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ABSTRACT

Rationale: Quality improvement (QI) in health service programmes aims to make small, incremental changes to increase reach and
efficiency. Simple, low-risk programmatic changes can improve services, particularly when supported by robust evidence. However, in
health service contexts, there is tension between the need for swift decision-making and the high research standards for conducting
methodologically rigorous trials. Randomized trials are rarely used to evaluate these changes due to high costs and long timelines,
especially when the changes are expected to result in marginal improvements. Instead, health service programmes frequently introduce
changes informed by anecdotal evidence or less robust evaluation methods such as before-and-after comparisons.

Aims: In this paper, we present a narrative review of the concepts underlying Bayesian adaptive trial designs for conducting QI
research, highlighting their use in the commercial sector and exploring opportunities for cross-industry learning and future application
in healthcare settings.

Methods: Relevant studies were selected based on their contextual relevance to the topic, in keeping with the narrative review
approach.

Results: Given that programmatic changes typically yield modest improvements, we recommend that adaptive trial designs can strike
a balance between obtaining reliable results and avoiding overly large sample sizes. We review how interim analysis and early stopping
can be integrated into trials, allowing the level of rigour to be adjusted according to the proramme specifications.

Conclusion: Adaptive trial designs hold significant promise for enhancing the QI efforts. To ensure that adaptive trial designs can be
successfully integrated into health service contexts, tradeoffs should be made between methodological rigour and resource constraints.

1 | Introduction [3, 4]. For QI to be successful and sustainable, these programmatic

changes must be carefully selected based on robust evidence of
Quality improvement (QI) is a systematic approach aimed at en- effectiveness [2, 5]. However, a gap often exists between evidence
hancing the quality and delivery of care through incremental and practice. Many QI efforts rely on anecdotal evidence or before-
changes [1, 2], for example, by introducing simple, low-risk in- and-after studies to assess the impact of programmatic changes

itiatives such as incentives and reminders to improve adherence [6-8]. Randomised controlled trials (RCTs) are rarely used due to
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their complexity and high costs, which presents a high barrier to
entry for organisations that do not have sufficient statistical and
research governance expertise in-house. This is especially true when
the expected impact of each programmatic change is modest [9],
creating a tension between the need for reliable evidence and the
practical constraints of conducting long, conventional RCTs within
routine service delivery. Nonetheless, missed opportunities arise
when there is insufficient evidence to distinguish between effective
and ineffective changes. It has been asserted that ‘the absence of
evidence is too costly, not the efforts to generate such evidence’ [2].

In commercial sectors, particularly in the online digital
ecosystem, more flexible, efficient trial designs present
opportunities for cross-industry learning [10]. Leading
companies perform online experiments, such as testing
variations in webpage configurations, to optimize their ser-
vices [11-13]. What facilitates these online experiments are
their high throughput, low implementation costs, and the
ability to observe outcomes almost instantaneously. These
characteristics allow the incorporation of adaptive trial
features, enabling continuous monitoring and adjustments
that enhance the efficiency of testing. While adaptive trials
remain relatively underutilized in health services [14], their
increasing use across various areas of clinical research
shows their potential as a viable testing method [15-19].
Given the success of these designs, there is a significant
potential for extending their application into QI of health
service programmes, fostering a learning health system that
‘captures data from practice, generates knowledge from the
data and puts the knowledge back into practice to improve
care’ [20].

This paper is a narrative review exploring the concepts of
Bayesian adaptive trial designs and their potential application
to drive QI in health service programmes. This review draws
on a wide range of sources, including empirical studies,
commentary, corporate blogs, and reports. By examining ex-
amples from both clinical and commercial sectors, this paper
aims to inform the design of adaptive trials focusing on the
following objectives: (a) evaluating programmatic changes that
lead to even the smallest improvements in health service
programmes; (b) obtaining meaningful, actionable evidence
with relatively small sample sizes that are feasible in health
service contexts; and (c) ensuring that the trials maintain
sufficient reliability and accuracy to ensure patient safety.

2 | Adaptive Trial Designs
2.1 | What Are Adaptive Trials?

Adaptive trials are characterized by prespecified design features and
decision criteria, allowing for flexibility to modify and tailor the trial
during its course. Participants are initially randomised into different
arms, with interim analyses of accumulating data guiding decisions
on trial modifications. These modifications include early stopping,
dropping or adding arms, adjusting the randomisation ratio, or
changing the sample size, amongst other possibilities [21]. This
flexibility gives researchers the opportunity to balance the trial's
efficiency and reliability, depending on the research objectives.

The decision to integrate adaptive design features into a trial is
driven by the specific research goals it aims to achieve. For example,
if the goal is to swiftly evaluate programmatic changes, stopping
rules can be applied to terminate trials when early evidence dem-
onstrates either efficacy or futility. Alternatively, the trial may
continue to accrue additional data to strengthen the evidence.
When the goal is to benefit trial participants through potentially
promising programmatic changes, the trial can adjust allocation
probabilities to favour changes that show the most potential or
discontinue those that appear ineffective or harmful. These timely
design adjustments can make trials more efficient and responsive,
positioning adaptive designs as a promising approach for driving QI
(Figure 1).

Researchers interested in adopting adaptive trials for QI research
need to consider several factors. Commercial, online experiments
are rapid because outcomes become available shortly after exposure
to interventions, promptly guiding decision-making [10]. For
instance, in online marketing, the outcome of a visitor clicking on
an advertisement can be observed almost instantaneously to provide
real-time insights into its effectiveness. Similarly, adaptive trials
could be applied to QI in health services where the duration
between intervention and outcome is relatively short, such as
measuring attendance to referral appointments after receiving a
reminder call. Having the capacity to analyze the data quickly as it
becomes available is also essential for the efficient conduct of
adaptive trials. Furthermore, the FDA emphasizes the importance
of simulations in designing adaptive trials that warrant both feasible
and acceptable parameters of sample sizes and error rates [17, 22].
However, since not all health services may have the resources or
capacity to carry out simulations, there is a need for further research

Trial Final
begins EQEWSS
A
Enrol Collect Interim
participants data analysis
)J
Decide \{vhether § No Decide whgther Yes
to modify trial to stop trial
FIGURE 1 | Adaptive trial processes. Adaptive trials begin by randomizing participants into trial arms and collecting data on how the pro-

grammatic change affects the outcome in the participants. At interim analysis, all data accumulated by this period is analysed to provide real-time
insights. Based on these results, decisions can be made to modify the trial. Interim analysis and modification repeat until a decision is made to stop

the trial.
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to establish comprehensive guidelines—outlining trial designs for
testing various QI interventions—and provide a framework for
broader adoption.

2.2 | Bayesian Methods for Decision-Making

Adaptive trial designs can utilize frequentist, Bayesian, or a hybrid
of both approaches to estimate the impact of programmatic chan-
ges. Frequentist methods treat parameters as fixed and estimates
the impact of changes based on the theory of repeated sampling.
Bayesian methods, in contrast, view parameters as random quan-
tities with distributions, which are continuously updated as new
data accumulates. In this context, belief describes the degree of
certainty about the parameter based on the distribution of posterior
probability. The inherent ability to update belief complements the
nature of continuous monitoring, making Bayesian methods well-
suited for adaptive trials [23].

Bayesian methods estimate the impact of programmatic
changes using posterior probabilities, providing an intuitive
interpretation that quantifies the credibility of the data and
belief, along with their associated uncertainties [24, 25]. For
example, conventional hypothesis testing using frequentist
approach may state that there is an X% probability of observ-
ing a difference as extreme as the data between two variants of
a programmatic change, assuming the null hypothesis of no
difference is true. In contrast, a Bayesian method directly
reports the probability, such as a Y% probability that one
variant is better than the other, given the observed data. It
generally offers a clearer and more straightforward interpre-
tation, making Bayesian methods useful for informing health
policy and clinical decision-making [23, 26-28]. Similarly, in
QI efforts, the use of Bayesian methods could support
decision-making by reporting the impact of programmatic
changes in a more comprehensible manner.

Furthermore, Bayesian estimate provides an explicit representation
of all available data up to the point of analysis as well as any prior
beliefs. This is particularly beneficial when there are multiple per-
spectives and evidence available to inform decision-making.
Bayesian methods allow for diverse types and sources of informa-
tion, such as expert knowledge and prior studies, to be integrated
into a single estimate [29, 30]. This is different from frequentist
framework, which typically relies on a pooled analysis of closely
related studies.

Nonetheless, there are practical barriers associated with the
use of Bayesian approaches. First, analysing data using
Bayesian approaches often requires intensive computation
and statistical support. For those who are more familiar with
frequentist approaches, the inherent conceptual difference
between the two methods adds a steep learning curve. Sim-
ilarly, the elicitation of a prior distribution is often not a
straightforward task. While existing information or expert
opinion may inform the selection of a prior, translating
various types of information into a single, coherent prior can
be difficult. This becomes particularly difficult in Bayesian
adaptive trials, where the prior significantly biases estima-
tion and influences the decision-making based on posterior
distribution [31].

Several learning platforms and strategies have been made
available to address these barriers and make Bayesian ap-
proaches more accessible to various audiences [24, 32, 33]. The
following sections will provide discussions on leveraging
adaptive designs for QI, focusing on Bayesian approaches.

2.3 | Adaptive Design Features for Achieving
Quality Improvement

23.1 | Selecting Prior Beliefs

In a Bayesian framework, posterior distributions represent the up-
dated belief about a parameter, such as the impact of programmatic
changes. Posterior distributions are created by combining prior
distributions with observed data, representing the updated belief
that accounts for both prior knowledge and new information.
Therefore, an essential step towards planning a Bayesian adaptive
trial is the pre-specification of prior distributions, which can often
have substantial impact on the resulting posterior distributions [30].
Ideally, priors should be carefully selected to align with both the
objective of the trial and the intended use of its results [34].

Noninformative priors can be used when there is limited evidence
or uncertainty about the impact of programmatic changes. These
priors make minimal assumptions about the impact of the changes,
allowing the posterior distribution to be solely shaped by the
accumulating data [34]. This is advantageous when trial results are
intended for consideration across various settings with different
prior beliefs. Alternatively, a sceptical prior assumes that aa pro-
grammatic change has minimal or no benefit, and it requires the
accumulating data to provide strong evidence of efficacy to over-
come this scepticism and demonstrate its impact [23, 35]. For ex-
ample, decisions on whether to introduce an expensive change
should be based on robust evidence indicating its efficacy. Em-
ploying a sceptical prior sets a high bar justifying the cost impli-
cations and determining whether the evidence is reliable enough
for the change to be integrated into the programme.

Another key advantage of using a Bayesian approach is its ability
to incorporate informative priors. May QI efforts have utilized
existing information—such as expert knowledge or evidence
from similar settings—in less formal ways to decide whether it is
worth adopting a change into a programme. Currently, there is
no standardised method in QI research for incorporating such
diverse types of evidence [36]. Bayesian methods provide a more
robust statistical approach, with techniques like prior elicitation,
to formally integrate expert knowledge and pre-existing evidence
into the analysis [29].

2.3.2 | Interim Analysis

Interim analysis is a crucial component in the design of adaptive
trials, serving as designated checkpoints for assessing the accumu-
lated data and making decisions. A well-structured interim analysis
plan specifies the timing or frequency of analyses [16]. In online,
commercial examples, QI experiments are strategically designed to
avoid premature analyses, preventing random fluctuations observed
in the early data from influencing decision-making. For example,
Google Analytics had implemented a default minimum 2-week
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run-in period into their experimental framework before conducting
the first interim analysis [37], and Etsy had a minimum 7-day
period to account for different trends in weekdays and weekends
[38]. A similar example seen in clinical research is the STAMPEDE
trial, a multi-arm multi-stage trial comparing therapy options for
prostate cancer, which conducted interim analyses only after a fixed
number of outcomes were observed in the control arm [39]. These
approaches ensured that sufficient data were collected to make
reliable decisions. Similarly, for QI efforts of health service pro-
grammes, it can be beneficial to include a run-in period particularly
when data collection is slow or intermittent. In cases when the
speed of data accrual is uncertain, it would be preferable to specify
the run-in period in terms of sample size rather than a fixed period
of time.

Furthermore, the timing and frequency of interim analyses should
align with the goals of QI efforts. Frequent data analyses offer
timely insights but at the cost of being operationally burdensome
and increasing the risk of false positives results [40, 41]. For
instance, Spotify conducts its experiments at prespecified intervals
rather than continuously to reduce the risk of false positives [42].
Conversely, infrequent interim analysis can reduce the chance of
false positives but lead to less timely decision-making. In health
service programmes, interim analysis should also be planned con-
sidering the balance between speed and accuracy, ensuring that it
does not compromise the integrity nor feasibility of the trial.

2.3.3 | Decision Criteria

At interim analysis, decisions can be made to modify the trial
design and declare the effects of programmatic changes. This
process involves assessing all data collected until a specific
interim analysis point against predefined decision criteria. For
example, posterior distributions about the impact of program-
matic changes can be compared to prespecified thresholds to
determine whether sufficient evidence has been collected to
make informed decisions about which change to adopt.

Amazon illustrates an example of a commercial QI effort where
interim analysis results are assessed against decision criteria. They
offer online experiment platforms for their sellers, enabling them to
create and conduct experiments on various attributes—such as
different variants of product images or descriptions—and evaluate
the impact on sales or conversion rates. Sellers can evaluate their
experiment results by monitoring the updated posterior probabili-
ties each week and assess degree to which each variant is more
effective than the other [13].

Another experimental platform, Google Analytics, also demon-
strated the use of decision criteria to help online businesses opti-
mise services. For example, experiments were conducted using
Bayesian approaches to compare different variants of a webpage. At
an interim analysis, a variant was identified as a winner if it had at
least a 95% probability of being better. Conversely, if there was a
95% or higher probability that the top variants showed a negligible
difference, the experiment terminated to conclude that these var-
iants were virtually identical [37, 43].

Similarly, for QI efforts of health service programmes, deci-
sion criteria can be custom-built to address specific needs,

such as assessing whether a programmatic change results in
improvement or harm, or determining when there is little
value in continuing the trial to compare variants that perform
similarly. In a Bayesian trial, the relative effect between two
variants of a programmatic change can be represented as a
posterior distribution. These distributions can then be used to
calculate the posterior probability that the relative effect is
greater than or smaller than a predefined threshold. Figures 2
and 3 illustrate examples of how such decision criteria can be
established to assess the effect difference between two
variants.

First, a superior variant can be identified by evaluating the pos-
terior probability that it outperforms other variants. This involves
assessing whether the probability is large enough to meet or
exceed a predefined threshold S (Pr(lAeffectl > a) > S%). Here,
Aeffect represents the effect difference between two variants
(Aeffect = variant A-variant B), o is the minimum effect differ-
ence required for the two variants to be considered meaningfully
different. Pr is the posterior probability that this effect difference
is larger than a. If this Pr exceeds S, it indicates there is strong
evidence to support one variant being superior to the other.

If a is set to 0, the decision criterion can be used to declare a
variant as superior if there is a S% or higher posterior proba-
bility that the two variants are different by any amount. This is
useful if the goal is to identify any variant that leads to a dif-
ference, even if it is marginal (Figure 2a). Alternatively, if « is
set to a value greater than 0, a variant can be declared superior
only if the effect difference between the superior variant and
the inferior variant is larger than o. A large value of a« would be
useful in settings where one variant is more expensive than the
other, and a large difference is needed to support the decision to
select the more expensive, yet potentially more effective variant
(Figure 2b).

Decisions can also be made based on the observation that the
two variants of a programmatic change show similar effects.
This can be assessed by evaluating the posterior probability that
two variants have a negligible difference. If this probability
exceeds a predefined threshold E (Pr(lAeffect| < §8) > E%), it can
be declared that the two variants perform very similarly. Here, 3
represents the maximum allowable difference in effect that is,
deemed negligible, creating an ‘indifferent zone’ where the two
variants are considered as being equal [35] (Figure 3). When
equivalence is declared, decisions may be made to select a more
appealing variant, taking into account factors like the cost and
ease of integration.

To construct the decision criteria, it is important to select
appropriate threshold values for defining efficacy or equiva-
lence that are relevant to the goals and specifications of a pro-
gramme. These decision thresholds would not only influence
the final sample size but also the accuracy of the trial results.
For such reasons, regulatory bodies such as the U.S. Food and
Drug Administration (FDA) recommend that decision criteria
be carefully established through simulations to ensure they
align with the research objectives [17, 22]. In the context of QI
efforts, decision criteria can be developed by considering both
their feasibility within a given programme and the reliability of
the trial results they generate.
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(a) Monitoring for any difference

Pr(Aeffect<0) > 5%, and variant B is superior.

Variant B is superior to Variant A
Pr(Aeffect < 0) = 95%

density

0
effect difference between two arms (A-B) (%)

Pr(|Aeffect|<0) < $%, and neither variant is superior.

Pr(|Aeffect] > 0) = 50%

(b) Monitoring for a large difference

Pr(Aeffect>a) < $%, and variant A is not superior.

Pr(Aeffect > a) = 5%

density

0 a
effect difference between two arms (A-B) (%)

Pr(Aeffect>a) < $%, and variant A is not superior.

Pr(|Aeffect| > a) = 50%

> >
2 Z
0 a
effect difference between two arms (A-B) (%) effect difference between two arms (A-B) (%)
Pr(Aeffect>0) > %, and variant A is superior. Pr(Aeffect>0) > $%, and variant A is superior.
Variant A is superior to Variant B Variant A is superior to Variant B
. Pr(Aeffect > 0) = 95% . Pr(Aeffect > a) = 95%
0 0 a
effect difference between two arms (A-B) (%) effect difference between two arms (A-B) (%)
FIGURE 2 | Constructing probability-based decision criteria for identifying a superior variant. (a) An effect difference between two variants can

be assessed by monitoring the posterior probability that the effect difference exceeds 0%. A variant can be identified as superior if this posterior
probability is greater than a predefined threshold, such as S=95%. (b) A larger effect difference can be identified by monitoring the posterior
probability of the effect difference being greater than a. A variant can be identified as superior if this posterior probability exceeds a predefined

threshold, such as S =95%.

2.3.4 | Optional Stopping

After assessing the accumulated data against the decision
criteria, one possible decision to make is to stop the trial alto-
gether. Implementing early stopping rules into a trial provides
flexibility to stop when sufficient evidence has been collected to
draw reliable conclusions or when continuing the trial beyond a
certain point does not provide additional value. In many QI
efforts where the anticipated benefit of the intervention is small
or uncertain [2], the option to stop trial early can enhance
efficiency by avoiding the need to commit to a fixed trial
duration.

For QI efforts, early stopping can be advantageous for sev-
eral reasons: when it becomes clear that continuing the trial
is futile because there is no meaningful difference between
variants; when a variant is clearly not effective enough to
justify its cost; or if the primary goal is to quickly identify a
promising variant, rather than precisely quantify the
amount of the improvement. In adaptive trials, interim data
can provide an early indication of an improvement, but it
may not provide a precise estimate of the effect size because
early stopping can lead to potential bias (this will be dis-
cussed further in Section 3.4) [44-46]. By incorporating
stopping rules, researchers can choose to stop a trial early

50f 11

85UB017 SUOWWIOD 9AIEe1D) 8qeal|dde sy Ag peusenob ae sejoie O ‘8N J0 SajnJ Joj AkelqiT auljuQ 481\ UO (SUONIPUOD-PUe-SWULB)/0D" A8 1M ARelg 1 Bul|UO;/:SdNy) SUONIPUOD Pue SWs 1 au) 89S *[SzZ0z/20/y2] uo Ariqi7auliuo A8|IM ‘91 Aq /6T02 del/TTTT OT/I0p/wod Ao Im Arelq i pUljUO//:SdNy WO} papeojumod 'S ‘SZ0Z ‘€5/2S9ET



Monitoring for equivalence
Pr(|Aeffect|<pB) < E%, and the two variants are not equal.

Pr(|Aeffect| < B) = 10%

density

-B 0 B
effect difference between two arms (A-B) (%)

Pr(|Aeffect|<pB) < E%, and the two variants are not equal.

Pr(|aeffect| < B) = 10%

density

B 0 B
effect difference between two arms (A-B) (%)

Pr(|Aeffect|<B) > E%, and the two variants are equal.

Pr(|Aeffect| < B) = 95%

density

-8 0 8
effect difference between two arms (A-B) (%)

FIGURE 3 | Constructing probability-based decision criteria for
identifying variants that perform equally. Equivalence between two
variants can be assessed by monitoring the posterior probability that the
effect difference between them is smaller than . Equivalence can be
declared if this posterior probability exceeds a predefined threshold,
such as E =95%.

once a superior variant is identified, even if the exact
magnitude of its impact is not certain.

The early stopping rules should be developed to strategically
align with the trial's objectives. For example, therapeutic or
drug trials commonly integrate stopping rules to prioritize
patient safety. Pfizer's COVID-19 vaccine efficacy trial
included early stopping rules to immediately halt the trial if
the vaccine showed potentially adverse effects, in accord-
ance with the FDA authorization standards [47, 48]. Simi-
larly, a remdesivir trial was designed to allow early stopping
if interim analysis results indicated evidence of efficacy,
futility, or safety concerns [49].

In contrast, QI efforts focused on low- or no-risk programmatic
changes can instead prioritize trial efficiency, ensuring that the trial
can be successful integrated into existing programmes without

overloading existing resources [2]. The strength of evidence to sig-
nal early stopping should be determined based on the programme
needs and available resources. Researchers may choose to collect a
moderate level of evidence if the goal is to quickly obtain results
despite an increased risk of seeing errors or bias. Conversely, they
may require stronger and more confident evidence for higher
accuracy, especially when evaluating costly or high-risk changes.
Simulation studies can help guide the development of stopping
rules that balance these trade-offs between speed and accuracy [17,
22], ensuring that they align with the trial's objectives.

2.3.5 | Arm Dropping

‘When there are more than two variants to choose from, con-
ducting multi-arm trials can offer an efficient approach to simul-
taneously evaluate different variants. But assessing multiple
variants through conventional, fixed-size RCTs can be complex,
especially when trying to maintain adequate statistical power with
a limited amount of resources. Instead, incorporating adaptive
design features, such as arm dropping, can be a responsive, effi-
cient approach to reduce the overall sample sizes of trials. Many
late-phase trials introduced arm dropping features into their trial
protocols to allow assessment of multiple treatments [50]. Based
on predetermined decision rules, an arm can be discontinued
when there is evidence of safety concerns, presence or lack of
efficacy, or futility, thereby allowing the trial to continue with the
remaining arms rather than stopping it completely.

Firstly, decisions can be made to drop unpromising variants
from a trial. From a QI point of view, this approach can be
beneficial as it redirects trial participants away from
unpromising variants and towards more promising ones [51].
Alternatively, highly promising arms can graduate a trial early,
as exemplified by the I-SPY 2 trial for breast cancer drugs. In
this example, enrolment to a treatment arm was stopped once
sufficient evidence demonstrated the effectiveness of this
treatment compared to the control and prompted this effective
treatment arm to advance early to a phase III confirmatory trial.
This decision rule was designed to accelerate the drug testing
and approval processes [52]. In QI efforts, similar decisions can
also be made to swiftly advance highly promising variants for
broader adoption beyond trial participants.

Analysis methods must be planned carefully to accurately
assess the effects of dropped arms relative the arms
remaining in the trial. For instance, the STAMPEDE trial
conducted a comparative analysis to assess every dis-
continued treatment arm against other arms that shared the
same timeframes [53, 54]. The arm dropping strategy in the
STAMPEDE trial is expected to evaluate eight treatment
arms over 15 years, a process that would take about 40 years
using conventional RCTs [55].

3 | Evaluating the Impact of Adaptive Trial
Features on Trial Integrity

While adaptive design features can make trials more flexible,
they inevitably influence how trials perform under various
conditions [16, 40, 56]. The tradeoff between sample size,
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accuracy, and bias should be managed carefully, ensuring that
the benefits of adaptive design features outweigh their potential
risks. For this reason, simulations are recommended as an ideal
approach for evaluating the impact of these features [35, 40, 57,
58]. Evaluating adaptive design features and decision criteria
across a range of plausible scenarios is the key to understand
their true impact. The FDA emphasizes the use of simulations
to estimate the expected error rates of a specific adaptive design
before the trial begins [17, 22].

An optimal trial design should balance the tradeoff between
accuracy and sample size to align with the trial's objectives. In
pharmaceutical research, where patient safety is critical, the FDA
advise early stopping only when there is high confidence in the
findings or a compelling ethical rationale [17]. For QI of health
service programmes, trial designs can be tailored to prioritize ei-
ther higher accuracy or smaller sample sizes, depending on the
context, such as resource availability and the nature of the pro-
grammatic changes. The balance between error rates and sample
sizes should be adjusted according to which factor needs to be
prioritised. Furthermore, trials should generate estimates that are
accurate and reliable enough to inform the decisions about which
programmatic changes to implement within a programme.

3.1 | Sample Size

By incorporating early stopping rules in an adaptive trial design,
it is possible to flexibly adjust the sample sizes, often requiring
fewer participants than conventional RCTs [17, 18]. Evidence
from the commercial sector illustrates that adaptive designs can
be efficient for evaluating programmatic changes that have
small impacts. However, these online experiments typically
involve thousands of users as participants [59], allowing for
error rates to be managed at desired levels. In contrast, not all
health service programmes may have the advantage of such
large sample sizes, making it essential to estimate the expected
sample size and assess its feasibility within the specific pro-
gramme context.

Simulations are a valuable tool for estimating the expected sample
size of adaptive trial designs in a given context [17, 22, 35]. It helps
estimate the average sample size needed to test programmatic
changes with certain effect sizes. Robertson et al. showed that
small-sized trials are unlikely to stop early based on evidence of
efficacy for a small intervention effect [46]. This makes it essential
to evaluate whether an adaptive trial design of a certain sample
size is sufficiently large enough to detect small effects. In cases
where the effect sizes are uncertain, simulations can also replicate
different scenarios with varying effect sizes to assess the average
sample size across these different outcomes [60]. This involves
analysing simulated datasets using the trial designs, evaluating
whether the sample size predicted by these simulations is feasible
within the available resources, and setting a maximum sample size
to ensure the trial remains within practical limits.

3.2 | TypeI Error

In any research, it is crucial to establish target rates for both
false positive (type I error) and false negative (type II error)

rates. Using frequentist approaches, it is acknowledged that the
type I error rate will increase with repeated testing of a single
hypothesis or testing of multiple hypotheses. In Bayesian
adaptive trials, however, the impact of interim analysis on the
false positive rate remains a subject of debate. Some argue that
Bayesian approaches are less susceptible to multiple testing
problems due to their inherent nature of continuously updating
the posterior distribution with accumulating data [35]. While
some studies suggest that the false positive rates can be main-
tained within acceptable limits [61-63], others show that the
false positive rates can be different depending on the type of
priors used [40]. To better understand the error rate, it is rec-
ommended to leverage simulations to predict the risk of
drawing false positive results using a given Bayesian adaptive
design [40].

In clinical research, conventional RCTs are typically designed to
maintain the type I error rate at or below 5%, either through a
single final analysis or by adjusting the significance threshold at
the final analysis to account for multiple analyses [17]. This is
done to avoid mistakenly adopting ineffective or harmful
treatments, which may result in adverse side effects or
unnecessarily costs. Still, early phase clinical trials often allow a
higher error rate to avoid prematurely discarding potentially
effective treatments [64]. A more lenient error rate is also
observed in oncology research studying rare cancers, where
recruiting a large participant base is not possible. In this case, it
has been demonstrated that conducting a series of shorter
oncology trials with more relaxed error rates can be just as
effective in improving survival rates as longer, more stringent
trials [65-67].

In some QI efforts of health service programmes, false positives
can have slightly different definitions compared to clinical
research comparing an intervention against a control arm. First,
a false positive may occur when a programmatic change that is
not worse than others is mistakenly declared as most superior.
Alternatively, one of several equally performing variants may be
erroneously identified as more effective than the others. But in
the latter case, particularly if all variants are low-risk and
similar in cost, the false positives of incorrectly declaring one
variant as superior may not be considered harmful. However,
when the programmatic changes involve additional costs or
risks, it becomes increasingly important to focus on minimizing
false positive rates.

3.3 | Power

Well-designed adaptive trials can achieve statistical power
comparable to conventional fixed-size RCTs [18]. In trials
comparing two variants, power is defined as the likelihood of
correctly identifying a superior variant when there is a true
difference. Trials with low power carry the risk of failing to
identify a superior variant. The potential harm of low power
should be assessed for each programmatic change, considering
its risk and cost.

When comparing more than two variants, multi-arm adaptive
trials can offer an efficient approach to streamline their eva-
luation [50]. In this context, power can take on different
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definitions depending on the trial's objectives. One such defi-
nition is conjunctive power, which refers to the likelihood of
correctly assessing the performance of every variant in the trial
[68]. It can be particularly relevant when the aim is to sys-
tematically compare the performance of multiple variants and
identify the most promising one amongst all.

An alternative definition, marginal power, is the likelihood of
correctly identifying a particular variant as superior amongst all
other variants [68]. In QI efforts, assessing marginal power can
be useful for comparing variants that have different costs. For
example, marginal power can assess whether an expensive
variant is worth its additional cost by demonstrating superiority
over other cheaper alternatives.

Lastly, disjunctive power, is a more lenient definition focusing
on identifying at least one superior variant, even if there are two
or more equally superior arms [68]. It could be particularly
relevant when the aim is to quickly identify any superior variant
among all variants that have similar costs and safety concerns.
In this case, researchers can prioritize identifying at least one
superior variant as quickly as possible rather than investing
resources to assess every single variant through pairwise
comparisons.

3.4 | Coverage and Bias

Well-designed fixed-size RCTs allow for unbiased estimation of
effect sizes, and the analysis methods are usually relatively
straightforward. In contrast, adaptive trials, which alters the
design during their course, can introduce bias in effect size
estimation. For example, early stopping may lead to an over-
estimation or overestimation of effect sizes [44-46]. When re-
porting the results of adaptive trials, it is essential to account for
the adaptive design features used in the trial [17].

In the context of QI in health services, however, precise quan-
tification of effect sizes may not be essential. Instead, QI efforts
can focus on identifying the changes that lead to positive
improvements, rather than evaluating the exact magnitude of
those improvements. In the commercial sector, Etsy was an
example of a company that acknowledged the risk of over-
estimation but opted to conduct adaptive trials to expedite the
process of testing small-impact changes [38]. In some cases, it
may be sufficient to identify at least one promising variant or
rank the variants based on their performance. Leveraging
Bayesian approaches is particularly helpful in this context
because they estimate the posterior probabilities that each
variant outperforms the others, helping them assess the relative
effects without the need to precisely quantify them.

4 | Conclusion

QI is essential for optimizing health service programmes, en-
hancing both service delivery and patient outcomes. Many QI
efforts have helped improve outcomes by introducing pro-
grammatic changes that are based on expert input or previous
studies [36, 69]. To increase the odds of QI efforts achieving the

intended goals, it is important to make evidence-driven changes
that are proven effective [2]. However, the use of randomised
trials is often discouraged in QI of health service programmes,
creating a disconnect between the need for robust evidence and
the practical challenges of conducting conventional RCTs.

In this regard, the potential use of Bayesian adaptive trial
designs is compelling for three key reasons. First, they offer a
randomised trial approach for evaluating programmatic chan-
ges with modest effects, allowing flexible levels of methodo-
logical and statistical rigour that are appropriate for the
context. Second, the trial design can be adapted to meet specific
goals. For example, an adaptive trial design with early stopping
rules can be useful when the aim is to quickly assess the relative
effects of variants, without committing time and resources to
measuring precise effect sizes. Lastly, Bayesian approaches
could potentially enhance decision-making by providing
probability-based outcome measures for intuitive interpretation
of the trial results.

While Bayesian adaptive trials can offer a promising approach
to drive QI of health service programmes, there are several
practical challenges for implementing adaptive trials into real-
world health service settings. First, setting up adaptive trials can
demand considerable effort and resources due to the need for
interim analysis. The ability to conduct interim analysis is
directly associated with the availability of accumulating data. It
is therefore not suitable in settings where data is not readily
available or of varying quality, which may limit the capacity to
conduct interim analysis.

Frequent data analysis and adaptations can also demand con-
siderable resources, both in terms of personnel and infra-
structure. Trials should be integrated into the routine
operations of a health service programme while minimizing
disruption to ongoing services. Therefore, it is essential to en-
sure that health service programmes have adequate infra-
structure and staffing to support the seamless integration of
adaptive trials and maintain fidelity to the trial protocol.

Furthermore, simulation plays an important role in designing
Bayesian adaptive trials that balance the efficiency and statis-
tical rigour of the trial and tailored to achieve the specific
research objectives [17, 22]. However, conducting simulations
may be challenging or not feasible at all in some health service
settings. Consideration must be given in the planning stage to
determine whether the design and conduct of the Bayesian
adaptive trials are viable.

Last but not least, requiring an ethics review for every pro-
grammatic change tested in an adaptive trial—specifically those
that lead to marginal improvements, such as modifying the
wording of reminder message—can introduce an additional
bureaucratic layer. Nonetheless, when such changes pose
minimal risk, the ethical concerns typically associated with
clinical interventions are less applicable in this context, espe-
cially considering that many organizations are already making
these types of changes without the formality of a research
design. However, once these same changes are introduced
through randomization, the line between routine QI efforts and
scientific research begins to blur. Some studies have
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emphasized that QI research and traditional scientific research
are worth distinguishing, particularly if the QI research is
programmatic, involves minimal risk, and focuses on improving
specific practices within a given context rather than generaliz-
able knowledge [70-72].

While the findings presented in this review suggest that
Bayesian adaptive trials hold potential to make QI efforts more
efficient, it is important to acknowledge the methodological
limitations of this narrative review. The inclusion of studies was
not systematic, and potential selection and confirmation biases
may have influenced the conclusions made. As such, the rec-
ommendations provided are exploratory in nature, and caution
is warranted when making use of these discussions.

Further research, particularly with more rigorous methodolo-
gies, is needed to validate the insights presented in this review
and confirm the potential strengths and limitations of using
Bayesian adaptive trials to inform QI in health service settings.
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