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ABSTRACT

The Fine-Gray model for the subdistribution hazard is commonly used for estimating associations between covariates and com-
peting risks outcomes. When there are missing values in the covariates included in a given model, researchers may wish to
multiply impute them. Assuming interest lies in estimating the risk of only one of the competing events, this paper develops a
substantive-model-compatible multiple imputation approach that exploits the parallels between the Fine-Gray model and the
standard (single-event) Cox model. In the presence of right-censoring, this involves first imputing the potential censoring times
for those failing from competing events, and thereafter imputing the missing covariates by leveraging methodology previously
developed for the Cox model in the setting without competing risks. In a simulation study, we compared the proposed approach
to alternative methods, such as imputing compatibly with cause-specific Cox models. The proposed method performed well (in
terms of estimation of both subdistribution log hazard ratios and cumulative incidences) when data were generated assuming
proportional subdistribution hazards, and performed satisfactorily when this assumption was not satisfied. The gain in efficiency
compared to a complete-case analysis was demonstrated in both the simulation study and in an applied data example on compet-
ing outcomes following an allogeneic stem cell transplantation. For individual-specific cuamulative incidence estimation, assuming
proportionality on the correct scale at the analysis phase appears to be more important than correctly specifying the imputation
procedure used to impute the missing covariates.

1 | Introduction imputation (MI) methods in particular have become increasingly
popular in practice [1]. Compared to a complete-case analysis
The presence of missing covariate data continues to be per- (CCA), MI can provide inferences that are both less biased and

vasive across biomedical research. Among the many existing more efficient, under certain missingness mechanisms and given
approaches for dealing with missing covariate data, multiple that the imputation models are appropriately specified [2].
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The most common approach to MI is to specify and fit univariate
regression models for partially observed covariates, from which
imputations are then generated. Ideally, each one of these impu-
tation models should be compatible with the substantive model
of interest. That is, the assumptions made by both models should
not conflict with each other, for example, the imputation model
should at least feature the remaining substantive model covari-
ates, as well as the outcome. We refer to an imputation model as
being “directly specified” when substantive model covariates and
outcome variable(s), or any transformations thereof, are included
explicitly as predictors in the imputation model. In settings with
missingness spanning multiple covariates, the specification of a
joint distribution via a set of directly specified imputation models
is more commonly known as MICE (multivariate imputation by
chained equations) [3].

In the context of cause-specific Cox proportional hazards models
[4], it has been shown that the imputation model for a partially
observed covariate should at least include as predictors the
other covariates from the substantive model, together with the
cause-specific cumulative hazard and event indicator for each
competing risk [5]. Analogously to the standard single-event
survival setting, this directly specified imputation model is
generally only approximately compatible with the proportional
hazards substantive model [6]. Concretely, when the outcome
model assumes proportional hazards, the conditional distribu-
tion of a partially observed covariate modeled using MICE is
only an approximation of the “true” (i.e., implied assuming the
substantive model is correctly specified) conditional distribution
of the partially observed covariate given the outcome and other
substantive model covariates. If imputed values can instead be
directly sampled from the latter distribution, it would ensure
compatibility between the analysis and imputation model. This
alternative “indirect” way of obtaining imputations is referred to
as the substantive-model-compatible imputation (SMC-FCS [7])
approach, and it was extended by Bartlett and Taylor to accom-
modate cause-specific Cox substantive models [8]. In terms of
estimating cause-specific hazard ratios, simulation studies have
shown that the SMC-FCS approach tends to outperform MICE
in cases when the substantive model is correctly specified [5, 8].

When a Fine-Gray subdistribution hazard model [9] is the
substantive model of interest, there has to our knowledge been
no research on how one should specify an imputation model for
amissing covariate [10]. Nevertheless, MICE is still being used in
the presence of missing covariates when the substantive model
is a Fine-Gray model, particularly in the context of prediction
models. While the structure of the imputation model is rarely
reported, articles that do describe their imputation procedure
appear to use different approaches. For example, in the prog-
nostic Fine-Gray model presented by Archer et al. (where the
primary outcome was time to serious fall resulting in hospital
admission or death, with competing death due to other causes),
the imputation model for a missing covariate contained the other
substantive model covariates, and the cause-specific cumulative
hazard and event indicator for each competing risk [11]. In
contrast, the MICE procedure reported as part of the prognostic
models presented by Clift et al. used cumulative subdistribution
hazards in the imputation model [12]. Heuristically, it would
seem the latter approach is more consistent with the substantive
model, as the former imputes approximately compatibly with a

cause-specific Cox model structure rather than the Fine-Gray
model structure.

In this work, we extend the SMC-FCS approach for missing
covariates to accommodate a Fine-Gray substantive model for
one of the competing events. In the presence of independent
and identically distributed censoring times that are stochastically
independent of the competing risks process (i.e., the uncondi-
tional “random censoring” assumption [13], as assumed by Fine
and Gray [9]), the core idea is to multiply impute the potential
censoring times for individuals failing from competing eventsin a
first step [14], and thereafter use existing SMC-FCS methodology
[7] originally developed for the standard Cox model to impute the
missing covariates in a second step. We additionally explain how
the methodology can be used in settings where the censoring pro-
cess depends on both complete and partially observed covariates.

The structure of the manuscript is as follows. We introduce com-
peting risks notation in Section 2. In Section 3, we outline the
proposed method, and thereafter assess its performance in a sim-
ulation study in Section 4. We also provide an illustrative analysis
using a dataset from the field of allogeneic hematopoietic stem
cell transplantation (alloHCT) in Section 5. Finally, findings are
discussed in Section 6, together with recommendations on how
to impute covariates in competing risks settings more generally.

2 | Notation

We consider a setting in which individuals experience only one
of K competing events. We denote the event time as 7', and the
competing event indicator as De {1, ...,K}. In practice, indi-
viduals are subject to some right-censoring time C, meaning we
only observe realizations (¢,,d,) of T = min(C,T)and D = I(T <
C)D, where I(-) is the indicator function and D = 0 indicates a
right-censored observation. The cause-specific hazard for the k'
event is defined as

Pe<T <t+At,D=k|T >1)
At

Iy (1) = lim

These hazards together make up the event-free survival function,

K . K
P(T > 1) =exp {—Z/ hk(u)du} = exp {—ZHk(z)}
k=170 k=1

assuming the distribution of T is continuous, and H, () is the
cause-specific cumulative hazard function for the k™ event. The
cause-specific cumulative incidence function is then defined as

t
Ft)=P(T <t,D=k)= / h(W)S (u—) du
0

where S(u—) is the event-free survival probability just prior to u.

The subdistribution hazard for the k™ event is defined as

—dlog(1 - F,(1)

A(t) = Q@
dF, (1) _
= d—"t X {1- F ()™
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which can be thought of as the hazard for the improper ran-
dom variable V, = I(D = k) x T + I(D # k) X oo, for which we
can write F,(t) = P(V, <) [13]. The probability mass at infinity
makes V', improper, that is, its density function does not integrate
to one.

Suppose interest lies in modeling the cumulative incidence of one
of the competing events, say D = 1, conditional on (time-fixed)
covariates Z. The Fine-Gray model for cause 1 can be written as

Mt | Z) = Ay (1) exp(B'Z)

with Ay, (#) being the subdistribution baseline hazard function
and p representing the effects of covariates Z on the subdistribu-
tion hazard. The cumulative incidence function for cause 1 can
then be written as

t
Fi(t]Z)=1—-exp {— exp(B'Z) / Amm)du}
0

where fO’ Ag (w)du = Ay, (¢) is the cumulative baseline subdistribu-
tion hazard. If we define a baseline cumulative incidence func-
tion Fy(t) =1 —exp{—Ay ()} (e, the cumulative incidence
when Z = 0), the model can also be written as

F(t|Z)y=1-{1- Fm(t)}eXP(ﬁTZ) 1)

In the presence of random right censoring, the Fine-Gray
model is usually fitted by maximizing a partial likelihood that
uses time-dependent inverse probability of censoring weights
(IPCW) [9].

3 | MI Approaches With a Fine-Gray
Substantive Model

We consider a setting with p partially observed covariates
X=X, ...,X,, q fully observed covariates Z = Z, ..., z, and
K = 2 competing events. We assume that (possibly conditional
on Z) censoring is independent of both X and the competing
risks outcomes 7', D. We furthermore let X°* and X™ respec-
tively denote the observed and missing components of X for
an individual, and let R be the vector of observation indicators
(equal to 1 if the corresponding element of X is observed, or
equal to 0 if it is missing).

The substantive model of interest is A,(f| X,Z)=
Ap () exp{g(X, Z; B)}, which is a Fine—Gray model for cause 1,
and where g(X, Z; p) is a function of X and Z, parametrized by
B. In this section, we provide an overview of possible approaches
for imputing each partially observed X ;. These imputation mod-
els can then be “chained” together as described in Sections 4
and 5 of the work by Bartlett and colleagues [7]. In addition to
an approach that imputes compatibly with the assumed sub-
stantive model, we also consider alternative methods which
are either (a) only approximately compatible with the sub-
stantive model, or (b) impute assuming a different underlying
competing risks structure (i.e., cause-specific proportional
hazards). We require that the proposed approaches be valid
under the missing-at-random (MAR) assumption, that is,
P(R|T,D,X,Z)=P(R|T,D, X%, Z).

3.1 |
Models

MI Based on Cause-Specific Hazards

311 | CS-SMC

A first MI approach to consider is to impute compatibly
with cause-specific Cox models, despite the substantive
model of interest being a Fine-Gray model for cause 1. As
described by Bartlett and Taylor [8], this method relies on
the substantive-model-compatible imputation density for X,
given by

fX, | T.D,X

Z)« f(T,D| X, 2)f(X; | X_;,Z) (2)

_j k] _I 9
where X _ j refers to the components of X after removing X s and
f () is a density function. For example, f(T, D | X, Z) is used as
shorthand notation for fr 5| y z(7,d | x, z), that is, the density
function for the conditional distribution 7', D | X, Z, evaluated

at (¢, d) for given values x and z.

In practice, the substantive model f(T,D | X, Z;y) assumed
for f(T,D | X, Z) is a cause-specific Cox model (one for each
competing risk). Therefore, y (y € ¥) contains the cumulative
baseline hazards and log hazard ratios for each cause-specific
hazard. A model f(X; | X_;, Z; ¢) indexed by ¢ (¢ € @), is also
assumed for f(X; | X_;, Z). The idea is then to sample candi-
date imputed values for the missing X jusing f(X; | X_;, Z; ),
and accept these if they also represent draws from a density
proportional to f(T,D | X, Z;y)f(X; | X_;, Z; $). We refer to
this method as the cause-specific SMC-FCS approach (CS-SMC).

3.1.2 | CS-Approx

The approximately compatible analogue to the cause-specific
SMC-FCS approach is described by Bonneville et al. [5]. As
briefly described in the introduction, this approach involves
directly specifying an imputation model f(X; | T, D, X_;, Z; @)
for f(X j | T, D, X_j,Z). To ensure approximate compatibil-
ity with assumed cause-specific Cox substantive models, the
imputation model should include as predictors X _ »Z, D (as
a factor variable), and the (marginal, as obtained using the
Nelson-Aalen estimator) cause-specific cumulative hazard for
each cause H «(T), evaluated at an individual’s event or censor-
ing time. We refer to this method as approximately compatible
cause-specific MICE (CS-Approx).

3.1.3 | MI Based on the Relation Between
the Cause-Specific and Subdistribution Hazards

The imputations generated by the CS-SMC and CS-Approx
approaches will typically not be consistent with the assumption
of proportional subdistribution hazards for cause 1 made by the
substantive model of interest. This is because, for cause 1, propor-
tionality on the cause-specific hazard scale will generally imply
non-proportionality on the subdistribution hazard scale [13]. One
can derive the functional form of these time-varying covariate
effects on the subdistribution hazard scale by using the relation
between the subdistribution hazard and the cause-specific haz-
ards [15]. The CS-SMC and CS-Approx approaches can therefore
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be thought of as procedures to impute (approximately) compati-
bly with a Fine-Gray model with time-varying covariate effects,
the functional form of which is determined by the assumptions
made for the cause-specific Cox models of each competing event.

A relevant question at this point is whether the relation between
cause-specific and subdistribution hazards can instead be used as
part of a procedure to impute compatibly with proportional sub-
distribution hazards for cause 1. To motivate such a procedure,
we first note that the conditional density of the observed out-
come given covariates used in Equation (2) can be written both
in terms of cause-specific hazards and in terms of the cumulative
incidence functions, as

f(T,D|X,Z)=(h(T | X,Z)S(T | X, Z)}/P=D
x {(h(T | X,Z)S(T | X, Z)}/P=2
X S(T | X, Z)}-1P=D-1(D=2)
= f(T | X, 2PV (T | X, Z)/P=2
x{1-F(T | X,Z)
-FE(T| X, Z)}l—’(D=1>—1<D=2) 3)

with f,(t | X,Z)=dF,(t | X, Z)/dt known as the “subdensity”
for cause k [16]. These subdensities, in turn, can be expressed in
terms of the subdistribution hazard, as

[t | X, Z) = 4 | X, {1 = F (| X, 2))
= 4| X, Z)exp{-A, (1 | X, Z)} 4

where A, (t| X, Z) is the cumulative subdistribution hazard
for cause k conditional on X and Z. Specifying a Fine-Gray
model for cause 1 is an assumption regarding only part of
Equation (3), namely for any terms involving f,(T | X, Z). The
practical implication of this is that Equation (2) cannot be
used to impute the missing X; without making assumptions
about cause 2. One could, for example, assume (for imputation
purposes) a cause-specific Cox model for cause 2, derive the
implied A, (¢ | X, Z) using the relation between the subdistribu-
tion hazard and the cause-specific hazards, and then use both
cause-specific hazards to evaluate f(T, D | X, Z)in Equation (2).

Given that a Fine-Gray model is assumed for cause 1, some com-
putational difficulties can be encountered while making assump-
tions for cause 2. For example, specifying a Fine-Gray model
also for cause 2 in the imputation procedure could result in the
total failure probability at an observed event time F, (T | X, Z) +
F,(T | X, Z) exceeding 1, meaning we would not be able to
draw imputed values using (2) for high-risk individuals [17].
An additional example concerns the approach described in
the previous paragraph, where h,(¢ | X, Z) is derived based on
h,(t | X, Z)and A,(t | X, Z). The numerical integration step gen-
erally needed to compute h,(¢ | X, Z) could make the overall
imputation procedure rather computationally inefficient. More
details on potential issues when specifying a model for cause 2
when a Fine-Gray model is assumed for cause 1 can be found in
Bonneville et al. [18].

The above points mean that it is desirable to use an alterna-
tive approach that avoids having to specify a model for the

cause-specific (or subdistribution) hazard of cause 2. In the
next subsection, we propose an SMC-FCS approach assuming a
Fine-Gray substantive model for cause 1, which avoids making
explicit modeling assumptions concerning cause 2.

3.2 | MI Based on the Fine-Gray Model

321 | FG-SMC

Suppose, for now, that the potential censoring time C is known
for all individuals. This is, for example, the case when there is a
fixed end of study date (i.e., “administrative” censoring), and no
additional random right-censoring. Fine and Gray referred to this
kind of data as “censoring complete,” since the subdistribution
at-risk process is known [9]. Equivalently, the “observed” sub-
distribution random variable for cause 1 (henceforth referred to
as “subdistribution time”), V = I(D=1)XT + I(D # 1) X C, is
known for all individuals. In turn, this implies that (with com-
plete covariate data), the Fine-Gray model can be estimated by
fitting a standard Cox model with outcome V" and event indicator
I(D=1).

Consequently, an intuitive approach to imputing the missing X;
in our setting might therefore be to apply existing SMC-FCS
methodology for standard Cox models (see section 6.3 of Bartlett
et al. [7]), but instead using V and /(D = 1) as our outcome vari-
ables. We refer to this method as Fine—Gray SMC-FCS (FG-SMC).
The substantive-model-compatible imputation density is now

X\ V.D.Z)x f(V.D | X.2)f(X; | X_;,Z)  (5)

_j k
where the conditional density of the observed outcome given the
covariates can be written as

fWV.DIX,Z) = f,(V|X, 2)'P=V{1 - F(V|X, Z)}!P#Y
=LV | X, Z)yexp{—-A(V | X, Z)}]"P=D
exp {—A,(V | X, Z)}/(P=0
exp {—A,(V | X, Z)}/(P=2
=4V | X, 2P Vexp(-A,(V | X,2)} (6)

using Equation (4) and the fact that f,(V | X,2Z)/P=D =
f1(T | X, Z2)IP=D, Note that while Equations (5) and (6)
depend only on I(D =1), we still use D in the notation
to make the contribution of those failing from cause 2
to the density explicit, which is relevant for the upcom-
ing sections. Importantly, this procedure relies on a stronger
MAR assumption (compared to the one introduced at the
beginning of Section 3), namely P{R|V,I(D=1),X,Z} =
P{R|V,I(D=1),X°s, Z}. In essence, we ignore any terms
involving f,(T | X, Z) in Equation (2) based on the assumption
that missingness in X does not depend on either I(D = 2) or the
failure time for those failing from cause 2.

3.2.2 | FG-Approx

The form of Equation (6) mirrors the likelihood in the standard
Cox context, which can be obtained by replacing 4,(V | X, Z)
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with the hazard of a single event (in the absence of competing
risks). The practical implications of this for our MI context are
that the findings of White and Royston [6] in the single-event
survival setting extend to the Fine-Gray context. Namely, that
the (approximately compatible) directly specified imputation
model fX; 1 V.D,X_;, Z;0) for a partially observed X; should
contain as predictors at least X _ JRA the indicator for the
competing event of interest /(D = 1), and the cumulative subdis-
tribution baseline hazard for the same event Ay, (V), evaluated at
the individual subdistribution time V. Instead of the unknown
true Ay (V), one could use the estimated marginal cumula-
tive subdistribution hazard AI(V) instead, obtained using the
Nelson-Aalen estimator using V and I(D = 1) are outcome vari-
ables. We refer to this approximately compatible MICE approach
as FG-Approx. In Appendix A, we algebraically derive the form of
the approximately compatible imputation model for a binary X.

3.3 | Accommodating Random
Right-Censoring

In addition to (deterministic) administrative censoring, ran-
dom right-censoring may occur. In the presence of random
right-censoring, the contribution of those failing from cause 2 to
density (6) is no longer evaluable, since we do not know their
potential censoring time. Their subdistribution time has effec-
tively been “coarsened” by their cause 2 failure: We know only
that the potential censoring time is later than the cause 2 fail-
ure time.

3.3.1 | VialImputation of Potential Censoring Times

One approach to estimate the parameters of a Fine—Gray model
in the presence of random right censoring is to consider the
potential censoring times for those failing from cause 2 as miss-
ing data, and multiply impute them. To this end, Ruan and Gray
[14] suggested the use of Kaplan-Meier (KM) imputation [19].
Specifically, potential censoring times are randomly drawn from
the conditional distribution with distribution function1 — P(C >
t|C>T)=1-G(t-)/G(T,-), where G(t) is a KM estimate of
the survival distribution of the censoring times P(C > t) and
T, is the observed event time of an individual failing from a
competing event. The imputation of these potential censoring
times effectively produces multiple censoring complete datasets,
in which a Fine-Gray model can be fit using standard software.
Inference is then based on a pooled model, which combines the
models fitted in each censoring complete dataset using Rubin’s
rules [20].

We can make use of the above ideas to multiply impute covari-
ates compatibly with a Fine—Gray model in the presence of ran-
dom right censoring. Specifically, we can apply the FG-SMC (or
FG-Approx) method in each censoring complete dataset obtained
after first imputing the potential censoring times for those fail-
ing from cause 2. To formalise this procedure, recall that g rep-
resents the parameters of the substantive model, and that X =
{X°bs, Xmis} We can similarly partition V = {V°, P ™is} where
V'™is is the vector of missing censoring times for those failing from
cause 2.

From a Bayesian perspective, the goal is to estimate the condi-
tional density of § given the observed data, namely

7@1 X% 2y 0 = [ [ g1 X0 xm 2,y v
Vv JX

X f(Xmis’Vmis [ Xobs’ Z’Vobs’D)deistmis

(7

If we can sample imputed values M times from f(X™,
pmis | xobs 7 Vo D), the integral above can be approximated
by an average over f(f | X0, X™is 7z pobs ymis D) (the “com-
plete data” posterior density) evaluated at those M moments [21].

One option to sample from f(X™is, pmis | xobs 7 17obs D) the
joint posterior predictive density, is to use a sequential approach,
where we factorise

f(XmiS, Vrnis | Xobs7 Z, Vobs’ D)
= f(XTS | X Z V. D) f(VTE | X, Z, V¥, D),
= f(X™ | X, Z,V, D) f(V™ | Z,V°, D)

The above is valid as long as CLX | Z. Practically speaking,
this involves imputing the potential censoring times (possibly in
strata of Z) in a first step, and then imputing the missing X in a
second step. This can be implemented easily using existing soft-
ware packages in R: {kmi} for the imputation of censoring times
[22], and {smcfcs} for the imputation of the missing covariates
[23]—see Figure 1 for an illustration of the workflow.

If the censoring process additionally depends on the par-
tially observed X, we will need to iteratively sample from
FV™s | X, 7 Vo Dyand f(X™s | X° Z V, D) with the fol-
lowing modifications:

1. A model for the censoring process is specified, which must
condition on X. When this model (which is used to impute
the potential censoring times) is fitted during the impu-
tation process, it must be fitted using the most recently
imputed values of X. If X is not categorical, this could be
done using a Cox model for the censoring hazard.

2. Since the censoring distribution partially depends on unob-
served values of X, it cannot be ignored in the imputation
model. That is, the probability density function of the cen-
soring process no longer factors out of Equation (5) (as is the
case under random censoring), and is hence non-ignorable
or informative [24, 25]. Therefore, the censoring process
must be modeled as a cause-specific competing event when
imputing the missing X [26]. At each iteration, conditional
on the most recently imputed potential censoring times, we
impute X compatibly with two cause-specific Cox models
using CS-SMC: one using V" and I(D = 1) as outcome vari-
ables (i.e., the Fine- Gray model), and the other using V and
I(D # 1) (i.e., the model for the censoring process, which
must include X).

It is not yet possible to implement the above substantive-
model-compatible procedure using existing software in a straight-
forward way. However, the extension to FG-Approx, which
accommodates censoring depending on X, can be implemented
in {mice} using custom imputation methods. The imputation
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v D X z v D X z
419 0 NA 1 419 0 030 1
0.42 1065 0 0.42 1 065 0 coxph(
surv(v, D == 1) ~
4.85 2 028 0 ———— 485 2 028 0 — X + 2,
data = imputation_1
3.96 2 003 1 3.96 2 003 1
0.76 1 NA 1 0.76 1 0.77 1
T v D X V4 v D X V4 v D X z
419 419 0 NA 1 419 0 NA 1 419 0 015 1
042 042 1065 0 ; 0.42 1065 0 0.42 1 065 0 coxph(
{kmi} {smcfcs} surv(v, D == 1) ~
429 NA 2 028 0 534 2 028 0 ——— 534 2 028 0 —— X + 2, — » pool(.)
data = imputation_2
2.85 NA 2 0.03 1 3.84 2 0.03 1 3.84 2 0.03 1 )
0.76 0.76 1 NA 1 0.76 1 NA 1 0.76 1 0.68 1
v D X z v D X z
419 0 NA 1 419 0 056 1
0.42 1065 0 0.42 1065 0 coxph(
surv(v, D == 1) ~
5.05 2 028 0 ——— 505 2 028 0 — X+ 2,
data = imputation_m
6.31 2 0.03 1 6.31 2 0.03 1
0.76 1 NA 1 0.76 1 1.20 1
FIGURE1 | Sequential workflow for (compatible) covariate imputation and analysis for a Fine—Gray substantive model with two covariates X

and Z, in the presence of random right-censoring. In the first step, the potential censoring times for those failing from cause 2 are multiple imputed

using the {kmi} package. In the second step, the missing covariates are imputed using the {smcfcs} (or {mice}) package. This workflow is valid when the
probability of being censored is independent of X and any Z related to the censoring process are modeled in {kmi}.

model for X then includes X_;, Z, I(D = 1), Al(V), and ﬁC(V).
Here, ﬁC(V) is the marginal cumulative hazard for the censor-
ing process, estimated based on the most recently imputed V and
I(D # 1). Based on simulations for other proportional hazards
models, we expect that failing to account for non-ignorable cen-
soring at the imputation phase in the present context would have
a relatively mild effect on inferences, unless both the proportion
of censored observations and the effect of X on the censoring pro-
cess are large [8, 26, 27].

Note that the described KM-based procedure for imputing poten-
tial censoring times does not take into account any of the uncer-
tainty in estimating P(C > ). That is, the imputed potential
censoring times do not involve an initial parameter draw, and
are hence not proper [19]. Ruan and Gray discussed using the
non-parametric bootstrap to account for this uncertainty (i.e.,
each set of imputed censoring times is based on a censoring dis-
tribution estimated in a separate bootstrap sample) and improve
estimation properties, and found similar results both with and
without a bootstrap step [14]. Alternatively, one could choose to
specify a (flexible) parametric model for P(C > r), with which we
can easily draw from the posterior of all model parameters. In
Appendix B, we visualise and give additional details concerning
the imputation of potential censoring times.

3.3.2 | ViaCensoring Weights in the Likelihood

Rather than multiply imputing the potential censoring times,
an alternative approach is to incorporate inverse probability

of censoring weights directly in Equation (6). If we define
time-dependent weights

w(t) =1 ifr<T,
G(t-)

G(T-)

wt)=PC>t|C>T) = ift>T,

then the conditional density of the (subdistribution) outcome
given the covariates can be written as

JWV.DIX.Z) = [1(V | X, Z)exp{-A,(V | X, Z)}}"P=V
xexp {—A(V | X, Z)}!(P=0

N 1(D=2)
X exp {— / W) | X, Z)du} ®)
0

where the term for those failing from the competing event
involves integration in practice up to a maximum potential
follow-up time 7*. As described by Lambert et al., this integral
can be approximated by splitting time into intervals, in which the
corresponding w(?) is assumed to be constant [28].

The integration step needed for those failing from cause 2 in
Equation (8) means that this approach cannot be implemented in
a straightforward way with existing software, unlike the approach
described in the previous subsection. The simulation study in
this paper, therefore, focuses on the approach involving multiple
imputation of potential censoring times.
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3.4 | Implementation of MI Approaches

Methods CS-SMC, CS-Approx, FG-SMC, and FG-Approx can all
be implemented using existing software packages in R. In this
section, we summarize the steps needed to apply these methods
in a given dataset in the presence of random right censoring (pos-
sibly in combination with administrative censoring). A minimal
R code example can be found in Supporting Information S1.

1. Add columns ﬁl(T) and fIZ(T) to the original data, which
are the marginal cause-specific cumulative hazards for each
competing risk evaluated at an individual’s event or censor-
ing time (obtained using the Nelson-Aalen estimator).

2. Multiply impute the potential censoring for those failing
from cause 2 using {kmi}, yielding m censoring complete
datasets (i.e., with “complete” V'). The censoring distribu-
tion has support at both random and administrative cen-
soring times. Any completely observed covariates that are
known to affect the probability of being censored should
be included as predictors in the model for the censoring
process. {kmi} imputes based on stratified KM when Z are
categorical, and based on a Cox model, at least one of Z
is continuous. If, for example, an individual’s time of entry
into a study determines their maximum follow-up duration,
this should be accounted for in the imputation procedure
(e.g., by stratifying by year of entry).

3. In each censoring complete dataset, add an additional col-
umn f\l(V). This takes the value of the marginal cumu-
lative subdistribution hazard for cause 1 at an individ-
ual’s observed or imputed subdistribution time, obtained
with the Nelson-Aalen estimator based on I(D = 1) and
imputed V.

4. In each censoring complete dataset (each with different
V and AI(V), but same I-AIl(T) and I:IZ(T)), create a sin-
gle imputed dataset using the desired covariate imputation
method(s):

« CS-SMC: Use {smcfcs} to impute the missing covariate(s)
compatibly with cause-specific Cox models. All covariates
used in the Fine-Gray substantive model should feature
in at least one of the specified cause-specific models.

« CS-Approx: Use {mice} to impute the missing covariate(s),
where the imputation model contains as predictors the
remaining substantive model covariates, D (as a factor
variable), and both I:II(T) and ﬁz(T).

« FG-SMC: Use {smcfcs} to impute the missing covariate(s)
compatibly with the Fine—Gray substantive model. This
is done by using the imputation methods developed for
the standard Cox model, but with I(D = 1) and imputed
V as outcome variables.

» FG-Approx: Use {mice} to impute the missing covari-
ate(s), where the imputation model contains as predic-
tors the remaining substantive model covariates, I(D =
1), and A, (V).

5. Fit the Fine-Gray substantive model in each imputed
dataset (using standard Cox software with I'(D = 1) and
imputed V' as outcome variables), and pool the estimates
using Rubin’s rules.

4 | Simulation Study

We aim to evaluate the performance of different MI methods
in the presence of missing covariate data when specifying a
Fine-Gray model for the subdistribution hazard for one event
of interest in the presence of one competing event. Specifically,
we assume interest lies in the estimation (for cause 1) of both
subdistribution hazard ratios and the cumulative incidence for a
particular individual at some future time horizon. We follow the
ADEMP structure for the reporting of the simulation study [29].

4.1 | Data-Generating Mechanisms

We generate datasets of n=2000 individuals, with two
covariates X and Z. We assume Z ~ N'(0,1) and X | Z ~
Bernoulli{(1 4+ ¢=%)71}.

Weleth,(t | X,Z), At | X, Z)and F,(t | X,Z)=P(T <t,D =
k | X, Z) respectively denote the cause-specific hazards, sub-
distribution hazards and cumulative incidence functions for
cause k, conditional on X and Z. The competing event times
will be generated following two mechanisms: One where the
Fine-Gray model for cause 1 is correctly specified, and another
where it is misspecified. These are detailed below, together with
assumptions concerning both censoring and the missing data
mechanisms.

41.1 | Correctly Specified Fine-Gray

For this mechanism, we simulate data using the “indirect”
method described in Beyersmann et al. [13], and originally used
in the simulations by Fine and Gray [9]. This approach involves
first drawing the competing event indicator D, and then generat-
ing an event time for those with D = 1. The final step is to gen-
erate times of the competing event for the remaining individuals,
who were assigned D = 2.

Here, we directly specify the cumulative incidence of cause 1 as

Fi(t | X,Z)=1- [1 = p(1 - exp(=by1)}| P77

The above expression corresponds to a Fine-Gray model, with
as baseline cumulative incidence function a Weibull cumulative
distribution function with shape a, and rate b, (parametrization
used in Klein and Moeschberger [30]) multiplied by a probability
p. Explicitly,

Fo (1) = p{1 — exp(=b;1")}

With lim,_ F,,(t) =p, we have that P(D=1|X,Z)=
1-(1-p*PhX+h2)  and PMD=2|X,Z)=1-PD=
1] X,2Z)=(1 - p)*PhX+h2) These are the individual-specific
cumulative incidences for each event at time infinity. Also note
that the baseline subdistribution hazard for this mechanism can
be obtained by {dF,, (r)/dr} X {1 — Fy (1)}~

The idea then is to generate the event times for cause 1 condition-
ally on the event indicator and covariates, using
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P(T<t,D=1]|X,2)
PD=1|X,2)

PT<t|D=1,X,27)

_ 1- [1 -p{1- eXp(—bltal)}]QXP(/’IXHiZZ)

1— (1= p)eeBiX+p,2)

©)

To sample from the above, we first need to draw D ~
Bernoulli{(1 — p)®PAX+A2)} 4 1. We can then use inverse trans-
form sampling to draw failure times within the subset of individ-
uals with D = 1. Shortening exp(, X + ,Z) = exp(y), and with
u ~ U°(0,1), we can invert (9) as

1 1- [1 —ufl-(1- p)expw)}]l/exr!(n) 1/a,
=1 log 1 -

1 p

For the competing event, we can factorise the cumulative inci-
dence function as

PT<t,D=2|X,2)=PT <t|D=2,X,Z)P(D=2|X,2Z)

A proportional hazards model can then be specified (for conve-
nience) for

PT<t|D=2,X,Z)=1-exp{-H},()exp(f; X + B; Z)}

where Hj,(?) is the cumulative baseline hazard associated with
the cumulative incidence function conditional on D = 2. Since
the event indicator is already drawn, the failure times can be
drawn again using inverse transform sampling within the sub-
set with D = 2. Here, we specify a Weibull baseline hazard as

R0 = by,

We fix {5, 07,85} ={0.75,0.5,0.75,0.5}, and the Weibull
parameters used for both events as shape {a;,a,} = 0.75 and rate
{b;,b,} = 1. We vary p = {0.15,0.65}, which is the expected pro-
portion of event 1 failures for individuals with X = 0 and Z = 0.

4.1.2 | Simulation Based on Cause-Specific Hazards
(Misspecified Fine-Gray)

In this data-generating mechanism (DGM), we assume propor-
tionality on the cause-specific hazard scale, and simulate using
latent failure times [31]. We specify baseline Weibull hazards for
both cause-specific hazards as

h(t| X, 2Z) = a bt exp(y;, X + 1122),
hy(t | X, Z) = aybyt> " exp(y X + 7,5, Z)

where {a,,a,} and {b,,b,} are respectively the shape and rate
parameters. Under this DGM, a Fine-Gray model for cause
1 will be misspecified. Nevertheless, the coefficients resulting
from the misspecified Fine-Gray model could still be interpreted
as time-averaged effects on the (complementary log-log trans-
formed) cumulative incidence function [32].

We aim to have a scenario close to the one described in
Section 4.1.1 (in terms of event proportions), where the main
difference is that proportionality now holds on the cause-specific

hazard scale. To fix the parameters in this DGM, we first simulate
a large dataset of one million individuals following the mecha-
nism described in the previous subsection, where proportional
subdistribution hazards hold. Parametric cause-specific propor-
tional hazards models, assuming baseline Weibull hazards, are
then fitted for each failure cause. The point estimates obtained
from these models are used as the cause-specific data-generating
parameters {a;, b, 711,712} and {a,, b,,7,1,7,,}. These param-
eters will, of course, differ depending on p = {0.15,0.65},
and also depending on the censoring distribution. While the
cause-specific models fitted on this large dataset will be mis-
specified (cause-specific baseline hazards are not of Weibull
shape, and covariate effects on the cause-specific hazards are
non-proportional), the resulting “least false” parameters are still
useful.

Figure 2 summarizes the DGMs, prior to the addition of any cen-
soring. In the correctly specified Fine-Gray scenarios, the sub-
distribution log hazard ratio 4,(t | X =1,Z2)/A4(t| X =0,2)
is time constant, while the cause-specific log hazard ratios
are time-dependent. The reverse is true for the misspecified
Fine-Gray scenarios. Overall, the correctly specified and mis-
specified Fine—Gray scenarios are very comparable in terms of
(true) baseline hazards and cumulative incidences, for both val-
ues of p.

41.3 | Censoring

The DGMs outlined above assume no loss to follow-up. As addi-
tional scenarios, we consider independent (i.e., not conditional
on any covariates) right censoring where the censoring times are
simulated from an exponential distribution with rate A. = 0.49,
resulting in approximately 30% of censored observations. These
censoring times will be considered as either: (a) known (admin-
istrative censoring), or (b) unknown (random censoring).

4.1.4 | Covariate Missingness

Missingness is induced in X, while Z remains fully observed. Let
Ry be a binary variable indicating whether X is missing (Ry =
0) or observed (Ry = 1). We use a missing at random (MAR)
mechanism conditional on Z, which was defined as logit P(Ry =
0| Z)=ny+n Z. We take 5, = 1.5, a rather strong mechanism
where higher values of Z are associated with more missingness
in X. The value of 7, is found via standard root solving, such that
the average probability P(Ry = 0) = E{ P(Ry =0 | Z)} of being
missing in a given dataset equals 0.4.

41.5 | Summary
In summary, the simulation study varied
« Censoring type: No censoring, administrative, and random

censoring

« Relative occurrence of event 1, as low or high. This is done
by varying the baseline cumulative incidence of event 1 (as
{ — o) as p = {0.15,0.65}.
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FIGURE2 | Summary of data-generating mechanisms prior to the addition of any censoring. For each value of p, both the correctly specified and

misspecified Fine-Gray (FG) scenarios are very comparable in terms of (true) baseline hazards and cumulative incidences.

« Failure time simulation methods, with (a) directly spec-
ified cumulative incidence cause 1 (correctly specified
Fine-Gray); (b) cause-specific proportional hazards for both
causes (misspecified Fine-Gray).

This adds up to 3 (censoring types) x 2 (relative occurrence event
1) X 2 (failure time simulation methods) = 12 scenarios.

4.2 | Estimands

The first estimands of interest are the subdistribution log haz-
ard ratios f;, and g, for X and Z, respectively. In the cor-
rectly specified Fine-Gray scenarios, these simply correspond to
the data-generating parameters {4, f,} = {0.75,0.5}. In the mis-
specified Fine-Gray scenarios however, the target values (the
“least-false parameters”; time averaged subdistribution log haz-
ard ratios {f,, §,}) are obtained by fitting a Fine—Gray model on
a large simulated dataset of one million individuals, simulated
as under the second data-generating mechanism (with no miss-
ingvalues in X), after applying any censoring. For computational
efficiency, the censoring times are assumed to be known when
fitting the Fine—Gray model on this large dataset.

The second estimands of interest are the conditional cumulative
incidence of event 1 at a grid of timepoints (between timepoints
0 and 5) for reference individuals { X, Z} = {0, 0} (baseline) and

{X, Z} = {1,1}. In the correctly specified Fine-Gray scenarios,
this corresponds to
Fl(t | X, Z) =1- [1 —p{l _ exp(_bltal)}]EXP(ﬂlX-l-ﬁzZ)

while for the misspecified Fine-Gray scenarios, this corre-
sponds to

t
F(|X,Z2)= / hyu| X,Z)exp{—H,(u| X, Z)
0
—Hyu| X,Z)}du,

t
= / alblu‘“_1 exp(yp X +v1,2)
0

x exp {—b,u exp(y;; X + 11, Z)
—byu® exp(yy X + 1, Z) jdu

which is obtained via numerical integration.

43 | Methods
The assessed methods are

« Full: Analysis run on full data prior to missing values, as a
benchmark for the best possible performance.
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« CCA: Complete-case analysis, as a “lower” benchmark that
the imputation methods need to outperform to be worth-
while.

« CS-SMC: MI, imputing compatibly with cause-specific Cox
proportional hazards models. This method is described in
Section 3.1.1. Both X and Z are used as predictors in each
cause-specific model assumed by this procedure.

« CS-Approx: MI with both marginal cumulative cause-
specific hazards (evaluated at the individual observed event
or censoring time) and competing event indicator included
as predictors in the imputation model, in addition to Z. This
method is described in Section 3.1.2.

« FG-SMC: MI, imputing compatibly with a Fine-Gray model
for cause 1 that has as covariates X and Z. This is the method
described in Section 3.2.1.

« FG-Approx: MI with marginal cumulative subdistribution
hazard (evaluated at the individual observed or imputed sub-
distribution time V') and indicator for event 1 included as
predictors in the imputation model, in addition to Z. This
method is described in Section 3.2.2.

The imputation methods are run with 30 imputed datasets.
This was fixed following a pilot set of simulations with 50
imputed datasets, which showed that there was little reduction
in empirical standard errors for the subdistribution log haz-
ard ratios (and their Monte Carlo standard errors) beyond
30 imputed datasets. Approximately compatible MI methods
CS-Approx and FG-Approx only require a single iteration
because there is just one variable with missing values, while
substantive-model-compatible (SMC) MI methods CS-SMC and
FG-SMC are run with 20 iterations. The method used to model
f(X |V, D, Z; a) for approximately compatible methods is logis-
tic regression, while for SMC methods f(X | Z; ) is specified
as a logistic regression. We note that X was chosen to be binary
as SMC methods do not require rejection sampling for variables
with a discrete sample space, thereby reducing simulation time. If
X is chosen to be continuous, the performance of approximately
compatible methods is expected to worsen, while no material
impact is expected on the performance of (correctly specified)
SMC methods [5].

For the scenarios with no or administrative censoring, the subdis-
tribution time V is fully observed. While V' = T for those failing
from cause 1, for those failing from cause 2, V' is first set to either
(a) a large value greater than the largest observed event 1 time
(in absence of censoring); or (b) the known potential censoring
time C (administrative censoring). The marginal cumulative sub-
distribution hazard used for the approximate subdistribution MI
method is obtained using a marginal model with 7(D = 1) and
the resulting V' as outcome variables. The covariate MI methods
are run once these V and I (D = 1) variables have been created. In
scenarios with random censoring, the potential censoring times
for those failing from cause 2 are multiply imputed using the
{kmi} R package with default settings: Marginal non-parametric
model for the censoring distribution, and no additional bootstrap
layer. This yields 30 imputed datasets, each with a different . In
each of these datasets, the marginal cumulative subdistribution

hazard is estimated in the same way as described above. There-
after, the covariate MI methods are run in each of these datasets,
yielding one imputed dataset for each imputed V (total of 30
imputed datasets), corresponding to the workflow in Figure 1.

For all methods, the Fine—Gray model for cause 1 is estimated
using a Cox model with (known or imputed) V' and I(D = 1)
as outcome variables. When the imputation methods are used
(and for all methods when there is random right censoring), the
estimated §, and f, are the results of coefficients pooled using
Rubin’s rules. Confidence intervals around these estimates are
built as described in Section 2.4.2 in the text by van Buuren [33].
For the cumulative incidences, the estimates for the two sets
of reference values of X and Z are first made in each imputed
dataset using Equation (1), and thereafter pooled using Rubin’s
rules after complementary log-log transformation —as described
in Morisot et al. [34] and recommended by Marshall et al. [35].
This predict-then-pool approach (rather than predicting using
a pooled model) has been recommended by multiple authors
[36, 37].

4.3.1 | Performance Measures

The primary measure of interest was bias in the estimated sub-
distribution log hazard ratios. To keep the Monte Carlo standard
error (MCSE) of bias under a desired threshold of 0.01, we require
ngm = 0.2%/0.012 = 400 replications per scenario, as we expect
empirical standard errors to be under 0.2 for all scenarios (based
on a pilot run). This number was rounded up to ng, = 500. In
addition to bias, we recorded empirical and estimated standard
errors and coverage probabilities. For the cumulative incidence
estimates, we focused on both bias and root mean square error
(RMSE).

4.3.2 | Software

Analyses were performed using R version 4.3.1 [38]. Core pack-
ages used were: {survival} version 3.5.7 [39], {mice} version 3.16.0
[40], {smcfcs} version 1.7.1 [23], {kmi} version 0.5.5 [22], and
{rsimsum} version 0.11.3 [41].

4.4 | Results

We summarize the main findings in this section, with full results
available in a markdown file on the Github repository with the R
code from the present work (https://github.com/survival-lumc/
FineGrayCovarMI).

4.4.1 | Subdistribution Log Hazard Ratios

We focus on the results for g, together with its time-averaged
analogue f, in the scenarios with time-dependent subdistribu-
tion hazard ratios. Results concerning bias are summarized in
Figure 3 for all 12 scenarios, and presented on the relative scale
(Monte Carlo standard errors were below the desired 0.01 for both
bias and relative bias, across all methods and scenarios).
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https://github.com/survival-lumc/FineGrayCovarMI
https://github.com/survival-lumc/FineGrayCovarMI
https://github.com/survival-lumc/FineGrayCovarMI
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FIGURE3 | Relative bias (%) in estimating #,, with corresponding 95% Monte Carlo confidence interval (constructed using the standard normal

approximation). For each scenario and method, the distribution of (4, — §,)/f, across simulation replications was approximately normal. For the cor-
rectly specified Fine- Gray (FG) scenarios, 3, = 0.75. In the misspecified FG scenarios, the value of the “least-false” /5, (time-averaged log subdistribution
hazard ratio) depended on both p and the presence/absence of censoring. For p = 0.15, fi; ~ 0.76 without censoring, and §, ~ 0.93 with censoring. For
p =0.65, f, ~ 0.75 both with and without censoring.
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When the Fine-Gray model for cause 1 was correctly specified,
the proposed FG-SMC approach was unbiased regardless of cen-
soring type or (baseline) proportion of cause 1 failures. In con-
trast, imputing compatibly with the (incorrect) assumption of
proportional cause-specific hazards showed strong biases, partic-
ularly when p = 0.15 in the absence of censoring (25% biased). In
the presence of censoring, however, this bias dropped to approx-
imately 10%. The CS-Approx method showed consistent biases
regardless of p and censoring type, while the FG-Approx method
was only biased when p = 0.65. The latter finding is consistent
with previous research in the simple survival setting; namely that
the approximately compatible MI approach is expected to work
well when cumulative incidence is low [6]. When the DGM gen-
erated event times under proportional cause-specific hazards, the
magnitude of any biases present was, in general, smaller (e.g.,
closer to the 5% mark for approximate MI approaches when p =
0.65). For the FG-SMC approach, bias was most noticeable when
p = 0.65, and in the absence of censoring. CS-SMC was unbiased
throughout these misspecified Fine-Gray scenarios.

Figure 4 summarizes empirical and model-based standard
errors, together with coverage probabilities for §, and f,. The
model-based standard errors were, on average, close to their
empirical counterparts. CS-SMC appears to have a slight vari-
ance advantage over competing approaches, mainly when p =
0.15. Interestingly, there was no gain in efficiency when the cen-
soring times were known compared to when they needed to be
imputed. This is in line with simulation results in both Fine
and Gray [9] and Ruan and Gray [14], that compared the cen-
soring complete variance estimator (of subdistribution log haz-
ard ratios) to estimators based on the weighted score function
and KM imputation method, respectively. The FG-SMC approach
showed good coverage (near the nominal 95% mark) when the
Fine-Gray model was correctly specified, although there was
slight over-coverage when imputation of censoring times was
required. Using the non-parametric bootstrap when estimating
P(C > 1), which was not investigated in the simulation study,
is unlikely to correct for this over-coverage. Under-coverage
shown by competing approaches was primarily due to biased
estimates.

4.4.2 | Individual-Specific Cumulative Incidences

Figure 5 shows the true and average estimated baseline cumu-
lative incidence function Fy,(?), the average difference between
true and estimated Fy(r), and the RMSE of the estimates.
Figure 6 presents the same information instead for a patient with
{X,Z} = {1,1}. Scenarios where the censoring times are known
are omitted from the Figure, as results were indistinguishable
from scenarios where the censoring times needed to be imputed.

The cost of imputing compatibly with the wrong model (using
CS-SMC when the Fine-Gray model was correctly specified, or
FG-SMC when the DGM was based on cause-specific propor-
tional hazards) when estimating F, (r) was only noticeable for
the CS-SMC approach in the absence of censoring when p = 0.15,
in terms of both absolute bias and RMSE. On the whole, the
approximately compatible MI approaches performed comparably

in terms of RMSE to the SMC approaches. In scenarios where
the Fine—Gray model was misspecified, the effect of substan-
tive model misspecification (post-imputation) was clear to see in
terms of estimating F, (r) (over- and underestimation at different
points in time). In these scenarios, even when CS-SMC is used
(which results in the best possible imputations, since it is imput-
ing compatibly with the true data-generating outcome model),
assuming proportionality on the incorrect scale at the analysis
phase results in biased estimates of the individual-specific cumu-
lative incidence function. When {X, Z} = {1, 1}, all imputation
approaches outperformed CCA in terms of RMSE when estimat-
ing Fi(t | X =1, Z = 1), though to a lesser extent when p = 0.65.
This can presumably be attributed to the efficiency gain in esti-
mating f,.

4.5 | Additional Simulations

Two additional sets of simulations were conducted, which build
upon the correctly specified Fine-Gray data-generating mecha-
nism with random censoring, with both p = 0.15 and p = 0.65.
The objectives of these additional simulations were to assess
the performance of the different imputation methods in settings
where (a) missingness depends on the observed competing risks
outcomes; (b) censoring depends on complete covariates, and the
model used to impute the potential censoring times could poten-
tially be misspecified.

Covariate imputation approaches were used as previously
described in Section 4.3, and similarly, these additional scenar-
ios are each comprised of 500 simulation replications. The results
of these simulations are presented in Supporting Information S2,
with a focus on the relative bias in estimating both p; and f,, and
further described below.

4.51 | Outcome-Dependent Missingness

In the first set of simulations, the missingness in X was made
to depend on the observed event time 7" as logit P(Ry =0 | T) =
o + m log(T + 1), with #;, = —1.5 and 5, chosen such that 40%
of observations in X are missing. This reflects a setting where
baseline variables such as genetic information are retrospectively
ascertained, and are more likely to be available the longer an
individual is in follow-up. Since this missingness mechanism
depends partially on the failure times for those failing from
cause 2, these simulations allow us to assess the violation of the
MAR assumption made by both FG-SMC and FG-Approx—see
Section 3.2.1.

To briefly summarize, in Figure S1, we see that the violation of the
MAR assumption led to appreciable biases in the estimation of
subdistribution log hazard ratios when the proportion of compet-
ing events was large (i.e., under p = 0.15). In this same scenario,
CS-SMC outperformed other methods since it conditions also on
the failure time from cause 2, but was still biased as it is imputing
compatibly with cause-specific Cox models, which are the incor-
rect underlying outcome model. CCA was expectedly biased in
these scenarios as missingness depended on the outcome.
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(right column). Results for scenarios with administrative censoring are omitted since they were indistinguishable from those with random censoring.
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4.5.2 | Covariate-Dependent Censoring

In the second set of simulations, exponential censoring was
made covariate-dependent with rate A, = 0.49¢Z, which yields
an average censoring proportion that is comparable to the pre-
viously reported scenarios with random censoring (approxi-
mately 30% censored). In these scenarios, all covariate imputa-
tion approaches were applied after multiply imputing the poten-
tial censoring times using either (a) a marginal KM estimate of
the censoring distribution (misspecified censoring distribution);
(b) a Cox model for the censoring distribution, conditional on Z
(correctly specified censoring distribution). The missingness in X
also depended on Z, as outlined in Section 4.1.4.

In Figure S2, we see that incorrectly specifying the model for the
censoring distribution under covariate-dependent censoring led
to large biases in the estimation of the subdistribution log haz-
ard ratio for the variable related to the censoring mechanism (f,
in these simulations). These biases were far less severe under
p = 0.65, since there are fewer censoring times to impute. Inter-
estingly, in these scenarios, CS-SMC does not appear to pay a
price for imputing compatibly with the incorrect underlying out-
come model. FG-SMC was unbiased throughout when the model
for the censoring was correctly specified.

5 | Applied Data Example

We illustrate the methods assessed in the simulations study on
a dataset of 3982 adult patients with primary and secondary
myelofibrosis undergoing a hematopoietic stem cell transplanta-
tion (alloHCT) between 2009 and 2019, and registered with the
European Society for Blood and Marrow Transplantation (EBMT)
[42]. Myelofibrosis is a rare and chronic myeloproliferative neo-
plasm characterized by bone marrow fibrosis and extramedullary
hematopoiesis, for which an alloHCT is the only treatment that
can offer long-term remission [43]. In the original study, the pri-
mary objective was to evaluate the association between comor-
bidities at the time of alloHCT and (cause-specific) death without
prior relapse of the underlying disease, the so-called non-relapse
mortality. In the present illustration, we instead assume that
interest lies in developing a prognostic model for time to disease
relapse in the first 60 months following an alloHCT. To this end,
we developed a Fine—Gray model for relapse, with death prior to
relapse as the sole competing risk.

A set of 18 baseline predictors was chosen on the basis of substan-
tive clinical knowledge, many of which had a considerable pro-
portion of missing data (see Supporting Information S3.1). These
predictors included the 13 variables used in the multivariable
models from the original study, and 5 additional variables that
were either known to be predictive of disease relapse (use of T-cell
depletion; presence of cytogenetic abnormalities), or provided
relevant auxiliary information regarding the missing values (year
of transplantation; time between diagnosis and transplantation;
and whether diagnosis was primary or secondary myelofibrosis).
Note that since this is a model for (complementary log-log trans-
formed) cumulative incidence of relapse, we want to make sure to
include predictors known to be associated with the cause-specific
hazards of both relapse and non-relapse mortality.

Since around 45% of patients were either event-free or censored
within the first 60 months (see Supporting Information S3.2,
non-parametric curves), potential censoring times for those expe-
riencing non-relapse mortality were first multiply imputed using
the {kmi} package in strata defined by (completely observed) year
of transplantation, yielding 100 datasets with “complete” sub-
distribution time V7 but with partially observed covariate infor-
mation. In each of these datasets, covariates were imputed once
using each of the four imputation methods used in the simula-
tion study, after 20 cycles across the covariates. The choice of
100 imputed datasets was motivated using von Hippel’s quadratic
rule (i.e., the number of imputed datasets needed should increase
approximately quadratically with increasing fraction of missing
information), based on an initial set of 30 imputed datasets [44].
Essentially, we sought to control the MCSEs of the standard
errors of the estimated subdistribution log hazard ratios. Default
imputation methods were used depending on the type of covari-
ate: Binary covariates using logistic regression, ordered categori-
cal using proportional odds regression, and nominal categorical
using multinomial logistic regression. For continuous covariates,
the default in {mice} is predictive mean matching, while linear
regression is used for f(X; | X_;, Z;y) in {smcfcs}. The impu-
tation model for a given partially observed variable, therefore,
contained as predictors all remaining fully and partially observed
variables from the substantive model, together with the out-
come. Each imputation approach differs mainly in how it incor-
porates the outcome in the imputation model: Either by sam-
pling directly from an assumed substantive model compatible
distribution (FG-SMC and CS-SMC) or by including event indi-
cator(s) and marginal cause-specific or subdistribution cumula-
tive hazard(s) explicitly as additional predictors (FG-Approx and
CS-Approx).

Figure 7 shows for all methods the estimated baseline cumu-
lative incidence function, and the width of the corresponding
confidence interval at each time point. As was the case in the
simulation study, cumulative incidences are estimated in each
imputed dataset and pooled after complementary log-log trans-
formation. The estimation procedure used for the standard errors
of the cumulative incidences is described by Ozenne et al. [45].
The estimates using both FG-SMC and FG-Approx are virtu-
ally overlapping, which is consistent with the simulation study
results when p = 0.15. Both CS-SMC and CS-Approx also yielded
cumulative incidences that were close to those obtained by the
subdistribution-hazard-based imputation approaches, which is
in line with the results of the simulation study under ran-
dom right censoring. The most stark differences were between
CCA (which only uses 20% of patients) and the imputa-
tion approaches: The cumulative incidence of relapse at 60
months was almost 5% lower than the nearest MI-based curve,
with confidence intervals that were over twice as wide. For
completeness, in Supporting Information S3.3 we report the
pooled subdistribution log hazard ratios, in addition to the
pooled coefficients of cause-specific Cox models for relapse and
non-relapse mortality (each containing the same predictors as
the Fine-Gray model for relapse). The pooled coefficients of the
Fine-Gray models were extremely similar between imputation
approaches, and all differed considerably from the (much more
variable) CCA. There were some noticeable differences between
subdistribution-hazard-based and cause-specific hazard-based

16 of 21

Statistics in Medicine, 2025

85U8017 SUOWWOD BA IR0 3dedtjdde 8y} Aq pausenob afe sl YO ‘@SN JO S3|NJ 1oy A%eiq1 8UIIUO AB]1M UO (SUORIPUOD-PUR-SUIBYW0D A3 | 1M Afe.q 1 Bul|uO//SARY) SUORIPUOD Pue SWiB | 84} 89S *[6202/20/G2] Uo A%eiqi 8ulluo AB|IM ‘18 L AQ 990 WIS/Z00T OT/I0p/W00" A3 | 1M AReaq 1 jpuljuoy/Sdny Lwoiy papeo|umoq ‘LT-GT ‘G202 ‘8520260T



Method CCA =-- CS-SMC = CS-Approx = FG-SMC - - FG-Approx

0.20 L 0.20
@ s e =
2 R 5
=] =" =z
e ‘;"":" g
— X ’f —
o 0.15 S 2 0.15

- =

= e =
B 27 @
= Cd o
£ § g e
> { ko] -y
(3] 4 = ,_':’;:— -
@ 0,10 # S 0.10 o=
< ; o proras
[<7} -t
17} 3¢ {,’f’
3 / 2 s
; %, |/
< 0.05 / < 0.05
o o
< < /

0.00 l 0.00 /

0 20 40 60 0 20 40 60
Time since alloHCT (months)
FIGURE 7 | Pooled baseline cumulative incidence functions for relapse in the applied data example (left panel), and width of corresponding confi-

dence intervals (right panel). These are the estimates for a patient aged 60, transplanted in 2019 immediately after diagnosis, with 10g/dL hemoglobin,

15 x 10%/L white blood cells, no peripheral blood blasts, and reference levels for all categorical predictors (see Table S1).

imputation approaches when estimating the cause-specific Cox
model for non-relapse mortality (see, e.g., pooled coefficients for
weight loss prior to transplantation, hemoglobin, or high-risk
comorbidity score). Furthermore, the pooled subdistribution log
hazard ratios were generally small in magnitude (none exceeding
0.5), a setting in which both SMC and approximately compatible
approaches are expected to perform similarly.

The differences observed between point estimates obtained using
the imputation-based approaches and CCA are, in large part,
explainable by the gulf in efficiency between the two approaches.
Nevertheless, there are indications that the estimates obtained
using imputation methods could be less biased than their CCA
counterparts in this example. An exploratory logistic model
showed that the observed time to competing event and competing
event indicator were both predictive of the probability of being a
complete-case, after adjusting for other known important predic-
tors of missingness, such as year of transplantation (many vari-
ables recorded more often later on in time as their clinical rele-
vance became clearer). Upon closer inspection, it appears that the
probability of being a complete case is significantly lower only for
those censored earlier in time. This seemingly unlikely associa-
tion between future outcome and baseline complete-case indica-
tor (outcome-dependent MAR, under which CCA is biased unless
the missingness is related solely to the censoring process [46]) is
likely confounded by transplant centre. That is, shorter follow-up
times and missing values in covariates may both be symptomatic
of a given centre’s overall quality of data collection. Although
ignored in the present analysis for simplicity, there is indeed het-
erogeneity in data completeness between EBMT-affiliated trans-
plant centres across and within different countries. The MI of
potential censoring times would allow the modeling of centre

effects using standard software, for example, by means of strat-
ification or use of a frailty term.

6 | Discussion

In this paper, we extended the SMC-FCS approach to impute
missing covariates compatibly with a Fine-Gray substantive
model. For a given competing event, the theory relies on using
the subdistribution time V" and the corresponding event-specific
indicator as outcome variables. In the presence of random
right-censoring, V' is only partially observed, as the potential
censoring times for those failing from competing events are
unknown. These can be multiply imputed in a first step, after
which covariates can be imputed by conditioning on the “com-
plete” outcome variables. The approach is straightforward to
implement in R by making use of existing software packages
{kmi} and {smcfcs}. While the imputation of potential censoring
times appears underused in the subdistribution hazard modeling
literature (relative to weighted approaches), it has inspired other
methodological extensions, for example, enabling the use of deep
learning in discrete time after single imputation of potential cen-
soring times [47].

The simulation study compared the performance of the pro-
posed method to competing MI approaches, including imput-
ing compatibly with cause-specific proportional hazards models.
The FG-SMC approach performed optimally (in terms of esti-
mating both subdistribution log hazard ratios and cumulative
incidences) when the assumption of proportional subdistribution
hazards held, and performed satisfactorily when this assumption
did not hold. For cumulative incidence estimation, the choice of
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substantive model (i.e., cause-specific Cox vs. Fine—Gray) at the
analysis phase appears to be more important than the procedure
used to impute the missing covariates. In terms of RMSE of these
predictions, most imputation approaches outperform CCA. The
applied data example also demonstrated the possible gain in effi-
ciency when using MI instead of CCA.

One counterintuitive finding was that the presence of censoring
seems to improve the performance of the misspecified SMC-FCS
procedure (e.g., use of CS-SMC when the underlying DGM
assumes proportional subdistribution hazards). An explanation
for this phenomenon is that the time-dependent factor relating
the cause-specific and subdistribution hazards for cause 1 (the
“reduction factor” [15]) is closer to 1 earlier in time. Therefore (in
the example with DGM assuming proportional subdistribution
hazards), the violation of proportionality on the cause-specific
hazard scale will appear to be less severe in earlier time-periods,
thereby improving the performance of the misspecified SMC-FCS
approach. This is also in line with earlier findings showing how
similar the results of subdistribution and cause-specific hazards
models can be in presence of heavy censoring [32, 48]. Notwith-
standing, the additional simulations in Section 4.5 emphasise the
importance of appropriately accounting for covariates related to
the censoring process when modeling the subdistribution hazard
(where in practice, unconditional random censoring is the default
assumption [13]), as also discussed in previous work [49].

An advantage to the proposed approach is that it can be
extended in various ways. For example, the approach can account
for time-dependent effects by making direct use of existing
approaches developed in the context of standard Cox models
[50]. Additionally, the proposed approach can be extended to
accommodate interval censored outcomes, using the methodol-
ogy described by Delord and Génin, which relies on analogous
principles: Multiply impute interval censored V' to work with
simpler censoring complete data [51].

There are multiple limitations to the present work. The first is
that the proposed SMC-FCS approach does not accommodate
delayed entry (left truncation). Our current recommendation to
impute approximately compatibly with a Fine—Gray model sub-
ject to delayed entry and right-censoring is to include I'(D = 1)
and AI(T) as predictors in the imputation model, in addition
to other substantive model covariates. Here, A;(7) is the esti-
mated cumulative subdistribution hazard based on a marginal
model that uses time-dependent weights to accommodate both
left-truncation and right-censoring [52]. Note the proposed impu-
tation model uses Al (T) and not Al(V), and therefore some bias
is to be expected, as explained in Appendix B. Second, while
FG-SMC does not require an explicit model for the competing
risks, it does require the censoring distribution to be specified
explicitly (e.g., non-parametrically using KM, or using a Cox
model). Third, the proposed approach is geared towards imputing
missing covariates when only one competing event is of interest.
More generally, the strategy of estimating a Fine-Gray for each
cause in turn is not an approach the current authors endorse,
based on both theoretical [13, 17] and simulation-based argu-
ments [18]. When multiple competing events are of interest, we
would instead recommend modeling the cause-specific hazards,
or using the semiparametric approach suggested by Mao and Lin
for joint inference on the cumulative incidence functions [53].

In conclusion, the proposed approach is most appropriate for
imputing missing covariates in the context of prognostic model-
ing of only one event of interest. Based on the simulation study,
imputing compatibly with cause-specific proportional hazards
seems to be a good all-round strategy for a “complete” compet-
ing risks analysis (investigating both the cause-specific hazards
and cumulative incidence functions [54]), and can at the same
time be used for prognostic modeling based on the cause-specific
Cox models.
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Appendix A
Derivation of FG-Approx Imputation Models

In this section, we briefly motivate the approximately compatible impu-
tation approach in Section 3.2.2. Without loss of generality, we focus on
a single partially observed variable X and a single fully observed variable

Z. For convenience, we denote the indicator for the event of interest as
D, = I(D =1).

The log density function for the conditional distribution of X given V,
D,, and Z is given by

log f(X | V.Dy,Z)=log f(V.D, | X, Z)+log f(X | Z) +c

where ¢ =—f(V,D, | Z) is a constant that does not depend on X.
Assuming that a Fine-Gray model correctly holds for cause 1 as
Mt | X,Z)= 2y (t)exp(f, X + p,Z), we can write the log conditional
density of the outcome (V, D) given the covariates as

log (V. D, | X, 2)=log [1,(V | X, Z)” exp{~A,(V | X, 2)}]
=D {log Ag (V) + i X + o Z} — Ay (V)
X exp(py X + f, Z) (A1)

When censoring depends on X (i.e., non-ignorable censoring), the above
expression should additionally include the term log f-(V | X, Z), where
fc(+)is the probability density function for the censoring process. For sim-
plicity, we assume CLX | Z in what follows.

The form of the imputation model then depends on the assumptions
made for f(X | Z). As explained in Section 3.2.2, the form of Equation
(A1) precisely mirrors the log likelihood in the standard Cox context (in
the absence of competing risks). Therefore, we can apply the exact same
derivations from Appendix A of the work by White and Royston [6], only
replacing the single-event hazard by A, (V | X, Z). For example, suppose
X is a binary covariate, depending on Z through a logistic regression
model logit P(X =1 | Z) = {, + {; Z. The objective now is to derive an
expression for logit P(X =1 | V, D;, Z). In general, we have that

logitP(X =1|V.D,.Z)=log f(V.D, | X =1,Z)
—log f(V,D, | X =0,2)
+logitP(X =1 Z)
=6+ 6Z+ D — Ay (V)
x exp(fp, Z)(ef — 1) (A2)

When Z is categorial, (A2) implies that the imputation model for X is
exactly a logistic regression with as predictors Z as a factor variable, D,
Ag;(V), and the interaction between Ay, (V) and Z. When Z is contin-
uous, the same imputation model can be used, although it is no longer
exact: It is based on a linear approximation of exp(f,Z) around sample
mean Z, and is valid when Var(f,Z) is small.

Approximately compatible imputation models for different covari-
ate types can be derived in an analogous fashion. That is, by first
making assumptions about f(X | Z), and subsequently generalizing
to f(X | V,Dy,Z) while using that f(V,D, | X,Z) is based on a
Fine-Gray model. These addtional derivations are not shown here since
(a) those presented in Appendix A by White and Royston [6] assuming
X | Z is normally distributed are directly applicable in the present con-
text; (b) similar derivations have already been presented multiple times
for other proportional hazards models [5, 50, 55].

Appendix B

Imputed Censoring Times, and Resulting Cumulative
Subdistribution Hazards

As described in Section 3.3.1, the subdistribution time V is only partially
observed in the presence of random right-censoring. Thus, the poten-
tial censoring times for those failing from cause 2 should first be mul-
tiply imputed, before imputing any missing covariates. This imputation
of partially observed V is visualized more closely in Figure B1, using
a simulated dataset of 2000 individuals following the parametrization
used in the simulation study scenario with correctly specified Fine-Gray,
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FIGURE B1 | Based on a simulated dataset of n = 2 000 (correctly specified Fine-Gray, p = 0.65, random censoring), we show the imputed (m =

10 imputations) potential censoring times for a random selection of 20 individuals failing from cause 2 (upper panel); and the estimated marginal

cumulative subdistribution hazard function for cause 1 based on true V', and based on imputed V' (lower panel).

p = 0.65, and random exponential censoring. In this example, the poten-
tial censoring times for those failing from cause 2 were imputed m = 10
times.

The upper panel shows the imputed potential censoring times for a ran-
dom selection of 20 individuals failing from cause 2, in addition to their
cause 2 failure time and their true eventual censoring time. The lower
panel shows the estimated marginal cumulative subdistribution hazard
function for A, (t) resulting from using I(D = 1) together with either the
imputed or true V' as outcomes in a marginal model. We used A, (r) esti-
mated using the true V' to create the secondary x-axis in the upper panel,
which shows the value of this function at a given time point. For example,
the marginal cumulative subdistribution hazard was 1.146 at timepoint
2.5, and stayed constant at 1.322 after the last cause 1 event in this sample.

The upper panel in particular gives additional insights regarding the
FG-Approx method, where I(D = 1) and AI(V) are included as predic-
tors in the imputation model. Namely, the secondary x-axis shows the
value of A (V) used in the imputation model for a missing X ;» for given
imputed V. A first key point is that one should always use A, (V) in the
imputation model, and not A, (T'). Since the observed cause 2 failure time
occurs before the eventual censoring time, A, (T') will always be smaller

than the marginal cumulative subdistribution hazard at the eventual cen-
soring time. Since f\l(T) and AI(V) are not proportional to each other,
the imputation model will incur some bias. A second point is that in
settings with fewer event 1 failures (e.g., p = 0.15 scenario in the sim-
ulation study), the corresponding secondary x-axis will have a smaller
range, since the subdistribution hazard will be lower overall. Using A, (T')
instead of A, (V) may therefore have a more limited impact. However, as
evidenced by the simulations in Section 4.5, misspecification the censor-
ing distribution impacts inferences more when p = 0.15, since there are
more censoring times to impute.

The lower panel shows that the estimated A, (r) varies very little between
imputed datasets, with differences only being noticeable later on in
follow-up as risk sets become smaller and associated cumulative hazard
jumps more pronounced. Note also that while A, (¢) based on the true V'
appears in this dataset to be a kind of “average” of the functions based on
imputed V, this will not be the case in general, especially with smaller
sample sizes. The Al(t) based on the weighted estimator [52] will how-
ever coincide with the “average” of the functions based on imputed V, as
will using the negative log of one minus the Aalen-Johansen estimate of
the marginal cumulative incidence function.
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