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Abstract 

Background Model‑based geostatistics (MBG) is increasingly used for estimating the prevalence of neglected tropi‑
cal diseases, including trachoma, in low‑ and middle‑income countries. We sought to investigate the impact of spa‑
tially referenced covariates to improve spatial predictions for trachomatous inflammation—follicular (TF) prevalence 
generated by MBG. To this end, we assessed the ability of spatial covariates to explain the spatial variation of TF preva‑
lence and to reduce uncertainty in the assessment of TF elimination for pre‑defined evaluation units (EUs).

Methods We used data from Tropical Data‑supported population‑based trachoma prevalence surveys conducted 
in EUs in Ethiopia, Malawi, Niger, and Nigeria between 2016 and 2023. We then compared two models: a model 
that used only age, a variable required for the standardization of prevalence as used in the routine, standard preva‑
lence estimation, and a model that included spatial covariates in addition to age. For each fitted model, we reported 
estimates of the parameters that quantify the strength of residual spatial correlation and 95% prediction intervals 
as the measure of uncertainty.

Results The strength of the association between covariates and TF prevalence varied within and across countries. 
For some EUs, spatially referenced covariates explained most of the spatial variation and thus allowed us to gener‑
ate predictive inferences for TF prevalence with a substantially reduced uncertainty, compared with models with‑
out the spatial covariates. For example, the prediction interval for TF prevalence in the areas with the lowest TF preva‑
lence in Nigeria narrowed substantially, from a width of 2.9 to 0.7. This reduction occurred as the inclusion of spatial 
covariates significantly decreased the variance of the spatial Gaussian process in the geostatistical model. In other 
cases, spatial covariates only led to minor gains, with slightly smaller prediction intervals for the EU‑level TF prevalence 
or even a wider prediction interval.
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Conclusions Although spatially referenced covariates could help reduce prediction uncertainty in some cases, 
the gain could be very minor, or uncertainty could even increase. When considering the routine, standardized use 
of MBG methods to support national trachoma programs worldwide, we recommend that spatial covariate use be 
avoided.

Keywords Covariates, Disease mapping, Evaluation unit, Geostatistics, Neglected tropical diseases, Trachoma

Background
Trachoma is one of twenty-one neglected tropical dis-
eases (NTDs) and is targeted for elimination as a public 
health problem by 2030 [1, 2]. It is the leading infectious 
cause of blindness and is known to be a public health 
problem in 39 countries [3]. The causative agent, Chla-
mydia trachomatis (Ct), is transmitted mainly by eye-
seeking flies (Musca sorbens), direct contact with an 
infected person, and fomites such as shared towels, bed-
ding, or hard surfaces [4]. Ocular Ct infection results in 
inflammation of the conjunctiva, wherein some indi-
viduals can exhibit trachomatous inflammation—folli-
cular (TF), a sign of “active trachoma” [4, 5]. After years 
of repeated infections, severe inflammation can lead 
to visible scarring in the upper eyelid conjunctiva. Sub-
sequently, the eyelid can turn inward such that the eye-
lashes touch the eyeball [4]. This condition is referred to 
as trachomatous trichiasis (TT) [5], a painful condition 
that can result in corneal opacity and blindness if not 
treated.

The focal nature of trachoma has been demonstrated 
in the clustering of cases at various spatial scales from 
the household to the district level [4]. This clustering 
pattern indicates that transmission dynamics and fac-
tors associated with trachoma operate at multiple spatial 
levels, highlighting the importance of avoiding analyses 
that aggregate data across too large an area. Such aggre-
gation could obscure local variations and lead to over-
smoothing of prevalence estimates. By accounting for 
these localized variations, targeted interventions can be 
more effectively designed and implemented. A recent 
systematic review identified that at the community or 
district level, the main factors associated with trachoma 
can be categorized as demographic, infrastructural, cli-
matic, and environmental [6]. This review found that fac-
tors associated with TF were mean annual precipitation, 
mean annual temperature, altitude, ruralness, accessibil-
ity, access to medical services and schools, and access to 
water and sanitation. Limited access to water and sani-
tation could negatively impact the hygiene practices of 
individuals and increase the presence of M. sorbens, 
which prefers to breed in human feces left exposed to 
the soil. The mechanism that links climate and environ-
ment to Ct infections is less clear. Previous studies, which 
were reviewed in the systematic review, have argued that 

climate factors, including precipitation and tempera-
ture, can affect the life cycle and survival of M. sorbens, 
conjunctival dryness, and irritation due to low humidity, 
water availability, agricultural productivity, and liveli-
hoods, whereas environmental factors, such as altitude, 
might be linked to population density, temperature, and 
socio-economic status in some contexts [7–17]. Regard-
ing other demographic and infrastructural factors, rural 
areas tend to have worse socioeconomic and sanitation 
conditions [18] and are remote from services including 
water and sanitation [4]. Furthermore, lower access to 
healthcare may also indicate worse socioeconomic devel-
opment and lower standards of living [19]. Better access 
to schools might be linked to better health literacy, as 
parents’ educational attainment can have a protective 
effect on children’s risk of active trachoma (TF and tra-
chomatous inflammation—intense, TI) [20].

Mapping of disease burden is one of the key compo-
nents of NTD programs; it guides eradication, elimi-
nation, and control efforts [1]. For trachoma, endemic 
countries have conducted prevalence surveys follow-
ing the globally standardized survey methods set by the 
World Health Organization (WHO) and implemented 
by the Global Trachoma Mapping Project and its succes-
sor Tropical Data [21, 22]. Using these data, countries’ 
elimination status is assessed against the prevalence-
based elimination criteria defined by WHO, which are a 
prevalence of TT unknown to the health system < 0.2% 
in adults aged ≥ 15 years and a prevalence of TF < 5% 
in children aged 1–9 years. These criteria are assessed 
in formerly endemic evaluation units (EUs), which are 
defined as the administrative units for health care man-
agement, typically containing 100,000 to 250,000 persons 
[23].

One of the endgame challenges for the elimination of 
NTDs is that it becomes more difficult to precisely pre-
dict the disease burden because of the small number of 
cases relative to survey sample sizes. For NTDs, this is a 
particular problem because survey data are often spatially 
sparse due to resource constraints and the inaccessibility 
of some geographical areas. To address these challenges, 
model-based geostatistics (MBG) [24] has been increas-
ingly used for mapping NTD risk and for the design of 
prevalence surveys [25, 26]. One of the key advantages 
of MBG is that it enables users to borrow information 
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across space, reducing the uncertainty inherent to infer-
ences on disease risk at any desired location within a 
study area of interest. It has been shown that MBG can 
produce more precise prevalence estimates than the 
standard design-based approach for analyzing TT data 
from trachoma prevalence surveys [27], and its statistical 
modeling framework applies to a wide range of settings 
for TF and TT [28].

Although the previous application of geostatistical 
models to trachoma accounted for individual-level fac-
tors associated with trachoma, namely, age in the case 
of TF and age plus gender for TT [27, 28], the useful-
ness of the inclusion of spatially referenced associated 
factors (or covariates) for the prevalence prediction has 
not been fully investigated. The use of spatial covariates 
related to environmental and socio-demographic factors 
for trachoma could enhance the predictive performance 
of geostatistical models. This is because the use of spa-
tially referenced covariates can help explain the spatial 
variation in disease prevalence and relies less on residual 
spatial correlation for carrying out spatial predictions. 
However, in the context of trachoma elimination, the 
low prevalences could make the estimation of regression 
coefficients more difficult to recover from the data and 
thus limit the usefulness of spatial covariates.

Given that the relationship between covariates and TT 
is likely to be weaker than for TF because TT prevalence 
reflects historical rather than current transmission, for 
this initial analysis, we aimed to examine the impact of 
spatially referenced covariates on TF prevalence predic-
tion, analyzing trachoma prevalence survey data from 
Ethiopia, Malawi, Niger, and Nigeria. To this end, we 
compared models with and without spatially referenced 
covariates with respect to the following two metrics: the 
parameter estimates of the geostatistical models, and the 
predicted TF prevalence and 95% prediction intervals, 
to summarize the contribution of spatial covariates to 
model variation in TF prevalence.

Methods
Data
Trachoma prevalence survey data and selection of evaluation 
units
We analyzed available data from Tropical Data-sup-
ported population-based trachoma prevalence surveys 
conducted in Ethiopia, Malawi, Niger, and Nigeria. Sur-
veys were implemented based on a two-stage cluster 
sampling methodology, which is described in detail else-
where [21, 22, 29, 30]. We used data from the most recent 
survey for each EU in the country.

To cover different levels of trachoma transmission, 
we analyzed the EUs that had the lowest, median, and 
highest observed prevalence of TF as EUs of interest in 

the country. This selection was made to better under-
stand how the effects of covariates vary under different 
transmission levels. We then combined the data from 
contiguous EUs, if available, which were identified as 
the sampled cluster locations that fell within the most 
recently available polygon shapefile for those EUs at the 
time of the analysis (May 2023) [31]. If (1) a geostatistical 
model was not feasible or (2) the corresponding informa-
tion on their geographical boundaries was not available 
in the shapefile, we then instead selected as the EU of 
interest one that had the closest prevalence level to the 
one that was originally chosen for the analysis.

The prevalence data used for the analyses in this 
paper are owned by the governments of the countries 
in which the original surveys were conducted. Per-
mission to use the data for our analyses was obtained 
via formal agreements between those governments 
and the involved universities and organizations; all 
data were de-identified before use. Researchers are 
welcome to request access to the same de-identified 
datasets by contacting Tropical Data at support@
tropicaldata.org.

Identifying data scenarios suitable for geostatistical 
modeling
In this study, we defined “a geostatistical model was not 
feasible” to be when a model could not be fitted, or the 
95% confidence intervals of the estimated parameters 
were not sensible. Examples of the latter case included 
the intervals that ranged from 0 to infinity or the inter-
vals for the estimated scale of the spatial correlation 
being so small or large that the lower or upper limit, 
respectively, were less or more than the minimum or 
maximum distance between the investigated clusters. 
Henceforth, we shall refer to each of the datasets identi-
fied for each country as “lowest,” “median,” and “highest” 
TF prevalence EUs, respectively. We excluded data from 
baseline surveys (i.e., pre-intervention data) and analyzed 
trachoma impact and/or trachoma surveillance surveys 
(i.e., post-intervention data).

Spatially referenced covariate data
We obtained the data for 18 spatially referenced candi-
date covariates (Table  1 and Additional file  1: Table  S1 
for more detailed information), which we considered the 
most relevant to TF prevalence based on the existing evi-
dence [6] and on consultation with experts in trachoma 
epidemiology. We then classified these spatial covari-
ates into five categories, each of which was considered 
to have a primary impact on TF epidemiology. The five 
categories were environment; accessibility; water, sanita-
tion, and hygiene (WASH); accessibility to and accept-
ance of health services; and ruralness. For Niger, except 
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for the proportion of the population using insecticide-
treated nets, the data on WASH and accessibility to and 
acceptance of health services were unavailable. The spa-
tial covariates’ values were rescaled to and extracted at 
the spatial resolution of 5  km2 for each cluster location 
and year (if possible) of the surveys for the EUs of inter-
est. We deemed a 5  km2 spatial resolution appropriate for 
this study, as some modeled covariate data may not accu-
rately represent values at finer spatial scales. Where the 
data were missing, we interpolated them by taking the 
mean of the neighborhood of the focal pixel using the R 
package “terra” [32]. However, for the temperature data, 
the pixels with missing values were too extensively dis-
tributed spatially, so we instead interpolated them using 
a time series model, which is described in detail in Addi-
tional file  2. After the extraction of all spatial covariate 
values, the continuous variables were standardized such 
that they had zero mean and one standard deviation. For 
a categorical variable (e.g., ruralness), we categorized the 
value into two, representing rural and urban as per a pre-
defined classification [33].

Census data
We used population census data from each country to 
produce the age-standardized TF prevalence. The pro-
portion of each 1-year age band among children aged 
1–9 years was calculated based on the 2007 Population 
and Housing Census in Ethiopia [53], the 2018 Popula-
tion and Housing Census in Malawi [54], the General 

Census of Population and Housing 2012 in Niger [55], 
and the 2006 Population and Housing Census in Nigeria 
[56].

Population density data
To weight the predicted TF prevalence by the popula-
tion density for each prediction location in Malawi, we 
collected the data on the population density of 1–9-year-
olds for the year 2020 obtained from WorldPop [57]. 
For Ethiopia, Niger, and Nigeria, the general population 
was used, because the data relating to 1–9-year-olds 
had many missing values. As the datasets for the gen-
eral population were available for the years from 2000 
to 2020, we used the data for the year during which the 
trachoma prevalence surveys were conducted in each EU 
of interest, or for the year 2020, if the survey was carried 
out after 2020. The use of the population density data is 
required to weigh pixels at the prediction stage of the 
analysis, which is not otherwise possible with the census 
data as these are not available at a fine spatial resolution. 
This aspect will be further explained in the “Prediction” 
section of the “Methods” section.

Statistical modeling
Accounting for age effects and spatial covariates selection
To build a geostatistical model to predict the TF preva-
lence using each dataset for the lowest, median, and 
highest TF prevalence EUs identified in the previous sec-
tion, we followed the general guidance for geostatistical 

Table 1 List of spatially referenced candidate covariate

Category Spatially referenced covariate Reference

Environment Precipitation [34]

Temperature [35, 36]

Enhanced vegetation index (EVI) [37, 38]

Aridity index [39, 40]

Altitude [41]

Accessibility Travel time to cities [42]

Travel time to healthcare (motorized and walking only) [43]

Distance to OpenStreetMap (OSM) major roads [41, 44]

Distance to OSM major waterways [41, 44]

Water, sanitation and hygiene (WASH) Percentage of population using an improved water source [45, 46]

Percentage of the population using open defecation [45, 46]

Accessibility to and acceptance of health 
services 

Percentage of children receiving at least one dose of diphtheria, tetanus toxoid, and per‑
tussis (DPT) vaccine

[45, 46]

Percentage of children receiving measles vaccination [45, 46]

Percentage of live births delivered at a health facility [45, 46]

Proportion of population using insecticide‑treated nets [47, 48]

Ruralness Nighttime lights [49–51]

Population density [41, 52]

Ruralness [33]
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modeling with spatially referenced covariates which was 
outlined by Giorgi et al. [58] and aimed to maximize the 
predictive power, whilst maintaining reasonable explana-
tory power by selecting and categorizing the candidate 
spatial covariates based on existing scientific knowledge 
as described above [58, 59].

Table 2 provides a list of all the statistical models con-
sidered in the study, for which we now provide further 
details. We first developed a model including age and 
retained it regardless of its statistical significance, follow-
ing the modeling framework shown in the previous study 
[28]. Hence, we used a linear spline with a knot between 
ages 2 and 4  years to model the effects of age on the 
logit TF prevalence if the observed prevalence showed 
an increase until around age 2–4 years and a decrease 
afterwards (model 1). The peak age, where the knot was 
placed, was informed by eye, through inspection of plot-
ted data. If the empirical logit prevalence instead linearly 
increased with increasing age, we modeled the age effects 
as logit linear accordingly. Formally,

 where pj(xi) is the probability that a child j living in the 
cluster xi has TF. α is an intercept. d represents age, and β 
is a regression coefficient. m represents the age at which 
the observed prevalence is the highest.

We then included spatially referenced covariates as 
follows:

where e(xi) is the spatially referenced covariates and γ is a 
regression coefficient.

To build model 2, for each dataset identified as low-
est, median, and highest TF prevalence EUs, we first 
visually assessed the linear and nonlinear association 
between the empirical logit prevalence of TF at cluster 
level among children aged 1–9 years and each of the 

(1)log
pj(xi)

1− pj(xi)
= α + { dij .

(2)

f
(
dij

)
=

{
β1dij + β2max

(
dij −m, 0

)
if 2 ≤ m ≤ 4

β1dij otherwise
.

(3)log

{
pj(xi)

1− pj(xi)

}
= α + {

(
dij

)
+ e(xi)′γ .

spatial covariates by fitting univariate models. Based 
on the visual assessment, for each dataset, we deter-
mined whether the spatial covariates needed to be log-
transformed to render the association with the logit 
prevalence more linear, and whether, after taking the 
log, the resulting relationship could be assumed linear 
or required additional adjustments due to nonlinear 
effects. We then examined all possible combinations 
of spatial covariates within each of the five catego-
ries using a generalized linear model (GLM) [60, 61]. 
Among these combinations, we selected those that pro-
duced the lowest Akaike information criterion (AIC) 
[62]. The five groups of variables were then merged into 
a single model including the age effect, and we took a 
backward elimination process until the removal of the 
remaining variables no longer reduced AIC [63, 64]. 
The process of spatial covariate selection is illustrated 
in Fig. 1.

To account for extra binomial variation due to within-
cluster correlation, we expanded Model 2 into a general-
ized linear mixed model (GLMM), where we introduced 
independent and identically distributed Gaussian ran-
dom noise (Model 3). In this study, we fixed the effects of 
the selected covariates as an offset as follows:

where α̂ , {̂ , and γ̂  are the offset for which we used the 
parameter estimates in model 2. Zi is independent 
and identically distributed Gaussian noise with mean 
zero and variance τ 2 , representing the residual varia-
tion in prevalence pj(xi) that was not attributable to the 
covariates.

Since the random effects in model 3 should be inde-
pendent, if they are spatially correlated, that would 
invalidate the use of a GLMM. In such cases, we used 
a geostatistical model (model 4) which we defined as 
follows:

where S(x) is a spatial Gaussian process that has 
mean zero, variance σ 2 , and correlation function 
ρ(u) = Corr(S(x), S(x′)) = exp{−|x − x′|/φ} , where 
φ is the decay rate of spatial correlation as the distance 
increases between x and x′ . Note that the model fitting 
process allowed for the data to determine the scale of the 
spatial correlation rather than us imposing any presump-
tion on it. The parameters of the model were estimated 
by Monte Carlo maximum likelihood (MCML) based on 
the R package “PrevMap” [65].

(4)log

{
pj(xi)

1− pj(xi)

}
= α̂ + {̂

(
dij

)
+ e(xi)′γ̂ + Zi.

(5)log

{
pj(xi)

1− pj(xi)

}
= α̂ + {̂

(
dij

)
+ e(xi)′γ̂ + S(xi)+ Zi .

Table 2 List of the models considered in this study

Model Type of model Covariates

Model 1 GLM Age only

Model 2 GLM Spatially referenced covariates and age

Model 3 GLMM Spatially referenced covariates and age

Model 4 Geostatistical model Spatially referenced covariates and age
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The type of model is either a generalized linear model 
(GLM), generalized linear mixed model (GLMM), or 
geostatistical model.

Prediction
Using the geostatistical model (model 4), we predicted 
the TF prevalence as follows. We first predicted the age-
specific prevalence, Pa at locations x∗ within the EU of 
interest at 5  km2 spatial resolution. We then computed 
the age-standardized prevalence, P , using the population 
census data, i.e.,

 where a represents the 1-year age band of children aged 
1–9 years and Wa(x

∗) is the 1 proportion of the popula-
tion in each age group a at the location x∗.

To compute the EU-wide prevalence, we gave the prev-
alence weights of the population density, Pop i.e.,

We obtained 10,000 predictive samples of S(x∗) by 
MCML. Using these samples, we computed the following 
two quantities: the mean as the point prediction of the 
EU-wide standardized prevalence; and the 2.5 th and 97.5 
th range as the 95% prediction interval.

When the GLMM (model 3) was used as a final model, 
we followed the same approach for age standardization 
and weighting by population density. We obtained 10,000 

(6)Pa =
{
Pa

(
x∗
)
: x∗ ∈ EU

}

(7)P
(
x∗
)
=

9∑

a=1

Wa

(
x∗
)
Pa

(
x∗
)

(8)P(EU) =

∑
§∗∈EU P(§∗)Pop(x∗)
∑

§∗∈EU Pop(x∗)

predictive samples from Z(x∗) by MCML and then com-
puted the abovementioned two quantities.

Spatially referenced covariates’ impact assessment by model 
comparison
To assess the impact of spatially referenced covariates, 
we compared the following two metrics. First, we com-
pared the estimates of the covariance parameters of the 
geostatistical model with and without the spatial covari-
ates, with the aim of understanding whether the spatial 
covariates explained the spatial correlation in the TF 
prevalence, and if so at what spatial scale. Second, we 
compared the predicted prevalence and the 95% pre-
diction intervals for each EU of interest to investigate 
whether the inclusion of spatial covariates reduced the 
uncertainty in the prevalence prediction.

Results
We analyzed data from a total of 12 EUs. Table 3 shows 
the crude (unadjusted) TF prevalence among children 
aged 1–9 years for the lowest, median, and highest TF 
prevalence EUs in Ethiopia, Malawi, Niger, and Nigeria. 
The maps of analyzed EUs are presented in Additional 
file  1: Figure S1–4. Overall, Ethiopia had higher preva-
lences than the other countries. In all countries, most of 
the EUs of interest were surrounded by areas that had 
noticeably different prevalence.

Year and type indicate the year and the type of the sur-
vey, where TIS and TSS, respectively, represent the tra-
choma impact survey and trachoma surveillance survey.

The parameter estimates for the covariates, and the 
transformations, if any, that were applied are shown in 
Additional file 1: Table S2–13. We found that the selected 
covariates differ across and even within the countries. 

Fig. 1 Selection process of spatially referenced covariates. Within each spatial covariate category, all the possible combinations of variables were 
examined using a generalised linear model (GLM) [60, 61] if the variables were entered non‑linearly), and the ones that produced the lowest Akaike 
Information Criterion (AIC) [62] were selected. These covariates were then combined into a single model, followed by a backward selection process 
[63, 64]
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For example, in Malawi, five spatial covariates were 
selected from the categories of accessibility, WASH, and 
ruralness in the median TF prevalence EUs, whereas for 
the highest TF prevalence EUs, seven covariates were 
selected from the categories of environment and acces-
sibility. The effects of covariates on trachoma prevalence 
varied across countries and EUs, reflecting differences in 
environmental conditions, accessibility, and socio-demo-
graphic factors. For example, in Ethiopia, a higher aridity 
index was associated with increased odds of trachoma in 
lowest-prevalence areas (OR 4.17, 95% CI 3.10–5.63) but 
showed a protective effect in highest-prevalence areas 
(OR 0.45, 95% CI 0.33–0.61). Similarly, in Niger, precipi-
tation had a strong negative association with trachoma 
in median-prevalence areas (OR 0.08, 95% CI 0.03–0.24) 
but was positively associated with prevalence in high-
burden areas (OR 1.38, 95% CI 1.15–1.66). Accessibil-
ity also showed contrasting effects; in Malawi, increased 
travel time to cities was associated with higher odds of 
trachoma in highest-prevalence areas (OR 2.20, 95% CI 
1.59–3.04), whereas in Nigeria, longer travel time to cit-
ies was linked to lower odds in lowest-prevalence areas 
(OR 0.49, 95% CI 0.36–0.67). These findings highlight the 
importance of accounting for local variations in factors 
associated with TF when modeling TF prevalence.

Table  4 shows the estimated covariance parameters 
in the geostatistical models with and without spatially 
referenced covariates. In some cases, the variance of 
the Gaussian noise, τ 2 , was not able to be estimated 
and was therefore removed from the model. Where 
the results are not presented, the GLMM was used as 
the final model because there was no residual spatial 

correlation. We see that, in eight out of 12 cases, the 
inclusion of the spatial covariates simplified the model 
from a geostatistical model to a GLMM. Where geosta-
tistical models were still used after accounting for the 
covariates, the estimated values for the variance σ 2 and 
the spatial scale parameter φ of the spatial Gaussian 
process became smaller. There was a substantial reduc-
tion in the variance in the lowest TF prevalence EUs 
in Nigeria by about 7, and in the lowest TF prevalence 
EUs in Niger, the spatial scale parameter fell by approx-
imately 80, although the confidence intervals between 
the models overlapped.

The models with and without spatially referenced 
covariates are compared for the lowest, median, and 
highest trachomatous inflammation—follicular (TF) 
prevalence evaluation units (EUs) in Ethiopia, Malawi, 
Niger, and Nigeria. The parameter estimates and CIs are 
shown on the odds ratio (OR) scale. σ 2 and φ , respec-
tively, correspond to the variance and the scale of the 
exponential spatial correlation of the Gaussian process 
S(xi) . τ 2 is the variance of a non-spatially structured 
Gaussian random variable (i.e., nugget effect). The results 
are not shown when the geostatistical model was not able 
to be fitted.

Table  5 shows the predicted TF prevalence and the 
95% prediction interval for the EUs of interest. In all EUs, 
the predicted prevalences were consistent between the 
model with and without the spatially referenced covari-
ates, as the 95% prediction interval overlapped between 
the models. In most EUs, the precision of the predic-
tion improved by accounting for the spatial covariates, 
narrowing the 95% prediction intervals. However, in the 

Table 4 The parameter estimates and 95% confidence intervals (CI) of the geostatistical model

Country Parameter OR estimates (95% CI)

Lowest TF prevalence EUs Median TF prevalence EUs Highest TF prevalence EUs

With covariates Without covariates With 
covariates

Without covariates With covariates Without covariates

Ethiopia σ 2 1.11 (0.64, 1.99) 3.84 (1.87, 7.88) ‑ 1.31 (0.66, 2.56) ‑ 2.33 (1.03, 5.24)

φ 1.54 (0.71, 3.33) 18.09 (8.63, 38.17) ‑ 18.29 (7.12, 45.53) ‑ 18.65 (5.37, 64.02)

τ 2 ‑ ‑ ‑ 0.48 (0.21, 1.08) ‑ 0.44 (0.18, 1.06)

Malawi σ 2 ‑ 0.01 (0.01, 0.021) ‑ 0.11 (0.06, 0.18) ‑ 0.63 (0.19, 2.09)

φ ‑ 7.02 (3.71, 13.39) ‑ 5.79 (2.65, 12.35) ‑ 18.93 (3.86, 93.19)

τ 2 ‑ ‑ ‑ ‑ ‑ ‑

Niger σ 2 2.02 (0.99, 4.13) 7.06 (2.77, 18.24) ‑ 3.63 (1.52, 8.66) ‑ 0.76 (0.37, 1.56)

φ 26.47 (12.63, 56.20) 106.43 (47.19, 246.12) ‑ 23.70 (10.05, 57.49) ‑ 20.81 (6.20, 66.24)

τ 2 0.11 (0.03, 0.49) 0.18 (0.06, 0.48) ‑ ‑ ‑ 0.43 (0.21, 0.87)

Nigeria σ 2 1.44 (1.12, 1.86) 8.82 (4.43, 17.24) ‑ 3.38 (1.89, 6.18) 1.15 (0.27, 4.85) 4.69 (1.87, 12.26)

φ 0.90 (0.42, 1.99) 15.22 (7.81, 29.47) ‑ 6.96 (3.75, 13.07) 6.88 (1.60, 29.99) 15.99 (5.41, 47.53)

τ 2 ‑ ‑ ‑ ‑ 0.26 (0.01, 5.80) ‑
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lowest TF prevalence EU in Malawi, uncertainty in the 
prevalence prediction was increased.

The TF prevalence and 95% prediction interval were 
compared between models with and without spatially 
referenced covariates for the evaluation units (EUs) of 
interest in Ethiopia, Malawi, Niger, and Nigeria. The 
point prevalence and prediction intervals, respectively, 
were computed as the mean and 2.5 th and 97.5 th range 
of 10,000 predictive samples based on Monte Carlo maxi-
mum likelihood.

Discussion
In this study, we quantified the inferential benefits that 
are accrued using spatially referenced covariates in a geo-
statistical model for trachoma prevalence surveys. Using 
TF data from Ethiopia, Malawi, Niger, and Nigeria, we 
have illustrated the geostatistical modeling framework 
that allowed us to incorporate spatial covariates to pre-
dict the TF prevalence of a specific EU and compared 
those with models that only used the individual-level 
covariate of age. We found that the spatially referenced 
covariates helped reduce prediction uncertainty; how-
ever, in some cases, the reduction was very small; in a 
case of very low TF prevalence, the uncertainty in preva-
lence prediction increased after the inclusion of spatial 
covariates.

One of the primary challenges encountered in fit-
ting complex models, such as geostatistical models with 
spatial random effects, was the very low prevalence of 
TF in several study areas. While our sample sizes were 
relatively large (as shown in Table 3), the low number of 
positive cases, in some instances, created difficulties in 
estimating model parameters with sufficient precision. 
This issue is not unique to geostatistics; it is a challenge 
that applies to most complex models when modeling rare 
events [66–68]. This is because low prevalence leads to 
sparse signal-to-noise ratios, increasing uncertainty in 
parameter estimates and limiting the ability to fit highly 
parameterized models, including geostatistical models. 
As a result, simpler models may often be more stable and 
reliable in such settings, as also shown in this study.

We examined the extensive list of factors poten-
tially associated with TF (Table  1 and Additional file  1: 
Table S1 for more detailed information). In the selection 
process of spatially referenced covariates for our mod-
els, we found that the association between covariates 
and TF prevalence was substantially different depend-
ing on the analyzed EUs, as indicated by the final set of 
selected covariates and their estimated regression coeffi-
cients (Additional file 1: Table S2–13). This suggests that 
trachoma epidemiology is highly specific to each area, 
consistent with evidence showing that trachoma is a very 
focal disease that tends to cluster not only at the house-
hold or community level but also at the district level [6, 
69]. Therefore, when analyzing data across multiple EUs, 
careful consideration must be given to potential vari-
ations in covariate effects between EUs. As a result, the 
decision to combine data from multiple contiguous EUs 
should be made on a case-by-case basis, and one should 
avoid merging samples from vastly different populations.

We compared the parameters of geostatistical models 
with and without spatially referenced covariates to assess 
their impact on modeling spatial variation. In some cases, 
the inclusion of spatial covariates allowed for the use of 
simpler GLMMs, indicating that most of the spatial cor-
relation in prevalence was explained by the spatially ref-
erenced covariates, leaving no residual spatial correlation 
in the model. When geostatistical models included spa-
tial covariates, the estimated parameters for the scale of 
spatial correlation decreased, as the spatial covariates 
accounted for the large-scale spatial patterns in the data. 
Additionally, the variance of the spatial Gaussian process 
decreased, reducing uncertainty in the estimated geosta-
tistical models. Given these findings, in general, the use 
of GLMMs with spatially referenced covariates should 
be preferred over geostatistical models without spatial 
covariates, as these simpler models can provide more 
precise predictive inferences on disease prevalence, pro-
vided that the regression relationships are valid across all 
locations.

Comparison of the prediction intervals for the esti-
mated TF prevalences based on models with and with-
out spatially referenced covariates showed that in all 

Table 5 Predicted trachomatous inflammation—follicular (TF) prevalence (%) in 1–9‑year‑olds

Country Predicted TF prevalence (95% prediction interval)

Lowest TF prevalence EU of interest Median TF prevalence EU of interest Highest TF prevalence EU of interest

With covariates Without covariates With covariates Without covariates With covariates Without covariates

Ethiopia 0.55 (0.42, 0.72) 1.95 (0.65, 4.48) 14.61 (11.15, 18.50) 8.68 (5.23, 13.13) 42.91 (37.19, 48.59) 49.70 (41.61, 57.60)

Malawi 1.29 (0.95, 1.84) 1.27 (1.15, 1.42) 1.20 (0.96, 1.50) 1.30 (1.04, 1.61) 3.95 (3.36, 4.65) 4.30 (3.18, 5.64)

Niger 1.25 (0.77, 1.92) 1.10 (0.27, 3.23) 1.64 (1.38, 1.95) 1.86 (1.03, 3.17) 6.18 (4.97, 7.53) 6.02 (4.33, 8.20)

Nigeria 1.67 (1.35, 2.05) 1.30 (0.33, 3.20) 0.96 (0.58, 1.57) 1.30 (0.50, 3.44) 9.82 (6.61, 13.81) 9.45 (5.97, 14.22)



Page 10 of 13Sasanami et al. BMC Global and Public Health            (2025) 3:48 

scenarios, the 95% prediction intervals overlapped 
between the two models, indicating consistent results. 
While the inclusion of spatial covariates generally 
reduced prediction uncertainty, the reduction was mini-
mal in some cases, and uncertainty in fact increased in 
the lowest TF prevalence EU in Malawi. This increase 
may be attributed to the low prevalence in the dataset, 
which includes data from the EU of interest and its sur-
rounding areas, making it more challenging to establish 
a clear relationship with covariates. Furthermore, unlike 
other NTDs, the role and impact of the environment 
in the transmission mechanisms of trachoma are less 
clear. For example, spatial covariates have been shown 
to enhance the accuracy and precision of prevalence 
predictions using geostatistical models for soil-trans-
mitted helminths (STH) [70]. For their transmission, 
climate with adequate moisture and warm temperature 
is known to be an important associated factor, as well 
as inadequate access to water and sanitation, because 
the parasite eggs or larvae thrive in the warm and moist 
soil where they infect humans through direct contact 
or ingestion [71]. In contrast, the transmission of tra-
choma encompasses direct person-to-person contact 
and indirect transmission via flies, fomites, or hard sur-
faces [4, 72–74] and is less well understood in relation 
to environmental or sociodemographic factors [7–17]. 
As a result, the spatial distribution of trachoma may 
not be as effectively explained by the spatial covariates 
included in the analysis.

When using spatially referenced covariates for 
prevalence prediction, several considerations are nec-
essary. First, the selection of spatial covariates in the 
final model may vary depending on how the relation-
ship between covariates and TF prevalence is defined. 
For example, in this study, we examined the associa-
tion between annual mean temperature and TF prev-
alence. However, this relationship may differ if we 
consider mean temperature on a monthly basis, which 
could better capture the immediate impact of tempera-
ture on the life cycle and density of M. sorbens, a key 
mechanical vector in trachoma transmission [7–17]. It 
would be, however, very challenging, if not impossible, 
to discern such effects when dealing with the tempo-
rally sparse trachoma prevalence survey data. Simi-
larly, TF prevalence might be driven by past exposures 
to the associated factors. For instance, one might find 
a stronger association between the TF prevalence and 
the precipitation months before the survey. However, 
to the best of our knowledge, there is no clear evidence 
to guide the selection of the most appropriate lagged 
covariate values for investigation. Second, it is impor-
tant to recognize that covariate data may not perfectly 
represent the variables of interest, and some of these 

data are generated from models that are inherently 
subject to assumptions, biases, and errors. For exam-
ple, data on healthcare accessibility used in this study 
were primarily derived from published information on 
public hospitals and clinics [43]. This could introduce 
significant bias in areas where private facilities con-
tribute greater proportions of total healthcare deliv-
ery. Additionally, the dataset lacks temporal dynamics; 
as of now, it is only available for the year 2019 and 
does not account for seasonal or permanent closures 
of healthcare facilities. Whilst acknowledging these 
considerations, it is also crucial to emphasize that no 
causal inferences should be drawn from the covari-
ates used in this study, as our models were designed 
for prediction and not for the unbiased estimation of 
regression coefficients.

There are several challenges in applying geostatisti-
cal models to trachoma prevalence survey data. Firstly, 
in some cases, the geographical definitions of EUs on 
the ground do not correspond with the boundaries 
represented by the shapefiles. When the geography of 
the area of interest is not well defined, accurate EU-
wide prevalence estimates cannot be produced. Fur-
thermore, in some countries, EU boundaries shift over 
time due to administrative or political changes, and no 
official source is available that tracks all changes. As a 
result, the geographical boundary data for EUs subject 
to such changes might not be available at the time of 
analysis. Another challenge is that trachoma surveys 
are conducted in each EU at different times, based on 
previous prevalence levels [22] and other program-
matic considerations. This means that when data from 
multiple EUs are combined and analyzed together, 
as in this study, it is assumed that prevalence levels 
remain constant throughout the period during which 
the aggregated data were derived. This assumption 
overlooks potential temporal changes in prevalence. 
However, in our study, this was considered reasonable 
as we excluded baseline survey (i.e., pre-treatment) 
data from the analysis.

Conclusions
The association between the spatially referenced covari-
ates and TF prevalence varies both across and within 
countries. This underscores the highly heterogeneous 
dynamics of ocular Ct infection transmission, and statis-
tical models should be tailored to the contextual setting. 
Deciding whether or not the spatial covariates should be 
used would thus have to rely on contextual knowledge 
and assessment of the scientific validity of the estimated 
regression relationships with the covariates.
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