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Innate biosignature of treatment failure in
human cutaneous leishmaniasis

María Adelaida Gómez 1,2 , Ashton Trey Belew3,4,
Deninson Alejandro Vargas 1,2, Lina Giraldo-Parra 1,2, Neal Alexander1,
David E. Rebellón-Sánchez 1,2, Theresa A. Alexander3,4 &
Najib M. El-Sayed 3,4

The quality and magnitude of the immune and inflammatory responses
determine the clinical outcome of Leishmania infection, and contribute to the
efficacy of antileishmanial treatments. However, the precise immune
mechanisms involved in healing or in the chronic immunopathology of human
cutaneous leishmaniasis (CL) are not well understood. Through sequential
transcriptomic profiling of blood monocytes, neutrophils, and eosinophils
over the course of systemic treatment with meglumine antimoniate, we
revealed that a heightened and sustained Type-I interferon response signature
is a hallmark of treatment failure (TF) in CL patients infected with Leishmania
(Viannia) panamensis and L.V. braziliensis. The transcriptomes of pre-treat-
ment, mid-treatment and end-of-treatment samples were interrogated to
identify predictive and prognostic biomarkers of TF. A composite score
derived from the expression of 11 differentially expressed genes (common
between monocytes, neutrophils and eosinophils) is predictive of TF. Simi-
larly, machine learning models constructed using data from pre-treatment as
well as post-treatment samples, accurately classify treatment outcome into
cure and TF. Results from this study instigate the evaluation of Type-I inter-
feron responses as immunological targets for host-directed therapies for the
treatment of CL, and highlight the feasibility of using transcriptional sig-
natures as predictive biomarkers of outcome for therapeutic decisionmaking.

Vector-borne infectiousdiseases causemore than 700,000humandeaths
each year1. Among the most impactful are those caused by viruses and
intracellular protozoan parasites, including malaria, visceral and cuta-
neous leishmaniasis (CL), Chagas disease, and dengue fever, which dis-
proportionately affect the poor, and perpetuate the cycle of poverty and
disease2. CL annually affects about one million people in 92 countries3. In
the absence of vaccines and effective vector management, control of CL
relies on treatment. However, the use and efficacy of most antileishma-
nials is limited by parenteral delivery, high levels of toxicity including
hepato- and cardiotoxicity4, and increasing rates of treatment failure.

Despite the World Health Organization (WHO)/Pan American
Health Organization (PAHO) guidelines favoring local treatments like
thermotherapy or intralesional pentavalent antimony (SbV) for
uncomplicated CL5, the vast majority of patients in endemic regions
across the American continent are still treatedwith systemic therapies.
This is due to the misalignment of local policies and global health
recommendations, and the limited access to technologies like ther-
motherapy. Furthermore, a high proportion of patients (as much as
60%)6 are not eligible for local therapies, as they do not meet the
clinical criteria for use, which include lesions in anatomical areas other
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than the face or near the joints, lesions < 3 cm indiameter, andpatients
presenting with a single lesion5. Therefore, systemic antimonials
remain the treatment of choice; a clinical practice reinforced by their
lower cost and higher availability. This translates into a challenge for
patients inhabiting rural and dispersed communities in most endemic
areas, where access tomedical care is limited. Therefore, adherence to
treatment and clinical follow-up are compromised, contributing to
higher rates of treatment failure (TF). Consequently, there is an urgent
need for predictive biomarkers of treatment outcomes for these vul-
nerable patient populations, but most importantly, for better ther-
apeutic interventions.

Clinical resolution of localized CL is accompanied by a reduction
in parasite burden and yet, parasite elimination per se is not the sole
determinant of healing. Parasite persistence has been documented
following therapeutically achieved cures in more than 40% of patients
infected with Leishmania Viannia species in Central and South
America7–9. Pathogenesis of dermal leishmaniasis (mucocutaneous and
CL) is mediated by the immune and inflammatory responses; thus,
resolution of the disease and control of the infection are intimately
linked to the host response10. Recent studies from our group and
others on localized CL infections caused by L. Viannia species are
beginning to unravel the role of innate and adaptive immune com-
ponents in TF upon treatment with antimonial drugs and
miltefosine11–14. We have shown that lesions of TF patients are char-
acterized by sustained local inflammation mediated by heightened
expression of pro-inflammatory chemokines and cytokines, pre-
dominantly associated with activation and migration of monocytes,
polymorphonuclear cells, and TH1 CD4+ T cells13. In addition, an
environment of high cytolytic activity mediated by CD8+ T cells and
subsequent induction of inflammation mediated by IL1β has been
shown in lesion biopsies of TF patients infected with L.V. braziliensis15.
Interestingly, the expression of inflammatory genes in peripheral
blood mononuclear cells (PBMCs) of CL patients is modulated by
in vivo exposure to antimonial drugs11, as early as 30minutes after
intramuscular drug delivery. The dynamics of expression of some of
those genes, including ones involved in monocyte and neutrophil
chemotaxis and activation (CCL2, CXCL2, CXCL3, CXCL8), were related
to the pharmacokinetics (PK) of plasma antimony concentrations.
These observations suggest that drug-dependent modulation of
inflammation, especially the immunomodulation of innate responses,
is a central component of healing in CL.

We hypothesized that sustained and deregulated inflammatory
gene expression in innate cells leads to their continuous activation
and recruitment to ulcerated cutaneous lesions, promoting immu-
nopathology and leading to TF in patients with localized CL. Here, we
present a longitudinal study of the transcriptomes of peripheral
blood monocytes (Mo), neutrophils (Nφ), and eosinophils (Eφ) of CL
patients obtained over the course of antileishmanial chemotherapy
withmeglumine antimoniate (Glucantime – GLUC). The profiles from
each of the innate immune cell types interrogated here yielded clear

signatures that distinguished TF patients from those who cured.
Most prominent, and shared between the three cell types, was an
enhanced Type I interferon (IFN) gene expression profile, which
comprised the hallmark signature of innate cells in patients with TF.
Characterization of the innate immune response during the course of
treatment allowed the identification of host-specific prognostic sig-
natures of the therapeutic response.

Results
Study participants and samples
Forty adult CL patients participated in this study, andwere recruited in
our outpatient clinics, one in the city of Tumaco (South Pacific coast of
Colombia), and another in the urban center of Cali. One patient was
excluded due to progression to mucosal leishmaniasis, in accordance
with the clinical protocol designed for this study (Fig. 1A). Of the
remaining participants, 35 completed clinical follow-up. One partici-
pant did not donate blood or tissue samples and was therefore not
included in the transcriptomic analyses. Most of the 34 enrolled par-
ticipants were males of Afrocolombian descent, presented with
ulcerated skin lesions, and most were infected with L.V. panamensis,
the remaining with L. V. braziliensis. Five patients were treated with
miltefosine (MLF), all cured. Twenty-nine patients were treated with
GLUC, 19 cured, and 10 experiencedTF.Due to the small sample size of
MLF-treated patients and the absence of TF in this group, only samples
from GLUC-treated patients (29 in total) were carried forward for
transcriptomic analyses (Fig. 1B). Adherence to treatment in GLUC-
treated patients was > 95% (measured as the proportion of ampoules
administered from those prescribed). Significant differences were
noted in the age and ethnicity of patients who cured vs. patients with
TF in the aggregated data of patients recruited in Cali and Tumaco
(SupplementaryTable 1a). These two variables (age andethnicity) were
collinear (Supplementary Fig. 1A, B), and the magnitude of their effect
on the outcome of treatment wasmarginal (Supplementary Fig. 1C, D).
No further evidence of the influence of any of these variables on the
outcome of treatment was identified in a multivariable logistic
regression analysis (Supplementary Fig. 1E for the full cohort, or Sup-
plementary Fig. 1F for patients recruited in Tumaco only).

Leishmania species, drug resistance, and virulenceof the infecting
strain may contribute to TF. In L. V. braziliensis and L. V. guyanenesis
infections, virulence has been associated with the presence of the
Leishmania RNA virus (LRV)16,17. To assess the possible impact of these
variables, we evaluated the Leishmania isolates from study partici-
pants for susceptibility to pentavalent antimony and the presence of
LRV. Leishmania strains were isolated from 24 patients treated with
GLUC (14 cures and 10 TF); isolates from the remaining 5 could not be
propagated. The predominant species isolated was L.V. panamensis
(n = 19), followed by L.V. braziliensis (n = 4) and L.V. guyanensis (n = 1).
No statistical differencewas observed between the Leishmania species
and the outcome of treatment in this patient cohort (Supplementary
Table 1). As intracellular amastigotes, 10 strains were susceptible to
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Fig. 1 | Participant recruitment and study design. Flow chart (A) showing the
recruitment of participants in the study ending with a total of 34 enrolled partici-
pants. Study design (B) detailing participant enrollment, treatment, sample

collection and analysis, and determination of treatment outcome. Created in
BioRender. Gomez, M. (2025) https://BioRender.com/g83q151.
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GLUC, 12 were resistant (of which 5 were isolated from patients who
were cured, and 7 from TF), and data was unavailable for 2 (Supple-
mentary Fig. 2A). No statistically significant difference was found
(Fisher´s P =0.23). All strains evaluated were negative for LRV.

To explore the possible contribution of genomic/transcriptomic
differences of the parasite to the outcome of treatment, Leishmania
transcriptomes were analyzed from the dual RNA-Seq data collected
from lesion biopsies,Mo, Nφ, and Eφ samples fromCL patients before
and over the course of treatment. Only samples that passed a thresh-
old of single mapped parasite reads ≥ 30000, and ≥ 3000 observed
genes were used for the sufficient representation of the parasite gen-
ome, resulting in a total of 15 samples analyzed (corresponding to 8
biopsy samples, 1 Eφ, 1 Mo, and 5 Nφ samples from 11 patients; 6 cures
and 5 with TF) (Supplementary Data 1). No significant difference in the
parasite transcriptomeprofiles could bediscerned by PCA using either
uncorrected (Supplementary Fig. 2B) or surrogate variable analysis
(SVA) adjusted data (Supplementary Fig. 2C). Collectively, LRV con-
tent, drug susceptibility testing, Leishmania species typing, and tran-
scriptomic analyzes from infected human samples rule out a
significant contribution of the parasite to the outcome of treatment in
this cohort of patients.

Global assessment of samples and human transcriptomic
profiles
Lesion biopsy samples were collected before initiation of treatment,
and peripheral blood samples obtained pre-treatment (Pre-Tx), mid-
way through treatment (Mid-Tx, day 8), and at the end of treatment
(End-Tx, day 20).Mo,Nφ, and Eφwere isolated fromall blood samples.
The cell populations were evaluated by flow cytometry and light
microscopy, and purity confirmed > 95% (Supplementary Fig. 3). cDNA
libraries were constructed and sequenced from a total of 186 samples

(Supplementary Data 1 and Fig. 2A). Following low coverage filtering
(Supplementary Fig. 4), two samples were removed.We used principal
component analysis (PCA) and a correlation heatmap to visualize the
relationship between samples (Fig. 2B, C). The PCA resulted in the
expected grouping by cell type (Fig. 2B). A similar clustering was
observed in the hierarchical clustering analysis (Fig. 2C). These data
support the quality, reproducibility, and specificity of transcriptomes
derived from the isolated blood cells from our patient cohort.

The use of two clinics for patient recruitment (one in Tumaco and
another in Cali) necessitated the evaluation of the data to account for
possible clinic-associated batch effects.When all sampleswere colored
by clinic on the same PCA plot, no grouping by clinic was discernible
within cell types (Supplementary Fig. 5A – all samples); however, a
grouping of samples by cell type revealed a significant amount of
variance which separated Tumaco from Cali, confirming the presence
of a batch effect attributable to the clinic (Supplementary Fig. 5B–D).
Similar analyses were performed evaluating the effect of ethnicity
(which was also cross-correlated with age, without finding any sub-
stantial contribution of this variable to the overall variability of the
transcriptomic data (Supplementary Fig. 5F–H). To highlight the
variability between clinics, we modeled the ‘clinic’ variable in SVA and
used the surrogate variables-modified counts to generate the PCA
plots, further supporting the hypothesis of a strong batch effect
associated with the clinic (Fig. 3A–D).

The relative contribution of metadata factors to the transcrip-
tional profile was further examined via a series of principal component
(PC) and surrogate variable (SV) loading analyses. This was performed
by taking the first 5 PCs of the normalized (CPM and filtered) data and
collecting their F-statistics and associated P-values with respect to a
series of empirically observed important metadata factors: clinic,
donor, and visit number. PCs and factors with high F-statistics and low
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Fig. 2 | Global gene expression profiles of blood cells (Mo, Nφ, and Eφ) and
lesion biopsies from study participants during the course of treatment. RNA-
seq was carried out on biopsies collected pre-treatment and on 3 types of leuko-
cytes (Mo, Nφ, and Eφ) collected pre-treatment (Pre-Tx), mid-treatment (Mid-Tx),
and at the end of treatment (End-Tx). C = cures, F = treatment failure (A).
A principal component analysis (PCA) plot (B) and heatmap of hierarchical clus-
tering analysis using pairwise correlations (C) are shown for all samples. The ana-
lyses were performed using all annotated protein-coding genes following filtering

for low counts, CPM, quantile normalization, and log2 transformation. In the PCA
plot, the first two principal components are shown on the X and Y-axes, respec-
tively, with the proportion of total variance attributable to that PC indicated. Each
sample is represented as a single point with color indicating cell type and shape
indicating treatmentoutcome. Colors along the topof the heatmap indicate the cell
type. Colorswithin the inset of the heatmap represent correlation values. The green
line represents the frequency of correlation values.

Article https://doi.org/10.1038/s41467-025-58330-3

Nature Communications |         (2025) 16:3235 3

www.nature.com/naturecommunications


P-values were deemed noteworthy. The normalized data was then
passed to SVA with cure/TF status as the variable of interest, and the
F and P-values were collected. We found that the most prominent SV
in the expression data was ‘clinic’ (SV4 and SV5), followed by modest
F-statistic/P-values for ‘donor/participant’ (SV4) and, to amuch lesser
extent, ‘visit number’ (SV1 and SV2). The same values were then
collected from the SVA-adjusted transcriptional profile (Supple-
mentary Data 2). Indeed, the effect of ‘clinic’ increased significantly
relative to the other two factors (as shown by higher F and P-values in
the Post-SVA PC1), indicating a persistent batch effect associated
with the clinic.

Based on the significant batch effect introduced by the patient
recruitment clinic and the skewed representation of cured patients
recruited in Cali (9 of 10 CL patients recruited in this site cured), we
excluded all samples obtained from patients in the Cali clinical site
from the initial transcriptomic analyses and biomarker discovery.
Therefore, the transcriptomic variance associated with therapeutic
outcome was analyzed on SVA-adjusted data sets from samples
derived from patients recruited in Tumaco. After subsetting to
include only samples collected fromTumaco and carrying out similar
loadings analyses as described above (Supplementary Data 2), the
effect of ‘visit’ continued as minor, showing that the expression
changes in the samples are modest between samples collected Pre-
Tx, Mid-Tx or at End-Tx. The largest effect remained attributable to
the ‘donor’.

Transcriptomes from lesion biopsies obtained pre-treatment
corroborate heightened tissue cytolytic activity in treatment
failure patients
A recent comparative transcriptome analysis of Pre-Tx lesion biop-
sies from CL patients infected with L.V. braziliensis showed a gene
signature of heightened cytolytic activity in lesions from TF
patients, compared to those who cured15. To explore the congruity
of those findings with infections with other L. Viannia species (L.V.
panamensis), we examined CL lesion transcriptomes in our study
cohort. Overall, the transcriptomic profiles of lesion biopsies from
patients who cured were indistinguishable from those of patients
with TF (Supplementary Fig. 5E), even following SVA (Fig. 3E). As
expected, only few genes (n = 28) were differentially expressed (DE)
(P < 0.05; |log2FC | ≥ 1), 17 of which were up-regulated and 11 down-

regulated in patients with TF, compared to cures (Supplementary
Data 3a). Notably, among up-regulated genes, a signature of
increased cytolytic activity (GZMB, NCR1, SH2D1B, PRF1, KLRC1,
GNLY, FGFBP2, KIR2DL4, CCL3 and CCL4) was found in tissue samples
from TF patients (Supplementary Data 3b), consistent with previous
findings from TF patients infected with L.V. braziliensis15. The mini-
mal difference in the global transcriptomes of skin lesions from
cured and TF patients was expected since bulk transcriptomes from
complex multicellular tissues are often skewed to reflect the most
abundant or transcriptionally active cells within the sample.
Nevertheless, the fact that a clear transcriptomic signature of
enhanced cytolytic activity was detected in TF suggests that sys-
temic differences leading to the activation and/or recruitment of
cytotoxic Natural Killer (NK) and CD8+ T cells could be contributing
to this enhanced inflammatory state.

Transcriptomic profiles of innate immune cells do not change
over the course of treatment
Our understanding of the participation of innate immune responses in
the outcomeof antileishmanial therapy is almost exclusively limited to
the role of macrophages as primary host cells for the parasite. How-
ever, mounting evidence shows that other innate cells, including Nφ,
and more recently Eφ and NK cells, participate in the inflammatory
responses that contribute to CL immunopathology, and thus their
functions are relevant to the outcome of treatment18.

Among the hallmarks of innate immune cell functions are the
velocity and robustness of their elicited responses, which in turn
require tight mechanisms of control to avoid host injury. To explore
the dynamics of these responses and their participation in therapeutic
responsiveness, we analyzed samples collected from CL patients Pre-
Tx, Mid-Tx, and at End-Tx. PCA plots of the transcriptomes of indivi-
dual cell types did not reveal any significant clustering of samples
based on visit (i.e., over the course of treatment) (Fig. 4A–C). Fur-
thermore, a correlation analysis of DE genes (DEGs) derived from SVA-
adjusted data using two different models, one which explicitly inclu-
ded visits in the DEmodel and the other which did not, showed strong
and significant correlations for the log2FC values in Mo, Eφ, and Nφ
(r >0.9), as well as for the respective P-values (ρ >0.82) (Fig. 4D–F).
These data rule out a substantial effect of including visits in the DE
model for cure vs. TF. Based on the above, we opted to group
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transcriptome samples from all time points from each cell type for the
identification of biomarkers and transcriptional signatures of cure
and TF.

Because we sampled the same patients before treatment and
twice during the course of several weeks post-treatment, we wanted
to rule out that the multiple data points were not amplifying the
effects observed. To that end, we included “patient” as a random
effect variable in a series of linear mixed models (LMM) using the
dream19 functionality from variancePartition20. Our LMM included
visit, final outcome, and cell type as fixed effects; and donor as a

random effect. We then compared the DE outputs of dream (log2FC
and P-values in the contrast of Cure vs. TF; Supplementary Data 4)
against the DESeq2 data. High correlations of log2FC values (≥ 0.84)
were observed for all cell types (Fig. 4G–I), indicating a strong
similarity among DEG lists obtained with the two analytical
approaches. Up to 40% of genes deemed significant by DESeq2 in
any of the three cell types were also significant using dream. Net-
work analyses using as input the DEGs resulting from dreams also
yielded consistent results (genes and pathways) to those derived
from the DESeq2 data (Supplementary Fig. 6).
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Monocyte, neutrophil and eosinophil transcriptomes from CL
patients who cure differ from those with TF
Examination of Nφ, Mo, and Eφ transcriptomes showed a clear clus-
teringof samples by treatmentoutcome, in eachof the three cell types,
revealing a distinct separation of samples along the first principal
component (PC1) (Fig. 5A). On average, PC1 explained 18% of the var-
iance across the three cell types. A DE analysis in each of the three cell
type transcriptomes revealed 3 to 4 times more significant DEGs
between cures and TF in Mo, when compared to Eφ and Nφ (Supple-
mentary Data 5), consistent with higher transcriptional activity of
Mo21,22. Those DE profiles are represented in the form of volcano plots
(Fig. 5B). When a |log2FC | ≥ 1 threshold was established, a comparable
number of DEGs was observed between cures and TF among the three
cell types: 191 in Eφ, 160 in Nφ and 112 in Mo (Supplementary Data 5
and Fig. 5C).

In Eφ, a robust induction of IFNα/β signaling was revealed by
gene up-regulation of innate immune receptors, signaling molecules,
transcription factors, and regulators of signaling pathways (Supple-
mentary Data 5). The gene encoding IRF7 was up-regulated in TF Eφ.
Together with IRF3, IRF7 is the canonical transcriptional regulator of
Type I IFNs23. IFIH1 (gene encoding MDA5), a RIG-I-like receptor and
cytoplasmic sensor of dsRNAs, was also up-regulated in TF. MDA5
has been demonstrated to be an amplifier of innate immune
responses and associated with autoinflammation24. Genes encoding
downstream effectors (includingOAS1, OAS2, OAS3, OASL, BST2, MX1,
MX2, IFI6, XAF1, GBP2, and IFI27), and pathway regulators (IFIT5, ISG15,
RSAD2, USP18, HLA-G, DHX58, and DDX60) were found in enriched
gene categories in Eφ (Fig. 6A, B), substantiating elements of a Type I
IFN signature in TF. Type I IFN response pathway genes were also
enriched in Nφ transcriptomes from TF (Supplementary Data 6 and
Supplementary Data 7). Notably, genes encoding HERC6, IFI44L,
ISG15, USP18, IFI27 and DDX60 (Fig. 6C, D) were also expressed at
higher levels in TF Nφ. Consistently, Mo transcriptomes from TF

patients were also enriched in mRNAs encoding Type I IFN-related
genes (Fig. 6E, F), suggesting synergistic innate cell functions
towards hightened type I IFN inflammation in TF. Downregulation of
IL1R1 and IL1R2 (decoy) receptors was observed in Mo from TF
patients, and downregulation of molecules related to MHCII antigen
presentation was found in all cell types from TF patients (Supple-
mentary Data 5, Supplementary Data 6 and Fig. 6A, C, E). Genes
involved in wound healing and cell proliferation (HBGEF, EGR1, and
EGR3) were down-regulated in Eφ of TF patients. In Mo from TF,
down-regulated antimicrobial peptide genes (including CTSG, LTF,
CAMP, DEFA3, and LCN2) and immune receptor activity genes
(including IL2RB, IL1R2, HLA-DQA1, HLA-DQB1, IL1R1, and CXCR4) were
significantly enriched. Altogether, these results suggest that
mechanisms underlying TF are associated with an enhancement of
Type I IFN signaling, a dampening of antimicrobial effectors (anti-
microbial peptides), and functions linking the innate and adaptive
immune systems (antigen presentation).

Twelve DEGs were common among all cell types: IFI44L, IFI27,
PRR5, PRR5-ARHGAP8, RHCE, FBXO39, RSAD2, SMTNL1, USP18, AFAP1,
SIRPG andOTOF (Fig. 5C). Althoughmore than 70% of significant DEGs
with |log2FC | > 1 were unique to each cell type (underscoring a cell-
specific response) gene enrichment analyses showed common sig-
nificantly enriched features between the different innate cells (Sup-
plementary Data 6, Fig. 6B, D, F). Among up-regulated genes,
enrichment of type I IFN responses was common to Mo, Eφ, and Nφ
from TF patients, and this was also supported by GSVA (Supplemen-
taryData 7). No similarities in gene enrichment analysis were found for
down-regulated genes among cell types, with the exception of MHCII-
related genes (Supplementary Data 6).

Considering the overlap of DEGs among cell types, we evaluated
whether an IFN gene signature could be detected in a combined ana-
lysis of transcriptomes derived from all innate cell types. As observed
in the PCAbefore SVA (Supplementary Fig. 7A),most of the variance in
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thedata (81% for PC1 andPC2 combined) couldbeattributed to the cell
type.When SVAwas used (Supplementary Fig. 7B), a partial separation
of transcriptomes was observed between cells isolated from CL
patients who cured versus those with TF. Differential expression ana-
lyses revealed 210 genes ( | log2FC | ≥ 1; 137 upregulated in TF com-
pared to cures and 73 downregulated (Supplementary Data 5).
Consistently, the IFN and MHC signatures identified in the analyses of
each cell population were also observed in the combined analysis
(Fig. 6G, H).

In a complementary approach to DE analyses, we employed weigh-
ted gene co-expression network analysis (WGCNA) to identify co-
expressed gene clusters associated with therapeutic response. The Mo
data resulted in four genemoduleswith a significant association. The four
modules comprised 478 genes and were enriched in genes encoding
ribosomal, mitochondrial and DNA nuclear activity and IFNα/β-inducible
proteins (Supplementary Data 8and Supplementary Fig. 8). In Nφ, three
modules comprising 581 genes were associated with therapeutic
response andwere enriched in cellular pathways similar to those found in
our DE analyses: Type I IFN, MHC-II, DNA nuclear activity, glycolytic
metabolism, cell migration, vesicular transport, cell death and the
immunoproteasome. For Eφ, both associated modules comprised 200
genes, with an enrichment of genes related to Type I IFN responses,
consistent with DE analysis, and Nφ and Mo WGCNA. Of the total genes
contained within the significant modules from the three cell types, 36
were shared, and all were up-regulated in TF. Among those, 24 were
related to the IFN responses (Supplementary Fig. 8C, D), and this was
consistent with the DE analyses. Prominent in WGCNA were STAT1 and
STAT2, two known transcription factors involved in IFN signaling and
expression of interferon-stimulated genes (ISGs). Both transcription fac-
tors were up-regulated in TF, suggesting coordinated and sustained IFN
effector functions eliciteddownstreamof IFN receptor ligation. Together,
WGCNA and DE analyses support the participation of a systemic pro-

inflammatory environment sustained in TF, mediated in part by Type
I IFNs.

To explore whether these IFN signatures observed in innate cells
were also detected at the lesion site, we compared CPM values of any
differentially expressed ISGs identified in any of the innate cell popu-
lations analyzed, including those common to all cell types. Sig-
nificantly higher expression of OAS1, OASL, GBP2, MX1, DDX60, IFIT5
and XAF1 was observed in lesion biopsies from TF patients (Supple-
mentary Fig. 9A). Higher expression of MX1 and OASL was corrobo-
rated in an independent transcriptomicdata set from lesionbiopsies of
other 11 patients previously published by our group25 (Supplementary
Fig. 9B). In a combined analysis of all lesion biopsy transcriptomes
(Supplementary Fig. 9C; cures n = 14, TF n = 11), OAS1, OAS3, OASL,
RSAD2 and MX1 were significantly higher in TF biopsies, suggesting
involvement of local and systemic IFN responses in treatment failure.

IFNα/β stimulated genes constitute a hallmark signature of
TF in CL
Based on the functional commonalities between the cell-specific
transcriptional profiles, we recognized a common innate gene sig-
nature, from which we were able to identify biomarkers that predict
TF. From the gene lists derived from our WGCNA and DE analyses, we
selected the 12 commonDEgenes inMo,Nφ and Eφ: IFI44L, IFI27, PRR5,
PRR5-ARHGAP8, RHCE, FBXO39, RSAD2, SMTNL1, USP18, AFAP1, OTOF
and SIRPG. Each of those common genes was up-regulated in TF, with
the exception of AFAP1, which was down-regulated. We, therefore,
constructed a composite score for each patient based on this innate
gene signature of up-regulated genes (which excluded AFAP1). RPKM
values were extracted from all Pre-Tx samples for each cell type. Those
were selected for their predictive value in guiding early therapeutic
interventions. RPKM values were used to construct raw and normal-
ized scores (Z-score), the latter to account for possible outliers within
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Fig. 6 | Network and enrichment analysis of innate cell DEGs, contrasting cures
vs. TF. Panels A, C, E, and G. Significantly DEGs (Padj<0.05 and |log2FC | ≥ 1) were
used as input for network analyses. STRING V12.0 was used to construct networks
based on co-expression, databases, and experiment terms, with line thickness
representing the confidence of the interaction. Enriched categories shown over-
laying the networks are those selected from KEGG, GO, or Reactome (one-sided
Fisher test with g:SCS-corrected P-values) terms with FDR<0.05 and strength > 1.
The blue border in nodes represents up-regulated genes in TF compared to cures;
red borders depict downregulated genes. The intensity of the border color reflects

the magnitude of the DE in our dataset. Genes belonging to the Type I IFN cluster
are grouped under a blue shade, MHCII in red, and others in gray. Panels B,D, F,H.
The same significant DEGs were used for over-representation analyses by gPro-
filer2. Terms with adjusted P-values≤0.05 (g:SCSmethod in gProfiler) from the GO
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node represents the adjusted significance of the observed over-representation.
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groups. Both raw and Z-scores were higher in TF patients, and this
difference was statistically significant for the scores derived from Nφ,
and for the Mo + Nφ composite scores (Fig. 7A–D and Supplementary
Fig. 10). Consistently, raw and Z-scores from Pre-Tx Nφ samples and
the Mo + Nφ scores, were significantly predictive of the therapeutic
response (Fig. 7E, F).

We next applied a machine learning approach to carry out a
comprehensive analysis of all data on hand and complement our
focused DE analyses. The expression matrices of all samples obtained
from Tumaco or both clinics (Tumaco and Cali) were split into 10
rounds of training (40%) and testing sets (60%), through random
partitioning and cross-validation. The training sets were used to gen-
erate K-nearest neighbors (KNN), logistic regression (GLM), gradient
boost (XGBoosted GLM), and random forest models26. Following an
evaluation of the resultingmodels by comparing the predictions of the
training data to the known clinical outcomes (Supplementary Data 9),
we used thosemodels to predict clinical outcomes in the test partition
and evaluated their performance with an emphasis on a dataset that
only included Pre-Tx samples as these would be the most translatable
for clinical and therapeutic decision making. Overall, the GLMmodels
showed better performance. Using data from all blood cell types col-
lected from all visits in the Tumaco clinic only, specificity, sensitivity,
and accuracy, were 0.83, 0.84, and 0.82, respectively (Supplementary
Data 9). When the models were restricted to include only Pre-Tx
samples, the metrics were impacted (as an example, GLM metrics

changed to specificity = 0.78, sensitivity = 0.70, accuracy = 0.69). A
second round of the dual analysis described above included samples
from both clinics, substantially improving the performance of all
models with accuracy up to 0.89, sensitivity 0.87, specificity 0.95, and
AUC0.85 (forGLM) (Supplementary Data 9). As expected, the addition
of samples from both study sites, and from all subsequent visits
enhanced the performance of all models (Supplementary Data 9),
possibly overcoming the clinic-based batch effect observed for DE
analyses.

To explore the relationship between the predictive features
identified by ML and DE, we conducted a “pseudo-bulk” DE analysis of
all innate cell samples obtained at the three time points from patients
from Cali and Tumaco (Fig. 8A, B). A total of 282 genes from the
combined DE analysis in the Cure/TF contrast were observed, among
which were the 12 innate biosignature genes (Supplementary Data 10,
Fig. 8C). The top 300 most variable importance genes for each of the
four ML algorithms used was contrasted against the DE gene set
(Supplementary Data 10). Interestingly, the most significant overlap
betweenML and DE analyses resulted from the KNNmodel, sharing 18
genes, five of which also feature in the innate biosignature (IFI27,
USP18, OTOF, SIRPG, and RSAD2). Although the three other algorithms
performed better than KNN in terms of specificity, sensitivity, and
accuracy metrics, they fared worse in their overlap with the DE ana-
lyses. This likely results from the requirement of significantly larger
datasets for ML compared to DE analyses.

Fig. 7 | Performance of innate score for predicting TF. RPKM data of the 11 up-
regulated innate signature genes from Pre-Tx samples was used to construct neu-
trophil (A, C) andmulti-cell (monocyte + neutrophil panelsB,D) composite scores.
Raw (A, B) and normalized scores (C, D) are shown. Statistical significance was
evaluated by analysis of variance. P-values from two-tailed analyses are shown.
Representation of receiver operating characteristic (ROC) curves for raw (filled line

and black circles) and normalized (dashed line and open circles) scores from
neutrophils (E) and a combined score of monocytes plus neutrophils (F). ROC
curves represent the area under the curve (AUC) of the false positive rate versus the
true positive rate. P-values, AUC, and cutoff values based on Youden’s J statistic are
shown in the graph plots. Mono+Neutro: combined scores of monocytes and
neutrophils.
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Discussion
The response to antileishmanial chemotherapy has been primarily
attributed to the drug susceptibility of the etiological agent, patient
adherence to the therapeutic scheme, and intrinsic differences in
drug exposure (pharmacokinetics). However, the extent of the con-
tribution of in vitro drug susceptibility of Leishmania to the outcome
of in vivo treatment remains controversial27, largely due to lack of
harmonized methods for susceptibility testing and large-scale clin-
ical evaluations of these associations. It is known that immunosup-
pression negatively impacts the efficacy of antileishmanials, both in
murine models of infection28–32 and in humans33,34, indicating a sub-
stantial effect of the immune response on the outcome of treatment.
However, approximately 25% of immunocompetent individuals pre-
sent with TF in controlled clinical trials35–37. In this study, we present
the comprehensive transcriptomic profiling of the most abundant
innate cells from peripheral blood (Mo, Nφ, and Eφ) in immuno-
competent CL patients undergoing antileishmanial chemotherapy.
Our results reveal transcriptomic differences in all innate cell popu-
lations when comparing patients who cured and those with TF, and
these were constant throughout the course of treatment. Notably,
evidence of the participation of Type I IFN innate inflammatory
responses in TF during systemic treatment with Glucantime® was
common to Mo, Nφ, and Eφ transcriptomes. This instigated the
search for an innate biosignature of TF, resulting in a score derived
from the expression of 11 common DEGs, including a subset of Type I
ISGs. This score was predictive of TF.

Type I IFNs (IFNα and IFNβ) are rapidly induced during viral
infections and are central to the antiviral response23. However, their
role in infections with intracellular bacteria or protozoan parasites
remains elusive. A low dose of IFNβ protected mice from progressive
CL caused by L. major38, and this was related to the induction of iNOS,
NK cytotoxicity, and early production of IFNγ39. In visceral leishma-
niasis (VL) caused by L. donovani, IFNα/β acts as an upstream sup-
pressor of anti-parasitic TH1 cells, and IFNAR1 -/- mice better control
infection compared to wild type40. These results provide evidence of
both protective and pathogenic roles of Type I IFNs in leishmaniasis,
which are likely dependent on the IFNα/β concentration and

downstream regulation of the response. In human PBMCs, pharma-
cological blocking of IFNα/β resulted in an antigen-specific increase of
IFNγ production, and this was reverted by inhibition of MHCII (HLA-
DR) antigen presentation40. Interestingly, heightened expression of
IFNα/β-stimulated genes in Mo, Nφ, and Eφ of TF patients was con-
sistently accompanied by significant dampening of MHCII gene
expression. This suggests that similar to what observed in VL, an
impaired protective immunity mediated by Type I IFNs via antigen-
presenting cells, could be occurring in CL. The transcriptomic sig-
natures of Type I and Type II IFN responses have substantial
overlaps41,42. Whether the observed responses in TF patients are
uniquely attributable to Type I IFNs remains to be determined. How-
ever, mediators of canonical Type I IFN signaling pathways such as
IFIH1 (gene encoding MDA5), a RIG-I-like receptor and cytoplasmic
sensor of dsRNAs, MX1, DDX60, and USP18, strongly support a sub-
stantial contribution of Type I IFNs driving the response.

Recent evidence shows that Type I IFNs promote the pathogen-
esis and severity of M. tuberculosis infection in both mice and
humans43,44. This was associated with the dampening of protective IL-1
signaling via eicosanoid imbalance. In monocytes from TF, high Type I
IFN-inducible gene expressionwas accompaniedby repression of IL1R1
and IL1R2 (decoy receptor), and increased IL1β. Downregulation of
IL1R1, even in the context of up-regulated IL1β, suggests that the cross-
balance of Type I IFNs and IL1 is not only relevant to the pathogenesis
and severity of TB but also to the outcome of CL treatment.

Severity and tissue damage during infectious diseases is often
mediated by immunopathology caused by exacerbated and uncon-
trolled inflammatory responses. During viral infections, IFNα/β pro-
motes CD8+ T cell longevity and clonal expansion45, as well as NK cell
functions23. Notably, Pre-Tx lesion biopsies from TF patients exhibited
a transcriptional profile compatible with enhanced cytolytic activity
mediated by CD8+T and NK cells, similar to what observed in TF
patients infected with L.V. braziliensis15. It is plausible that the heigh-
tenedType-I IFN responses,mediatedby systemic innate inflammatory
cells (and to a lesser extent found directly in the affected tissue), could
contribute to skin immunopathology driven by CD8+T and NK cells in
lesions of CL patients who do not respond to treatment.
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Fig. 8 | “Pseudo-bulk” DE analysis combining all samples from patients
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identified by ML. PCA for all samples collected from patients in Cali and Tumaco
(Mo, Nϕ, and Eϕ, collected Pre-Tx, Mid-Tx, and at End-Tx) were performed using
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C Volcano plot of DEGs, using DEseq (Wald test and its Benjamini-Hochberg
adjusted P-value < 0.05 and |log2FC | ≥ 1), highlighting in labels the top 10 up- or
down-regulated genes in TF compared to cures.
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Themechanisms by which IFNα/β-inducible genes are modulated
during Leishmania infection remain unknown and constitute part of
our ongoing investigations. In L. Viannia infections, expression of
IFNα/β and its contribution to disease severity has been proposed to
be mediated by the Leishmania RNA virus (LRV). A systematic eva-
luation of the presence of LRV in more than 100 L.V. panamensis
clinical strains did not show evidence of the presence of LRV in this
species46. This was consistent with the absence of LRV in all L.V.
panamensis, as well as in L.V. braziliensis clinical isolates from our
study participants, ruling out any contribution of LRV to the IFN sig-
nature observed in TF. We have previously shown that L.V. panamensis
induces TLR4 gene expression as early as 8 h after interaction with
human monocyte-derived macrophages47. Intracellular parasite survi-
val and TNFα production were found to be dependent on TLR447.
Furthermore, using RNA-seq, we have shown induction of a Type-I IFN
signature in human PBMCs, occurring as early as 24 h after L.V. pana-
mensis infection with strains associated with chronic CL, and not with
those causing self-healing disease48. These previous findings lead us to
hypothesize that rapid (8 h) and, likely, strain-specificTLRengagement
by Leishmania could induce IFNα/β gene expression, leading to a
second wave of IFNα/β-inducible genes as early as 24 h post-infection.

The slow discovery pipeline for novel antimicrobials, and espe-
cially for those causing neglected tropical diseases, has driven the
development of innovative approaches such as host-directed thera-
pies (HDTs). The basis of HDTs relies on a detailed understanding of
the role of host responses in the pathogenesis and clinical outcome of
infections. However, HDTs for leishmaniasis, including immunomo-
dulation, have often been based on knowledge of the contribution of
immune responses to disease in animal models, resulting in failed
clinical trials49–52. Understanding the innate factors driving therapeutic
healing of CL offers a unique opportunity for rational identification of
HDTs that optimize available therapeutic regimens, and can capitalize
on past and current pharmaceutical developments in modifiers of
innate immune functions. Interestingly, antibody-mediated blocking
of IFNαR in mice, or the use of FDA-approved ruxolitinib (a small
molecule inhibitor of JAK1 and JAK2), synergized with amphotericin B
to control L. donovani infection40. Our data suggest thatmodulation of
Type I-IFN responses is a likely target for host-directed therapy in CL
caused by L. Viannia.

The high frequency and severity of adverse events and of TF
during antileishmanial treatment demands stratification of ther-
apeutic interventions to populations where they will be most effec-
tive. Results from this study revealed a transcriptional innate
signature of TF. This signature allowed the construction of a com-
posite score, with significant specificity and sensitivity to predict TF
before initiation of treatment. Although our sample size presents an
evident limitation for the successful implementation of machine
learning techniques, GLM models were good predictors of outcome,
albeit using the top 3000 most variable genes. The AUC achieved
using our composite scores, which incorporate 11 of the 12 sig-
nature genes, closely mirrored the AUCs obtained with machine
learningmodels that included all 3000 genes. This similarity not only
underscores the robustness of our selected genes but also validates
the effectiveness of our transcriptional hallmark in capturing the
essential genomic signatures.

The score derived from Nφ, and the composite score from
Mo+Nφ were both predictive of TF. That Nφ are the most abundant
white blood cells in the blood, and monocytes one of the most
transcriptionally active, supports the likelihood of developing whole
blood tests for future validation, which also facilitates access in
remote rural populations. Consistent with this hypothesis was the
finding that a “pseudo-bulk” analysis of all transcriptomes (gener-
ated from samples from all cell types, all time points, and even both
recruitment clinics) derived DEGs and enrichment categories with
IFN signatures overrepresented in TF. Scoring systems have assisted

screening in other immunological systems. IFN-scores based on
gene expression profiles of Type-I ISGs have been used as screening
tools for monogenic interpheronopathies, and to stratify patients
with systemic lupus erythematosus53,54. Genes reported in these
scoring systems often differ between diseases. However, four of the
twelve genes that composed our innate biosignature (IFI27, IFI44L,
USP18 and RSAD2), have been consistently reported as signature
members in other autoinflammatory diseases, and used for clinical
assessments53,55.

Personalizedmedicine is anticipated tobe restricted todeveloped
countries widening the disparity between “the rich and the poor”56.
Technology-driven research, systems medicine, and genetic knowl-
edge should reduce healthcare disparities rather than exacerbating
them. Our study provides a solid first step towards validation and
implementation of personalized medicine for CL, one of the most
neglected tropical infectious diseases of global importance.

Methods
Ethics statement
This study (IRB code #1273) was approved and monitored by the
Institutional Review Board for ethical conduct of research involving
human subjects of the Centro Internacional de Entrenamiento e
Investigaciones Médicas (CIDEIM) in accordance with national (Reso-
lution 008430, República de Colombia, Ministry of Health, 1993) and
international (Declaration ofHelsinki and amendments,WorldMedical
Association, Fortaleza, Brazil, October 2013) guidelines. All individuals
voluntarily participated in the study, and written informed consent
was obtained for each participant.

Study design and subjects
This study was designed to identify host biomarkers and innate
immune functions that participate in the response to antileishmanial
treatment in patients with localized CL. Transcriptional profiling of
innate immune cells and lesion biopsies was conducted. Adult patients
(18 to 60 years of age) with the parasitological diagnosis of active CL
with a time of evolution < 6 months, and without apparent immune
deficiencies (negativeHIV test, no evidence of immunological disorder
or treatmentwithmedicationhaving immunomodulating effects), who
received standard-of-care treatment with Glucantime (GLUC, 20mg/
kg/day for 20 days) or miltefosine (MLF, 1.8–2.5mg/kg daily dose for
28 days) were included in this study. Treatment outcome was eval-
uated atweek 13 following initiationof treatment forGLUCandatweek
26 forMLF. The curewasdefined as complete re-epithelization and the
absence of inflammatory signs for all lesions. TF was defined as
incomplete re-epithelization and/or the presence of induration, raised
borders, or redness in any lesion, reactivation of the original lesion(s),
or the appearance of new lesions.

Skin lesions biopsies samples
Skin lesion punch biopsies were obtained before initiation of treat-
ment. Biopsy punches of 3mm were obtained under local anesthetic,
taking into account the following ratio: 1/3 of healthy skin and 2/3 of
the edge of the lesion (the indurated edge, which does not include
necrotic tissue). Skin biopsies were immediately stored in 1mL All-
protect® (Qiagen, cat. 76405). Samples were equilibrated overnight at
4 °C and then stored at − 20 °C until processing57.

Isolation of monocytes, neutrophils and eosinophils from per-
ipheral blood samples
Ninety mL of whole blood anticoagulated with EDTA were obtained
from each patient. PBMCs and polymorphonuclear leukocytes (PMNs)
were isolated by centrifugation over a PolymorphprepTM (Axis-Shield,
cat. 1114683) gradient according to the manufacturer’s instructions.
CD14 + Mo were purified from PBMCs using the CD14 microbeads
ultrapure kit (Milteny Biotec, cat. 130118906) coupled tomagnetic cell
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sorting (MACS). CD16 +Nφ were purified from PMNs using CD16
microbeads human kit (Milteny Biotec, cat. 130045701), and Eφ were
obtained by negative selection using the eosinophil isolation kit
human (Milteny Biotec, cat. 130092010). Cells were washed with cold
PBS, precipitated by centrifugation, and the cell pellet was resus-
pended in 100–200 µL of RNAlaterTM (Invitrogen, cat. AM7020) and
stored at − 80 °C for later use. The purity of isolated cell populations
was evaluated by flow cytometry and light microscopy. One million
cells of each subpopulation were used for staining. Mo, Nφ, and Eφ
were stainedwith CD14-FITC/CD3-APC, CD66-FITC/CD16-PE andCD16-
PE, respectively. Flow cytometry acquisition was performed on a BD
Accuri C6 (BD Biosciences) cytometer; 50,000 events were collected
for each processed sample. Data analysis was done using Flow-Jo
(Treestar) version 10.0. The gating strategy included verification by
FSC/SSC (forward and side scatter features) and expression of cell-
specificmarkers: CD14 + forMo; CD16 + /CD66 +Nφ; andCD16- for Eφ.
Samples were used only when purity was > 95%.

Leishmania strains, typing and drug susceptibility testing
Leishmania isolates were obtained from all patients and propagated in
Senekjie´s biphasic blood agar and immediately stored in liquid
nitrogen until use. Strains were typed by immunoreactivity to mono-
clonal antibodies as previously described58. Drug susceptibility of
intracellular amastigotes was estimated by evaluation of % parasite
survival in PMA-differentiated U-937 cells after exposure to pentava-
lent antimony (SbV) at a final concentration of 32 µg/mL, compared to
control without drug exposure. Leishmania strains were defined as Sb-
resistant when the percent reduction of the parasite burden after drug
exposurewas < 78%. Susceptibility cutoff was defined based on a panel
of well-characterized clinical isolates presenting with intrinsic resis-
tance or susceptibility to SbV 59,60.

RNA isolation and cDNA synthesis
RNA isolation from purified cell populations (Mo, Nφ, and Eφ) stored
in RNAlater was performed using TRIzolTM (Invitrogen, cat. 15596026),
followed by RNA cleanup with RNeasy Mini Kit columns (Qiagen, cat.
74104). Isopropanol/water (1:1) was used for RNA precipitation. RNA
isolation from lesion biopsies was performed by tissue disruption,
homogenization, and extraction using TRIzolTM reagent as previously
described57. RNA integrity was assessed using an Agilent 2100 bioa-
nalyzer (RNA 6000 Nano LabChip, Agilent Technologies, Cat. 5067-
1511). For RNA-seq, poly(A)-enriched cDNA libraries were generated
using the Illumina TruSeq v2 sample preparation kit (San Diego, CA.
Cat. 20020594) and checked for quality and quantity using bioanaly-
zer and quantitative PCR.

RNA-seq data generation, preprocessing, and quality trimming
Single or paired-end reads were obtained on an Illumina NovaSeq
6000 at the Genetic Resources Core Facility, Johns Hopkins Depart-
ment of Genetic Medicine, Baltimore, MD; or on an Illumina
HiSeq1000 at the Brain & Behavior Institute - Advanced Genomic
Technologies Core (BBI-AGTC) at the University of Maryland, College
Park, MD. Trimmomatic61 was used to remove Illumina adapter
sequences, discard reads shorter than 40 nucleotides, and trim any 4
nucleotide rolling windowwith amean Phred quality score less than or
equal to 20. Sequence quality metrics were assessed using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw
data and project information is available via NCBI-dbGaP study ID #
38338; phs003545.v1. All code and analytical pipelines are available at
https://doi.org/10.5281/zenodo.15002596.

Mapping cDNA fragments and abundance estimation
Reads were aligned against the human (hg38 revision 100), L.V.
panamensis (TriTrypDb release 36), and L.V. braziliensis (release 26)
genomes with HISAT2 (2.1.0)62 using the default parameters. The

resulting accepted hits andmapped reads were sorted and indexed via
SAMtools63 and passed to HTSeq64 for generating count tables.

Global data assessment, visualization and differential expres-
sion analysis
Biological replicates and batch effects were assessed and visualized
using an R package, hpgltools (https://github.com/elsayed-lab/
hpgltools), developed and maintained in the El-Sayed lab. Normal-
ized data were visualized using log2 transformed counts per million
(CPM) reads following filtering to remove low counts (defined as any
gene with a sum less than twice the number of samples or when all
samples had fewer than 2 counts). Samples in which fewer than 11,000
genes were observed in a non-zero genes plot, were removed. Fol-
lowing data filtration, visualizations were performed to observe the
sample relationships. These included density plots, boxplots of depth,
coefficient of variance plots, hierarchical clustering analyses based on
Pearson’s correlation coefficient and Euclidean distance, variance
partition analyses, andprincipal component analyses (PCA) before and
after normalization. Several combinations of normalization and batch
adjustment strategies were evaluated along with surrogate variable
estimation via SVA65. Samples were queried via cure/TF status, visit
number, clinic, and cell type in order to calculate the surrogate vari-
able (SV) loadings, and the F-statistic was calculated for each variable
with respect to each SV.

Differential expression analyses were performed using a single
pipeline, which performed all pairwise comparisons using the Bio-
conductor packages: limma66, edgeR67, DESeq268, EBSeq69, NOISeq70,
and a basic analysis using only log2CPM values. In each case (except
EBSeq and the basic analysis), the surrogate variable estimates pro-
vided by SVAwere used to adjust the statisticalmodel in an attempt to
address the batch/surrogate effects. Dream19 was also used to evaluate
a linearmixed effectsmodel, with the donor as the randomeffect (with
fixed slope and variable intercept) to account for the variability
introduced by multiple samples per person. This iteration of the ana-
lyses sought to relate the expression data as a function of the final
outcome, visit, cell type, and donor. Each contrast was evaluated in the
context of its agreement with other methods, but the interpretations
were primarily informed by the DESeq2 results. Genes with significant
changes in abundance ( | log2 fold change | ≥ 1 and false discovery rate
adjusted P-values ≤0.05) were passed to gProfileR71 and
clusterProfiler72 (one-sided Fisher test with g:SCS-corrected P-values).
Gene ontology analyses were supplemented with manual data cura-
tion. Network analyses were performed with STRING 12.073. Simulta-
neously, gene set variation analysis (GSVA)74 was performed to
produce an enrichment score (using the Wald test) against the
mSigDB75 datasets (C2, C7, and H) on a per-sample basis. These scores
were passed to limma to evaluate the difference in GSVA score dis-
tributions for each gene set in the samples (limma and Benjamini-
Hochberg adjusted P-values used to compare sample categories).
Results from limma were then filtered according to log2 fold change,
adjusted P-value, and maximum GSVA score mean.

Detection of virus sequences
Kraken 2, with a supplemented version of its viral database76, was used
to check each sample specifically for the Leishmania RNA virus (LRV),
as well as any other putative viral reads. Confirmation of LRV absence
was performed by qRT-PCR as described46.

Weighted gene co-expression network analysis (WGCNA)
WGCNA co-expression networks were generated and examined using
low-count filtered, SVA-adjusted, RPKM (Reads per kilobase per mil-
lion) by average CDS length, log2-transformed counts as input. Pair-
wise Pearson correlations between each gene pair were calculated and
transformed into a signed adjacencymatrix using theminimumpower
that resulted in a scale-free R2

fit of 0.8. The resulting modules and
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associated eigengenes were produced via the default correlation
matrix blockwise module detection methods from WGCNA. Module
scores by sample were queried against the metadata factors (cure and
TF) via Pearson’s correlations and scored using the P-value metrics
provided by WGCNA. The eigengenes were extracted from modules
with scores deemed significant, manually examined, and passed to
gene set enrichment methods. Modules significantly associated with
the outcome and containing more than 1000 genes were excluded
from the analyses.

Composite scores
Pre-Tx RPKM values were used to construct raw and normalized (Z-
score) composite scores. The selection of genes that constitute each
individual compositewas based on theDE genes between cures andTF
that were common among Nφ, Eφ, and Mo (signature genes). Raw
scores were calculated per patient, as the sum of RPKM values of the
signature genes in each cell type (Eq. 1). A normalized score was also
computed based on the sum of normalized RPKM values (Eq. 2). For
raw and normalized scores, “I” indexes genes and “k” patients.

For each cell type:

raw scoreð Þk =
Xn

i = 1

RPKMik ð1Þ

ðnormalized scoreÞk =
Xn

i = 1

RPKM ik � �xi

σi
ð2Þ

where

�xi =
1
m

Xm

k= 1

RPKMik

and

σi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm

k= 1

ðRPKMik � �xiÞ2
vuut

Receiver operating characteristic (ROC) curves were used to
explore the predictive potential of raw scores and Z-scores to dis-
criminate therapeutic cure and failure. Sensitivity and specificity
parameters were calculated for scores. Youden’s J statistic was used to
define cutoff values.

Machine learning models
A series of machine learningmodels were generated and examined via
the caret R package26 to create transcriptome-informed classifiers of
patients likely to cure or fail treatment. Initial expression sets were
selected to include all data from innate cells from patients recruited in
Cali and Tumaco, or data only fromTumacopatients. The starting data
were log2-transformed CPM values, normalized, filtered to exclude
genes with CV <0.1, centered, and filtered to exclude genes with cor-
relations ≥0.95. Themost variable 3000geneswere then selected. The
remaining data was split into training (0.4) and testing (0.6) sets 10
times. The training datasets were used to create k-nearest neighbor,
random forest, GLM, and gradient boost models with an arbitrarily
chosen mix of bootstrap and CV sampling. The test partitions were
evaluated for accuracy and sensitivity/specificity with respect to the
known outcome of each patient.

Statistical analyses
For the exploration and description of the sociodemographic and
clinical variables, univariate analyses were performed. Categorical
variables were described with frequencies and percentages.

Quantitative variables were described as means ( ± SD) or medians
(IQR) according to the distribution of the data. For the comparison of
qualitative variables, Fisher’s exact test or the chi2 test was used
according to thedistribution of thedata. Fisher´s testwas also used for
comparison of tables larger than 2 × 277. Quantitative variables were
compared using t-test or U-Mann-Whitney tests. Normality was
determined with qq plots and the Shapiro-Wilk test. In all analyses, P-
values < 0.05 were considered significant. Statistical analysis was per-
formed using GraphPad Prism version 9 and R version 4.1.3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequence data is available at NCBI-dbGaP study ID # 38338;
phs003545.v1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs003545.v1.p1).

Code availability
All code and analytical pipelines are available at https://doi.org/10.
5281/zenodo.15002596.
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