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Characterisation of between-cluster
heterogeneity in malaria cluster randomised
trials to inform future sample size
calculations

Joseph Biggs 1 , Joseph D. Challenger 2, Dominic Dee 2,
EldoElobolobo 3,CarlosChaccour 4,5,6, FranciscoSaute3, SarahG.Staedke7,8,
Sibo Vilakati9, Jade Benjamin Chung 10,11, Michelle S. Hsiang11,12,13,
Edgard Diniba Dabira14, Annette Erhart14, Umberto D’Alessandro14,
Rupam Tripura15,16, Thomas J. Peto 15,16, Lorenz Von Seidlein 15,16,
Mavuto Mukaka15,16, Jacklin Mosha17, Natacha Protopopoff 18,19,
ManfredAccrombessi20,21, RichardHayes1, ThomasS.Churcher 2& JackieCook1

Cluster randomised trials (CRTs) are important tools for evaluating the
community-wide effect of malaria interventions. During the design stage, CRT
sample sizes need to be inflated to account for the cluster heterogeneity in
measured outcomes. The coefficient of variation (k), a measure of such het-
erogeneity, is typically used in malaria CRTs yet is often predicted without
prior data. Underestimation of k decreases study power, thus increases the
probability of generating null results. In this meta-analysis of cluster-summary
data from24malaria CRTs,we calculate trueprevalence and incidence k values
using methods-of-moments and regression modelling approaches. Using
random effects regressionmodelling, we investigate the impact of empirical k
values on original trial power and explore factors associated with elevated k.
Results show empirical estimates of k often exceed those used in sample size
calculations, which reduces study power and effect size precision. Elevated k
values are associated with incidence outcomes (compared to prevalence),
lower endemicity settings, and uneven intervention coverage across clusters.
Study findings can enhance the robustness of future malaria CRT sample size
calculations by providing informed k estimates based on expected prevalence
or incidence, in the absence of cluster-level data.

To inform malaria control and elimination policy, the World Health
Organisation (WHO) relies on cluster randomised trials (CRTs) to
evaluate the effectiveness of interventions in the community1. Malaria
control tools, including insecticide-treated nets (ITNs), vaccines,
insecticidal spraying and chemoprevention are typically implemented
at the community level, and can benefit individuals directly and

indirectly2–7. CRTs assess the effectiveness of such tools by rando-
mising groups (clusters) into intervention and control arms, and esti-
mating effect size(s) by comparing them8. However, individualmalaria
outcomes within clusters (such as households, schools and villages),
are often highly correlated due to shared exposure to similar risk
factors, more so than between clusters9,10. Such correlation increases
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the variability between clusters, requiring larger sample sizes to
maintain statistical power (the probability of detecting a statistically
significant difference if a true difference exists). Cluster heterogeneity
thereby exacerbates logistical challenges and costs associated
with CRTs8.

Sample size calculations for CRTs should account for the het-
erogeneity caused by correlations between clusters. This requires
incorporating estimates of either the coefficient of variation (k) or
the intracluster correlation coefficient (ICC). K represents an abso-
lute measure of between-cluster variability, calculated as the ratio of
the standard deviation of cluster-level outcomes to the overall mean
outcome. In contrast, the ICC is a relative measure, quantifying the
proportion of total variance in trials attributable to between-cluster
variation11,12. In the absence of site-specific data, trialists often
approximate these values during the design phase. If under-
estimated, trials risk being underpowered; if overestimated, they
may become overpowered, leading to a waste of resources. Inac-
curate classification of cluster heterogeneity is compounded by
frequent omission of empirical estimates of k or ICC in trial
publications13–15, despite being a requirement in CONSORT
guidelines16. Prior to this study, our systematic review of malaria
CRTs showed that 80% of trials used k to account for cluster het-
erogeneity in their sample size calculations, while only 20% pro-
vided retrospectively calculated empirical estimates according to
trial data. Among the trials that did, large disparities were observed
between predicted and empirical values17.

Malaria, a vector borne, parasitic disease transmitted by female
Anopheles mosquitoes, causes significant morbidity and mortality
globally18. Transmission is influenced by environmental and human
behavioural factors, leading to spatio-temporal variation in risk across
geographical areas19,20. During wet seasons, increased rainfall creates
more mosquito breeding sites, which amplify vector populations and
intensify transmission risk21–23. In addition, as risk in the community
decreases, malaria transmission becomes geographically more focal
due to increased heterogeneity in vector breeding sites, immunity,
human behaviours and malaria intervention effectiveness24–27. Such
heterogeneity in malaria transmission across geographical regions
likely translates to heterogeneity in malaria outcomes between study
clusters.

Previous studies have investigated cluster heterogeneity patterns
associatedwith differentmalaria outcomemetrics. In Southeast Asia, a
secondary analysis of a multi-country malaria CRT highlighted how
empirical ICC estimates were influenced by country, Plasmodium
species and type of outcome measure (prevalence or incidence),
although the authors speculate that this variation could be due in part
to chance given the low cluster numbers10. In Namibia, a secondary
analysis of a malaria CRT showed that sensitive serological endpoints
measuring previous exposure to malaria generated comparable effect
size estimates to outcomes based on PCR (polymerase chain reaction
assay) endpoints from the same individuals, but exhibited lower
between-cluster heterogeneity. The authors suggest that this may be
due to serological testing capturing both current and recently exposed
cases, which are likely more homogeneously distributed across geo-
graphical regions than current cases detected solely by PCR28.

Studies have also explored cluster heterogeneity patterns for
given malaria outcomes. In the Gambia, a malaria CRT showed
empirical k estimates varied significantly between study arms and
years, often exceeding the predicted value29. In Tanzania, a CRT sec-
ondary analysis highlighted the heterogeneity in prevalence ICC esti-
mates between repeated surveys, which authors speculate reflect
seasonal fluctuations in malaria and waning effects of interventions30.
Lastly in Nigeria, a study showed that reductions inmalaria prevalence
from 2010 to 2015 were associated with increased between-state
variability, highlighting the relationship between transmission inten-
sity and focality31.

Previous findings underscore the need to better characterise
cluster heterogeneity in malaria CRTs and understand factors that
are associated with it. To address this, we conducted a meta-analysis
of cluster-level data from previous malaria CRTs measuring epide-
miological outcomes (prevalence or incidence) to: (1) estimate
empirical values of k, (2) assess the impact of cluster heterogeneity
on study power and effect size uncertainty, and (3) identify factors
associated with cluster heterogeneity. These insights are expected to
improve future CRT design, ensuring robust evaluation of malaria
interventions.

Results
Of the 71 malaria cluster-randomised trials (CRTs) identified in our
previous systematic review, we obtained cluster-level epidemiological
data from 24 trials (Supplementary Table 1). These parallel CRTs,
conducted across 21 different countries between 2000 and 2021,
evaluated variousmalaria interventions, including vector control (67%,
16/24 trials) and chemoprevention (25%, 6/24 trials). Most trials fea-
tured two study arms (71%, 17/24 trials; range: 2–4 arms). Cluster-level
prevalence and incidence data were provided by 19 and 14 of the 24
trials, respectively (Supplementary Table 2). The characteristics of
trials in this meta-analysis closely resembled those from the previous
systematic review, suggesting they form a representative sample
(Supplementary Table 3).

Characteristics of the prevalence data provided by trials are
shown in Supplementary Table 4. In total, cluster-level prevalence data
were available from 57 cross-sectional surveys (range per trial: 1–7)
spanning 816 clusters (range per trial: 6–104 clusters). The average
number of individuals surveyed per cluster ranged from 8.7 to 1,064.
Prevalence outcomes were measured using PCR (Polymerase chain
reaction assays), RDTs (rapid diagnostic tests), ormicroscopy. Cluster-
level intervention coverage data were provided for 8/19 trials with
prevalence data. Among trials that provided prevalence data, 13/19
trials determined the numbers surveyed according to sample size
calculations that accounted for cluster heterogeneity. According to
control arm prevalence throughout the trials, 5/19 trials were cate-
gorised as high endemicity, 8/19 were classified as medium and 6/19
were categorised as low.

Characteristics of the incidence data obtained from 14 trials are
shown in Supplementary Table 5. Eight trials provided incidence data
generated from active case detection (ACD), 5 from passive case
detection (PCD) and one trial collected separate incidence measures
using ACD and PCD. Cluster-level incidence data were collected from a
total of 751 clusters (trial range: 6-187) andwere totalled for each study
year. Most trials (11/14) provided a sample size justification for the
number of individuals enroled to estimate a difference in incidence
between arms. Based on control-arm incidence throughout each trial,
4/14 trials were categorised as high endemicity, 3/14 were considered
medium and 7/14 were classified as low.

Characterisation of outcome between-cluster heterogeneity in
malaria CRTs
We characterised the between-cluster heterogeneity of outcomes at
the survey-arm level for prevalence outcomes and at the study-year
arm level for incidence outcomes (Fig. 1a). The overall survey-arm
prevalence for all trials ranged between 0% and 82.7% (median: 25.6%)
while the overall annual malaria incidence per person for each study
year-arm ranged from <0.01 to 7.19 malaria cases per person year (py)
(median: 0.22/py) (Fig. 1b). At the cluster level, prevalence ranged
between 0% and 100% (median: 25%) and incidence ranged from 0 to
15.2/py (median: 0.24 py) (Fig. 1c). The cluster-level distribution of
prevalence and incidence outcomes for each trial is shown in Supple-
mentary Fig. 1. There was good agreement observed between the
methods-of-moments and regression approach for estimating pre-
valence and incidence k (Supplementary Fig. 2). As the regression
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approach canbe used to estimate k 95%CIs, thismethodwas used in all
subsequent analyses. Among all survey-arms in all trials, prevalence k
ranged from <0.01 to 1.72 (median: 0.46), while in all study year-arms
in all trials, incidence k ranged between <0.01 and 2.05 (median: 0.91).
Overall among all trials, PCD incidence k (median: 0.97) was higher
than ACD incidence k (median: 0.84) (Fig. 1d). In addition to k, we
estimated the ICC for cluster-level prevalence at the survey-arm level
(Fig. 1e). Prevalence ICC ranged between <0.01 and 0.40with amedian
of 0.09. As k and ICC represent distinct measures of between-cluster
variability, we compared them at the survey-arm level (Fig. 1f). Among
survey-arms with a prevalence >10%, we observed a positive correla-
tion between k and ICC. In contrast, among survey-arms with overall
prevalences <10%, larger disparities were observed between k and ICC.
When ICC estimates were near zero, k often exceeded 0.7.

We next investigated whether between-cluster heterogeneity
differed between study arms of trials (arm-differential between-
cluster heterogeneity). For each survey and study year of each trial,
we estimated the difference in k and ICC between arms and

compared differences against the trial period. For prevalence, k
values were typically higher in the intervention arm during the post-
intervention period (Fig. 2a) while ICC estimates were often larger in
the control arm (Fig. 2b). This pattern was impacted by the overall
survey prevalence which showed the difference in k between arms
was lower in high prevalence surveys while the ICC difference was
lower in low prevalence surveys (Supplementary Fig. 3). For inci-
dence outcomes, k was typically higher in control arms of trials
(Fig. 2c). Despite no observed clear arm-differential between-cluster
heterogeneity patterns among trials, k and ICC estimates were rarely
similar between arms. In addition to arm-differential patterns, we
also explored temporal patterns in between-cluster heterogeneity
during trials. For prevalence outcomes, k estimates in the control
arms of repeated surveys among trials were lower and temporally
more stable in high endemicity trials compared medium and low
endemicity trials (Fig. 2d). This pattern was similar for incidence
outcomes and intervention clusters among prevalence surveys
(Supplementary Fig. 4a–c). In contrast, prevalence ICC estimates
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Fig. 1 | Characterisation of between-cluster heterogeneity of outcomes in
malaria CRTs. a Schematic representation of between-cluster heterogeneity in
prevalence at the survey-arm level and incidence at the study-year arm level.
b Distribution of the overall survey-arm prevalence and study-year incidence
among all trials. cDistribution of the cluster-level prevalence and incidence among
all trials. d Distribution of empirical prevalence k estimates for each survey-arm

and incidence k estimates for each study year-arm among trials. Vertical dashed
line: median k estimate. e Distribution of empirical prevalence ICC estimates for
each survey-arm among trials. Vertical dashed line: median ICC estimate. f Scatter
plot comparing prevalence k and ICCestimates at the survey-arm level stratified by
the overall prevalence of the corresponding surveys. ACD: active case detection
incidence. PCD: passive case detection incidence. pp py: per person per year.
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among the control arms of repeated surveys were largest and more
temporally variable in the trials conducted in medium endemicity
settings (Fig. 2e). A trend similarly observed for intervention-arm ICC
estimates (Supplementary Fig. 4d). Together, results illustrate that
cluster-outcome heterogeneity changes over the course of malaria
CRTs, regardless of intervention presence, but tends to vary less in
trials conducted in high endemicity settings.

Impact of empirical between-cluster heterogeneity on trial
power and effect size precision
Among trials that were powered to detect a difference in incidence
and/or prevalence between arms (prevalence: 13, incidence: 11, Sup-
plementary Tables 4 and 5), all used k in their sample size calculations
to account for clustering effects. We therefore compared observed
prevalence k values for each survey-arm, and incidence k values for

Low endemicityMedium endemicityHigh endemicity

Low endemicityMedium endemicityHigh endemicity

a b c

d

e

Prevalence ACD incidence PCD incidence

Fig. 2 | Arm-differential and temporal patterns in between cluster hetero-
geneity inmalaria CRTs. a, bDifference in prevalence k (a) and ICC (b) by arm for
each survey by months since intervention among trials. Positive k/ICC difference
(above horizontal dashed line) indicates higher k/ICC value in the intervention arm
compared to the control. Horizontal dashed line: Time of intervention imple-
mentation. Bar chart: number of surveys with k/ICC estimates higher in the inter-
vention arm (>10% difference), the same between arms (<10% difference) and
higher in the control arm (>10% difference). c Difference in incidence k between
arms for each by study year among trials. Positive k difference (above horizontal

dashed line) indicates higher k value in the intervention arm compared to the
control. Bar chart: number of study years with k estimates higher in the interven-
tion arm (>10% difference), the same (<10% difference) and higher in the control
arm (>10% difference). d, e Temporal patterns in control-arm prevalence k (d) and
ICC (e) values for each survey over months since intervention implementation,
stratified by trial endemicity. Dots represent control-arm survey k estimates.
Dashed lines represent individual trials. Error bars represent 95%CIs. Surveys
conducted <0 months since intervention represent those conducted prior to
intervention roll out.
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each study year, to k values predicted in each trials original sample size
calculation (Fig. 3a). Assuming trialists anticipated their predicted k
estimateswould remain constant throughout their trials, 72.5% (29/40)
of prevalence k and 57.9% (11/19) of incidence k values were under-
estimated. For each prevalence survey and incidence year, we com-
pared the observed k in the control arms to observed power (%) based
on empirical k and control-arm prevalence or incidence (Fig. 3b).
Prevalence surveys or incidence years with elevated k values had
reduced power to detect their predicted effect size(s). To determine
whether trials were adequately powered at the beginning of each trial
(>80%), we recalculated power according to predicted and observed
parameters: baseline control-arm prevalence/first year control inci-
dence and control armkvalues.Results showed that 50% (6/12) of trials
that measured prevalence, and 55% (6/11) of trials that measured
incidence, achieved <80% power at the start (Fig. 3c).

In addition to power, we investigated the impact of empirical
between-cluster heterogeneity on effect size precision. Among all
post-intervention surveys and study years, we compared empirical
control-arm k estimates to observed arm-level effect sizes and cor-
responding 95%CIs. Elevated between-cluster heterogeneity was
associated with decreased precision around prevalence and rate
ratios (Fig. 3d). Similarly to arm-level effect sizes, we explored the
impact of empirical k estimates on cluster-level effect sizes (inter-
vention cluster outcome / overall outcome in the corresponding
control arm). For prevalence outcomes, among surveys with lower k
estimates (<0.3), intervention cluster-effect sizes were normally dis-
tributed below a prevalence ratio of 1. In contrast, among surveys
with higher k estimates (>1.2), cluster-level effect sizes exhibited a
zero-inflated right-skewed distribution, indicating intervention clus-
ters exhibited either a very large or no difference compared to the
mean control arm prevalence (Fig. 3e). A similar pattern was
observed for incidence outcomes (Fig. 3f). These results demon-
strate large between-cluster heterogeneity in outcomes is equivalent
to large between-cluster variability in treatment effects.

We examined the magnitude of effect sizes and size of trials
required to accommodate such elevated k estimates observed in
malariaCRTs. For a hypothetical trial with 20clusters per arm, a cluster
size of 50, a k estimate of 1.2, and a control prevalence of 10%, such a
trial would only be adequately powered (80%) to detect a minimum
effect size of 0.8 (i.e a prevalence of 2% in the intervention arm)
(Fig. 4a). To detect smaller effect sizes (<40%) between arms, very
large numbers of clusters (>150 per arm) would be required at 80%
power with k values >1 (Fig. 4b).

Factors associated with between-cluster heterogeneity
Given the detrimental impact of large between-cluster heterogeneity
in malaria CRTs, we explored factors that influence k. Firstly, we
investigated whether larger k values were more common with pre-
valence or incidence outcomes. Among malaria CRTs that measured
both incidence andprevalenceduring overlapping time periods (n = 9)
(Supplementary Table 2), the data show that control-arm prevalence k
estimates were lower than incidence k values for 89% (8/9) of trials
(Supplementary Table 6). In addition to type of outcomemeasure, we
explored whether other trial covariates were associated with elevated
k values (k > 0.5) using random effects logistic regression. For pre-
valence outcomes, decreasing survey prevalence and surveys con-
ducted in the malaria season were associated larger k estimates
(p < 0.05) (Supplementary Table 7). Due to lower number of study
years in thismeta-analysis, we were unable to replicate this analysis for
incidence outcomes.

To further characterise the relationship between k and overall
survey prevalence or study year incidence, we fitted a linear regression
model using log-transformed estimates of k to account for the non-
linear association (Fig. 5a, b). As most study-years had very low overall
passive incidence estimates, we did not include the PCD incidence

data. For prevalence outcomes, increasing survey-arm prevalence was
associated with decreasing k and k uncertainty (Fig. 5a). According to
our model, survey-arms with an overall prevalence of 20% had a pre-
dicted k value of 0.60 [95%CI: 0.55–0.65]while anoverall prevalence of
60% had a predicted k estimate of 0.26 [95%CI: 0.23–0.29]. Likewise
with active incidence outcomes, among study years with overall inci-
dences of 0.2/py and 1.2/py, predicted k values were 0.94 [95%CI:
0.45–1.44] and 0.19 [95%CI: 0.02–0.36], respectively (Fig. 5b).

We stratified the relationship between k and survey prevalence by
survey season (malaria vs non-malaria). Results showedmalaria season
surveys were associated with higher k values than non-malaria season
surveys in low-prevalence settings (<30%) (Fig. 5c–e).We also explored
the impact of survey seasonality on effect size. Among the 33% (8/24)
of trials that conducted cross-sectional surveys in both malaria and
non-malaria seasons, 38% (3/8) experienced larger effect sizes, and had
higher k values, in malaria season surveys compared to non-malaria-
season surveys (Supplementary Fig. 5). Regarding coverage of malaria
interventions, we found that overall survey intervention coverage had
no apparent effect on prevalence k (Fig. 5f). Nonetheless, increasing
between-cluster heterogeneity in intervention coverage (intervention
coverage k) was associated with increased prevalence k (Fig. 5g).
Moreover, increasing intervention coverage k was associated with
larger degrees of uncertainty around observed effect size estimates
(Fig. 5f). This suggests uneven intervention coverage across clusters is
associated with between-cluster variability in prevalence, which can
result in decreased effect size precision.

Discussion
Results from this meta-analysis of 24 malaria CRTs highlight that
between-cluster heterogeneity of epidemiological outcomes is often
large, different between study arms and temporally variable. When
study power was recalculated using empirically derived estimates of
the coefficient of variation (k), many trials were found to have had a
low probability of detecting statistically significant differences
between arms. Moreover, large k values were associated with reduced
effect size precision. Here, we identified factors that influence k in
malaria CRTs, which could be used to reduce large heterogeneity in
future trials, including choice of outcome measure, endemicity of the
chosen site, seasonality in transmission and uneven intervention cov-
erage across clusters. By carefully considering these factors, future
malaria CRT design can be optimised to help ensure trials are ade-
quately powered and more statistically robust. A summary of our
recommendations and considerations based on the study findings are
presented in Box 1.

In our previous systematic review of 71 epidemiological malaria
CRTs, we highlighted how approximately 70% of trials used predicted
coefficient of variation values in their power/sample size calculations17.
Here, we show that most predicted k values were underestimated and
that empirical values often exceeded conservative estimates deemed
appropriate for infectious disease CRTs32. As prior or baseline cluster-
level data, which are needed to obtain empirical estimates of k, are
frequently unavailable before sample size estimation8,11, we provide
suitable k values for given endemicity settings. If trialists obtain reli-
able predictions of overall incidence or prevalence in their trial setting,
ourmodel can be used to providemodel-informed k values that can be
incorporated into sample size/power calculations. In high endemicity
settings we observed low values of k which mirror estimates for other
infectious diseaseCRTs8,33,34. Contrastingly, in low endemicity settings,
large and temporally unstable k estimates were identified which are
problematic for trial design. If used in trial sample size calculations,
large effects sizes and/or excessive numbers of clusters would be
required to achieve adequate power. Major logistical and financial
constraints associated with large CRTs means that increasing trial size
likely represents an unsustainable solution to large between-cluster
variability1,8,35. However, achieving larger relative reductions in
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Fig. 3 | The impact of observed between-cluster heterogeneity on study power
and effect size precision. a Scatter plot comparing the empirical prevalence k
estimates for each control-survey arm (green) and incidence k estimates for each
control-arm studyyear (orange: ACD, blue: PCD incidence) to k estimates predicted
in the trials original sample size/power calculations. Dashed line represents
equality. b Scatter plot comparing the recalculated study power for each post-
intervention survey (green) or study year (orange/blue) to detect the predicted
effect size according to empirical k estimates and control arm prevalence or inci-
dence values against corresponding empirical k estimates. All remaining sample
size parameters remained identical to original calculations. c Scatter plot com-
paring the original power of trials against the observed study power according to
empirical control-arm estimates of k and prevalence (green) or incidence (orange:
ACD, blue: PCD) in the baseline surveys or first years of trials, respectively. Dashed
line represents equality. d Scatter plot comparing the empirical control-arm

prevalence k (green) or incidence k (orange: ACD, blue: PCD) for each post-
intervention survey or study year against the corresponding arm-level effect size
estimate (dots) and 95%CI (error bars) between arms. Horizontal dashed line
represents effect size of 1. e Histogram of all the post-intervention surveys cluster-
level effect sizes stratified by control survey k estimates. Cluster-level effect size:
intervention cluster prevalence/corresponding control arm average prevalence.
Horizontal dashed line represents the null effect size of one. Intervention clusters
with prevalence ratios <1 exhibited a prevalence value less than the average pre-
valence in the control. f Histogram of all study years cluster-level effect sizes
stratified by the control year k estimates. Cluster-level effect size: intervention
cluster incidence/corresponding control armaverage incidence. Horizontal dashed
line represents thenull effect sizeofone. Intervention clusterswith incidence ratios
<1 exhibited an incidence value lower than the average incidence in the control.
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outcomes between arms may be more feasible in trials with lower
prevalence/incidence, and large effect sizes are often anticipated in
such settings17. Given novel malaria elimination strategies still require
community evaluation, trialists must balance realistic effect size
expectation and public health relevance against potentially large
cluster heterogeneity when designing trials in low-endemicity settings.
Moreover, as malaria transmission can be spatially and temporally
variable, particularly in low endemicity settings19–21,25, accurately pre-
dicting study-area prevalence/incidence to derive informed estimates
of k remains challenging.

Results also showed that between-cluster heterogeneity was
rarely similar between study arms. We propose twomain explanations
for this observation. First, k estimates are sensitive to small changes in
overall prevalence or incidence, particularly in low transmission set-
tings where the denominator approaches zero36. Second, the malaria
CRTs included in this review evaluated a range of intervention types,
which may have induced either homogeneous or heterogeneous
treatment effects across clusters37. Notably, for prevalence outcomes
in intervention arm, the ICC was generally lower, while k was often
higher compared to the control arm. This may reflect more consistent
intervention use within clusters, promoting within-cluster homo-
geneity and lowering the ICC, while the reduction in mean prevalence
in the intervention arm may have inflated k estimates36. Regardless,
commonly used analytical methods in CRTs, including random effects
regression modelling and generalised estimating equations, typically
presume equal cluster variability across treatment arms32. Whether
malaria CRTs should consider analysis methods that allow for arm-
specific variances remains an area of continued investigation, however
recent evidence suggests that standard methods remain robust
despite differences in ICC values between arms38.

To further overcome large-between cluster heterogeneity in
outcomes in malaria CRTs, trialists could consider modifying
other controllable factors. Overall, incidence outcomes showed a
higher degree of between-cluster variability than prevalence
outcomes among the same trials measured over similar time
periods, as was also shown previously in southeast Asia10. We
suggest this is in part due to the characteristics of these different

outcomes. Cluster-level incidence, unlike prevalence, is only
bound by zero which allows for more skewed cluster distributions
that might exacerbate k estimates39. Moreover, incidence mea-
sures are highly variable due to contrasting definitions of new
cases and follow-up time adjustments among trials40, potentially
making the aggregated endpoint highly variable across clusters.
Prevalence outcomes therefore may be an easier endpoint mea-
sure to power for in malaria CRTs.

Surveys conducted in, or shortly after, rainy seasons were asso-
ciatedwith elevatedbetween-cluster heterogeneity comparedwithdry
season surveys. This aligns with the idea that regional differences in
geography and human behaviour, coupled with increased rainfall,
contribute to spatially uneven amplification of malaria transmission
intensity21,41. It should be noted that rainy season surveys in some
malaria CRTs were associated with larger effect sizes which likely
compensated for the loss of power due to elevated between-cluster
variability. Lastly, we highlight that a potential driving force for high
between-cluster heterogeneity in prevalence was uneven intervention
coverage across clusters during the implementation period. Triallists
often strive for maximum intervention coverage to achieve their pre-
dicted effect sizes8,32, although we suggest that for a given overall
coverage, aiming for uniform coverage across clusters may assist in
maintaining power.

Findings from this meta-analysis emphasise that further
research is necessary to ensure future malaria tools are effectively
and sustainably evaluated in the community. As we strive towards
malaria elimination, more cutting-edge malaria interventions will
require trial evaluation in low endemicity settings which could be
hindered by large-between cluster heterogeneity. Alternative and
adaptive CRT designs, including cluster stratification, matching and
sample size re-estimation8, may help to minimise between-cluster
heterogeneity and maintain power. However this will need investi-
gating across different endemicity settings due to varying spatial
and temporal heterogeneity in transmission12. Using more sensitive
diagnostics may prove a suitable strategy tominimise k. In ourmeta-
analysis, most trials used one type of diagnostic to capture malaria
cases. Consequently, we were unable to determine whether
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Fig. 4 | Impact of varying between-cluster heterogeneity and effect sizes on
study power and trial size. a Estimated study power according to varying k esti-
mates (range: 0.3–1.5), effect sizes (1-prevalence ratio, range: 0–1) and control arm
prevalences (90%, 50% and 10%) for a hypothetical CRT. b Estimated sample size

(required clusters per arm) according to varying k estimates (range: 0.3–1.5), effect
sizes (1-prevalence ratio, range: 0.2–1) and control arm prevalences (90%, 50% and
10%) for a given number of individuals surveyed per cluster in a hypothetical CRT.
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accurately capturing low-density malaria infections reduced cluster
heterogeneity as demonstrated in Namibia28.

There are limitations associatedwithour researchfindings. Firstly,
estimates of prevalence and incidence are not always comparable
between trials, due to the use of different diagnostics and/or age
ranges tested. Secondly, survey seasonality was crudely categorised
according to information given in journal publications and may not
have been reflective of the intensity of rainfall in trial settings. Thirdly,
as only a minority of trials provided intervention coverage data, the
association between prevalence and intervention coverage between-
cluster heterogeneity is drivenbya small number of trials. Lastly, effect
size estimates generated in this analysis were restricted to cluster-level
analyses as we only obtained cluster-level data. Consequently, effect
size estimates likely differ slightly fromoriginal trial analyses that often
utilised individual-level analyses, however, it is well documented that
increasedbetween-cluster variability reduces precisionof both cluster-
level and individual-level effect size estimates32 so the findings would
likely still be similar.

Large between-cluster heterogeneity of epidemiological out-
comes observed in malaria CRTs represents a major challenge for the
evaluation of community-wide interventions. If future trials fail to
overcome the impacts of between-cluster heterogeneity, the effects of
vital interventions against malaria could be missed. Future research is
needed to identify design and analysis strategies that can ensure trials
can effectively and sustainably evaluate novel interventions which are
key to eliminate malaria globally.

Methods
Trial data
We sought cluster-level malaria outcome data from corresponding
authors of published CRTs identified in our previous systematic review
(PROSPERO: CRD42022315741)17. Authors were initially approached by
email, with a second follow-up email to non-responders. The initial
review included 71 malaria CRTs that qualified for inclusion if they
measured malaria-specific, epidemiological outcomes (prevalence or
incidence) and randomised at least six geographical clusters to study
arms. For trials measuring prevalence, we requested the number of
malaria-positive individuals and total tested per cluster, study arm, and
survey (Supplementary Table 8). For incidencemeasured via active case
detection (ACD),we requestednewmalaria cases and total person-years
at risk, and for passive case detection (PCD), newmalaria cases and the
population at risk, stratified by cluster, study arm, and trial year (Sup-
plementary Table 9, 10). These datawere supplementedwith covariates
from published articles, including diagnostic method and age range
tested. Malaria prevalence in this study referred to the number of
individuals tested positive for malaria over the total number of indivi-
duals tested for malaria. Malaria incidence in this study referred to the
number of new cases divided by the total person years at risk (ACD) or
total population in each cluster at risk (PCD). We classified trial ende-
micity based on control-arm prevalence or incidence averaged during
the entire trial. Trial endemicity according to prevalence was cate-
gorised as high (>40%), medium (10–40%), or low (0–10%). For inci-
dence, trial endemicity was categorised by malaria cases per person-
year (py) as high (>0.8/py), medium (0.2–0.8/py), or low (0–0.2/py).

Trial prevalence data were further supplemented with requested
intervention coverage/usage data (number of intervention users or
individuals covered by interventions/total number surveyed) stratified
by cluster, arm and survey. According to themonth interventions were
deployed and survey dates, we calculated the months since interven-
tion(s) were introduced for each survey and categorised surveys as
pre/post-intervention. We categorised all trial surveys as malaria sea-
son surveys if they were conducted within the publication-stated rainy
season, plus one month to account for the delay between rains and
vector propagation22,41. Surveys administered outside this range were
considered non-malaria season surveys.

Between-cluster heterogeneity estimation
Methods-of-moments and mixed effects regression modelling
approacheswere used to estimate empirical values of prevalence k and
ICC at the survey-arm level and incidence k at the study year-arm level
according to methods described by Hayes and Moulton12,32. We
refrained from estimating incidence ICC values, as rates with person-
time denominators lack a clearly defined unit of observation36.

For the methods-of-moments approach, we computed the
empirical variance (s2) of each survey arm for cluster-level prevalence
(Eq. 1) and each study year-arm for cluster-level incidence (Eq. 2)
according to:

Prevalence s2 =

P
pi � �p
� �2
c� 1

ð1Þ

Incidence s2 =
P ðri � �rÞ2

c� 1
ð2Þ

where c refers to the total number of clusters, pi is the malaria
prevalence in the ith cluster and �p represents the mean cluster pre-
valence(

P
pi=c). For incidence, ri represents the annual malaria inci-

dence per person in the ith cluster and �r represents mean incidence
across clusters (

P
ri=c).

To estimate the true between-cluster variance σ̂2
B for each survey

arm for prevalence (Eq. 3) or study year-arm for incidence (Eq. 4), we
subtracted the random sampling error from the empirical variance s2

as follows:

Prevalence σ̂2
B = s2prev �

p 1� pð Þ
�nH

ð3Þ

Incidence σ̂2
B = s2inci �

r
�f H

ð4Þ

where p refers to the overall survey-armmalaria prevalence, �nH is
the harmonic mean of the total number of individuals ni tested per

cluster (c=
P 1

ni

� �
), r refers to the overall study year-arm malaria inci-

dence and �f H is the harmonicmean of the total follow up time in years

yi per cluster (c=
P 1

yi

� �
).

We then estimated prevalence k for each survey-arm (Eq. 5) and
incidence k for each study year arm (Eq. 6) according to:

Prevalence k̂ =
σ̂B prev

p
ð5Þ

Incidence k̂ =
σ̂B inci

r
ð6Þ

In addition to themethods-of-moments approach, randomeffects
regression models without predictors were used to estimate pre-
valence k at the survey-arm level and incidence k at the study year-arm
level. For the prevalence k, the mean prevalence and between-cluster
variance were estimated for each survey arm s using the following
model:

xijs =αs + υjs + eijs ð7Þ

where xijs is the observed malaria status (positive or negative) of
ith individual in the jth cluster of survey arm s. The termαs denotes the
overallmean prevalence in survey arm s, while υjs is the effect of the jth
cluster on prevalence in survey arm s, and eijs is the individual-level
variation. The cluster effects υjs follow a normal distribution with a
mean 0 variance σ2

Bs
. Prevalence k and corresponding 95% confidence
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intervals for each survey arm were calculated from model outputs as
follows:

Prevalence k̂s =
σ̂Bs

α̂s
ð8Þ

Corresponding 95% confidence intervals for Prevalence k̂s were
calculated based on themodel-derived variance and its standard error:

95%CI f or Prevalence k̂s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2
Bs
± Zα=2 × SEðσ̂2

Bs
Þ

q
α̂s

ð9Þ

ACD
PCD

a b

c d e

Malaria season Non-malaria season

f g h

Overall survey intervention 
coverage

Prev. k [95%CI]
0.1 0.74 [0.66 - 0.82]
0.2 0.60 [0.55 - 0.65]
0.3 0.49 [0.46 - 0.52]
0.4 0.40 [0.37 - 0.42]
0.5 0.32 [0.30 - 0.35]
0.6 0.26 [0.23 - 0.29]
0.7 0.21 [0.18 - 0.24]
0.8 0.17 [0.14 - 0.20]
0.9 0.14 [0.11 - 0.17]
1.0 0.11 [0.09 - 0.14]

Inci. k [95%CI]
0.2 0.94 [0.45 - 1.44]
0.4 0.69 [0.38 - 1.00]
0.6 0.50 [0.27 - 0.73]
0.8 0.36 [0.16 - 0.57]
1.0 0.26 [0.08 - 0.45]
1.2 0.19 [0.02 - 0.36]
1.4 0.14 [0.00 - 0.29]
1.6 0.10 [0.00 - 0.23]
1.8 0.07 [0.00 - 0.18]
2.0 0.05 [0.00 - 0.14]

Prev. k [95%CI]
0.1 0.80 [0.70 - 0.90]
0.2 0.64 [0.58 - 0.70]
0.3 0.51 [0.47 - 0.55]
0.4 0.40 [0.37 - 0.43]
0.5 0.32 [0.29 - 0.35]
0.6 0.25 [0.23 - 0.28]
0.7 0.20 [0.17 - 0.23]
0.8 0.16 [0.13 - 0.19]
0.9 0.13 [0.10 - 0.16]
1.0 0.10 [0.08 - 0.13]

Prev. k [95%CI]
0.1 0.61 [0.47 - 0.74]
0.2 0.52 [0.43 - 0.60]
0.3 0.44 [0.38 - 0.50]
0.4 0.38 [0.33 - 0.43]
0.5 0.32 [0.27 - 0.38]
0.6 0.28 [0.22 - 0.34]
0.7 0.24 [0.17 - 0.30]
0.8 0.20 [0.13 - 0.27]
0.9 0.17 [0.10 - 0.24]
1.0 0.15 [0.08 - 0.22]

Fig. 5 | Association between overall prevalence, incidence, seasonality and
intervention coverage on between-cluster heterogeneity in malaria CRTs.
a Relationship between overall survey-arm prevalence and observed (green dots)
and predicted (red dash) prevalence k. Error bars: k 95%CIs. White shading: 95%CI
of non-linear prediction. Grey shading: 95%PI of the survey observations.
b Relationship between overall study year-arm incidence and observed (orange
dots) and predicted (red dash) incidence k based on ACD. Error bars: k 95%CIs.
White shading: 95%CI of non-linear prediction. c Observed prevalence k estimates
stratified by survey season: malaria, non-malaria. Box whiskers represent k esti-
mate range. Box represents interquartile range of k estimates. Box horizontal line
representsmedian k estimate.d, e Relationship between overall survey prevalence
and observed prevalence k (dots) among trial surveys conducted in the non-

malaria (grey, D) and malaria (blue, E) season. Error bars: k 95%CIs. White shading:
95%CI of non-linear prediction. Grey shading: 95%PI of the survey observations.
f Prevalence k estimates for each survey arm stratified by overall intervention
coverage (%) among post-intervention survey arms. Box whiskers represent k
estimate range. Box represents interquartile range of k estimates. Box horizontal
line represents median k estimate. g Relationship between the cluster hetero-
geneity in prevalence and the cluster heterogeneity in intervention coverage
among post-intervention surveys. Coloured dots represent surveys from the same
trials. h Impact of between-cluster heterogeneity in intervention coverage on
observed effect size estimates and uncertainty (95%CIs) among post-intervention
surveys. Values beneath the dashed line show interventions that were shown to be
effective. Coloured dots represent surveys from the same trials.
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where Zα=2 is the critical value from the standard normal
distribution.

Using the same model output components, we estimated the
survey-arm prevalence ICC, which quantifies the proportion of total
variance (i.e. between-cluster and within cluster variation) attributable
to between-cluster variation:

Prevalence dICCs =
σ̂2
Bs

σ̂2
Bs
+ σ̂2

Es

ð10Þ

where σ̂2
ES

represents within-cluster (residual) variance derived
from the individual-level error term eijs. Corresponding 95%CIs were
obtained using the “estat icc” command in STATA (v. 18) according to:

95%CI f or dICCs = dICCs ± Zα=2 × SEðdICCsÞ ð11Þ

where SE(dICCs) is the standard error of the ICC estimated via the
delta method.

For the estimation of incidence k at the study year level s, we used
a Poisson regression model with cluster-level random effects and no
predictors to estimate the overall study-year arm incidence and var-
iance between clusters according to:

λijs = exp αs

� �
× vjs ð12Þ

where λijs corresponds to the observedmalaria status (positive or
negative) of the ith individual in the jth cluster of study year arm s.
Parameter α̂s represents the overall mean incidence across all clusters
in study year s and vjs is the randomeffect of cluster jon incidence. The
vjs effects assume a gammadistributionwith ameanof 1 and a variance
of α̂0

s . Based on this distribution, the standard deviation of lambda

across clusters in study year arm s can be estimated according to:

SDðλjsÞ= exp α̂s

� �
× SD vjs

� �
= α̂s ×

ffiffiffiffiffi
α̂0
s

q
ð13Þ

and the incidence coefficient of variation (k) in each study year
arm s is then estimated as:

Incidence k̂s =
SDðλjsÞ
α̂s

=
α̂s ×

ffiffiffiffiffi
α̂0
s

q
α̂s

=
ffiffiffiffiffi
α̂0
s

q
ð14Þ

The 95% confidence interval for incidence k was derived using the
standard error of the variance parameter α̂0

s as follows:

95%CI f or incidence k̂s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̂0
s ± Zα=2 × SEðα̂0

sÞ
q

ð15Þ

STATA (v.18) do file code used estimate k is included in Supple-
mentary data 1. STATA do file code used to estimate ICC is included in
Supplementary data 2. Code is accompanied with simulated cluster-
level prevalence data (Supplementary data 3) and incidence data
(Supplementary data 4).

Data analysis
Using unmatched methods described in12,32, we calculated each trial’s
predicted study power (%) according to original predictions of k and
control-arm prevalence/incidence using the STATA command “clus-
tersampsi” (v.18). Using empirical estimates of k and control-arm
incidence and prevalence, we recalculated observed study power for
each trial year and survey, respectively. For both predicted and
observed power calculations, all additional parameters remained
identical: significance level, cluster size, cluster numbers and desired
effect size (anticipated % relative reduction between arms).

BOX 1

Summary of recommendations and considerations for future malaria
CRT design, conduct and analysis based on study findings

CRT design considerations
Choice of epidemiological outcome: Cluster-level malaria incidence is more likely to exhibit larger between-cluster variability than malaria
prevalence outcomes.

Sample size estimation:
• Incorporate a k/ICC estimate into your sample size calculation that is based on empirical baseline/prior data.
• In absence of baseline/prior cluster-level data, consider using an informed estimate of k based on the expected prevalence/incidence
across the trial setting (suggested values are shown in Fig. 5a, b).

• In low-endemicity settings, be aware trials will likely be underpowered to detect small relative differences between study arms in the
presence of large-between cluster variability.

• In low and medium-endemicity settings, be aware the degree of between-cluster changes over time, even in the control arm.

CRT implementation considerations
Strive for even intervention coverage across clusters. Uneven intervention coverage across clusters is associated with larger between-
cluster variability in outcomes.

CRT analysis considerations
Analysis strategies:
• Consider analysis approaches that allow for differential between-cluster variability between study arms.
• In low endemicity trials with very skewed cluster-distributions, non-parametric analysismethodsmay bemore appropriate than parametric
methods.

Between-cluster heterogeneity reporting. Report empirical estimates of between-cluster variability across all trial arms and at different trial
stages, in accordance with CONSORT guidelines, to help inform future sample size calculations.
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We further explored the impact of between-cluster heterogeneity
on study power at the 5% significance level for a hypothetical trial with
20 clusters per arm, a cluster size of 50 and an assumed control pre-
valence of either 10%, 50% or 90%. Using varying k estimates (range:
0.3-1.5) and effect sizes (1-prevalence ratio, range: 0-1) we calculated
corresponding study power (%) and sample size (required clusters
per arm).

Using trial data, we investigated the impact of observed between-
cluster heterogeneity on observed effect sizes between study arms
during the intervention periods of trials. For each post-intervention
prevalence survey and incidence year, we compared observed k esti-
mates with observed cluster mean prevalence and rate ratios,
respectively, along with corresponding 95% confidence intervals.
Effect sizes were estimated as follows:

Ef f ect size=
�T 1
�T0

ð16Þ

where �T represents the mean, cluster-level, estimate of pre-
valenceor incidence in the intervention (1) armand control (0) arm. To
estimate corresponding 95%CIs, we multiplied and divided effect size
estimates by t-distributed error factors estimated according to:

Error f actor = exp tv, 0:025 ×
ffiffiffiffi
V

p� �
ð17Þ

where V represents the variance of the prevalence or rate ratios:

V =
S21
c1 �T

2
1

+
S20

c0 �T
2
0

ð18Þ

where S2 corresponds to the within study arm variance and c
signifies the number of clusters per arm.

In addition to arm-level effect sizes, we estimated cluster-level
effect sizes for each post-intervention survey for prevalence and each
trial year for incidence. Cluster-level prevalence ratios were estimated
by dividing each intervention cluster prevalence values by the mean
control-arm prevalence in the corresponding survey. Cluster-level
incidence ratios were similarly estimated by dividing each intervention
cluster incidence value by the mean incidence in the corresponding
study year control arm.

Upon estimating k for each trial survey-arm, we investigated
factors associated with elevated k. Random effects logistic regres-
sion models were used to generate odds ratios to estimate associa-
tions with elevated prevalence k surveys (k > 0.5). This threshold was
chosen to dichotomise k as an estimate of 0.5 is considered
conservative32 and can result in large numbers of clusters in sample
size estimations. Explanatory variables included overall survey-arm
prevalence (<10%, 10–40%, >40%), mean cluster size (<60, >60),
clusters per arm (<15, >15), study arm (control, intervention), season
(malaria, non-malaria) and diagnostic (PCR, RDT, microscopy)).
These explanatory variables were chosen as they represent key
design considerations and were available for all included trials. All
models were fit using maximum likelihood and included trial-level
random effects as trials had multiple surveys. A multivariate model,
constructed in a forward stepwise manner according to superior
model fit (LRT < 0.05), was additionally used to generate adjusted
odds ratios associated with elevated k surveys to account for
potential confounding by the above stated factors.

To further characterise the non-linear relationship between
overall survey prevalence or study-year incidence and k, we con-
ducted linear regression analyses on log-transformed values of k. In
the prevalence models, the log-transformed k estimates at the
survey-arm level served as the dependent variable, while overall
survey-arm prevalence was the independent variable. For the inci-
dence models, the dependent variable was the log-transformed

study-year arm k estimate, with overall study-year incidence as the
independent variable. Predicted k estimates were presented along
with 95% confidence intervals (95% CIs) and 95% prediction intervals
(95%PIs). The 95% CIs indicate the uncertainty around the linear
prediction, whereas the 95%PIs capture the uncertainty around
individual survey-arm or study-year arm observations. Data analyses
were conducted in STATA version 18 (StataCorp, College Sta-
tion, TX, USA).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Results from this meta-analysis include cluster-level data that were
made freely available online at Clinical Epidemiology Resources
(ClinEpiDB; https://clinepidb.org/ce/app/) or were provided directly.
Provided datasets from previously published trials are owned by the
authors listed in the supplementary information files. These data can
be made available from the corresponding authors.

Code availability
The STATA (v.17) statistical code used in this study to estimate the
coefficient of variation (k) and intra-cluster correlation coefficient
(ICC) for both prevalence and incidence outcomes are included in
Supplementary data 1 and 2, respectively. Code is accompanied by
fictious datasets including cluster-level prevalence data (supple-
mentary data 3) and cluster-level incidence data (Supplemen-
tary data 4).
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