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Abstract 

Background

Drivers of leptospirosis transmission can vary across regions, leading to spatial 

clustering of infections. This study aims to identify clusters of leptospirosis seropreva-

lence in the Dominican Republic (DR) and factors associated with high-risk areas.

Methodology/Principal Findings

We analysed data from two provinces, Espaillat and San Pedro de Macoris (SPM), 

obtained on a national survey conducted in 2021 (n = 2,078). Samples were tested by 

microscopic agglutination testing (MAT) to detect leptospirosis antibodies. We used 

flexible spatial scan statistics to locate significant clusters for seropositive individuals 

(all serogroups combined) in each province and calculated risk ratios (RR) at the 

household and community level. Environmental and sociodemographic risk factors 

associated with clusters were assessed by logistic regression. One cluster was 

identified in each province. Participants living inside a cluster were more likely to live 

further from health facilities (OR 1.86, p < 0.001 and OR 4.41, p = 0.044 by motorized 

travel time in Espaillat and SPM, respectively). Cluster participants were also less 

likely to live in areas of higher population density (OR 0.76, p < 0.01 and OR 0.29, 

p < 0.001 in Espaillat and SPM, respectively) and in communities with higher gross 
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domestic product (GDP) (OR 0.70, p < 0.001 and OR 0.42, p < 0.001 in Espaillat and 

SPM, respectively). Additional risk factors varied between Espaillat and SPM.

Conclusion/Significance

Our findings confirm the clustered spatial pattern of leptospirosis and highlight that 

transmission drivers vary by province. While both provinces show higher transmission in 

impoverished areas, modifiable factors differ, requiring tailored public health interventions.

Author summary

Leptospirosis is a significant public health problem in Latin America and the 
Caribbean, accounting for one-third of all reported outbreaks globally between 
1970 and 2012. In the Dominican Republic (DR), 2,860 human leptospirosis 
cases were reported to the General Epidemiology Directorate of the Ministry 
of Public Health and Social Assistance between 2013 and 2023. The country’s 
warm and humid climate facilitates leptospirosis transmission. However, envi-
ronmental and sociodemographic drivers can vary across regions, resulting in 
a geographically heterogeneous distribution of infection. This study aimed to 
identify areas with a higher prevalence of leptospirosis seropositivity (clusters) 
of leptospirosis seroprevalence in two provinces of the DR using flexible spatial 
scan statistics. This approach allowed us to investigate the existence of clusters 
in each province. Additionally, we used logistic regression to identify environmen-
tal and sociodemographic drivers associated with clusters in each province. Our 
findings suggest the presence of clusters in both provinces, with different sets 
of significant drivers identified in each province. Notably, drivers associated with 
clusters in both provinces were highly indicative of socioeconomically vulnerable 
populations, highlighting leptospirosis as a disease of poverty. These results 
underscore the need for geographically targeted and tailored interventions to 
reduce leptospirosis disease burden in at-risk communities.

Introduction

Leptospirosis is one of the most widespread zoonotic disease globally [1]. The Lepto-
spira bacteria present a complex transmission cycle that can include several species of 
mammalian reservoirs. These reservoirs shed pathogenic serovars through their urine, 
contaminating water and soil where the bacteria can survive for long periods [2]. The 
disease is considered to be primarily an occupational infection, associated with groups 
who handle animals or animal tissues and subsistence farming in tropical countries. In 
these regions, leptospirosis exhibits an endemic pattern of occurrence mainly in rural 
settings [3]. It is also considered to be an emerging infectious disease with outbreaks 
frequently associated with extreme rainfall events, such as hurricanes and flooding 
[2,4,5], and often cited as an urban slum health problem in resource-poor countries [6,7].
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Annually, leptospirosis causes an estimated one million cases and around 60,000 deaths worldwide [8], though the 
actual burden may be higher due to underreporting. The reference method for serological diagnosis is the microscopic 
agglutination test (MAT), which can be time-consuming, and availability is frequently limited, especially in low and  
middle-income countries [1]. Tropical islands are considered a particular high-risk setting for human infection [8,9] and a 
recent study finding one-third of all globally reported outbreaks occurred in Latin America and the Caribbean (LAC) [10]. 
While recent outbreaks of the disease have been primarily associated with floods and hurricanes, this pattern coexists 
with the endemic form in this region. Drivers and risk factors for each epidemiological context are specific and remain 
poorly explored in most countries [11].

The adoption of spatial modelling methods for studying infectious diseases has contributed to a better understanding 
of the distribution of seroprevalence and risk factors and drivers of many diseases [12–14], including leptospirosis [15]. 
Cluster analysis methods are spatial statistical tests that assess geographical variation in disease risk and/or occurrence, 
and identify areas where the number of events (e.g., participants testing positive for leptospirosis seromarkers) exceeds 
expectations based on the size of the population analysed [16]. Increasing evidence suggests a spatial clustering of lepto-
spirosis infection [17–21], indicating that some areas may provide more favourable conditions for sustaining transmission 
cycles than others.

The complex interactions between ecology, epidemiology, multiple animal hosts, and human conditions in urban and 
rural settings, identifying characteristics associated with populations living in high-risk areas can provide insights to guide 
targeted public health action. However, the importance of risk factors and drivers can vary across space [22] due to local 
differences in the complex transmission cycle [23], such as the presence of different reservoir mammals and their intrin-
sic relationship with serovars [5], vaccination rate of livestock herds [24], suitable conditions for pathogen survival in the 
environment [2] and opportunities for human exposure [1,5]. The variation of suitable conditions for transmission can 
occur within and between regions, with high-risk areas experiencing more localised outbreaks [17,20,21]. By pinpointing 
high-risk areas, spatial cluster analysis enables healthcare managers to generate hypotheses for understanding higher 
prevalence in these areas. This study aims to identify clusters of leptospirosis seroprevalence in the Dominican Republic 
(DR) and determine the factors associated with these high-risk areas.

Methods

Ethics Statement and consent

This study was approved by the National Council of Bioethics in Health (013–2019), the Institutional Review Board of 
Pedro Henríquez Ureña National University, Santo Domingo, DR; the Mass General Brigham Human Research Commit-
tee, Boston, USA (2019P000094); and the Human Research Ethics Committee of The University of Queensland (2022/
HE001475), Brisbane, Australia.

Written consent was obtained from all participants. For participants <18 years old, except emancipated minors, consent 
was obtained from the parent or legal guardian. Participants between 14–17 years old provided written assent and those 
between 7–13 years old provided verbal assent. For participants between 5–7, written only parental consent was obtained.

Study area

The Dominican Republic is located in the Caribbean region, sharing the island of Hispaniola with Haiti. It is the second 
most populous country in the region, after Cuba [25]. The country is divided into 31 provinces plus the Santo Domingo 
National District. These provinces and the National District are aggregated into 10 administrative regions: Cibao Norte, 
Cibao Sur, Cibao Nordeste, Cibao Noroeste, Valdesia, Enriquillo, El Valle, Yuma, Higuamo, Ozama o Metropolitana [26].

For the analysis presented here, data from two provinces were included, Espaillat – located in Cibao Norte region – 
and San Pedro de Macoris – in Higuamo region. These two provinces were selected because they were included in a 



PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0013103 June 11, 2025 4 / 14

linked study on clinical surveillance of acute febrile illnesses (S1 Text). Espaillat and SPM are home to approximately 
230,000, and 290,000 people, respectively. Both provinces have a predominantly young population (mean age 30.3 in 
Espaillat and 27.9 in SPM), evenly distributed between males and females [27]. However, there are notable sociodemo-
graphic and economic differences between the two provinces. In Espaillat, 54.7% of the population reside in rural setting, 
compared to 15.9% in SPM [27]. Economical activities developed in this setting also vary between these two provinces, 
in Espaillat, most agricultural units are focused on animal husbandry, whereas in SPM, they engage in a mix of animal 
husbandry and crop production [28].

Data acquisition and processing

Survey. A three-stage cross-sectional national serosurvey was conducted in the DR, between 30 June and 12 October 
2021. The survey sampling design has already been described previously [29]. In summary, a total of 10 communities 
were sampled from Espaillat Province and 13 from SPM. In both Espaillat and SPM, 60 households were selected from 
each community. All household members above 5 years of age were invited to participate. Participants included in the 
study were interviewed by a trained local fieldwork team. The questionnaire included individual and household-level 
questions. Venous blood was collected from all participants, and household Global Positioning System (GPS) coordinates 
were recorded.

Venous blood was processed as sera, and frozen at -80°C. Samples of participants from the two provinces were tested 
by MAT to detect anti-Leptospira antibodies. Serological analyses were performed at the Centers for Disease Control 
and Prevention’s Zoonoses and Select Agent Laboratory, Bacterial Special Pathogens Branch, Atlanta, USA. A panel of 
20 pathogenic serovars were selected for the MAT panel, and titres ≥1:100 were considered seropositive and indicative 
of prior infection. Serovars identified by MAT were used to determine the putative serogroups associated with infections, 
as previously described [30]. In summary, analyses were conducted on the serogroup level. If a sample reacted to multi-
ple serogroups, the serogroup with the highest titre was considered the main one. When the highest titre was observed 
across two or more serogroups the sample was recorded as ‘mixed’.

Spatial data. Environmental, sociodemographic and census data was obtained from publicly available sources. All 
spatial data considered for the analyses are described in Table 1. These data were extracted for the household location of 
each participant and incorporated into the survey data.

Statistical analyses

Global and local spatial cluster analysis. Spatial autocorrelation refers to the phenomenon where events located 
near each other tend to be more similar than those further apart [39]. Global cluster analysis is applied to determine if 
spatial autocorrelation is present in the data, in other words if the occurrence of events is clustered across space. Local 
cluster analysis is used to identify and locate the clusters of events [40]. In this study, both types of clustering analyses 
were performed separately for each province, for all serogroups combined as well as the main serogroups identified.

To assess global spatial clustering, we used semivariograms, which are graphical representations of how the  
semivariance (y-axis) changes based on distance between pairs of observations (x-axis) [41,42]. If events are spatially 
autocorrelated, as the distance increases, so does the semivariance. The semivariogram is characterized by three main 
parameters: the sill, the nugget and the range. The sill is the value where the semivariance levels off, indicating that 
beyond this point, the spatial relationship weakens. The nugget is the value where the curve meets the y-axis. It rep-
resents the measurement error or very short-range spatial variability. The range is the distance at which the semivariance 
reaches the sill. It shows the maximum distance over which autocorrelation exists. If the curve does not plateau, this 
suggests that there is no significant spatial autocorrelation (S1 Fig. To identify the proportion of variation due to the spatial 
structure, the difference between the sill and the nugget is divided by the sum of the sill and the nugget. A value below 
0.25 indicates a strong spatial autocorrelation.
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To assess local clustering of leptospirosis seropositivity at the individual level, we applied spatial scan statistics, which 
are designed to identify areas with an excess of events compared to the expected distribution of leptospirosis seroposi-
tivity assuming no clustering (null hypothesis). By calculating the likelihood of the observed number of events inside and 
outside a specific area, the spatial scan statistics assess the likelihood that the clustering occurred by chance. The area 

Table 1. Environmental and sociodemographic data considered for the characterisation of high-risk areas of leptospirosis seroprevalence in 
the Dominican Republic, Jun-Oct, 2021.

Data Description Reference

Rural-urban classification A map of the rural and urban barrio/paraje administrative boundaries was downloaded from the Domini-
can Republic National Statistics Office.

[31]

Distance to major roads A raster with the distance (in km) from the cell centre to the nearest major road was downloaded from the 
WorldPop website at a resolution of 3 arc-seconds.

[32]

Distance to the provincial 
capital city

The location of provincial capitals in the DR was extracted in a shapefile format from the Dominican 
Republic National Statistics Office. A raster layer of the Euclidean distance between each household 
location and the nearest provincial capital was generated in km.

[31,33]

Distance to education 
facilities

Geographic locations of education facilities, including a mix of public and private institutions (kindergar-
tens, schools, colleges and universities), were acquired from OpenStreetMap in a shapefile format. The 
Euclidean distance between each household and the nearest education facility was derived in km.

[33,34]

Walking travel time to health-
care facilities

Estimates of travel time (in minutes) from each household to the nearest geolocated hospital or clinic 
were downloaded from the Malaria Atlas Project website. For locations where there was no data, a 1km 
buffer around the household was created, and the mean value on valid data points was extracted and 
assigned to the household.

[35]

Motorized travel time to 
healthcare facilities

Estimates of travel time (in minutes) from each household to the nearest hospital or clinic by motorized 
transport were extracted in from the Malaria Atlas Project website. For locations where there was no data, 
a 1km buffer around the household was created, and the mean value on valid data points was extracted 
and assigned to the household.

[35]

Elevation Data were obtained at a resolution of 3 arc-second from the Shuttle Radar Topographic Mission (SRTM) 
dataset: SRTM 2000, Dominican Republic. For elevation the value of each grid cell represents its 
elevation above sea level in metres (m). For locations where there was no data, a 1km buffer around 
the household was created, and the mean value on valid data points was extracted and assigned to the 
household.

[36]

Precipitation Monthly gridded rainfall time series from 2017 to 2021 was downloaded from CHIIRPS: rainfall estimates 
from rain gauge and satellite observations. This data set combines a 0.05° resolution satellite imagery 
and in-situ station data to create the rainfall grid. Data is provided in mm per month. Data extracted was 
aggregated to create a monthly average, maximum and minimum for the 5-year and, and 5-year average, 
maximum and minimum.

[37]

Population density Estimates of population density for 2020 were downloaded from the WorldPop website. A raster was 
available for the DR at the resolution of 30 arc-seconds (approximately 1km at the equator), reported as 
the number of people per square kilometre (km2).

[32]

Gross domestic product 
(GDP)

A raster with the average gross domestic product (GDP) was downloaded at a resolution of ~1km grid, 
reported as value in USD. For locations where there was no data, a 1km buffer around the household 
was created, and the mean value on valid datapoints was extracted and assigned to the household.

[32]

Land use and land cover Data were derived at 10m resolution from the Sentinel-2 Global Land Use/Land Cover (LULC) Timeseries 
produced by Impact Observatory, Microsoft, and the Environmental Systems Research Institute (ESRI). 
The global LULC cover map with 11 LULC classes was used to generate six separate rasters for the 
LULC categories that cover the DR: crops, rangelands, bare ground, trees, flooded vegetation and built/
urban area. For each household, a 50m, 100m, 250m, 500m and 1km buffer was generated. The per-
centage of each LULC raster overlapping with the household buffer was extracted.

[38]

River density The total length (metres) of rivers was extracted from a vector layer of all main rivers in the DR overlap-
ping with the 50m, 100m, 250m, 500m and 1km household buffers.

[32]

Flooding-risk area A vector layer containing a national flooding-risk map, which delimitates areas considered to be at risk of 
flooding

a

Study procedures and reporting adhered to the STROBE criteria for observational studies.

https://doi.org/10.1371/journal.pntd.0013103.t001

https://doi.org/10.1371/journal.pntd.0013103.t001
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with maximum likelihood is defined as the most likely cluster. We analysed our data using the software package FleXScan 
[44], developed by Tango and Takahashi [43], which uses a flexible-shape spatial scan, allowing for the identification of 
irregularly shaped clusters. This is particularly useful when considering infection distribution that can follow a non-circular 
geographic feature (e.g., rivers, catchments, coastal areas) and the irregular boundaries of many geographical areas (i.e., 
municipalities, districts, provinces).

In this study, as the outcome being investigated (seropositive or seronegative) was binary, we assumed a Bernoulli dis-
tribution. The maximum spatial cluster size was set at 100 percent of total population, reflecting the maximum allowed by 
the software. Additional parameters in FleXScan were the likelihood ratio (LLR) with restrictions and an alpha set at 0.1. 
Statistically significant clusters were defined as a p-value ≤ 0.05. Less stringent p-values (≥0.05 and <0.1) were consid-
ered marginally statistically significant and used to identify areas with excess risk [44].

FleXScan identifies households inside and outside each cluster, and we used the household location to identify the 
communities associated with a cluster. We calculated the risk ratio (RR) using the households that were identified as 
belonging to a cluster and the communities associated with a cluster. For each province, the RR was calculated by 
comparing i) the proportion of participants who were seropositive from households within the cluster and the proportion 
of seropositive participants from households outside the cluster ii) the proportion of participants who were seropositive 
from communities associated with a cluster and the proportion of seropositive participants from communities outside the 
cluster. The p-value was determined using Fisher’s exact test.

Logistic regression analysis. We employed non-parametric bivariate regression models to compare selected 
characteristics of participants inside and outside the identified clusters, as the characteristics investigated were not 
normally distributed. In each model, the dependent variable (outcome) was the characteristic being investigated (i.e., 
distance to major roads, elevation, land use and land cover) and the independent variable (explanatory variable) was a 
binary variable classifying each participant into two groups: residing in household inside or outside the identified cluster. 
Regression standard errors were clustered at the household level to account for the fact that multiple participants could 
belong to the same household, potentially leading to correlated outcomes within households. Numerical continuous 
variables were assessed using linear models. Before conducting the regression models, continuous variables were 
standardized to have a mean value of zero and a standard deviation of one, preserving their original distribution. 
All categorical variables with multiple classes were transformed into binary variables and assessed through logistic 
regression (S1 Table).

A p-value ≤0.05 was considered significant. Results are shown as the distribution of each characteristic investigated 
between participants outside and inside the cluster and the p-value of the bivariate regression.

Software

We used Esri ArcGIS software v 10.8 (Esri ArcMap 10.8.0.12790. Redlands, CA, USA) [34] to process and extract spatial 
data, and to create maps showing the results. R version 4.4.0 (2024-04-24 ucrt) [45] was used for data processing and 
global cluster analysis. FleXScan v3.1.2 (FleXScan v3.1.2: Software for the Flexible Scan Statistic. National Institute of 
Public Health, Japan, 2013) was used for local cluster analysis. Stata18 software (StataCorp. 2023. Stata Statistical Soft-
ware: Release 18. College Station, TX: StataCorp LLC) [46] was used for the non-parametric regressions.

Results

Across the two provinces included in this analysis, there were 2091 participants enrolled in the survey. Thirteen records 
were excluded because there were incomplete data from the questionnaire, resulting in a final sample of 2,078 partic-
ipants (802 in Espaillat and 1,276 in SPM). A total of 237 seropositive participants were identified (seroprevalence of 
11.4%); 127 (15.8%) in Espaillat and 110 (8.6%) in SPM.
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In Espaillat, the four main serogroups were Icterohaemorragiae (58.5%), Australis (21.2%), Canicola (14.1%) and 
Djasiman (9.7%). In SPM, Icterohaemorrhagiae was the most prevalent serogroup (33.3%) followed by Australis (17.2%) 
and Pyrogenes, Djasiman and Canicola (all three with 11 cases, 10.0%). Across the two provinces, all but one Pyrogenes 
cases occurred in SPM (S2 Table).

Global clustering

In Espaillat and SPM, the semivariograms did not reach a plateau, suggesting a random distribution of seropositive cases 
of all serogroups combined as well as for the main serogroups individually. S2–S4 Figs present the empirical variograms 
for all leptospirosis serogroups combined and the main serogroups individually, in each province.

Local clustering

FleXScan identified one statistically significant cluster in Espaillat and one marginally statistically significant in SPM, for all 
serogroups combined (Figs 1 and 2). In Espaillat, the identified cluster was located in the southwest of the province and 
included eight households, with a maximum distance between households of 3.1km (p-value 0.044). (Fig 1). The house-
holds inside the cluster represent 1.5% of the households surveyed and were home to 7.1% of all seropositive participants 
in this province. For participants living in a household within the identified cluster, RR was 6.7 (95%CI 5.7-7.9) compared 
to participants living in a household outside the identified cluster. For participants living in a community where the cluster 
was identified, the RR was 1.6 (95% CI 1.1-3.2) compared to participants living in a non-cluster community. An additional 
11 secondary (non-significant) clusters were identified (S5 Fig).

In SPM, the identified cluster was located in the northeast of the province and included six households, with a maxi-
mum distance between households of 10.5km (p-value 0.08). (Fig 2) The households inside the cluster represent 0.8% of 
the households surveyed and were home to 6.4% of all cases in this province. For participants living in a household within 
the identified cluster, RR was 9.6 (95%CI 5.6-14.2) compared to participants living in households outside the identified 
cluster. For participants living in a community where the cluster was identified the RR was 2.0 (1.3-2.9) compared to 
participants living in a non-cluster community. Seven secondary (non-significant) clusters were identified (S6 Fig). Local 
cluster analysis for main serogroups in both provinces did not identify significant clusters.

Logistic regression

Results from the non-parametric regression identified that when compared to participants outside the cluster, participants 
inside the cluster in Espaillat were significantly older (OR 2.22; p-value 0.026), worked in outdoor work environments 
(OR 4.05, p-value 0.019), were more likely to live in households with no access to piped water (OR 4.72, p-value 0.041), 
at greater distance to water bodies (OR 1.44, p-value 0.023) and health facilities (OR 1.86, p-value<0.001 by motorized 
travel time and OR 1.36, p-value 0.001 by walking travel time), and surrounded by greater areas of range land (OR 1.8, 
p-value 0.007) (Table 2). Participants inside the cluster were also less likely to live in households at greater distance 
to major roads (OR 0.42, p-value<0.001), at higher altitudes (OR 0.58, p-value<0.001), located in areas of higher pop-
ulation density (OR 0.76, p-value<0.001) and higher gross domestic product (GDP) at the community level (OR 0.70, 
p-value<0.001), compared to participants outside the cluster.

Participants inside the cluster in SPM, compared with participants outside the cluster, were significantly more likely to 
be male (OR 3.89, p-value 0.030) and live in households at greater distance to health facilities (OR 4.41, p-value 0.044 
by motorized travel time and OR 4.67, p-value 0.021 by walking travel time) and educational facilities (OR 4.36, p-value 
0.017), located at higher altitudes (OR 1.15, p-value 0.036) and greater soil moisture (OR 1.97, p-value<0.001). Partici-
pants inside the cluster were also less likely to live in households located in areas of higher population density (OR 0.29, 
p-value<0.001), higher GDP at the community level (OR 0.42, p-value<0.001), and surrounded by a greater percentage of 
built-up areas (OR 0.32, p-value 0.019).
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Discussion

Our study identified two clusters of leptospirosis seroprevalence in each of the two provinces included in the analysis, with 
significant associations between cluster and sociodemographic and environmental characteristics. Across both provinces, 
participants living in households located farther from health facilities and in areas with lower population density and GDP 
were more likely to belong to the identified clusters. These shared characteristics highlight the role of poverty-associated 
factors in shaping the epidemiological profile of leptospirosis transmission. However, specific risk factors varied between 
provinces, reflecting the specific sociodemographic, economic, and ecological contexts. By examining these provincial 
differences, this study underscores the complexity of leptospirosis transmission dynamics and emphasizes the need for 
tailored public health interventions to address local drivers of disease.

Characteristics associated with participants living inside the clusters identified by FleXScan can be divided into two 
groups: common to both provinces and specific to each province. In both provinces, participants living in households 
located at greater distances from education and health facilities were more likely to be inside the clusters, and participants 
living in households located in areas of higher population density and higher GDP were less likely to be inside the clus-
ters. These associations suggest that the households inside the identified clusters presented characteristics frequently 
associated with impoverished communities. The association between leptospirosis and poverty have been extensively 
studied [2,47–50]. Populations living in resource-poor communities are more prone to overcrowded housing conditions, 
and have inadequate access to safe water, sanitation, waste management and other infrastructure [7]. These conditions 
can facilitate the transmission of the Leptospira bacteria and offer limited or non-existent barriers to prevent human expo-
sure to contaminated environments [1,7].

In this study, specific risk factors associated with clusters in each province reflected local differences and the complex-
ity of the transmission cycle. Specific characteristics of the population living inside the Espaillat cluster, such as outdoor 

Fig 1. Location of clusters identified by flexible spatial scan in Espaillat, Dominican Republic, Jun-Oct 2021. A) Household’s link based on 
nearest neighbour determined from the Thiessen Polygon, households identified as a hotspot and their connection are highlighted in red. B) Sampled 
communities in Espaillat with the cluster communities highlighted in red. Base layer from: https://data.humdata.org/dataset/cod-ab-dom.

https://doi.org/10.1371/journal.pntd.0013103.g001

https://data.humdata.org/dataset/cod-ab-dom
https://doi.org/10.1371/journal.pntd.0013103.g001
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work environment, households with limited access to piped water and located at a greater distance to major roads might 
reinforce the characterisation of impoverished communities [7], but can also suggest a rural setting. Similarly, the asso-
ciation of clusters with a higher percentage of range land surrounding the households indicates a rural setting, implying 
the presence of livestock as an important reservoirs [5]. In this province, those findings can also mirror a higher percent-
age of population residing in rural setting [27,51,52]. Although the specific factors associated with the SPM cluster pro-
vide fewer factors to characterise the high-risk area, lower percentage of built-up areas surrounding the households and 
greater distance to the province capital were observed. In SPM, as the population residing in rural settings represents a 
lower percentage of the total population [27,51,52] and other economic activities have greater importance, these findings 
might suggest that subsistence farmers, further away from larger cities are more vulnerable to leptospirosis transmission. 
Finally, clusters in each province presented opposite directions of association with elevation. While Espaillat is located 
inland, SPM is a coastal province. The SPM cluster is located in the northeast of the province, with greater distance to the 
coast compared to the other communities included in the study, which may impact the higher median elevation of the clus-
ter. Additionally, the difference in the median elevation between households inside and outside the cluster in Espaillat is 
small, with a non-negligible overlap of variation range between them. In the two provinces included in this study, although 
the association was significant, it was not linear and should be interpreted based on the geographical context of each 
province.

This study has several limitations. The relationship between serogroups and reservoir mammals can be highly 
specific, and in turn, routes of human exposure are related to exposure to the reservoir mammals. Thus, charac-
teristics of clusters of high leptospirosis seroprevalence are likely to vary based on the predominant serogroup. 
In our analysis, the small sample size limited local cluster analysis based on the serogroup predominant in each 
province, which could have provided more comprehensive insights into specific risk factors and drivers of transmis-
sion. The main serogroups identified in Espaillat (results shown in the S2 Table), Australis, associated with wild and 
domestic animals, rats and mice, and Icterohaemorrhagie, mainly associated with rodents [3,53]. In this province, 
clusters were not associated with self-reported rat exposure, yet several characteristics associated with clusters 

Fig 2. Location of clusters identified by flexible spatial scan in San Pedro de Macoris, Dominican Republic, Jun-Oct 2021. A) Household’s link 
based on nearest neighbour determined from the Thiessen Polygon, households identified as a hotspot and their connection are highlighted in red. B) 
Sampled communities in Espaillat with the cluster communities highlighted in red. Base layer from: https://data.humdata.org/dataset/cod-ab-dom.

https://doi.org/10.1371/journal.pntd.0013103.g002

https://data.humdata.org/dataset/cod-ab-dom
https://doi.org/10.1371/journal.pntd.0013103.g002
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were indicative of remote impoverished, agricultural communities, which could be associated with the presence 
of reservoirs of Australis and Icterohaemorrhagie. In SPM, the main serovar identified was Australis, followed by 
Canicola, Djasiman, Icterohaemorrhagie and Pyrogenes equally distributed, which suggests a broader range of 
reservoirs driving transmission in the province. Our data were obtained from a cross-sectional survey, although this 
study design has the advantage of providing a more extensive population-level seroprevalence characterisation, 
it was limited to one point in time. Water-borne diseases such as leptospirosis are strongly affected by climatic 
conditions, and transmission might vary according to seasonal variations in rainfall and temperature [1,9]. However, 
our study did not identify association between clusters and precipitation. The survey design may have impacted the 
semivariogram results. The sampling design aimed for a national representative and widespread spatial distribution 
of sampled communities as described previously [29]. However, by sampling few communities in each province, 

Table 2. Odds ratio of each variable associated with household from a hotspot for all serogroups combined by province, Dominican Republic, 
Jun-Oct, 2021.

Espaillat SPM

Outside 
hotspot
N = 793

Inside hotspot
N = 9

OR p-value Outside 
hotspot
N = 1,267

Inside hotspot
N = 9

OR p-value

Age (years)1 44 (28, 61) 70 (59, 71) 2.22 0.026 34 (21, 52) 43 (25, 48) 1.40 0.548

Males2 292 (37) 5 (56) 2.14 0.201 430 (34) 6 (67) 3.89 0.030

Outdoor work environment2,3 187 (24) 5 (56) 4.05 0.019 186 (15) 3 (33) 2.91 0.155

Primary education or less2 266 (33) 6 (67) 3.96 0.067 380 (30) 6 (67) 4.66 0.104

Flooding risk area2 326 (41) 2 (22) 0.41 0.209 262 (21) 0 (0) NA NA

Freshwater exposure 2 9 (1.1) 0 (0) NA NA 200 (16) 3 (33) 2.67 0.252

Rats exposure2 4 (0.5) 0 (0) NA NA 321 (25) 6 (67) 5.89 0.061

Rural setting2 463 (58) 4 (44) 0.57 0.445 428 (34) 9 (100) NA NA

Lack of access to pipped water2 76 (10) 3 (33) 4.72 0.041 310 (24) 0 (0) NA NA

Population density (p/km2) 4 1,536 (1,822) 805 (362) 0.76 <0.001 3,623 (2,806) 298 (200) 0.29 <0.001

Distance to major roads (km) 1 2.95 (1.88, 5.60) 2.20 (0.19, 2.26) 0.42 <0.001 2.58 (1.15, 5.60) 6.29 (0.84, 6.30) 1.75 0.381

Distance to waterways (km) 1 0.37 (0.17, 0.91) 0.99 (0.62, 1.02) 1.44 0.023 0.38 (0.09, 0.82) 0.46 (0.38, 0.88) 1.06 0.748

Motorized time travel (min) 1 2.8 (1.4, 4.7) 5.4 (5.4, 7.5) 1.86 <0.001 3.4 (1.6, 7.2) 7.2 (7.2, 18.8) 4.41 0.044

Walking time travel (min) 1 26 (11, 48) 42 (42, 68) 1.36 0.001 47 (21, 98) 98 (98, 232) 4.67 0.021

Dist. to province capital (km) 1 0.05 (0.04, 0.08) 0.05 (0.05, 0.07) 1.19 0.055 0.04 (0.02, 0.09) 0.09 (0.09, 0.19) 4.19 0.008

Dist. to education facility (km)1 0.01 (0.00, 0.02) 0.01 (0.00, 0.01) 0.87 0.001 0.02 (0.01, 0.06) 0.10 (0.07, 0.16) 4.36 0.017

GDP (1M USD per capita) 1 4.6 (0.8, 7.4) 3.1 (0.8, 3.9) 0.70 <0.001 6 (2, 14) 0 (0, 4) 0.42 <0.001

Elevation (m) 1 206 (169, 269) 191 (159, 219) 0.58 <0.001 21 (8, 26) 57 (20, 57) 1.15 0.036

Precipitation (mm) 1 87.0 (85.5, 88.7) 88.5 (85.7, 88.7) 1.17 0.139 81.2 (78.5, 81.2) 80.4 (80.4, 90.3) 1.49 0.427

Soil moisture (m3.m-3) 0.27 (0.28, 0.28) 0.28 (0.28, 0.28) 1.03 0.159 0.23 (0.23, 0.23) 0.25 (0.25, 0.26) 1.97 <0.001

Bare ground area (%)1,5 0 (0, 0) 0 (0, 0) NA NA 0 (0, 0) 0 (0, 0) NA NA

Built-up area (%)1,5 61 (39, 94) 73 (29, 81) 0.77 0.542 88 (59, 100) 55 (3, 65) 0.32 0.019

Cropland (%)1,5 4 (0, 41) 2 (2, 58) 1.41 0.383 0 (0, 9) 18 (2, 26) 1.27 0.284

Range land (%)1,5 0.0 (0.0, 0.9) 6.2 (3.7, 8.7) 1.80 0.007 0.0 (0.0, 5.0) 17 (11, 17) 15.03 0.081

NDVI4 0.77 (0.05) 0.76 (0.00) 0.61 0.002 0.80 (0.04) 0.81 (0.03) 1.15 0.062
1Median (IQR);
2n (%).
3Outdoor work environment included active workers with exclusively outdoor work environment and mixed indoor and outdoor work environment.
4Mean (SD);
5Calculated on a 250m buffer around each household. NA: results not available due to sample size.

https://doi.org/10.1371/journal.pntd.0013103.t002

https://doi.org/10.1371/journal.pntd.0013103.t002
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few households in each community, and including all members of each household sampled, the spatial distribution 
of the final sample was, to some extent, clustered. To identify positive spatial autocorrelation, the seroprevalence 
clustering needed to overcome the clustered spatial distribution of our sample, which might have been limited due 
the reduced sample size in each province. A clustered spatial pattern of leptospirosis cases has been reported on 
several occasions, by both global and local clustering methods [17–21,54].

This study focused on leptospirosis seroprevalence in Espaillat and SPM, yet the concepts and methods could be 
applied to other locations in the country and the other regions, as well as to other infectious diseases strongly driven by 
environmental and sociodemographic factors in these provinces. Our results reinforce the findings of previous studies 
that identified clustered spatial pattern of leptospirosis and provide empirical evidence that drivers of transmission can be 
highly specific to the context of each province. In both provinces, the identified clusters of leptospirosis seroprevalence 
were associated with characteristics which suggests higher transmission in impoverished communities and most likely in 
rural settings. However, the translation of this insight into modifiable factors varied between provinces. Aiming to achieve 
cost-effective prevention and control measures will require public health and environmental interventions specific to each 
context. Further studies exploring risk factors and drivers associated with predominant serogroups could help enhance 
future targeted interventions.

Supporting information

S1 Text.  Supporting information on study design and participant selection. 
(DOCX)

S1 Table.  Adjustments conducted to transform multiple class categorical variables into binary variables. 
(XLSX)

S2 Table.  Proportion of positive Leptospira microscopic agglutination tests by main primary reacting serogroup 
in Espaillat and San Pedro de Macoris Provinces, Dominican Republic, Jun-Oct 2021. 
(XLSX)

S1 Fig.  Parameters of the semivariogram. Data from a lymphatic filariasis serosurvey previously published by Lau et 
al, 2014 [55], was used to illustrate the semivariogram parameters.
(TIF)

S2 Fig.  Semivariogram of the participants seropositive for all leptospirosis serogroup combined by province, 
Dominican Republic, Jun-Oct 2021. A. Espaillat, B. San Pedro de Macoris.
(TIF)

S3 Fig.  Semivariogram of the leptospirosis seropositive participants in Espaillat, by main serogroup, Dominican 
Republic, Jun-Oct 2021. Serogroups A. Icterohaemorrhagiae B. Djasiman C. Canicola D. and Australis.
(TIF)

S4 Fig.  Semivariogram of the leptospirosis seropositive participants in San Pedro de Macoris, by main sero-
group, Dominican Republic, Jun-Oct 2021. Serogroups A. Icterohaemorrhagiae B. Djasiman C. Canicola D. and 
Australis.
(TIF)

S5 Fig.  Location of clusters (primary in red and secondary in orange) identified by flexible spatial scan (FleXS-
can) in Espaillat, Dominican Republic, Jun-Oct 2021. Base layer from: https://data.humdata.org/dataset/cod-ab-dom.
(TIF)

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013103.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013103.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013103.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013103.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013103.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013103.s006
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013103.s007
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0013103.s008
https://data.humdata.org/dataset/cod-ab-dom


PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0013103 June 11, 2025 12 / 14

S6 Fig.  Location of clusters (primary in red and secondary in orange) identified by flexible spatial scan (FleXS-
can) in San Pedro de Macoris, Dominican Republic, Jun-Oct 2021. Base layer from: https://data.humdata.org/dataset/
cod-ab-dom.
(TIF)
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