CNN models, concatenated, and then input into a 
classification model 42

1 (5.88)

Image pre-processing
Cropping out machine annotations 14,16,17,37–39,41–43 9 (52.94)
Semantic segmentation of ROIs 53 1 (5.88)
Histogram equalisation techniques 15,53 2 (11.76)
Image denoising (Gaussian filters) 15 1 (5.88)
Image enhancement methods involving local phase and radial symmetry image feature extractions 38 1 (5.88)

Data augmentation b

Yes—Offline methods 37,38,40,42,45,46 6 (35.29)
Yes—On-the-fly methods 14,15,53 3 (17.65)
Did not perform data augmentation 16,17,39,41,43,44,50,54 8 (47.05)

CNN model architectures c

Deep Networks
ResNet-module inspired off-the-shelf or custom deep networks 14–16,37,38,54 6 (35.29)
Inception 37,39,45,53 4 (23.53)
Inception-ResNet 17,37 2 (11.76)
VGG networks 40–42 3 (17.65)
EfficientNet 50 1 (5.88)

Shallow (3–10) layer networks 44,46 2 (11.76)
Unclear 43 1 (5.88)

(Table 2 continues on next page)
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(n = 50). This subsample was representative of the 
eligible 45+ population (N = 2057) with respect to age, 
sex, and body mass index distribution (Supplementary 
Information p23; all p > 0.05). On the APCAPs test 
set of 66 participants, our InceptionResNetV2 fine-
tuned on the APCAPs train dataset achieved strong 
internal-hold-out diagnostic performance metrics in the 
participant-level detection of moderate-to-severe HS,

i.e., (S2/S3) vs (S0/S1), AUC 0.90 (0.77, 1.00), sensi-
tivity 80.00 (51.91, 95.67), and specificity 98.03 (89.55, 
99.95) (Table 4). The model was well calibrated (Brier 
score: 0.10) with predicted probabilities ranging from 
0.06 to 0.92. To assess the transportability of the 
APCAPS-trained (S2/S3) HS prediction model to a 
disparate clinical setting, we performed external-hold-
out validation by evaluating our model’s off the shelf

Study characteristics Summary
statistics

(Continued from previous page)

CNN model training leveraged transfer learning strategies d (Yes) 14,15,17,37,38,40–43,45,50,53 12 (70.59)
Classification models
Fully connected neural network 15,38–42,44–46,50,53,54 12 (70.59)
Support Vector Machine 17,37 2 (11.76)
Logistic Regression 14 1 (5.88)
Unclear 16,43 2 (11.76)

Validation—methods e

Internal-hold-out 15,37,38,40,41,43–46,53,54 11 (64.71)
Internal-cross-validation 
5-fold 42 1 (5.88)
10-fold 39,50 2 (11.76)
LOOCV 14,17,38 3 (17.65)

External-hold-out 16 1 (5.88)
Validation—data leakage
Unable to exclude leakage between train and test (hold out or CV folds) 37,44–46,50,53 6 (35.29)

Evaluation metrics
Reported at f

Participant-level 14,16,17,38–40,42,44,54 9 (52.94)
Constituent image (or image patch) level 15,37,38,41,43,45,46,50,53 9 (52.94)

S0 vs (S1 or higher) classification g

Studies reporting AUCs 14–17,37–42,44,45,54 13 (76.47)
Studies reporting AUC with CIs 16,38,40,41 4 (23.53)
Studies reporting sensitivity and specificity 14,15,17,37–43,45,54 12 (70.59)
Studies reporting sensitivity and specificity with CIs 43 1 (5.88)

(S0/S1) vs (S2/S3) classification g

Studies reporting AUCs 15,16,40,41,44,54 6 (35.29)
Studies reporting AUC with CIs 16,40,41 3 (17.65)
Studies reporting sensitivity and specificity 15,40,41,54 4 (23.53)
Studies reporting sensitivity and specificity with CIs 0 (0.00)

Model explainability or interpretability
Class Activation Mapping Plots 14,41,42,50 4 (23.53)
SHAP values across input image pixels 42 1 (5.88)
Auxiliary neural network that mapped the ultrasound image to multi-class diagnostic features 54,h 1 (5.88)

AUC: Area under the receiver operating characteristic curve, CI: Confidence Interval, CNN: Convolutional Neural Network, CV: Cross Validation, LOOCV: Leave One Out 
Cross Validation, MRI-PDFF: Magnetic Resonance Imaging Proton Density Fat Fraction, ROI: Region of Interest, US HS: Ultrasound Hepatic Steatosis, S0–S3: Hepatic 
steatosis severity grades 0–3, SHAP: Shapley additive explanations, VGG: Visual Geometry Group, vs: versus. a Where applicable, these metrics correspond to the number of 
participants in the hold-out test set, or total number of participants in the dataset (for those reporting using k-fold cross-validation metrics); for studies that exclusively 
reported only the proportion of all images used as hold-out set, we use this proportion to calculate number of participants in the hold-out. b When employed data 
augmentation techniques commonly involved flips, rotations, translations, zooms, crops, the addition of noise, or the generation of multiple non-overlapping image 
patches; on-the-fly refers to real-time processing where augmented images are generated during the training process whereas offline refers to pre-processing, where 
augmented images are generated and saved on disk before the training process. c In one study 37 multiple deep CNN networks were used for feature extraction, and the 
features were concatenated before being input into a classification model. d By utilising a pre-trained CNN (base model) that achieved state-of-the-art multi-class 
classification performance (>90% top-1 accuracy) in the 1000-class image classification global ImageNet competition. e In one study 38 both internal-hold-out test and 
internal-cross-validation was reported. f In one study 38 metrics were reported both at the participant and image-level, however, they were reported on different partitions 
of the data. g Studies reporting CIs around sensitivities and specificities did not report how they were calculated, while two 16,41 of the four studies reporting CIs around 
AUCs calculated them using the DeLong’s method. h Like increased liver echogenicity, intrahepatic duct blurring, and impaired visualisation of the diaphragm.

Table 2: Summary statistics of key information for studies included in the systematic review.
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Sr Study/year Study population 
(Setting/Country, 
FLD/total, Steatosis 
grades, BMI)

Ultrasound scan protocol & 
ROIs

Total number of images 
in ground truth dataset 
before and after 
augmentation

CNN algorithm (Feature 
extraction + classification) b

Validation methods Evaluation 
metrics c

Ground truth: Liver Biopsy a

1. (Byra et al., 
2018) 17

• Hospital/Poland
• 38/55
• Among those with 
FLD: 52.63%
had ≤ 35% 
steatosis (mild 
grade)

• Overall Population
BMI: 45.9 ± 5.6

• No specific mention of the
ROIs in the liver, scanning 
planes or views.

• 10 consecutive images from
an image loop sequence 
from each participant were 
used—no mention of how 
this sequence was chosen
from all images in the 
patient’s DICOM.

• US images included both 
the liver and kidney

• 550 (380 FLD, 170
normal)

• Did not perform data
augmentation

• Pretrained Inception-
ResNet-v2 + SVM

• Participant-specific
LOOCV producing 
training and test sets
(Internal-cross-
validation)

(S1 or higher)
vs (S0) HS: 
AUC:
0.977 ± 0.021,
Sensitivity: 
100%, 
Specificity: 
88.20%

2. (Che et al.,
2021) 38

• 550 (380 FLD, 170)
• Augmented d to 2000
(1000 FLD, 1000 
normal)

• Images combined with 
their local phase filtered
image and radial 
symmetry transformed 
image formed multi-
feature inputs to a pre-
trained multi-scale ResNet 
with mid-fusion of 
features

• Softmax dense layers

Used two different 
paradigms:
(1) Participant-specific 
LOOCV (Internal-cross-
validation)
(2) 30% of patients 
allocated to a hold-out 
test set: 10 FLD + 5 Non-
FLD (internal-hold-out
validation) with metrics 
were reported at the 
image-level.

(S1 or higher) 
vs (S0) HS:
(1) CV:
AUC: 1 (0.99–1)
(2) Hold-out 
test set: 
Sensitivity: 
97.2% 
Specificity: NR

3. (Chen et al.,
2020) 40

• Hospital/Taiwan
• 126/205
• 38.54% normal, 
36.10% mild, 
17.07% moderate, 
8.29% severe

• Overall population 
BMI: 25.3 ± 3.8

• 5-independent intercostal
scans with manual physi-
cian delineated ROIs

• 1025 images e

• Data augmentation d

was performed on the 
training set by 
random cropping 
within the original
ROIs for the 
infrequent class to 
overcome class
imbalance (numbers 
NR)

• Pretrained VGG-16 with 3 
fully connected layer clas-
sifier top with soft max 
activation.

20% of participants
(n = 41) formed a hold-
out test 
(internal-hold-out 
validation)

(S1 or higher) 
vs (S0) HS:
AUC: 0.71 
(0.64–0.78), 
Sensitivity: 
73.18%,
Specificity: 
60%.
(S2/S3) vs (S1/
S0) HS:
AUC: 0.75 
(0.67–0.82), 
Sensitivity: 
63.25%, 
Specificity: 
74.82%.

4. (Li et al.,
2022) 16

• Hospital/Taiwan
• Development: 370/ 
2899; Testing—A:
123/147; Testing— 
B: 68/112.

• Testing—A: 24.49% 
mild, 23.81%
moderate, 35.357% 
severe; Testing—B: 
25.89% mild, 12.5%
moderate, 22.32% 
severe.

• Overall population 
BMI in Testing—A: 
26.67, Testing—B: 
26.33

• Images were acquired from 
four view groups: left liver 
lobe
(longitudinal + transverse), 
right liver lobe (intercostal), 
liver-kidney contrast (lower 
right love
intercostal + subcostal), and 
subcostal (with hepatic 
veins).

• In the development cohort, 
a single patient, had 
multiple studies, and each 
study contributed multiple 
images for algorithm 
development.

• In the testing cohorts, each 
patient had a single study, 
with each study having 
multiple images (across 
different view groups)

• 200654 images in the 
development cohort

• No mention of data 
augmentation

• ResNet 18 (does not 
mention whether 
pretrained or not) used to
predict a continuous score 
for each individual image, 
then ensembled by taking 
the mean of the image-
wise scores within and 
across each view group for 
final classification at a
given participant’s study 
level.

• Participants from 
independent hold-out 
test sets without and
with blinding (Testing 
A & B, respectively) of 
labels to deep learning 
development team.

• This was a form of 
external-hold-out vali-
dation as participants in
Testing A & B (ground 
truth: histopathology) 
came from a distinct 
setting from that of 
those participants in 
the development
cohort (ground truth: 
radiologist assigned ul-
trasound HS grade)

• Internal-hold-out or 
internal-cross-
validation metrics are 
not reported.

• CIs around AUCs were 
obtained using the 
DeLong method.

(S1 or higher) 
vs (S0) HS: 
Testing—A:
AUC: 0.95 
(0.91–0.98) 
Testing—B: 
AUC: 0.85
(0.77–0.93) 
(S2/S3) vs (S1/ 
S0) HS:
Testing—A: 
AUC: 0.92 
(0.88–0.96) 
Testing—B: 
AUC: 0.91 
(0.85–0.97)

(Table 3 continues on next page)
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Sr Study/year Study population 
(Setting/Country, 
FLD/total, Steatosis 
grades, BMI)

Ultrasound scan protocol & 
ROIs

Total number of images 
in ground truth dataset 
before and after 
augmentation

CNN algorithm (Feature 
extraction + classification) b

Validation methods Evaluation 
metrics c

(Continued from previous page)

5. (Vianna 
et al.,
2023) 41

• Hospital/Canada
• 142/199
• 43.7% mild, 12.6% 
moderate, 15.1% 
severe FLD

• Overall population 
BMI: 30.5 ± 7.8

• Images were said to be
acquired according to the 
institutional clinical US 
protocol (not described).

• A single patient contributed
multiple images

• 7529 images (966
normal, 3312 mild, 
1683 moderate, and 
1568 severe).

• Did not perform data
augmentation.

• Pretrained VGG-16
architecture + Softmax 
dense layer

• No ensembling was not 
performed at the patient
level, and predictions were 
obtained on all images in
single tests.

• Metrics reported on at
the image-level on 26% 
of participants (N = 52, 
with 12 S0, 17 S1, 11 S2, 
and 12 S3 grades) used
as hold-out test set 
(internal-hold-out
validation).

• CIs around AUCs were
obtained using the 
DeLong method.

(S1 or higher)
vs (S0) HS: 
AUC: 0.85 
(0.83–0.87), 
Sensitivity:
79%, Specificity: 
78%.
(S2/S3) vs (S1/ 
S0) HS:
AUC: 0.73 
(0.71–0.75), 
Sensitivity: 
76%, Specificity: 
58%

Ground truth: MRI-PDFF values f

6. (Byra et al., 
2021) 14

• Hospital/USA
• 118/135
• Among those 
with FLD, 95% 
had PDFF ≤30%

• Overall 
population BMI: 
31 ± 5

• Four distinct images per 
participant were used.

• One each from the 3 views in 
the transverse plane: hepatic 
veins at the confluence with 
the inferior vena cava, right 
portal vein, and right posterior 
portal vein

• One view in the sagittal plane: 
liver and kidney

• 135 images per view
(118 FLD, 17 normal) x
4 views

• Images were
augmented d (appears 
to be on-the-fly 
augmentation)

• Pretrained ResNet-
50 + Logistic regression 
(or Lasso Linear 
regression) for each 
ultrasound view trained 
separately.

• Followed by, an ensemble 
model, averaging the
outputs of the individual 
models, was constructed.

• Participant-specific
LOOCV producing 
training and test sets 
(internal-cross-
validation)

(S1 or higher) 
vs (S0) HS: 
AUC:
0.91 ± 0.03, 
Sensitivity: 
0.80 ± 0.05, 
Specificity: 
0.88 ± 0.05

7. (Kim et al., 
2021) 42

• Hospital/South 
Korea

• 39/90
• Mean
11.82% ± 8.74%, 
and
11.49% ± 5.49% 
in groups without 
and with alcohol 
exposure

• NR

• 2 images per participant were 
used.

• Right intercostal view of the
liver

• Right intercostal view of the
liver containing right renal 
cortex

• 90 images per view 
(39 FLD, 51 normal) x
2 views

• Each original image
was augmented d to 
39 images.

Features extracted from each 
of the two views, separately,
using pretrained VGG-19,
followed by feature
concatenation + Sigmoid 
dense layer

• Metrics reported at the 
participant-level using
5-fold CV (internal-
cross-validation)

(S1 or higher) 
vs (S0) HS:
AUC: 0.87;
Sensitivity:
∼70%; 
Specificity: 
80.5%

8. (Tahmasebi 
et al.,
2023) 43

• Outpatient 
centre/USA

• 70/120
• Mean
16.1% ± 0.07%

• BMI in FLD:
34.7 ± 7.4, non-
FLD: 29.9 ± 7.8

• Ten distinct images per 
participant.

• Two images from the sagittal-
subxiphoid view, 1 from
transverse-subxiphoid view, 2
from sagittal-intercostal view,
1 from sagittal-subcostal view,
4 from transverse intercostal 
view. Different images of the 
same view were taken at 
different levels.

• 1191 images (643 
FLD + 548 Non-FLD)
in the training set and
244 images in the
hold-out test set.

• No mention of data 
augmentation.

• Google’s AutoML Vision g

• No ensembling was
performed at the patient
level, and predictions were
obtained on all images in
single tests.

• Metrics reported at the 
image-level on 20% of
participants (12 with
≥S1 HS + 12 S0 HS)
used as hold-out test
set. (internal-hold-out 
validation)

(S1 or higher) 
vs (S0) HS:
Sensitivity:
72.2%
(63.1–80.1)
Specificity:
94.6% 
(88.7–98.0)

Ground truth: Ultrasound grading by radiologists h

9. (Yang et al.,
2023) 54

• Community/ 
China

• 615/928
• 48% mild, 7.3%
moderate, 11% 
severe.

• Overall
Population: 
23.8 ± 3.2

• Two images per participant
were concatenated and used—
epigastric longitudinal 
scanning in the median
sagittal plane in the 
subxiphoid region + right 
subcostal scanning along the
right subcostal margin.

• 928 (two images from
each participant were
concatenated into 
one)

• No mention of data 
augmentation

• Custom 2-section Neural
Network with 3 ResNet
inspired blocks to extract 
image features and predict
‘bright liver’, ‘intra-hepatic 
duct blurring’, ‘impaired 
diaphragm visualisation’,
which were then 
concatenated

• A fully connected layer for 
classification.

• A hold-out test set of
186 (20%) of partici-
pants (internal-hold-
out validation)

(S1 or higher)
vs (S0) HS:
AUC: 0.90; 
Sensitivity:
88.6%; 
Specificity: 
90.5%.
(S2/S3) vs (S1/ 
S0) HS:
AUC: 0.84; 
Sensitivity: 76. 
%; Specificity: 
92.8%.

(Table 3 continues on next page)
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performance in predicting (S1 or higher) HS on the 
demographically distinct (full) dataset by Byra and col-
leagues, 2018, 17 and found a discernible drop in model 
performance. Calibration was markedly poorer with 
predicted probabilities tightly clustered between 0.14 
and 0.16. However, fine-tuning the model with a 30% 
random subset of the Byra and colleagues, dataset, 17 

improved both its performance and calibration on the 
remaining 70% of the dataset. We noted improved 
model performance when reported at the participant 
level vs image level and marked variation in image level 
predicted probabilities for a given participant 
(Supplementary Information p24). CAM plots revealed 
that our model’s predictions aligned well with the 
radiological criteria used for the gold standard HS 
assignment (Fig. 4).

We pooled the AUC estimates across the five data-
sets, including 418 (unseen) participants. The weighted 
prevalence of gold standard-defined moderate-to-severe 
HS (S2/S3) across studies was 41.72% (n = 174). The 
pooled AUC for CNN-based algorithms to identify 
moderate-to-severe HS was 0.86 (0.77, 0.92) indicating a 
strong discrimination between target classes (Fig. 5). 
We noted strong evidence for inter-study statistical 
heterogeneity in reported metrics, I 2 : 99.9%, Q test p 
value < 10 −3 , along with substantial methodological 
heterogeneity.

Funnel plots for all different examined outcomes 
demonstrated some asymmetry with few studies laid 
beyond the pseudo-95% limits (Supplementary 
Information p25-26).

Discussion
We aimed to assess the diagnostic accuracy and gen-
eralisability of CNNs for classifying HS from B-mode 
liver ultrasounds across various settings and pop-
ulations. We conducted a systematic review, supple-
mented with a cross-sectional analysis of the APCAPS 
cohort in Telangana, India. Across the range of eth-
nicities and hospital and community-based settings 
studied, CNNs demonstrated good diagnostic perfor-
mance compared to currently accepted clinical gold 
standards. This held true despite considerable variation 
across studies in data acquisition methods (ultrasound 
scanners, scanning protocols, ROI definitions), gold 
standards, model architectures, and validation strate-
gies. Our finding of consistently high point estimates 
and largely overlapping confidence intervals for AUCs, 
sensitivities, and specificities lend credibility to the 
generalisability of this class of algorithms for the HS 
evaluation task. Our meta-analysis of low-risk-of-bias 
studies established diagnostic performance metrics for 
CNNs in B-mode ultrasound-based HS classification

Sr Study/year Study population 
(Setting/Country, 
FLD/total, Steatosis 
grades, BMI)

Ultrasound scan protocol & 
ROIs

Total number of images 
in ground truth dataset 
before and after 
augmentation

CNN algorithm (Feature 
extraction + classification) b

Validation methods Evaluation 
metrics c

(Continued from previous page)

10. APCAPS 
(2024) (this 
study)

• Community/India
• 50/219 had 
moderate-to-
severe (S2/S3) HS

• Overall 
Population: 
22.61 ± 4.25 kg/ 
m 2

• Image frames from a 3–5 s 
ultrasound video of the 
oblique intercostal view of the 
right lobe of the liver with 5–6
degrees of angulation—each 
participant contributed 
multiple images (varying 
based on the length of the 
video)

• 6879 images from 
109 (50%) 
participants in the 
training set

• On-the-fly data 
augmentation d was 
performed

• A pre-trained Inception-
Resnet V2 with a custom 
classifier top

• Predictions were obtained
by calculating the 
classification probability 
for each image separately 
and deriving the 
ensembled probability at 
the participant level by 
averaging.

• Metrics reported at the 
participant-level on a 
hold-out test set of 66 
(30.40%) of partici-
pants. (internal-hold-
out validation)

(S2/S3) vs (S1/ 
S0) HS:
AUC: 0.90 
(0.75, 1.00);
Sensitivity: 
80.00 (64.29, 
100); 
Specificity: 
98.03 (74.55, 
100)

APCAPS: Andhra Pradesh Children and Parents’ Study, AUC: Area under the receiver operating characteristic curve, BMI: Body Mass Index, CI: Confidence Interval, CNN: Convolutional Neural Network, 
CV: Cross Validation, FLD: Fatty Liver Disease, HS: Hepatic Steatosis, LOOCV: Leave One Out Cross Validation, ML: Machine Learning, MRI-PDFF: Magnetic Resonance Imaging Proton Density Fat Fraction, 
NR: Not Reported, ROI: Region of Interest, S0–S3: Hepatic steatosis severity grades 0–3, SVM: Support Vector Machine, US: Ultrasound, VGG: Visual Geometry Group, USA: United States of America, vs: 
versus. a All studies using liver histopathology used ≥ 5% liver cell steatosis on biopsy for a diagnosis of S1 HS; Chen et al., 2020, Li et al., 2022 and Vianna et al., 2023 used cut-offs of 5–33%, 34–66%, 
>67% for mild (S1), moderate (S2), and severe (S3) grades of HS on biopsy. b When multiple CNN algorithms were studied, only those with the highest AUC, or highest (sensitivity/specificity) are 
mentioned; algorithms when pre-trained were done so on the ImageNet database. c Where applicable evaluation metrics are reported as metric (95% CI), or mean ± standard deviation of metric across 
cross-validation folds. The mean ± standard deviation for AUC reported without standard errors or confidence intervals could not be included in the quantitative pooling of AUC diagnostic performance 
metric of CNNs across studies. d Data augmentation was performed using translations, rotations, translations, flipping, zoom (in and out), and scaling. e This study collected ultrasound radiofrequency 
data but converted to B-mode images for input into CNN models for the results tabulated. f >5% MRI-PDFF values indicated a diagnosis of FLD for Byra et al., 2021 and Kim et al., 2021; Tahmasebi et al., 
2023 used a cut-of >6.4%. g The specific implementations of the underlying model architecture is proprietary to Google and not disclosed; however, the documentation mentions it is based on Google’s 
leading image recognition approaches including transfer learning and neural architecture search technologies—thus highly likely to be based on convolutional neural network architectures. h Yang et al., 
2023 graded FLD as: none steatosis (S0), mild (S1, based on bright liver), moderate (S2, based on S1 + intrahepatic duct blurring), and severe (S3, based on S2 + impaired visualisation of more than half 
of the diaphragm); APCAPS analysis graded FLD as follows: mild (S1, based on diffusely increased hepatic echogenicity but periportal and diaphragmatic echogenicity still appreciable), moderate (S2, 
based on diffusely increased hepatic echogenicity obscuring periportal echogenicity but diaphragmatic echogenicity still appreciable), severe (S3 based on diffusely increased hepatic echogenicity 
obscuring periportal as well as diaphragmatic echogenicity), normal (S0, no increase in hepatic echogenicity).

Table 3: Characteristics of low risk of bias studies included in the quantitative synthesis (n = 10 studies).
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tasks. This provides a benchmark for how well such 
models could be expected to perform in real-world 
applications.

In recent years, deep learning tools, specifically 
CNNs, have been shown to have diagnostic perfor-
mance equivalent to that of healthcare professionals 
across various medical imaging classification tasks. 11 

Our meta-analysis showed CNN models for HS classi-
fication from B-mode ultrasound images have pooled 
AUCs ranging from 0.86 to 0.93, meeting the threshold 
(>0.8 at validation) commonly considered good or 
excellent for clinical prediction models. 56 These figures 
overlap with those of widely used qUS techniques for HS 
classification, ultrasound-guided attenuation parameter 
(AUCs: 0.85–0.89) and CAP (AUCs: 0.80–0.94). 57 How-
ever, unlike qUS, B-mode images are produced by all 
routinely used clinical ultrasound scanners. Thus, CNNs 
that analyse them offer a scalable alternative for low-
resource settings. Since our search cut-off, new hospi-
tal-based 58–60 and biobank 61 studies, including those that

adopt multi-instance learning 60,61 (training models on all 
images from a participant’s ultrasound examination at 
once, rather than treating each image as independent as 
done in APCAPS and most earlier studies), have re-
ported diagnostic performances comparable to our 
pooled estimates. CAM plots from ours and previously 
published HS classification models 14,41,42,50 suggest that 
CNNs focus on radiologically relevant areas of the liver, 
helping explain model decisions. Our findings highlight 
the potential for using CNN algorithms in scenarios 
where patient characteristics, skilled human resources, 
infrastructure, or costs preclude performing any of the 
current gold standard tests for HS classification. In high-
resource settings, CNNs could be used for opportunistic 
screening for HS based on abdominal ultrasound scans 
performed for unrelated indications, 62 or to provide real-
time decision support during conventional sonography. 
However, despite extensive research on model develop-
ment and validation, relatively few studies have exam-
ined real-world deployment of deep learning models, 
reflecting broader challenges. 63 Randomised controlled 
trials on ML-assisted ultrasonography have shown sig-
nificant time-savings and reduced sonographer cognitive 
overload, 64 and improved diagnostic performance, espe-
cially when used by non-experts. 65 Still, successful clin-
ical translation requires addressing key issues, 
specifically external validation.

Consistent with previous work in deep learning for 
medical imaging, 11 we found that studies rarely report 
externally validated metrics, raising concerns about 
generalisability. 18,66 However, a singularly externally 
validated model may not perform consistently across 
varying populations, geographies, and health facilities, 
even for identical tasks. 66 As with published clinical 
predictive models with image-11,67 or non-image-based 68 

inputs, we noted slightly higher internal validation 
diagnostic performance metrics on the APCAPS test set 
compared to external validation on the Byra and

Fig. 3: Forest plot of study datasets (n = 5) reporting AUC with 95% 
CIs for any severity HS detection task (S1 or higher) vs S0 HS, 
included in the meta-analysis. AUC: Area under the receiver oper-
ating characteristic curve, HS: Hepatic Steatosis.

Evaluation metrics reported on APCAPs test set: (N = 66) Full dataset by Byra et al., 2018: (N = 55) A 70% random subset of Byra et al. 17 (N = 39)

Validation type Internal-Hold-Out External-Hold-Out Internal-Hold-Out
Base model ImageNet pre-trained CNN APCAPS train set pre-trained CNN
Fine tuning on APCAPS train set A random 30% subset of Byra et al. 17 dataset
Prediction target class (S2/S3) radiologist-assigned HS ultrasound grades (S1 or above) HS by liver histopathological assessment
Prediction threshold 0.31 0.15 0.56
Target class prevalence 22.73% (n = 15) 69.09% (n = 38) 69.23% (n = 27)
Key metrics
AUC 0.90 (0.77, 1.00) 0.76 (0.64, 0.89) 0.84 (0.72, 0.95)
Sensitivity 80.00 (51.91, 95.67) 60.53 (44.98,76.06) 70.37 (49.82, 86.25)
Specificity 98.03 (89.55, 99.95) 88.24 (63.55, 98.54) 91.67 (61.52, 99.79)
Brier score 0.10 0.50 0.15

All metrics are reported at the participant level. AUC, Sensitivity, and Specificity are reported as point estimate followed by 95% confidence interval limits in parentheses. Brier scores range from 0 to 1, 
with lower values indicating better model calibration. APCAPS: Andhra Pradesh Children and Parents’ Study, AUC: Area under the receiver operating characteristic curve.

Table 4: Participant-level evaluation performance metrics for the InceptionResNetV2 CNN model across HS classification tasks reported on the APCAPs test set (internal-hold-out 
validation), and the Byra and colleagues 17 dataset both without additional fine-tuning (external-hold-out validation), and with (internal-hold-out validation).
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Fig. 4: Class Activation Maps (CAM) for a randomly selected True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 
(FN) prediction. The target class predicted is moderate-to-severe (S2/S3) HS. Red areas represent image regions that are most relevant for 
model prediction, with higher intensities (darker red) corresponding to higher importance. Similarly, blue areas represent regions that the 
model considers least relevant for prediction, with higher intensities corresponding to lower importance. Plots reveal that the model focuses 
on mid- and far-fields (the bottom 2/3) of the ultrasound image, primarily on the bulk of the hepatic parenchyma including the diaphragm 
and portal vasculature.
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colleagues dataset. 17 However, fine-tuning with just 30% 
of external data substantially improved performance. 
Whether this performance improvement stems from the 
merely increased training data variability or that of 
training data specific to the population in the evaluation 
set, is unanswered. This highlights a key issue in the 
deployment of ML models for clinical practice: models 
trained on one demographic (e.g., hospital-based, high-
resource setting) may not transport as is to disparate 
settings (e.g., community-based, low-resource) due to 
distribution shifts in disease prevalence and pre-
sentations. 19,69 Emerging work on federated learning of-
fers a potential solution. By enabling model training 
across multiple distinct sites without centralising data, 
federated approaches preserve privacy while improving 
generalisability. 70 Further, even within a given setting, 
models are prone to performance degradation over time 
owing to distribution drifts 66 caused by changes in ul-
trasound imaging hardware/software, data acquisition 
protocols, or population demographics. This un-
derscores the need for recurrent local validation to 
ensure reliable performance in real-world applications. 66 

Beyond good diagnostic performances, a model must 
also be well calibrated. That is, their output probabilities 
should accurately reflect the true class likelihood of the 
target condition in the intended clinical context. 71

None of the studies included in our review reported 
calibration metrics or decision thresholds, limiting real-
world clinical interpretability and implementation. 
During internal validation with the APCAPs test set, 
our model was well calibrated and produced a plausible 
spread of predicted probabilities. This suggests that, if 
deployed in this setting, the ROC-derived threshold 
could be meaningfully adjusted based on local preva-
lences, misclassification costs, or resource constraints. 72 

However, calibration was markedly poorer during 
external validation on the Byra et al., 2018 dataset, 17 

despite good diagnostic performance. The predicted 
probabilities were tightly clustered, rendering the ROC-

derived threshold uninformative for clinical decision-
making. Consequently, without model recalibration, 
any threshold adjustment to evolving clinical contexts 
remain limited. 72

As far as we know, this is the first review to focus on 
the diagnostic utility of a specific class of ML algo-
rithms, namely CNNs, for the granular task of evalu-
ating HS from ultrasound scans. Including only the 
conventional B-mode imaging variety ensured that our 
review remained highly applicable to using ML tools in 
routine clinical settings. Studies identified predomi-
nantly involved hospital-based research conducted on 
White or East Asian populations, with model inference 
requiring the intervention of highly skilled healthcare 
professionals for data acquisition or subsequent ROI 
selection. Hospital-recruited individuals often differ 
significantly from community populations, 19 potentially 
leading to an exaggerated dichotomy in health and 
disease representation. To address the limitations of the 
studies included in the review, our approach employed 
a simplified non-specialist ultrasound data acquisition 
protocol. Ultrasound video clips were short (up to 5 s), 
and neither model training nor inference required 
manual, domain-knowledge-driven image (or ROI) se-
lection. We demonstrated that a pre-trained CNN, with 
minimal fine-tuning, can achieve satisfactory diagnostic 
performance in a large, community-based sample from 
an ethnically distinct cohort in rural South India, thus 
expanding the current evidence base. Moreover, we 
report metrics for identifying moderate-to-severe HS, a 
component frequently overlooked in prior studies. This 
is important as moderate-to-severe HS, rather than 
mild HS, is more strongly associated with morbidity, 
including the onset of diabetes resulting from impaired 
glucose tolerance, 73 progression from pre-hypertension 
to hypertension, 74 and adverse outcomes in coronary 
artery disease. 75

The primary limitations of our study stem from the 
limitations of the studies included in our systematic 
review and meta-analysis. First, in several studies, we 
noted that using a trained CNN model to obtain pre-
dictions on new data would require intervention from 
highly skilled radiology personnel. Thus, reported per-
formance metrics may not be representative of real-
world applications since skilled personnel are often 
scarce in the settings where such ML models are most 
needed. 9 Second, several studies lacked detailed 
reporting of methodology and results. Many did not 
specify ultrasound data acquisition details such as 
scanning planes, views, or specific ROIs, limiting 
reproducibility. While we do not recommend any 
particular view over another, ultrasound imaging pro-
tocols should be standardised and sufficiently detailed 
to enable replication and comparison. Studies that rely 
on expert grading for the gold standard, whether ul-
trasound- or histology-based, rarely report inter-reader 
reliability. Although low agreement in the training set

Fig. 5: Forest plot of study datasets (n = 5) AUC with 95% CIs for 
moderate-to-severe HS detection task, (S2/S3) vs (S0/S1), included 
in the meta-analysis. AUC: Area under the receiver operating 
characteristic curve, CI: Confidence Interval, HS: Hepatic Steatosis.
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labels can be mitigated by large sample sizes or noise-
robust learning strategies, 76 poor reliability in the test 
set labels erodes confidence in the reported evaluation 
metrics. Studies mostly reported model performance 
metrics only at the image level, which we show in-
troduces bias. Correspondingly, the clinical decision to 
subject a patient to additional HS diagnostic testing is 
contingent on them being classed as having ultrasound 
features of HS and not on their constituent image’s 
assignment. Additionally, studies rarely report standard 
errors (or confidence intervals) for diagnostic perfor-
mance, hindering uncertainty assessment and limiting 
the potential for evidence synthesis across studies. 
Third, the substantial statistical and methodological 
heterogeneity, and the expected variation in the (not 
reported) thresholds for prediction across included 
studies is likely to have introduced some bias in our 
calculated pooled estimates. Therefore, these should 
not be extrapolated beyond explicitly studied contexts. 
Fourth, given that fewer than 10 studies were available 
for each outcome in our meta-analysis, it precluded 
statistical tests for funnel plot asymmetry for a quanti-
tative assessment of publication or reporting biases. 77 

Qualitatively, the predominance of studies from high-
income countries, selective reporting of evaluation 
metrics, and the paucity of studies reporting poor 
model performances indicate some publication bias in 
the current evidence base. The observed visual asym-
metry in our funnel plots also supported this. Limiting 
the review to English-language articles may have 
introduced a minor additional bias, given the tendency 
for studies with positive results to be more frequently 
published in English compared to non-English 
languages.

Future research should design data acquisition and 
processing pipelines mindful of the typical resource 
constraints of the model’s intended application settings. 
It should also address the practical challenges of inte-
grating CNNs into clinical workflows and perform 
recurrent local validations of diagnostic accuracy and 
reliability over time in real-world settings. Additionally, 
as previously highlighted, there is a need for the 
standardisation of reporting in medical deep learning 
research. 11

We report favourable diagnostic performances of 
CNNs across diverse datasets differing in study pop-
ulations (age, sex, ethnicities, and disease severities) 
and study settings (hospital and community-based 
across several countries utilising different reference 
standards). This lends credibility to the generalisability 
of this class of algorithms for the HS classification task 
and underscores their potential for clinical application. 
We also highlight existing constraints in methodolog-
ical approaches and study reporting quality. The current 
evidence justifies the need for large-scale, high-quality, 
longitudinal research to investigate such ML algo-
rithms’ real-world routine clinical application.
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