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Abstract
Data mining in healthcare offers transformative insights yet surfaces multilayered 
ethical and governance challenges that extend beyond privacy alone. Privacy 
and consent concerns remain paramount when handling sensitive medical data, 
particularly as healthcare organizations increasingly share patient information with 
large digital platforms. The risks of data breaches and unauthorized access are stark: 
725 reportable incidents in 2023 alone exposed more than 133 million patient 
records, and hacking-related breaches surged by 239% since 2018. Algorithmic bias 
further threatens equity; models trained on historically prejudiced data can reinforce 
health disparities across protected groups. Therefore, transparency must span three 
levels–dataset documentation, model interpretability, and post-deployment audit 
logging–to make algorithmic reasoning and failures traceable. Security vulnerabilities 
in the Internet of Medical Things (IoMT) and cloud-based health platforms amplify 
these risks, while corporate data-sharing deals complicate questions of data 
ownership and patient autonomy. A comprehensive response requires (i) dataset-
level artifacts such as “datasheets,” (ii) model-cards that disclose fairness metrics, and 
(iii) continuous logging of predictions and LIME/SHAP explanations for independent 
audits. Technical safeguards must blend differential privacy (with empirically 
validated noise budgets), homomorphic encryption for high-value queries, and 
federated learning to maintain the locality of raw data. Governance frameworks 
must also mandate routine bias and robust audits and harmonized penalties for 
non-compliance. Regular reassessments, thorough documentation, and active 
engagement with clinicians, patients, and regulators are critical to accountability. 
This paper synthesizes current evidence, from a 2019 European re-identification 
study demonstrating 99.98% uniqueness with 15 quasi-identifiers to recent clinical 
audits that trimmed false-negative rates via threshold recalibration, and proposes 
an integrated set of fairness, privacy, and security controls aligned with SPIRIT-AI, 
CONSORT-AI, and emerging PROBAST-AI guidelines. Implementing these solutions 
will help healthcare systems harness the benefits of data mining while safeguarding 
patient rights and sustaining public trust.
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Introduction
Healthcare professionals and researchers use data mining, which is a sophisticated ana-
lytical technique for extracting valuable insights and patterns to analyze large datas-
ets, including electronic health records, medical imaging data, and data from wearable 
devices. Data mining enables the extraction of meaningful information by navigating 
extensive data collection, allowing the healthcare sector to uncover valuable knowledge 
across various applications [1, 2]. This technique has become increasingly important in 
many areas of life, including business, healthcare, social media, and government [2]. As 
data mining has become increasingly popular, important ethical questions have been 
raised [3]. These questions revolve around issues such as privacy and informed consent, 
ensuring that individuals authorize the use of their data for research. Additionally, fair-
ness and equity in data usage must be considered to avoid potential biases and ensure 
ethical practices [4]. Data mining techniques have found significant applications in the 
healthcare sector, presenting vast opportunities to enhance patient treatment, optimize 
operational processes, and facilitate medical discoveries. The medical field has emerged 
as a key domain for leveraging these analytical methods, offering substantial benefits 
across various aspects of healthcare delivery and research [1]. Data mining helps to 
predict disease outbreaks, identify high-risk patients, personalize treatment plans, and 
improve overall patient outcomes [5]. For instance, by analyzing patient data, healthcare 
providers can predict which individuals are more likely to develop certain conditions, 
allowing early intervention and preventive care [5]. Data mining also plays a significant 
role in drug discovery, helping researchers identify potential new treatments by analyz-
ing large molecular and genetic datasets [6]. Classification algorithms are employed to 
categorize patients into risk groups or to diagnose diseases based on symptoms and test 
results [7]. Clustering techniques help identify patterns in patient populations, which 
can be useful for targeted interventions or resource allocation [8]. Association rule min-
ing is also used to discover the relationships between different medical conditions or 
treatments, potentially uncovering new insights into disease progression and treatment 
effectiveness [9].

The significance of data mining in healthcare is immense, with the potential to rev-
olutionize healthcare delivery by making it more efficient, personalized, and effective. 
By leveraging the power of data, healthcare providers can make more informed deci-
sions, researchers can accelerate scientific discoveries, and patients can receive better 
care [9]. However, the use of data mining in healthcare raises several ethical concerns. 
Confidential and private handling of health-related information is crucial because of 
its highly sensitive nature [3]. Patients may not always be aware of how their data are 
used in research. Additionally, there are concerns regarding the potential for bias in 
data mining algorithms, which could lead to unfair or discriminatory healthcare prac-
tices [10]. Recent research underlines the scale and urgency of these ethical concerns. 
In 2023 alone, 725 reportable breaches exposed more than 133 million patient records 
in the United States, an all-time high that represents a 239% increase in hacking inci-
dents since 2018 [11]. Comparable upward trends are reported across Europe and Asia, 
Europe experienced a 35% year-over-yar increase in weekly cyber-attacks in Q2 2024, 
reaching about 1 367 attacks per organization per week [12]. APAC (Asia-Pacific) saw 
2 510 attacks per organization weekly during the same period [12]. Systematic reviews 
published in 2024–2025 also highlight the inadequacy of “consent-by-default” models, 
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calling for fine-grained dynamic consent and stronger oversight of secondary data use 
[13–15]. At the same time, privacy-enhancing technologies are rapidly evolving; state-
of-the-art surveys show that differential privacy can preserve model utility at modest 
noise budgets, whereas homomorphic encryption and federated learning remain cost-
prohibitive for routine clinical deployment [16–18]. Finally, new comparative analyses 
of data-mining ethics across healthcare, education and government sectors emphasise 
the need for cross-domain governance frameworks that blend technical safeguards with 
enforceable accountability mechanisms [19, 20]. As the healthcare industry continues 
to embrace data mining, it is important to address these ethical challenges to ensure 
that the benefits of this technology are realized while protecting patient rights and 
maintaining public trust. This paper examines the ethical dimensions of data mining in 
healthcare, using the industry as a critical example of the benefits and challenges of this 
technology. Healthcare is an area where data mining can do a lot of good, such as help-
ing doctors make better decisions and find new treatments for diseases. However, it is 
also an area where people’s information is extremely sensitive and personal. We explored 
the main ethical problems that arise from the use of data mining in healthcare. These 
include concerns about patient privacy, ensuring that data are used fairly, and keeping 
information safe from misuse.

Ethical issues in data mining

Data mining in healthcare presents significant ethical challenges that must be carefully 
addressed to ensure that patient rights are protected while harnessing the benefits of 
this technology [21]. These ethical issues primarily revolve around privacy and consent, 
algorithmic bias, transparency, accountability, and security (Table 1), as discussed below.

Privacy and consent

One of the most pressing ethical issues in healthcare data mining is the protection of 
individual privacy [32]. Healthcare data are highly sensitive and contain personal infor-
mation about patients’ medical conditions, treatments, and genetic makeup [21, 32]. 
When these data are mined, there is a risk of exposing private information without 
the patient’s knowledge or consent. The question of consent is particularly complex in 
healthcare data mining. Patients may not be fully aware of how their data are used or 
shared [23]. While many healthcare providers obtain general consent for data use, the 
specifics of data mining applications may not be communicated [23]. This raises ethi-
cal questions regarding the need for informed consent and patient autonomy issues. 

Table 1 Ethical issues in healthcare data mining
Ethical Issue Description Source(s)
Privacy & 
Consent

Risk of exposing private information without patient knowledge or consent. 
Patients may not be fully aware of how their data is used or shared. Anonymiza-
tion techniques may not be sufficient to protect patient privacy.

[21–23]

Algorithmic Bias Algorithms can perpetuate biases based on sensitive attributes like race or gen-
der, leading to unfair outcomes in healthcare decisions. Historical data reflecting 
societal biases can be preserved in algorithms.

[24, 25]

Transparency & 
Accountability

Numerous computational processes function as “black boxes”, making it chal-
lenging to comprehend their decision-making processes and outcomes. Lack of 
transparency can be concerning medical decisions impacting patients’ lives.

[26, 27]

Security 
Concerns

Healthcare data is a valuable target for cybercriminals, leading to data breaches 
and severe consequences for patients. Insider threats and IoMT devices pose 
additional security challenges.

[28–32]
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Anonymization techniques are commonly used to protect privacy during data mining 
processes. These techniques aim to make it difficult to trace information back to indi-
vidual patients and allow insights without exposing personal identities [33]. However, 
the effectiveness of these techniques has been increasingly questioned. With the large 
amount of available data and advanced data mining techniques, it is becoming easier 
to re-identify individuals from supposedly anonymized datasets [34]. This challenges 
the notion that anonymization alone is sufficient to protect patient privacy. This limita-
tion suggests that relying solely on anonymization may not adequately protect individual 
privacy.

Algorithmic bias

A major ethical issue in healthcare data mining is the possible presence of bias in algo-
rithms [24]. Data mining algorithms can inadvertently introduce or perpetuate biases, 
particularly when dealing with sensitive attributes, such as race, gender, or socioeco-
nomic status [24]. This can lead to unfair or discriminatory outcomes in healthcare deci-
sions and resource allocation. For instance, a data mining algorithm trained on historical 
datasets reflecting societal prejudices may replicate these biases in their output, includ-
ing forecasts and recommendations [25]. This could result in certain groups receiving 
suboptimal care or being unfairly targeted for intervention. Addressing algorithmic bias 
requires careful consideration of the data used to train the algorithms and the imple-
mentation of fairness measures during the data mining process.

Transparency and accountability

Achieving transparency and accountability in healthcare data mining models presents 
significant challenges despite their importance. The inner workings of many data min-
ing algorithms, especially those using sophisticated machine learning methods, are 
often obscure, making it challenging to comprehend their decision-making processes 
[26, 27]. In the medical field, the lack of transparency in decision-making processes can 
raise concerns, as these choices may have significant consequences for patients’ health. 
Nevertheless, enhancing the interpretability and explainability of these models remains 
difficult [27]. Healthcare providers and patients must understand how decisions are 
made to trust and effectively use insights generated by data mining. Additionally, clear 
accountability structures are needed to determine responsibility when data mining leads 
to adverse outcomes.

Security concerns

With the emergence of the Internet of Things (IoT), our tangible world is developing 
a new digital dimension [20]. Services, applications, and platforms associated with the 
Internet of Medical Things (IoMT) employ a common architectural framework. In 
this structure, data are collected by wearable devices or other medical equipment and 
subsequently transmitted to cloud storage [28]. The storage and processing of these 
cumbersome healthcare datasets for data mining purposes raises significant security 
concerns. This is because healthcare data are a valuable target for cybercriminals, and 
data breaches can have severe consequences for patients, including identity theft and 
discrimination [29].
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Recent studies have highlighted the growing threat of insider attacks in the health-
care industry [30, 31]. These insider threats can compromise patient data and under-
mine the integrity of data mining efforts [31]. Protecting against these threats requires 
strong security measures and careful data-access management. Moreover, as healthcare 
increasingly adopts IoMT technology, new security challenges have emerged. Therefore, 
the large amounts of data generated by IoMT devices present both opportunities for 
data mining and risks for data breaches [32]. Thus, balancing the potential benefits of 
data mining with robust security measures remains an ongoing ethical challenge.

Scenarios highlighting ethical challenges in healthcare data mining and privacy

Concerns about patient privacy have greatly increased because of the convergence of 
technology and healthcare, especially in data mining. Hospitals and healthcare networks 
are increasingly providing patient data to large digital businesses, such as Amazon, 
which raises several ethical concerns [35]. The possibility of third parties, particu-
larly hackers, gaining illegal access to private patient data is one of the main problems. 
Patients frequently lose control over their data when data-gathering organizations are 
acquired by larger corporations. This ownership transfer may lead to new businesses 
using patient data without the required authorization, which raises serious ethical ques-
tions regarding patient autonomy and data rights [36]. Amazon’s healthcare initiative, 
demonstrated by Amazon Comprehend Medical, aims to address the difficulties associ-
ated with excessively large patient datasets. This tool helps pharmaceutical companies, 
hospitals, and researchers make sense of large medical datasets. However, Comprehend 
Medical is not fully compliant with health insurance portability and accountability act 
(HIPAA) regulations, even though Amazon asserts that it complies with certain require-
ments for managing protected health information (PHI) [37].

The PillPack–ReMy Health dispute illustrates how data-sharing intermediaries can 
expose prescription histories to unvetted third parties; Surescripts revoked ReMy 
Health’s access in 2019 after alleging fraudulent taps on its e-prescribing network [38], 
Concerns regarding the ethical implications of sharing genetic data have also been raised 
by personal genomics companies, such as 23andMe. These businesses help people find 
their lineage and other personal information, but they also frequently provide research 
organizations and pharmaceutical corporations with access to anonymized genetic data 
[39, 40]. The increasing availability of data on individuals’ genetic composition, reac-
tions to medications, multi-omics responses, and genomic profiles is gradually steering 
healthcare towards tailored treatment approaches [41]. Therefore, genetic data can be 
used to intentionally cause harm. Recently, advances in genomics and precision medi-
cine have provided scientists with the ability to tailor medical treatments to an individ-
ual’s genetic makeup or profile. When misused, this information can be used to design a 
toxin or poison that specifically targets a person’s genetic vulnerability and causes harm 
to them. Additionally, this practice raises significant ethical concerns about informed 
consent and the absence of monetary remuneration for individuals whose data are used 
in drug development and scientific research.

While people may donate their data for research out of benevolence, the monetization 
of such data may result in situations where the advances made possible by the contribu-
tions do not benefit the persons themselves [40]. The issue of patient privacy is further 
complicated by the potential for re-identifying anonymized data breaches. Seminal work 



Page 6 of 16Ahmed et al. BioData Mining           (2025) 18:47 

at Carnegie Mellon University showed that ZIP code, birth date and sex uniquely iden-
tify 87% of U.S. residents [42]. A study showed that 15 demographic variables uniquely 
identified 99.98% of U. residents in a de-identified census dataset [34]. These findings 
underscore the persistent re-identification risk in ostensibly anonymised datasets, even 
when healthcare organisations apply safeguards such as k-anonymity, l-diversity and dif-
ferential-privacy masking [44], or enforce dynamic-consent workflows, legally binding 
data-use agreements and continuous audit-trail logging [45]. The security and integrity 
of patient data remain seriously threatened in the absence of these combined technical 
and governance controls. The 2015 Anthem breach alone exposed the records of more 
than 80  million health-insurance members, underscoring systemic vulnerability [46]. 
This trend underscores the fragility of healthcare information systems and emphasizes 
the urgent need for enhanced security. Medical institutions, including hospitals, walk-in 
clinics, pharmacies, and health insurance providers, possess highly valuable data, mak-
ing them attractive targets for cybercriminals to steal data. This situation is exacerbated 
by the relatively weak security infrastructure prevalent in the healthcare industry, fur-
ther increasing the likelihood of successful attacks.

 A report by Security Scorecard ranked healthcare 9th in terms of overall security rat-
ings among industries, highlighting its susceptibility to breaches [ 47, 48 ]. Healthcare 
data breaches have widespread consequences, affecting 26% of consumers in the United 
States. Half of these affected individuals experience medical identity theft, resulting in an 
average personal expense of $ 2, 500. In August 2016, two significant breaches occurred 
in the dam. NewKirk Products, a company that issues healthcare ID cards, suffered a 
breach that impacted 3.47 million patients [ 49 ]. During the same month, Banner Health 
faced a security incident that not only compromised patient records but also affected 
their payment system data [ 48 ]. Medical Informatics Engineering was breached in July 
2015, affecting 3.5 million patients and exposing sensitive data, including social security 
numbers and diagnoses [ 49 ]. Advocate Health Care faced a major breach in August 
2013 that exposed the personal and medical information of 4  million patients due to 
unencrypted records being compromised during theft [ 50 ]. Community Health Systems 
experienced a breach affecting 4.5 million patients between April and June 2014 [ 47 ]. 
Among significant data breaches, the TRICARE incident in September 2011 exposed the 
information of 4.9 million military members and their dependents. Additionally, in Sep-
tember 2015, the Excellus BlueCross BlueShield breach compromised sensitive personal 
and health data belonging to more than 10 million subscribers [ 48 ].

Premera Blue Cross announced a breach affecting more than 11 million people, with 
hackers gaining access to Social Security numbers and bank account details [47, 48]. 
Healthcare data breaches have increased in size and frequency over the past 14 years, 
raising ethical concerns. In 2023, 725 breaches exposed over 133 million patient records, 
with hacking and ransomware attacks accounting for nearly 80% of the incidents (Fig. 1). 
These breaches often expose sensitive personal and health-related information, exac-
erbating medical identity theft and causing financial harm. The shift from physical to 
digital records is intended to enhance healthcare efficiency and increase data vulnerabil-
ity. Technological advancements, such as data encryption, reduced data loss, and theft, 
occurred between 2009 and 2015. However, hacking has emerged as the predominant 
cause of breaches, with a 239% increase from 2018 to 2023.
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The severity of these breaches raises ethical issues regarding patient privacy, data 
security, and the healthcare industry’s responsibility to protect sensitive information. 
The increasing frequency and severity of breaches demand stronger cybersecurity pro-
tocols and a higher emphasis on ethical data governance, especially in the era of data-
driven healthcare advancements [11]. Ethical concerns regarding the use of patient data 
are becoming increasingly prominent as technology businesses join healthcare organiza-
tions more frequently. In the era of healthcare data mining, concerns about the possible 
misuse of patient information resulting from corporate mergers, fraudulent activities, 
and illegal access highlight the critical need for extensive ethical frameworks and strict 
rules to safeguard patient privacy and confidentiality. However, the security and integ-
rity of patient data are seriously threatened in the absence of such protections [34, 37].

Ethical implications of data mining for global healthcare systems

Data mining in global healthcare systems presents several ethical challenges that must 
be addressed to prevent exacerbating breaches, misuse of data, and existing dispari-
ties, and to ensure equitable outcomes across diverse populations. These challenges 
include quantifying the impact of data mining processes, which can perpetuate biases, 
and model generalizability, which can lead to over- or under-treatment in specific popu-
lations. Regular audits of data-driven models for bias and their impact on clinical out-
comes are essential, particularly in regions with pronounced socioeconomic and racial 
disparities [51, 52]. Model generalizability is another significant ethical challenge, as 
models trained on data from one region or hospital may perform poorly when deployed 
in another region with different demographics or resources. This issue is critical, as mod-
els may be applied in regions with different disease prevalence, healthcare infrastructure, 
and population characteristics, leading to diagnostic inaccuracies and suboptimal care 
for underrepresented or marginalized populations [53].

Transparency in model and data documentation is vital for ethical decision making 
in global healthcare, as poorly documented models and datasets can obscure biases or 
data collection flaws, leading to unintended consequences in clinical practice. Compre-
hensive documentation, such as detailed data sheets for datasets, can reveal how data 
are collected and highlight any sources of discrimination that are inherent in the model. 
Co-developing documentation tools, such as model cards, with healthcare practitioners 

Fig. 1 Major healthcare data breaches [11, 46, 47]
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helps formalize processes and ensures that ethical considerations, such as potential 
bias and trade-offs, are addressed before model deployment [54, 55]. The regulation of 
data mining models for healthcare is currently underdeveloped, raising significant ethi-
cal concerns, especially in global settings (Table  2). Although some regulations are in 
place, they do not adequately address the unique challenges presented by machine learn-
ing models in healthcare across various contexts. Extensive regulatory frameworks are 
needed to evaluate the safety and efficacy of these models, consider health inequalities 
during their development and implementation, and incorporate provisions for health 
equity assessments. Additionally, these frameworks should consider the legal ramifica-
tions of using ML in healthcare, including issues related to malpractice and liability [54, 
56].

Several frameworks now touch directly on AI in health; however, none provide end-
to-end protection against misuse. The EU AI Act (Regulation (EU) 2024/1689) classi-
fies clinical decision-support tools as high-risk and therefore imposes mandatory risk 
management, transparency reports, and post-market monitoring [57]. The Act, however, 
leaves model-bias auditing and dataset provenance checks to future secondary legisla-
tion, with enforcement at member-state level that may be uneven [57]. In the United 
States, HIPAA safeguards the confidentiality of electronic health information but is 
silent on algorithmic bias, model drift, and explainability duties [58]. Draft FDA guid-
ance released in January 2025 proposes a life-cycle approach for “AI-enabled Device 
Software Functions”, yet it is limited to devices seeking market clearance and does not 
cover hospital-built algorithms or retrospective research models [59]. The General 
Data Protection Regulation (GDPR) grants patients a right “not to be subject to a deci-
sion based solely on automated processing” [60]. However, GDPR focuses on personal 
data protection and does not compel developers to publish bias metrics or allow exter-
nal auditing of clinical AI. Moreover, the regulation does not harmonize health-data 
retention rules across member states, complicating cross-border model validation [60]. 
Global bodies are also responding to this. WHO’s 2024 guidance on large multi-modal 
models lists forty recommendations covering governance, procurement, and equity, yet 
remains non-binding [61]. Likewise, the US Sect. 1557 Final Rule on Nondiscrimination 
in Health Programs prohibits biased clinical decision-support tools but offers no techni-
cal standard for measuring fairness [62]. These examples show that current regulations 
(a) address privacy without bias and transparency, (b) address life-cycle quality without 
open auditing, or (c) are aspirational and unenforceable. Therefore, a comprehensive 
governance strategy requires routine bias-and-robustness audits, mandatory publication 

Table 2 Ethical implications of data mining for global healthcare systems
Ethical Challenge Description Source(s)
Perpetuation of 
Biases

Data mining processes can amplify existing disparities, leading to inequi-
table outcomes across diverse populations.

[52, 53]

Model 
Generalizability

Models trained on data from one region may perform poorly in regions with 
different demographics or resources, leading to diagnostic inaccuracies 
and suboptimal care for underrepresented groups; this is critical in regions 
with differing disease prevalence, healthcare infrastructure, and population 
characteristics.

[54]

Transparency & 
Documentation

Poorly documented models and datasets can obscure biases or data collec-
tion flaws, leading to unintended consequences in clinical practice.

[55, 56]

Regulation 
Underdevelopment

Current regulations often fail to address the specific challenges posed by 
healthcare machine learning models in diverse global settings.

[55, 57]
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of data lineage, real-time incident reporting, and harmonized penalties for non-compli-
ance that extend beyond financial fines to the suspension of algorithm use.

Ethical solutions and frameworks for responsible healthcare data mining

Several solutions and ethical frameworks can be implemented to address the ethical 
concerns associated with data mining in healthcare (Fig. 2). These approaches focus on 
data governance, algorithm fairness, privacy-enhancing technologies, and transparency.

Data governance

The implementation of strong data governance protocols is essential for ethical health-
care data-mining practices. A thorough data governance structure should provide 
explicit directives for the acquisition, maintenance, application and distribution of data 
[63]. The structure should contain the creation of comprehensive consent documents 
that explicitly outline the intended use of patient information in data-mining processes 
[64]. These forms should be written in plain language and be easily understandable by 
patients. The framework should also focus on implementing policies to collect and retain 
only the data necessary for specific healthcare purposes, thereby reducing the risk of 
unnecessary data exposures [65]. It is essential to implement rigorous security measures 
to limit access to confidential healthcare information and ensure that only authorized 
individuals can view or handle these data [66]. This includes the implementation of role-
based access control systems and regular audits of data access logs [66]. Additionally, the 
framework should involve creating policies for the proper handling of data throughout 
its lifecycle, including guidelines for data retention and secure data destruction when it 
is no longer needed [67].

Fairness in algorithms

In clinical prediction, fairness is most often operationalised as equal opportunity, which 
requires identical sensitivity across protected groups, or equalised odds, which requires 
identical sensitivity and specificity [68, 69]. Other metrics include demographic parity 
and predictive parity [70]. Selecting one metric over another is a policy choice because 
the trade-offs differ between high-risk decision contexts (e.g., critical-care triage) and 

Fig. 2 Ethical frameworks for responsible healthcare data mining
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screening or case-finding applications [69, 71]. Large audit studies continue to show 
clinically meaningful bias. A study found that fewer than a quarter of the 20 included 
studies reported any fairness metric and most failed to analyze performance across 
demographic subgroups [72]. Comparable disparities have been documented for radiol-
ogy triage tools, sepsis alerts and hospital readmission models, underscoring the need 
for systematic mitigation [73–75]. Fairness interventions can be applied before, during, 
or after training. Pre-processing techniques, such as stratified sampling, re-weighting 
and synthetic oversampling with methods like SMOTE-IPF, seek to balance under-rep-
resented groups prior to learning [76]. In-processing approaches introduce adversarial 
debiasing or fairness-constrained loss functions, including equalised-odds regulariza-
tion, to reduce disparate error rates while training is in progress [77]. Post-processing 
methods adjust decision thresholds or perform calibration-by-group so that false-pos-
itive and false-negative rates converge without retraining the base model [78]. Finally, 
life-cycle monitoring recognizes that fairness drifts over time; therefore, metrics must be 
logged continuously and a re-audit triggered whenever model inputs, population mix, or 
performance metrics change in clinically significant ways [79]. Several guidelines now 
embed explicit fairness requirements, each specifying the minimum amount of informa-
tion that researchers and developers must disclose (Table 3).

These frameworks collectively recommend that developers report model performance 
across demographic strata, document any mitigation techniques employed, and make 
source codes or audit notebooks publicly accessible so that external groups can repli-
cate fairness analyses. A pragmatic workflow begins by defining the fairness metric in 
collaboration with clinical and organizational stakeholders; equal opportunity is often 
preferred for diagnostic applications, whereas equalised odds is suited to high-stakes tri-
age [68, 85]. A baseline audit is then conducted on retrospective data; if the difference in 
sensitivity across any protected group exceeds 5% points, mitigation is required [86]. The 
chosen pre-, in- or post-processing technique is implemented, and model performance 
is re-evaluated to confirm that disparities have narrowed without unacceptable loss of 
overall accuracy [86]. The final model is registered in an institutional AI registry with 
documentation that satisfies SPIRIT-AI and CONSORT-AI requirements [80, 81]. Con-
tinuous monitoring should follow, with a scheduled re-audit every six months or when-
ever demographic drift exceeds 10%, ensuring that fairness remains stable over time. 
This structured approach translates abstract ethical principles into concrete actions 
aligned with the emerging international consensus on responsible AI in health care.

Table 3 Fairness requirements in key AI-health reporting guidelines
Guideline Year* Fairness-specific requirement Source(s)
SPIRIT-AI 2020 Trial protocols must describe plans for bias testing across demo-

graphic sub-groups during prospective evaluation.
[81]

CONSORT-AI 2020 Published trial results must be reported separately for each protected 
sub-group so differential performance can be assessed.

[82]

STARD-AI 2021 
(protocol)

Diagnostic-accuracy studies must present performance metrics 
stratified by sex, ethnicity, age, or other key demographics.

[83]

TRIPOD + AI 2024 Prediction-model papers must state which fairness metrics were cal-
culated, describe any mitigation steps, and show external validation 
across demographic strata.

[84]

PROBAST + AI 2025 The new Bias & Equity domain asks seven signaling questions on 
data representativeness, subgroup performance, and monitoring for 
fairness drift.

[85]

Note: * Years refer to the official publication date of each guideline or its protocol
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Privacy-enhancing technologies

 Protecting patient information requires more than a catalogue of advanced privacy-
enhancing technologies; it also means recognizing their current limitations and inte-
grating them with robust, system-level security controls [ 87 ]. Differential privacy, for 
example, guarantees formal protection only by injecting statistical noise; recent evalu-
ations on clinical datasets show that common ε-values (≤ 1) reduce model AUROC 
by up to 7% points and erase minority-group signal, undermining downstream equity 
analyses [ 16, 72 ]. Recent benchmarks indicate that fully-homomorphic inference on 
medical images can still take 20–180  min per case depending on model depth, while 
encrypted pipelines may be 30 × slower than plaintext baselines even after GPU accel-
eration [ 88, 89 ]. Federated learning mitigates data-residency barriers but does not pre-
vent model inversion or gradient-leakage attacks; clinical pilots report communication 
overheads that increase training time by a factor of eight in multi-hospital settings [ 90, 
91 ]. Equally important, privacy breaches often stem from basic cybersecurity lapses 
rather than from analytic workflows. Healthcare remains the world’s most-targeted crit-
ical-infrastructure sector, recording 386 publicly reported cyber-attacks in the first ten 
months of 2024 alone, a trajectory that threatens to eclipse the 2023 peak [ 92 ]. Ran-
somware operators now demand average payouts exceeding US $1.6 million, and highly 
publicized breaches such as the 2024 Medibank incident in Australia demonstrate how 
exfiltrated medical records can be weaponized for extortion and identity theft [ 93, 94 ]. 
Accordingly, privacy-preserving analytics must sit within a layered defense that includes 
a zero-trust network architecture, encryption-at-rest, vulnerability patch management, 
and continuous intrusion detection. Only by combining technical privacy mechanisms 
with foundational security practices can health systems reduce both accidental disclo-
sure and malicious compromises.

Transparency

Transparency in healthcare AI is commonly addressed at three complementary lev-
els, dataset documentation, model interpretability, and post-deployment audit logging 
[95–97]. Recent multi-center studies illustrate how local-explanation techniques can 
both uncover clinically relevant signals and expose hidden failure modes. Several multi-
center audits have used SHAP to reveal sex-specific and vital-sign-specific biases in 
sepsis-triage algorithms [98, 99]. In cardiac-risk prediction, investigators applied LIME-
style local explanations to digitized 12-lead ECGs, allowing cardiologists to confirm that 
QRS-complex morphology, rather than incidental demographic features, drove high-risk 
alerts; the explanations showed strong qualitative agreement with electrophysiologist 
annotations [100]. A study paired Grad-CAM with SHAP to show that transformer-
based model LungMaxViT attended to clinically relevant lung fields; retraining on bal-
anced data improved AUC from 0.926 to 0.932 over the MaxViT baseline [101]. Local 
methods such as LIME build a sparse linear surrogate around each prediction; the result-
ing coefficients form a ranked list of feature contributions in the original clinical units, 
for example, showing how a higher serum-lactate value increases a patient’s predicted 
risk [102, 103]. When these attribution vectors are stored in audit logs, quality-assurance 
teams can trace outlier decisions back to their root causes, thereby satisfying transpar-
ency and accountability mandates [104]. However, interpretability alone is insufficient; 
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model cards, version control, external-validation reports, and timestamped prediction 
logs complete the transparency stack and must accompany any visual explanation.

Conclusion
The ethical challenges surrounding data mining in healthcare demand immediate atten-
tion, as technology continues to revolutionize medical care and research. The dramatic 
rise in breaches, 725 incidents, and more than 133  million records compromised in 
2023, coupled with a 239% increase in hacking events since 2018, prove that today’s ad 
hoc safeguards are no longer adequate. Convergence with Big Tech ecosystems, large-
language-model integrations, and Internet of Medical Things (IoMT) devices now 
exposes patient data across a vastly expanded attack surface. Addressing this landscape 
requires a layered strategy that integrates (i) dataset-level artifacts (datasheets) to docu-
ment provenance, (ii) model-level disclosures (model cards) that publicize fairness and 
robustness metrics, and (iii) post-deployment audit trails capturing prediction logs 
and explanation vectors. Advanced privacy technologies, differential privacy calibrated 
with empirically validated noise budgets, homomorphic encryption for high-value que-
ries, and federated learning to keep raw data local, must be paired with routine bias-
and-robustness audits, dynamic consent mechanisms, and harmonized penalties that 
can suspend unsafe algorithms. Cultivating a culture of transparency and accountability 
within healthcare organizations is as critical as the technology stack. This means adopt-
ing governance frameworks mapped to SPIRIT-AI, CONSORT-AI, TRIPOD + AI, and 
the forthcoming PROBAST-AI Bias & Equity domain, ensuring that every stage, design, 
deployment, and monitoring meets scrutinized ethical benchmarks. Policymakers must 
enforce cross-border data-retention standards, while technology companies and pro-
viders must collaborate on secure, interoperable infrastructures. Ultimately, the future 
of healthcare data mining hinges on systems that are simultaneously powerful, fair, and 
verifiably safe. Achieving this vision will require the sustained, coordinated effort of cli-
nicians, data scientists, cybersecurity experts, ethicists, regulators, and patients them-
selves. Only through such multi-stakeholder collaboration can we unlock the life-saving 
potential of data-driven medicine without eroding the public trust on which healthcare 
depends.
Acknowledgements
The authors acknowledge the use of Paperpal (https://paperpal.com/), an AI-powered academic tool, for language 
editing and academic paraphrasing to enhance the clarity and readability of the manuscript. This assistance was limited 
to linguistic refinement, and the intellectual content, analysis, and interpretations remain entirely the authors’ own.

Author contributions
MMA and OJO conceptualized and designed the study. MO and ZKO conducted the literature review and data curation. 
OJO, MO and MMA wrote the first draft of the manuscript. SSM and ZKO critically revised the manuscript for important 
intellectual content. DELP III supervised the study. All authors have read and approved the final manuscript.

Funding
The authors have not received any funding for this study.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethical approval
Approval from the ethics committee was not required.

Competing interests
The authors declare no competing interests.

https://paperpal.com/


Page 13 of 16Ahmed et al. BioData Mining           (2025) 18:47 

Received: 19 April 2025 / Accepted: 17 June 2025

References
1. Kolling ML, Furstenau LB, Sott MK, Rabaioli B, Ulmi PH, Bragazzi NL, et al. Data mining in healthcare: applying strategic 

intelligence techniques to depict 25 years of research development. Int J Environ Res Public Health. 2021;18.  h t t p s : / / d o i . o r 
g / 1 0 . 3 3 9 0 / i j e r p h 1 8 0 6 3 0 9 9     .   

2. Olufemi Ogunleye J. The Concept of Data Mining. 2022; https://doi.org/10.5772/intechopen.99417
3. Dean MD, Payne DM, Landry BJL. Data mining: an ethical baseline for online privacy policies. J Enterp Inform Manage. 

2016;29:482–504. https://doi.org/10.1108/JEIM-04-2014-0040.
4. Hutton L, Henderson T. Beyond the EULA: Improving Consent for Data Mining, 2017, pp. 147–67.  h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / 9 

7 8 - 3 - 3 1 9 - 5 4 0 2 4 - 5 _ 7       
5. Saleh Ibrahim Y, Muhammed Y, Al-Douri AT, Faisal MS, Mohamad AAH, Al-Husban A, et al. Discovery of knowledge in the 

incidence of a type of lung Cancer for patients through data mining models. Comput Intell Neurosci. 2022;2022:1–8. 
https://doi.org/10.1155/2022/6058213.

6. Agatonovic-Kustrin S, Morton D. Data Mining in Drug Discovery and Design. Artificial Neural Network for Drug Design, 
Delivery and Disposition, Elsevier. 2016; pp. 181–93.  h t t p s :  / / d o i  . o r g / 1  0 . 1 0  1 6 / B 9  7 8 - 0 -  1 2 - 8 0 1  5 5 9 -  9 . 0 0 0 0 9 - 0

7. Mishra S, Tripathy HK, Mallick PK, Bhoi AK, Barsocchi P. EAGA-MLP—An enhanced and adaptive hybrid classification model 
for diabetes diagnosis. Sensors. 2020;20:4036. https://doi.org/10.3390/s20144036.

8. Kulev I, Pu P, Faltings B. A bayesian approach to Intervention-Based clustering. ACM Trans Intell Syst Technol. 2018;9:1–23. 
https://doi.org/10.1145/3156683.

9. Cui J, Zhao S, Sun X, An Association Rule Mining Algorithm for Clinical Decision Support. Proceedings of the 8th Interna-
tional Conference on Computing and, Intelligence A. New York, NY, USA: ACM. 2022; pp. 137–43.  h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 
5 3 2 2 1 3 . 3 5 3 2 2 3 4       

10. Cahan EM, Hernandez-Boussard T, Thadaney-Israni S, Rubin DL. Putting the data before the algorithm in big data address-
ing personalized healthcare. NPJ Digit Med. 2019;2:78. https://doi.org/10.1038/s41746-019-0157-2.

11. Healthcare Data Breach Statistics. HIPAA 2025.  h t t p s :  / / w w w  . h i p a a  j o u r  n a l . c  o m / h e  a l t h c a  r e - d  a t a - b r e a c h - s t a t i s t i c s / (accessed 
June 12, 2025).

12. Check Point Research Reports Highest Increase of Global. Cyber Attacks seen in last two years– a 30% Increase in Q2 2024 
Global Cyber Attacks - Check Point Blog. Checkpoint 2024.  h t t p s :  / / b l o  g . c h e c  k p o i  n t . c o  m / r e s  e a r c h /  c h e c  k - p o i  n t - r e  s e a r c h  - r 
e p  o r t s -  h i g h e  s t - i n c  r e a s  e - o f -  g l o b a  l - c y b e  r - a t  t a c k s  - s e e n  - i n - l a  s t - t  w o - y e  a r s - a  - 3 0 - i n  c r e a  s e - i n - q 2 - 2 0 2 4 - g l o b a l - c y b e r - a t t a c k s 
(accessed June 12, 2025).

13. Baines R, Stevens S, Austin D, Anil K, Bradwell H, Cooper L, et al. Patient and public willingness to share personal health 
data for Third-Party or secondary uses: systematic review. J Med Internet Res. 2024;26:e50421.  h t t p s : / / d o i . o r g / 1 0 . 2 1 9 6 / 5 0 4 
2 1     .   

14. Bruns A, Winkler EC. Dynamic consent: a Royal road to research consent? J Med Ethics 2024:jme-2024-110153.  h t t p s : / / d o i . 
o r g / 1 0 . 1 1 3 6 / j m e - 2 0 2 4 - 1 1 0 1 5 3       

15. Wiertz S. Public Health Ethics. 2023;16:261–70. https://doi.org/10.1093/phe/phad025. How to Design Consent for Health 
Data Research? An Analysis of Arguments of Solidarity.

16. Mohammadi M, Vejdanihemmat M, Lotfinia M, Rusu M, Truhn D, Maier A et al. Differential Privacy for Deep Learning in 
Medicine. ArXiv. 2025.

17. Al Badawi A, Faizal Bin Yusof M. Private pathological assessment via machine learning and homomorphic encryption. 
BioData Min. 2024;17:33. https://doi.org/10.1186/s13040-024-00379-9.

18. Zhang F, Kreuter D, Chen Y, Dittmer S, Tull S, Shadbahr T, et al. Recent methodological advances in federated learning for 
healthcare. Patterns. 2024;5:101006. https://doi.org/10.1016/j.patter.2024.101006.

19. Brown S, Davidovic J, Hasan A. The algorithm audit: scoring the algorithms that score Us. Big Data Soc. 2021;8.  h t t p s : / / d o i . 
o r g / 1 0 . 1 1 7 7 / 2 0 5 3 9 5 1 7 2 0 9 8 3 8 6 5     .   

20. The Movement to Hold AI Accountable Gains More Steam| WIRED. WIRED 2021.  h t t p s :  / / w w w  . w i r e d  . c o m  / s t o r  y / m o v  e m e n t 
-  h o l d  - a i - a  c c o u n  t a b l e -  g a i n  s - s t e a m / (accessed June 12, 2025).

21. Martinez-Martin N, Insel TR, Dagum P, Greely HT, Cho MK. Data mining for health: staking out the ethical territory of digital 
phenotyping. NPJ Digit Med. 2018;1. https://doi.org/10.1038/s41746-018-0075-8.

22. Watson K, Payne DM. Ethical practice in sharing and mining medical data. J Inform Communication Ethics Soc. 2021;19:1–
19. https://doi.org/10.1108/JICES-08-2019-0088.

23. Kalkman S, van Delden J, Banerjee A, Tyl B, Mostert M, van Thiel G. Patients’ and public views and attitudes towards the 
sharing of health data for research: a narrative review of the empirical evidence. J Med Ethics. 2022;48:3–13.  h t t p s :  / / d o i  . o r g 
/ 1  0 . 1 1  3 6 / m e  d e t h i  c s - 2 0 1  9 - 1 0  5 6 5 1.

24. Starke G, De Clercq E, Elger BS. Towards a pragmatist dealing with algorithmic bias in medical machine learning. Med 
Health Care Philos. 2021;24:341–9. https://doi.org/10.1007/s11019-021-10008-5.

25. Flores L, Kim S, Young SD. Addressing bias in artificial intelligence for public health surveillance. J Med Ethics. 2024;50:190–
4. https://doi.org/10.1136/jme-2022-108875.

26. Adler P, Falk C, Friedler SA, Nix T, Rybeck G, Scheidegger C, et al. Auditing black-box models for indirect influence. Knowl Inf 
Syst. 2018;54:95–122. https://doi.org/10.1007/s10115-017-1116-3.

27. Burkart N, Huber MF. A survey on the explainability of supervised machine learning. J Artif Intell Res. 2021;70:245–317. 
https://doi.org/10.1613/jair.1.12228.

28. Cano M-D, Cañavate-Sanchez A. Preserving data privacy in the internet of medical things using dual signature ECDSA. 
Secur Communication Networks. 2020;2020:1–9. https://doi.org/10.1155/2020/4960964.

29. Hamdi H, Brahmi Z, Alaerjan AS, Mhamdi L. Enhancing security and privacy preservation of sensitive information in 
e-Health datasets using FCA approach. IEEE Access. 2023;11:62591–604. https://doi.org/10.1109/ACCESS.2023.3285407.

30. Lee I. Analysis of insider threats in the healthcare industry: A text mining approach. Information. 2022;13:404.  h t t p s : / / d o i . o r 
g / 1 0 . 3 3 9 0 / i n f o 1 3 0 9 0 4 0 4     .   

https://doi.org/10.3390/ijerph18063099
https://doi.org/10.3390/ijerph18063099
https://doi.org/10.5772/intechopen.99417
https://doi.org/10.1108/JEIM-04-2014-0040
https://doi.org/10.1007/978-3-319-54024-5_7
https://doi.org/10.1007/978-3-319-54024-5_7
https://doi.org/10.1155/2022/6058213
https://doi.org/10.1016/B978-0-12-801559-9.00009-0
https://doi.org/10.3390/s20144036
https://doi.org/10.1145/3156683
https://doi.org/10.1145/3532213.3532234
https://doi.org/10.1145/3532213.3532234
https://doi.org/10.1038/s41746-019-0157-2
https://www.hipaajournal.com/healthcare-data-breach-statistics/
https://blog.checkpoint.com/research/check-point-research-reports-highest-increase-of-global-cyber-attacks-seen-in-last-two-years-a-30-increase-in-q2-2024-global-cyber-attacks
https://blog.checkpoint.com/research/check-point-research-reports-highest-increase-of-global-cyber-attacks-seen-in-last-two-years-a-30-increase-in-q2-2024-global-cyber-attacks
https://doi.org/10.2196/50421
https://doi.org/10.2196/50421
https://doi.org/10.1136/jme-2024-110153
https://doi.org/10.1136/jme-2024-110153
https://doi.org/10.1093/phe/phad025
https://doi.org/10.1186/s13040-024-00379-9
https://doi.org/10.1016/j.patter.2024.101006
https://doi.org/10.1177/2053951720983865
https://doi.org/10.1177/2053951720983865
https://www.wired.com/story/movement-hold-ai-accountable-gains-steam/
https://www.wired.com/story/movement-hold-ai-accountable-gains-steam/
https://doi.org/10.1038/s41746-018-0075-8
https://doi.org/10.1108/JICES-08-2019-0088
https://doi.org/10.1136/medethics-2019-105651
https://doi.org/10.1136/medethics-2019-105651
https://doi.org/10.1007/s11019-021-10008-5
https://doi.org/10.1136/jme-2022-108875
https://doi.org/10.1007/s10115-017-1116-3
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1155/2020/4960964
https://doi.org/10.1109/ACCESS.2023.3285407
https://doi.org/10.3390/info13090404
https://doi.org/10.3390/info13090404


Page 14 of 16Ahmed et al. BioData Mining           (2025) 18:47 

31. Walker-Roberts S, Hammoudeh M, Dehghantanha A. A systematic review of the availability and efficacy of countermea-
sures to internal threats in healthcare critical infrastructure. IEEE Access. 2018;6:25167–77.  h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / A C C E S S . 
2 0 1 8 . 2 8 1 7 5 6 0     .   

32. Rahmani MKI, Shuaib M, Alam S, Siddiqui ST, Ahmad S, Bhatia S, et al. Blockchain-Based trust management framework for 
cloud Computing-Based internet of medical things (IoMT): A systematic review. Comput Intell Neurosci. 2022;2022:1–14. 
https://doi.org/10.1155/2022/9766844.

33. Nayahi JJV, Kavitha V. Future Generation Comput Syst. 2017;74:393–408. https://doi.org/10.1016/j.future.2016.10.022. 
Privacy and utility preserving data clustering for data anonymization and distribution on Hadoop.

34. Rocher L, Hendrickx JM, de Montjoye Y-A. Estimating the success of re-identifications in incomplete datasets using gen-
erative models. Nat Commun. 2019;10:3069. https://doi.org/10.1038/s41467-019-10933-3.

35. Shen N, Bernier T, Sequeira L, Strauss J, Silver MP, Carter-Langford A, et al. Understanding the patient privacy perspective 
on health information exchange: A systematic review. Int J Med Inf. 2019;125:1–12.  h t t p s :  / / d o i  . o r g / 1  0 . 1 0  1 6 / j .  i j m e d  i n f . 2 0  1 9 . 
0  1 . 0 1 4.

36. Javaid M, Haleem A, Singh RP, Suman R. Towards insighting cybersecurity for healthcare domains: A comprehensive 
review of recent practices and trends. Cyber Secur Appl. 2023;1:100016. https://doi.org/10.1016/j.csa.2023.100016.

37. Chiruvella V, Guddati AK. Ethical issues in patient data ownership. Interact J Med Res. 2021;10:e22269.  h t t p s : / / d o i . o r g / 1 0 . 2 
1 9 6 / 2 2 2 6 9     .   

38. Surescripts terminates contract with ReMy. Health, hindering PillPack’s access to patient prescription data| Fierce Health-
care. Fierce Healthcare 2019.  h t t p s :  / / w w w  . fi  e r c  e h e a  l t h c a  r e . c o  m / t e c h  / s u r  e s c r i  p t s - t  e r m i n a  t e s -  c o n t r  a c t - r  e m y - h e  a l t h  - h i n d  e r i 
n g  - p i l l p  a c k -  s - a c c e s s - t o - p a t i e n t (accessed June 12, 2025).

39. MyHeritage DNA testing service says breach affected 92 M users’ data - CNET. CNET 2018.  h t t p s :  / / w w w  . c n e t .  c o m /  n e w s /  p r i 
v a  c y / m y h  e r i t  a g e - d  n a - t e  s t i n g -  s e r v  i c e - h  a d - d a  t a - o n -  9 2 m -  u s e r s - c o m p r o m i s e d / (accessed June 12, 2025).

40. How DNA-T. Platforms Like Ancestry, 23andMe Sell Your Data - Business Insider. Business Insider 2018.  h t t p s :  / / w w w  . b u s i n  e 
s s i  n s i d e  r . c o m  / d n a - t  e s t i  n g - a n  c e s t r  y - 2 3 a n  d m e -  s h a r e - d a t a - c o m p a n i e s - 2 0 1 8 . 8 (accessed June 12, 2025).

41. Singh AV, Chandrasekar V, Paudel N, Laux P, Luch A, Gemmati D, et al. Integrative toxicogenomics: advancing precision 
medicine and toxicology through artificial intelligence and omics technology. Biomed Pharmacother. 2023;163:114784. 
https://doi.org/10.1016/j.biopha.2023.114784.

42. Sweeney L. Simple demographics often identify people uniquely. Data Privacy Lab; 2000.
43. Li N, Li T, Venkatasubramanian S. t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. 2007 IEEE 23rd International 

Conference on Data Engineering, IEEE; 2007, pp. 106–15. https://doi.org/10.1109/ICDE.2007.367856
44. Data minimisation. ICO 2024.  h t t p s :  / / i c o  . o r g . u  k / f o  r - o r g  a n i s a  t i o n s /  a d v i  c e - a n  d - s e r  v i c e s /  a u d i  t s / d a  t a - p r  o t e c t i  o n - a  u d i t -  f r a m e  

w o r k / t  o o l k  i t s / a  r t i fi   c i a l - i  n t e l  l i g e n c e / d a t a - m i n i m i s a t i o n / (accessed June 12, 2025).
45. Hackers May Have Taken Medical Records From Insurer Premera| WIRED. 2015.  h t t p s :  / / w w w  . w i r e d  . c o m  / 2 0 1 5  / 0 3 / h  a c k e r 

s  - m a y  - t a k e  n - m e d  i c a l - r  e c o r  d s - i n s u r e r - p r e m e r a / (accessed June 12, 2025).
46. Top 10 Biggest Healthcare Data Breaches of All Time| Fortra’s Digital Guardian. Digital Guardian 2017.  h t t p s :  / / w w w  . d i g i t  a l g 

u  a r d i a  n . c o m  / b l o g /  t o p -  1 0 - b i  g g e s t  - h e a l t  h c a r  e - d a t a - b r e a c h e s - a l l - t i m e (accessed June 12, 2025).
47. 14 Biggest Healthcare Data Breaches [Updated 2025]| UpGuard. UpGuard 2025.  h t t p s :  / / w w w  . u p g u a  r d . c  o m / b l  o g / b i  g g e s t 

-  d a t a  - b r e a c h e s - i n - h e a l t h c a r e (accessed June 12, 2025).
48. The 10 largest healthcare data breaches. of 2016 - Health Data Management. Health Data Manag 2016.  h t t p s :  / / w w w  . h e a l t  

h d a t  a m a n a  g e m e n  t . c o m /  a r t i  c l e s /  t h e - 1  0 - l a r g  e s t -  h e a l t  h c a r e  - d a t a -  b r e a  c h e s - o f - 2 0 1 6 (accessed June 12, 2025).
49. RESOLUTION AGREEMENT. HHS 2019.  h t t p s :  / / w w w  . h h s . g  o v / s  i t e s /  d e f a u  l t / fi  l  e s / m  i e - r a - c a p . p d f (accessed June 12, 2025).
50. Advocate Medical Breach. No Encryption? - DataBreachToday. Data Breach Today 2013.  h t t p s :  / / w w w  . d a t a b  r e a c  h t o d a  y . c o 

m  / a d v o c  a t e -  m e d i c  a l - b r  e a c h - n  o - e n  c r y p t i o n - a - 6 0 2 1 (accessed June 12, 2025).
51. Howe Iii EG, Elenberg F. Ethical challenges posed by big data. Innov Clin Neurosci. 2020;17:24–30.
52. Hoagland A, Kipping S. Challenges in promoting health equity and reducing disparities in access across new and estab-

lished technologies. Can J Cardiol. 2024;40:1154–67. https://doi.org/10.1016/j.cjca.2024.02.014.
53. Yang J, Dung NT, Thach PN, Phong NT, Phu VD, Phu KD, et al. Generalizability assessment of AI models across hospitals in a 

low-middle and high income country. Nat Commun. 2024;15:8270. https://doi.org/10.1038/s41467-024-52618-6.
54. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine learning in healthcare. Annu Rev Biomed 

Data Sci. 2021;4:123–44.  h t t p s :  / / d o i  . o r g / 1  0 . 1 1  4 6 / a n  n u r e v  - b i o d a  t a s c  i - 0 9 2 8 2 0 - 1 1 4 7 5 7.
55. Siala H, Wang Y. SHIFTing artificial intelligence to be responsible in healthcare: A systematic review. Soc Sci Med. 

2022;296:114782.  h t t p s :  / / d o i  . o r g / 1  0 . 1 0  1 6 / j .  s o c s c  i m e d . 2  0 2 2 .  1 1 4 7 8 2.
56. Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A 

narrative review. Heliyon. 2024;10:e26297.  h t t p s :  / / d o i  . o r g / 1  0 . 1 0  1 6 / j .  h e l i y  o n . 2 0 2  4 . e 2  6 2 9 7.
57. Regulation - EU– 2024/1689 - EN - EUR-Lex. European Union 2024.  h t t p s :  / / e u r  - l e x . e  u r o p  a . e u /  e l i / r  e g / 2 0 2  4 / 1 6  8 9 / o j 

(accessed June 12, 2025).
58. Ongoing, US DEPARTMENT OF HEALTH AND HUMAN SERVICES. and Emerging Issues in Privacy and Security in a Post 

COVID-19 Era: An Environmental Scan. 2023.  h t t p s :  / / n c v  h s . h h s  . g o v  / w p - c  o n t e n  t / u p l o  a d s /  2 0 2 3 /  0 3 / N C  V H S - P r  i v a c  y S e c u  r i t y 
-  E n v i r o  n m e n  t a l - S  c a n - F  i n a l - J  a n - 2  0 2 3 - 5 0 8 . p d f (accessed June 12, 2025).

59. Artificial Intelligence-Enabled Device1 Software Functions. Lifecycle2 Management and Marketing3 Submission Recom-
mendations. FDA 2025. https://www.fda.gov/media/184856/download (accessed June 12, 2025).

60. Judgment of the Court (First Chamber) of 7 December 2023. European Union 2023.  h t t p s :  / / e u r  - l e x . e  u r o p  a . e u /  l e g a l  - c o n t e  
n t / E  N / T X T  / H T M L  / ? u r i =  C E L E  X % 3 A 6 2 0 2 1 C J 0 6 3 4 _ R E S (accessed June 12, 2025).

61. WHO releases AI ethics and governance guidance for large multi-modal models. WHO 2024.  h t t p s :  / / w w w  . w h o . i  n t / n  e w 
s / i  t e m / 1  8 - 0 1 - 2  0 2 4 -  w h o - r  e l e a s  e s - a i -  e t h i  c s - a n  d - g o v  e r n a n c  e - g u  i d a n c  e - f o r  - l a r g e  - m u l  t i - m o d a l - m o d e l s (accessed June 12, 
2025).

62. Federal Register:. Nondiscrimination in Health Programs and Activities. Fed Regist 2025.  h t t p s :  / / w w w  . f e d e r  a l r e  g i s t e  r . g o v  / d 
o c u m  e n t s  / 2 0 2 4  / 0 5 / 0  6 / 2 0 2 4  - 0 8 7  1 1 / n o  n d i s c  r i m i n a  t i o n  - i n - h  e a l t h  - p r o g r  a m s -  a n d - a c t i v i t i e s (accessed June 12, 2025).

63. Pika A, Wynn MT, Budiono S, ter Hofstede AHM, van der Aalst WMP, Reijers HA. Privacy-Preserving process mining in 
healthcare. Int J Environ Res Public Health. 2020;17:1612. https://doi.org/10.3390/ijerph17051612.

64. Wilmes N, Hendriks CWE, Viets CTA, Cornelissen SJWM, van Mook WNKA, Cox-Brinkman J, et al. Structural under-reporting 
of informed consent, data handling and sharing, ethical approval, and application of open science principles as proxies for 

https://doi.org/10.1109/ACCESS.2018.2817560
https://doi.org/10.1109/ACCESS.2018.2817560
https://doi.org/10.1155/2022/9766844
https://doi.org/10.1016/j.future.2016.10.022
https://doi.org/10.1038/s41467-019-10933-3
https://doi.org/10.1016/j.ijmedinf.2019.01.014
https://doi.org/10.1016/j.ijmedinf.2019.01.014
https://doi.org/10.1016/j.csa.2023.100016
https://doi.org/10.2196/22269
https://doi.org/10.2196/22269
https://www.fiercehealthcare.com/tech/surescripts-terminates-contract-remy-health-hindering-pillpack-s-access-to-patient
https://www.fiercehealthcare.com/tech/surescripts-terminates-contract-remy-health-hindering-pillpack-s-access-to-patient
https://www.cnet.com/news/privacy/myheritage-dna-testing-service-had-data-on-92m-users-compromised/
https://www.cnet.com/news/privacy/myheritage-dna-testing-service-had-data-on-92m-users-compromised/
https://www.businessinsider.com/dna-testing-ancestry-23andme-share-data-companies-2018-8
https://www.businessinsider.com/dna-testing-ancestry-23andme-share-data-companies-2018-8
https://doi.org/10.1016/j.biopha.2023.114784
https://doi.org/10.1109/ICDE.2007.367856
https://ico.org.uk/for-organisations/advice-and-services/audits/data-protection-audit-framework/toolkits/artificial-intelligence/data-minimisation/
https://ico.org.uk/for-organisations/advice-and-services/audits/data-protection-audit-framework/toolkits/artificial-intelligence/data-minimisation/
https://www.wired.com/2015/03/hackers-may-taken-medical-records-insurer-premera/
https://www.wired.com/2015/03/hackers-may-taken-medical-records-insurer-premera/
https://www.digitalguardian.com/blog/top-10-biggest-healthcare-data-breaches-all-time
https://www.digitalguardian.com/blog/top-10-biggest-healthcare-data-breaches-all-time
https://www.upguard.com/blog/biggest-data-breaches-in-healthcare
https://www.upguard.com/blog/biggest-data-breaches-in-healthcare
https://www.healthdatamanagement.com/articles/the-10-largest-healthcare-data-breaches-of-2016
https://www.healthdatamanagement.com/articles/the-10-largest-healthcare-data-breaches-of-2016
https://www.hhs.gov/sites/default/files/mie-ra-cap.pdf
https://www.databreachtoday.com/advocate-medical-breach-no-encryption-a-6021
https://www.databreachtoday.com/advocate-medical-breach-no-encryption-a-6021
https://doi.org/10.1016/j.cjca.2024.02.014
https://doi.org/10.1038/s41467-024-52618-6
https://doi.org/10.1146/annurev-biodatasci-092820-114757
https://doi.org/10.1016/j.socscimed.2022.114782
https://doi.org/10.1016/j.heliyon.2024.e26297
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://ncvhs.hhs.gov/wp-content/uploads/2023/03/NCVHS-PrivacySecurity-Environmental-Scan-Final-Jan-2023-508.pdf
https://ncvhs.hhs.gov/wp-content/uploads/2023/03/NCVHS-PrivacySecurity-Environmental-Scan-Final-Jan-2023-508.pdf
https://www.fda.gov/media/184856/download
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A62021CJ0634_RES
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A62021CJ0634_RES
https://www.who.int/news/item/18-01-2024-who-releases-ai-ethics-and-governance-guidance-for-large-multi-modal-models
https://www.who.int/news/item/18-01-2024-who-releases-ai-ethics-and-governance-guidance-for-large-multi-modal-models
https://www.federalregister.gov/documents/2024/05/06/2024-08711/nondiscrimination-in-health-programs-and-activities
https://www.federalregister.gov/documents/2024/05/06/2024-08711/nondiscrimination-in-health-programs-and-activities
https://doi.org/10.3390/ijerph17051612


Page 15 of 16Ahmed et al. BioData Mining           (2025) 18:47 

study quality conduct in COVID-19 research: a systematic scoping review. BMJ Glob Health. 2023;8:e012007.  h t t p s : / / d o i . o r 
g / 1 0 . 1 1 3 6 / b m j g h - 2 0 2 3 - 0 1 2 0 0 7     .   

65. Domadiya N, Rao UP. Improving healthcare services using source anonymous scheme with privacy preserving distributed 
healthcare data collection and mining. Computing. 2021;103:155–77. https://doi.org/10.1007/s00607-020-00847-0.

66. Singh A, Chatterjee K. Trust based access control model for Securing electronic healthcare system. J Ambient Intell 
Humaniz Comput. 2019;10:4547–65. https://doi.org/10.1007/s12652-018-1138-z.

67. Dehnavi M, Shojaei Baghini M. Retention and destruction of health information: A review study. Appl Health Inform Tech-
nol. 2022. https://doi.org/10.18502/ahit.v3i1.10153.

68. Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning. Adv Neural Inf Process Syst 2016:3323–31.
69. Pfohl SR, Foryciarz A, Shah NH. An empirical characterization of fair machine learning for clinical risk prediction. J Biomed 

Inf. 2021;113:103621. https://doi.org/10.1016/j.jbi.2020.103621.
70. Yeom S, Tschantz MC. Avoiding Disparity Amplification under Different Worldviews. Proceedings of the 2021 ACM Confer-

ence on Fairness, Accountability, and Transparency, New York, NY, USA: ACM; 2021. pp; 273–83.  h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 4 
4 2 1 8 8 . 3 4 4 5 8 9 2       

71. Paulus JK, Kent DM. Predictably unequal: Understanding and addressing concerns that algorithmic clinical prediction May 
increase health disparities. NPJ Digit Med. 2020;3:99. https://doi.org/10.1038/s41746-020-0304-9.

72. Chen F, Wang L, Hong J, Jiang J, Zhou L. Unmasking bias in artificial intelligence: a systematic review of bias detection and 
mitigation strategies in electronic health record-based models. J Am Med Inform Assoc. 2024;31:1172–83.  h t t p s : / / d o i . o r g / 
1 0 . 1 0 9 3 / j a m i a / o c a e 0 6 0     .   

73. Yi PH, Bachina P, Bharti B, Garin SP, Kanhere A, Kulkarni P et al. Pitfalls and best practices in evaluation of AI algorithmic 
biases in radiology. Radiology 2025;315. https://doi.org/10.1148/radiol.241674

74. Banja D, Xie J, Smith YR, Rana J, Holder SL. A. Mitigating Bias in machine learning models with Ethics-Based initiatives: the 
case of Sepsis. Am J Bioeth 2025:1–14.  h t t p s :  / / d o i  . o r g / 1  0 . 1 0  8 0 / 1 5  2 6 5 1 6  1 . 2 0 2 5  . 2 4 9  7 9 7 1

75. Wang HE, Weiner JP, Saria S, Kharrazi H. Evaluating algorithmic Bias in 30-Day hospital readmission models: retrospective 
analysis. J Med Internet Res. 2024;26:e47125. https://doi.org/10.2196/47125.

76. Sáez JA, Luengo J, Stefanowski J, Herrera F. SMOTE–IPF: addressing the noisy and borderline examples problem in imbal-
anced classification by a re-sampling method with filtering. Inf Sci (N Y). 2015;291:184–203.  h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . i n s . 2 0 
1 4 . 0 8 . 0 5 1     .   

77. Yang J, Soltan AAS, Eyre DW, Yang Y, Clifton DA. An adversarial training framework for mitigating algorithmic biases in clini-
cal machine learning. NPJ Digit Med. 2023;6:55. https://doi.org/10.1038/s41746-023-00805-y.

78. Moslemi MH, Milani M. Threshold-Independent fair matching through score calibration. ArXiv; 2024.
79. Davis SE, Dorn C, Park DJ, Matheny ME. Emerging algorithmic bias: fairness drift as the next dimension of model mainte-

nance and sustainability. J Am Med Inform Assoc. 2025;32:845–54. https://doi.org/10.1093/jamia/ocaf039.
80. Cruz Rivera S, Liu X, Chan A-W, Denniston AK, Calvert MJ, Darzi A, et al. Guidelines for clinical trial protocols for interven-

tions involving artificial intelligence: the SPIRIT-AI extension. Nat Med. 2020;26:1351–63.  h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 1 - 0 
2 0 - 1 0 3 7 - 7     .   

81. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, Chan A-W, et al. Reporting guidelines for clinical trial reports for 
interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020;26:1364–74.  h t t p s : / / d o i . o r g / 1 0 . 1 0 
3 8 / s 4 1 5 9 1 - 0 2 0 - 1 0 3 4 - x     .   

82. Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, et al. Developing a reporting guideline for artificial 
intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open. 2021;11:e047709.  h t t p s : / / d o i . o r g / 
1 0 . 1 1 3 6 / b m j o p e n - 2 0 2 0 - 0 4 7 7 0 9     .   

83. Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, et al. TRIPOD + AI statement: updated guidance for 
reporting clinical prediction models that use regression or machine learning methods. BMJ. 2024;e078378.  h t t p s : / / d o i . o r g 
/ 1 0 . 1 1 3 6 / b m j - 2 0 2 3 - 0 7 8 3 7 8     .   

84. Moons KGM, Damen JAA, Kaul T, Hooft L, Andaur Navarro C, Dhiman P, et al. PROBAST + AI: an updated quality, risk of 
bias, and applicability assessment tool for prediction models using regression or artificial intelligence methods. BMJ. 
2025;e082505. https://doi.org/10.1136/bmj-2024-082505.

85. Gao J, Chou B, McCaw ZR, Thurston H, Varghese P, Hong C, et al. What is fair?? Defining fair?ness in machine learning for 
health. ArXiv; 2024.

86. Mackin S, Major VJ, Chunara R, Newton-Dame R. Identifying and mitigating algorithmic bias in the safety net. NPJ Digit 
Med. 2025;8:335. https://doi.org/10.1038/s41746-025-01732-w.

87. Hai T, Sarkar A, Aksoy M, Karmakar R, Manna S, Prasad A. Elevating security and disease forecasting in smart healthcare 
through artificial neural synchronized federated learning. Cluster Comput. 2024;27:7889–914.  h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / s 1 0 
5 8 6 - 0 2 4 - 0 4 3 5 6 - z     .   

88. Dutil F, See A, Di Jorio L, Chandelier Imagia F. Application of homomorphic encryption in medical imaging. ArXiv; 2021.
89. Security for Data Privacy in Federated Learning with CUDA-Accelerated Homomorphic Encryption in XGBoost| NVIDIA 

Technical Blog. Nvidia 2024.  h t t p s :  / / d e v  e l o p e r  . n v i  d i a . c  o m / b l  o g / s e c  u r i t  y - f o r  - d a t a  - p r i v a  c y - i  n - f e d  e r a t e  d - l e a r  n i n g  - w i t h  - c u d 
a  - a c c e l  e r a t  e d - h o  m o m o r  p h i c - e  n c r y  p t i o n - i n - x g b o o s t / (accessed June 12, 2025).

90. Soltan AAS, Thakur A, Yang J, Chauhan A, D’Cruz LG, Dickson P, et al. A scalable federated learning solution for secondary 
care using low-cost microcomputing: privacy-preserving development and evaluation of a COVID-19 screening test in UK 
hospitals. Lancet Digit Health. 2024;6:e93–104.  h t t p s :  / / d o i  . o r g / 1  0 . 1 0  1 6 / S 2 5 8 9 - 7 5 0 0 ( 2 3 ) 0 0 2 2 6 - 1.

91. Zhang F, Zhai D, Bai G, Jiang J, Ye Q, Ji X, et al. Towards fairness-aware and privacy-preserving enhanced collaborative 
learning for healthcare. Nat Commun. 2025;16:2852. https://doi.org/10.1038/s41467-025-58055-3.

92. A Look at 2024’s Health Care Cybersecurity Challenges| AHA News. AHA 2024.  h t t p s :  / / w w w  . a h a . o  r g / n  e w s / a  h a - c y  b e r - i n  t e l /  
2 0 2 4 -  1 0 - 0 7  - l o o k -  2 0 2 4  s - h e a  l t h - c  a r e - c y  b e r s  e c u r i t y - c h a l l e n g e s (accessed June 12, 2025).

93.  Ransomware Demands Averaged $1. 6 Million in Second Quarter, a New Report Says– Digital Transactions. Digital Trans-
actions 2024.  h t t p s :  / / w w w  . d i g i t  a l t r  a n s a c  t i o n s  . n e t / r  a n s o  m w a r e  - d e m a  n d s - a v  e r a g  e d - 1 -  6 - m i l  l i o n - i  n - s e  c o n d -  q u a r t  e r - a - n  e w - r  
e p o r t - s a y s / (accessed June 12, 2025).

94. OAIC takes civil penalty action against Medibank| OAIC, Australian. Government 2024.  h t t p s :  / / w w w  . o a i c .  g o v .  a u / n e  w s / m e  
d i a - c e  n t r e  / o a i c  - t a k e  s - c i v i  l - p e  n a l t y  - a c t i  o n - a g a  i n s t  - m e d i b a n k (accessed June 12, 2025).

https://doi.org/10.1136/bmjgh-2023-012007
https://doi.org/10.1136/bmjgh-2023-012007
https://doi.org/10.1007/s00607-020-00847-0
https://doi.org/10.1007/s12652-018-1138-z
https://doi.org/10.18502/ahit.v3i1.10153
https://doi.org/10.1016/j.jbi.2020.103621
https://doi.org/10.1145/3442188.3445892
https://doi.org/10.1145/3442188.3445892
https://doi.org/10.1038/s41746-020-0304-9
https://doi.org/10.1093/jamia/ocae060
https://doi.org/10.1093/jamia/ocae060
https://doi.org/10.1148/radiol.241674
https://doi.org/10.1080/15265161.2025.2497971
https://doi.org/10.2196/47125
https://doi.org/10.1016/j.ins.2014.08.051
https://doi.org/10.1016/j.ins.2014.08.051
https://doi.org/10.1038/s41746-023-00805-y
https://doi.org/10.1093/jamia/ocaf039
https://doi.org/10.1038/s41591-020-1037-7
https://doi.org/10.1038/s41591-020-1037-7
https://doi.org/10.1038/s41591-020-1034-x
https://doi.org/10.1038/s41591-020-1034-x
https://doi.org/10.1136/bmjopen-2020-047709
https://doi.org/10.1136/bmjopen-2020-047709
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1136/bmj-2024-082505
https://doi.org/10.1038/s41746-025-01732-w
https://doi.org/10.1007/s10586-024-04356-z
https://doi.org/10.1007/s10586-024-04356-z
https://developer.nvidia.com/blog/security-for-data-privacy-in-federated-learning-with-cuda-accelerated-homomorphic-encryption-in-xgboost/
https://developer.nvidia.com/blog/security-for-data-privacy-in-federated-learning-with-cuda-accelerated-homomorphic-encryption-in-xgboost/
https://doi.org/10.1016/S2589-7500(23)00226-1
https://doi.org/10.1038/s41467-025-58055-3
https://www.aha.org/news/aha-cyber-intel/2024-10-07-look-2024s-health-care-cybersecurity-challenges
https://www.aha.org/news/aha-cyber-intel/2024-10-07-look-2024s-health-care-cybersecurity-challenges
https://www.digitaltransactions.net/ransomware-demands-averaged-1-6-million-in-second-quarter-a-new-report-says/
https://www.digitaltransactions.net/ransomware-demands-averaged-1-6-million-in-second-quarter-a-new-report-says/
https://www.oaic.gov.au/news/media-centre/oaic-takes-civil-penalty-action-against-medibank
https://www.oaic.gov.au/news/media-centre/oaic-takes-civil-penalty-action-against-medibank


Page 16 of 16Ahmed et al. BioData Mining           (2025) 18:47 

95. Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, Iii HD, et al. Datasheets Datasets Commun ACM. 2018;64:86–
92. https://doi.org/10.1145/3458723.

96. Mitchell M, Wu S, Zaldivar A, Barnes P, Vasserman L, Hutchinson B et al. Model Cards for Model Reporting. Proceedings of 
the Conference on Fairness, Accountability, and Transparency, New York, NY, USA: ACM; 2019, pp. 220–9.  h t t p s : / / d o i . o r g / 1 
0 . 1 1 4 5 / 3 2 8 7 5 6 0 . 3 2 8 7 5 9 6       

97. A Guide to ICO Audit Artificial Intelligence (AI). Audits Contents. ICO n.d.  h t t p s :  / / i c o  . o r g . u  k / m e  d i a 2 /  m i g r a  t e d / 4 0  2 2 6 5  1 / a - g  
u i d e -  t o - a i -  a u d i  t s . p d f (accessed June 12, 2025).

98. Strickler EAT, Thomas J, Thomas JP, Benjamin B, Shamsuddin R. Exploring a global interpretation mechanism for deep 
learning networks when predicting sepsis. Sci Rep. 2023;13:3067. https://doi.org/10.1038/s41598-023-30091-3.

99. Liu Z, Shu W, Li T, Zhang X, Chong W. Interpretable machine learning for predicting sepsis risk in emergency triage 
patients. Sci Rep. 2025;15:887. https://doi.org/10.1038/s41598-025-85121-z.

100. Gliner V, Levy I, Tsutsui K, Acha MR, Schliamser J, Schuster A, et al. Clinically meaningful interpretability of an AI model for 
ECG classification. NPJ Digit Med. 2025;8:109. https://doi.org/10.1038/s41746-025-01467-8.

101. Fu X, Lin R, Du W, Tavares A, Liang Y. Explainable hybrid transformer for multi-classification of lung disease using chest 
X-rays. Sci Rep. 2025;15:6650. https://doi.org/10.1038/s41598-025-90607-x.

102. Ribeiro MT, Singh S, Guestrin C, Why Should I, Trust. You? Proceedings of the 22nd ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, New York, NY, USA: ACM. 2016; pp. 1135–44.  h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 2 9 3 9 6 7 2 . 
2 9 3 9 7 7 8       

103. Patterson J, Tatonetti N. KG-LIME: predicting individualized risk of adverse drug events for multiple sclerosis disease-modi-
fying therapy. J Am Med Inform Assoc. 2024;31:1693–703. https://doi.org/10.1093/jamia/ocae155.

104. Guidance on AI and data protection| ICO. ICO 2023.  h t t p s :  / / i c o  . o r g . u  k / f o  r - o r g  a n i s a  t i o n s /  u k - g  d p r - g  u i d a n  c e - a n d  - r e s  o u r c e  s / 
a r t  i fi  c i a  l - i n  t e l l i  g e n c e  / g u i d a  n c e -  o n - a i - a n d - d a t a - p r o t e c t i o n / (accessed June 12, 2025).

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3458723
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596
https://ico.org.uk/media2/migrated/4022651/a-guide-to-ai-audits.pdf
https://ico.org.uk/media2/migrated/4022651/a-guide-to-ai-audits.pdf
https://doi.org/10.1038/s41598-023-30091-3
https://doi.org/10.1038/s41598-025-85121-z
https://doi.org/10.1038/s41746-025-01467-8
https://doi.org/10.1038/s41598-025-90607-x
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1093/jamia/ocae155
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/artificial-intelligence/guidance-on-ai-and-data-protection/
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/artificial-intelligence/guidance-on-ai-and-data-protection/

	﻿The ethics of data mining in healthcare: challenges, frameworks, and future directions
	﻿Abstract
	﻿Introduction
	﻿Ethical issues in data mining
	﻿Privacy and consent
	﻿Algorithmic bias
	﻿Transparency and accountability
	﻿Security concerns
	﻿Scenarios highlighting ethical challenges in healthcare data mining and privacy
	﻿Ethical implications of data mining for global healthcare systems
	﻿Ethical solutions and frameworks for responsible healthcare data mining
	﻿Data governance
	﻿Fairness in algorithms
	﻿Privacy-enhancing technologies
	﻿Transparency

	﻿Conclusion
	﻿References


