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Abstract 

Background The presence of a community effect in cluster randomized trials of malaria vector control interven-
tions has led to the implementation of “buffer zones” around clusters to limit the potential for contamination 
between interventions. No consensus has been reached on how large these buffers need to be to encapsulate 
the effect.

Methods Nested within a phase-III cluster randomized malaria vector control trial in Northwest Tanzania, this study 
aims to determine the presence and spatial range of community effects from long-lasting insecticidal net (LLIN) 
and indoor residual spraying (IRS) interventions on household-level malaria infection in trial clusters four months post-
intervention. Effective spatial range estimates of intervention community effects were compared to the 300m buffer 
distance implemented to limit intervention spillover between clusters in the trial. Geographically-weighted adjusted 
odds of malaria infection in children aged 0.5–14 years were determined four months post community-level inter-
vention with a randomized allocation comprising one of two LLIN products  (OlysetTM LN: 1000mg/m2 permethrin 
or  OlysetTM Plus LN: 400 + permethrin 800mg/m2) with either IRS  (Actellic®300CS: 1000mg/m2 micro-encapsulated 
pirimiphos-methyl) or no IRS. Robust semivariances were calculated for each of 48 intervention clusters and fit to sem-
ivariogram models by Weighted Least Squares.

Results 6440 children from 2785 households were included in the geographically-weighted logistic regression. 
Prevalence of Plasmodium falciparum infection was 45.9% in the study population. Twenty (20) clusters had significant 
residual effect ranges, 13 of which were fit to Sine Hole Effect models, indicating periodicity in the study area. Effec-
tive range estimates for the study area had a median value of 1210 m (IQR: 958–1691). Clusters with IRS had a higher 
median range value: 1535 m (IQR: 976–3398) than those without IRS: 1168m (IQR: 829–1504).

Conclusions Significant semivariogram model range estimates extended beyond the trial buffer sizes by a median 
average of 868 m in LLIN intervention clusters and 1235 m for IRS clusters. This presents a contamination, or spillover, 
potential for all trialed intervention types that may reduce the statistical power to detect difference between trial 
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Background
Cluster randomized controlled trials (cRCTs) are fre-
quently used to evaluate the effectiveness of long-lasting 
insecticidal net (LLIN) and indoor residual spraying (IRS) 
interventions on clinical and entomological outcomes in 
different malaria transmission settings. In these trials, 
groups of households, rather than individuals, are ran-
domly allocated to intervention groups [1]. This design 
is preferred because these interventions provide commu-
nity protection through the mass killing of mosquitoes 
that come into contact with the insecticide [2]. Modelling 
cluster-level effects allows for the evaluation of this com-
munity protection. Further, cluster randomization allows 
for easier distribution of the trial interventions and cre-
ates a better simulation of a real-world rollout of a large-
scale malaria intervention.

This localized reduction in malaria vector populations 
and malaria transmission, induced by the clustering of 
interventions, has been thoroughly confirmed in multiple 
settings [3–7], and extends the benefits of high commu-
nity-level intervention coverage to protect individuals in 
the community who do not themselves use LLINs or IRS 
[8]. Spatially, because host-seeking malaria vectors may 
fly considerable distances [9–11], localized reductions in 
vector populations may extend the intervention effects 
outside of the community boundaries, resulting in par-
tial reduction of malaria transmission in neighbouring 
communities or households [12]. This community effect 
comes with a drawback when evaluating interventions 
in a cRCT trial, as the spillover effect between interven-
tion groups, or between intervention and control groups, 
could cause between-group differences in intervention 
effects to trend towards the null hypothesis [12].

In malaria vector control trials where intervention 
clusters are in relatively close proximity, the World 
Health Organization (WHO) recommends the use of 
a buffer zone or “fried egg” approach for cRCT design 
where samples needed for measuring effect size are only 
drawn from the centre of cluster where the spillover 
effect is small or absent [13]. Specific recommendations 
on the size and composition of these buffer zones have 
not yet been included in any guidance provided. This has 
led to studies instituting buffers ranging anywhere from 
300 [12] to 1500 m [14]. Establishing a consistent meas-
ure of the effect distance in malaria vector-control cRCTs 
is necessary to determine how large these buffer zones 
should be in future trials.

To obtain a measure of the spatial range of intervention 
effects in malaria vector control trials, a case study was 
conducted using data from a cRCT in Muleba, Tanzania, 
evaluating LLINs alone or in combination with IRS. Sem-
ivariogram models were fitted for each trial intervention 
cluster using the residual odds of malaria infection from 
a geographically-weighted logistic regression model. This 
approach, while controlling for likely confounders, seeks 
to capture the intervention effects in the residual odds 
of malaria and describe the distances within which sig-
nificant intervention effects can be detected. By doing 
so, this study aims to establish an effective range where 
the effect ceases and provide evidence for the design of 
future trial buffer areas.

Methods
Data source
Data for this study was collected during a cross-sectional 
survey four months post-intervention in 2015 as part 
of a cluster-randomized trial in Muleba, Tanzania. This 
trial was led by the Pan-African Malaria Vector Research 
Consortium (PAMVERC), a collaboration between the 
London School of Hygiene & Tropical Medicine (UK), 
Kilimanjaro Christian Medical University College (Tan-
zania) and the National Institute for Medical Research 
(Tanzania) [15]. The four-armed intervention study 
investigated the efficacy of a conventional  OlysetTM LN, 
an  OlysetTM Plus LN, and each of those nets deployed 
with IRS. The conventional  OlysetTM LN contains a sin-
gle pyrethroid (1000 mg/m2 permethrin) [16], while the 
 OlysetTM Plus LN includes permethrin plus piperonyl 
butoxide (PBO), a synergist which slows the oxidative 
metabolic process in mosquitoes by inhibiting enzymes 
that would otherwise break down the permethrin (400 + 
permethrin 800 mg/m2) [17]. The IRS formulation used 
was  Actellic®300CS (1000 mg/m2 micro-encapsulated 
pirimiphos-methyl), an organophosphate insecticide 
[18]. Complete trial methods and results are discussed 
elsewhere [15].

Data were collected from a random sample of house-
holds in each cluster using interviewer-guided question-
naires on household demographic and socioeconomic 
status indicators. Up to three children per household 
were randomly selected for a follow-up clinical and 
parasitological component which included collec-
tion of standard clinical characteristics and testing for 

arms. Future studies should consider the ranges of intervention effects and contamination potential between trial 
arms when designing buffer areas.
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plasmodial infection using malaria rapid diagnostic tests 
(RDT)  (CareStartTM HRP2/pLDH combo, DiaSys, UK) 
[19].

Study area
The study covered an area of 1433  km2 between 657023 
and 686018 m east of meridian 25 and 187255 to 236686 
m south of the equator and included 29311 censused 
households in the Muleba district of the Kagera region of 
Tanzania (Fig.  1). Elevation of study households ranged 
from 1075 to 1654 m above sea level. A series of hills 
bisects the study region with low-lying households occu-
pying the western areas and along the shore of Lake Vic-
toria in the southeast [20].

Malaria transmission in Muleba is unstable and sea-
sonally variant, with peaks in transmission following 
heavy seasonal rains that occur from March-May and 
October-December [21, 22]. A September 2014 pre-
intervention survey of children 0.5–14 years of age found 

a Plasmodium spp. infection prevalence of 64.8% (95% 
CI 61.8–67.8) in the study area [23]. In the same survey, 
Plasmodium spp. infection was also found to be inde-
pendently associated with elevation, with higher odds of 
infection in low-lying areas [23].

Anopheles gambiae sensu stricto (s.s.) is the dominant 
malaria vector in the study area, comprising an estimated 
89.2% of Anophelines collected pre-intervention [23]. 
Anopheles gambiae sensu lato (s.l.) have shown substan-
tial pyrethroid resistance in the study area [24].

Although the 2012 Tanzania census in Muleba found 
that 22.2% of those 15 years of age or older had never 
attended school, Muleba had a relatively high literacy rate 
(62.5%; Kiswahili) for the region [25], and a 2010 study 
showed a high level of community knowledge on malaria 
transmission, symptoms, and treatment [22]. Farming is 
the main source of income in Muleba (75.6%) with fish-
ing a distant second (5.2%) [25]. Household construction 
materials are mixed, with iron (75.1%) or grass (20.9%) 

Fig. 1 Study area. Cluster numbers and allocations are shown for the 48 trial clusters with shaded portions representing buffer areas. Household 
distribution is presented for the four months cross-sectional dataset. Elevation data used in this map was retrieved from ALOS 3D World 30m DSM 
[20]
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roofing, earth (78.7%) or cement (20.0%) flooring, and 
poles and mud (55.8%), baked (27.1%) or sundried (9.1%) 
brick walls being the most common [25].

All data collected in this trial was geocoded in World 
Geodetic System 1984 (WGS_1984) to allow for geospa-
tial analyses. Initial mapping survey coordinates for each 
household were imported to ESRI ArcGIS 10.4 [26] and 
projected into Africa Equidistant Conic projected coor-
dinate system, preserving distances between points as 
accurately as possible for spatial analyses.

Study population
The first post-intervention household survey was con-
ducted July 2015 (4 months post intervention) during 
which 3316 households were randomly selected across 
core and buffer areas of all clusters. Data records for 3282 
households were successfully matched to the initial map-
ping survey, permitting geocoding of the data. A total 
of 7009 children aged 0.5–14 years completed a follow-
ing clinical visit, of which 6625 could be linked to post-
intervention household survey data for geocoding. One 
hundred and eighty-five (185) children were missing data 
on response or explanatory variables used in the princi-
pal component or logistic regression analyses, with 10 
of those missing data on their RDT status. The final ana-
lysed dataset comprised 6440 children from 2785 house-
holds across 48 intervention clusters.

Statistical analyses
The residuals from statistical models are a reflection 
of unmeasured covariates not taken into account by 
the model. These residuals may have a spatial pattern if 
observations that are closer together are correlated (more 
similar) than those that are further apart (spatial auto-
correlation). Semivariance models use the model residu-
als to estimate the range (distance) over which data are 
correlated in space and can be used to control for spa-
tially correlated confounders in the analysis [27]. In order 
to achieve this, this study used a two-stage approach to 
estimate the range effects of interventions. First, mul-
tivariable geographically-weighted logistic regression 
(GWLR) models predicting odds of malaria infection (P. 
falciparum or other Plasmodium spp. parasites) were 
constructed, controlling for factors commonly associ-
ated with malaria infection: child age and sex, house-
hold elevation, eaves construction, roofing material, and 
wealth quintile, as well as head of household level of edu-
cation. These models were constructed without the study 
arm intervention and without cluster effects with an aim 
to capture the spatial effects of the interventions in the 
model residual values, while controlling for other spa-
tially-trending factors. Second, using ordinary residuals 
derived from the GWLR models, the robust semivariance 

of all possible household pairs were modelled, grouped 
by distance ranges between them, to construct semivari-
ogram models of the residual values.

Study population characteristics
Descriptive statistics were developed for variables of 
interest in the post-intervention clinical cross-sectional 
sample of children. Age, sex, household elevation, pres-
ence of open eaves, household roofing material, head 
of household schooling, and wealth quintile were all 
expected to be likely predictors of malaria infection in 
children due to a review of the extant literature, and find-
ings from a previous analysis of the baseline data from 
the same trial [23]. All selected variables were checked 
for spatial autocorrelation through the calculation of a 
Moran’s I statistic in SAS 9.4.

Geographically‑weighted regression analysis
The software GWR4 [28] was used to construct mul-
tivariable geographically-weighted logistic regression 
(GWLR) models predicting odds of malaria infection for 
each sampled child. GWLR is a spatial regression tech-
nique that allows the coefficients of independent vari-
ables (covariates) to vary across geographic space. The 
GWLR process constructs separate logistic regression 
models for each sampled child, weighting the value of 
each other child in the study area as a function of dis-
tance for that model [29]. This creates varied parameter 
estimates for model covariates and, importantly for these 
analyses, variation in the residual values for each data 
point. Ideal spatial weights for the GWLR models were 
determined by golden section search with an adaptive bi-
square bandwidth function [30]. In GWLR, odds ratios 
represent the local change in the odds of the outcome 
occurring for a unit change in the predictor variable, 
varying across space, unlike a standard logistic regression 
which provides a global odds ratio.

Ordinary residual values were extracted from the 
results of the GWLR for each datapoint and the dataset 
was subdivided into clusters, as assigned for interven-
tion allocation. This division of the dataset into clus-
ters has twofold benefits: 1) it allows for the creation of 
quasi-stationarity in the cluster area as a sub-division of 
the greater study [31], and 2) for the assessment of clus-
ter means individually—minimizing any spatial effect 
that could occur between clusters, irrespective of cluster 
intervention.

Lag distances were calculated for each cluster to ensure 
a minimum of 50 data pairs per lag distance [32], and 
pairs whose paired distance exceeded one half the total 
bounded data distance in each cluster were excluded 
from this analysis [31]. A Moran’s I statistic was calcu-
lated in SAS 9.4 to assess the spatial autocorrelation for 



Page 5 of 14Thickstun et al. Malaria Journal          (2025) 24:184  

the residual odds of malaria for each cluster dataset and 
the robust semivariance was calculated in SAS 9.4. A 
one-way analysis of variance (ANOVA) was conducted 
in SAS 9.4 to establish if there were any significant dif-
ferences in the analysis characteristics for each allocation 
group.

Semivariance analysis
Geographic analyses tend to find that proximal sam-
ples are more similar than distant ones [33]. Because of 
this, the spatial distance between sampling locations can 
be assumed to have some relationship with the correla-
tion of samples collected at those locations. A semivari-
ogram is a model of this spatial relationship in which a 
derived second-order moment (or semivariance), is plot-
ted against the distance separating those points [34]. If a 
spatial relationship is able to be defined for a variable of 
interest, a semivariogram model can be fitted to the data, 
starting near the origin and extending upwards as some 
non-negative definite function of distance. This study 
uses robust estimation of semivariance to limit the influ-
ence of outlying values [35].

Robust semivariance estimates were fit to Exponential, 
Gaussian, Spherical, and Sine Hole Effect model forms by 
weighted-least squares in SAS 9.4 [36]. These semivario-
gram models are each characterized by three parameters 
which compose their basic structure (Fig. 2): the nugget, 
which represents any variability in samples taken from 
samples in immediate proximity to each other; the scale, 
which defines the difference in variability between sam-
ples taken proximally and a global average variability in 
the sample (the combination of nugget and scale param-
eters define this global variability, generally called the 
sill); and the range, which is the distance between sample 
points at which variability reaches the global average [34]. 
The range parameters for the Exponential and Gaussian 
models must be interpreted somewhat differently, as they 
are modelled asymptotically—that is to say, these model 
forms will never reach the sill, which is instead defined 
as a limit to their structure. For these models, a separate 
“effective range” parameter is computed; defined as the 
point at which the model reaches 90% of the sill value 
[37].

In cases where all four model structures were deemed 
to be a questionable fit, a Power model was consid-
ered. The Power model is characterized by a continuous 
upward construction, with no sill or range parameters, 
and is largely indicative of nonstationarity in the model 
data [38]. Clusters with no significant spatial range esti-
mate, for which a Power model is not the appropriate 
fit, are considered to have “pure nugget” effects [32]. 
These clusters show no definable spatial trend and may 

suggest a lack of community protection from the trial 
intervention.

Significant range parameter estimates from the best 
fitting model were used to calculate effective range 
estimates for each cluster, according to the parameter 
estimate of the corresponding model. These resulting 
effective ranges were grouped by intervention allocation 
and compared to the 300 m spillover buffer used in the 
main trial design.

Results
Characteristics of study population
A total of 2953 children tested positive for malaria par-
asites (P. falciparum or other) for an overall prevalence 
of 45.9% (N = 6440) (Table  1). Sample children had a 
median age of 6 years (IQR 4–10) and were evenly split 
by sex (51.1% Female). All variables of interest had a sig-
nificant spatial trend in the study population (Moran’s I p 
< 0.05) (Suppl 1).

Geographically‑weighted logistic regression
All covariates of interest were used to compute a GWLR 
models; odds ratios are computed as minimum, median, 
maximum and intra-quartile range (IQR). Variations 
in the odds ratios in the GWLR model indicate spatial 
variation in the effect of each covariate. A golden section 
search identified 439 nearest-neighbours as the optimal 
sample bandwidth. Local adjusted odds ratio estimates 
for each variable can be seen in Table 2 with eave type, 
household roofing material, and head of household 
schooling showing the greatest spatial variability in 
covariate effects.

Semivariance analysis
Fitted semivariogram models for twenty (20) clusters 
had significant estimates for the residual odds of malaria 
effect range indicating a defined spatial trend (Fig. 3).

The remaining clusters did not have significant range 
estimates: two (2) clusters had fitted models with non-
significant range estimates, twenty-two (22) fitted models 
had “pure nugget” effects—suggesting no spatial trend, 
and four were fit with Power models and thus had a 
spatial trend that exceeded one half the maximum data 
range for estimation of the variogram. Of the clusters 
that were fit with significant range estimates, 5 were from 
Pyrethroid-only LLIN clusters, 5 from Py-PBO LLIN 
clusters, 5 from Py-PBO LLIN + IRS clusters, and 5 from 
Pyrethroid-only LLIN + IRS clusters (Table 3).

Effective range estimates from all clusters had a 
median value of 1210 m (IQR: 958–1691). Clusters 
without IRS had a median value of 1168 m (IQR: 829–
1504), and clusters with IRS 1535 m (IQR: 976–3398). 
Clusters with Py-PBO LLIN and Py-PBO LLIN + IRS 
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Fig. 2 Semivariogram model forms. The Spherical, Exponential, Sine Hole Effect, and Gaussian models depicted have a Nugget of 0.2, a Scale of 0.8 
(for a combined Sill of 1), and an Effective Range of 4. Note that the Range parameter estimates for the Exponential and Gaussian model forms 
appear shorter, due to their asymptotic construction
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had higher median effective range estimates than Pyre-
throid-only LLIN clusters at 1190 m (IQR: 829–1538) 
versus 1146 m (IQR: 1041–1504) for non-IRS and 1717 
m (IQR:940–2815) versus 1353 m (IQR: 1176–3398) 
for IRS clusters (Table 4).

Most clusters with significant range estimates were 
fit with Sine Hole Effect models (Table  5). While this 
may be due to the irregular sampling pattern of house-
holds in the study area [39], it could also indicate 
underlying anisotropic trends producing periodicity in 
the contamination effect [40]. Spatial variation should 
be mostly controlled for in the GWLR analysis, how-
ever this is not a perfect solution and some spatial 
clustering of the residual odds of malaria persists in 
the final dataset (Suppl 2).

Discussion
This study examined the distance of potential spillover 
effects, or contamination, between intervention clus-
ters in a four-armed 48-cluster randomized controlled 
trial of malaria vector control interventions by com-
paring the range of semivariance models across inter-
vention groups. Results showed that nearly half of the 
clusters (42%) in the study area exhibited a clear spatial 
trend in the residual geographically-weighted odds of 
malaria infection. These results are in agreement with 
previous studies demonstrating a community effect in 
malaria vector control trials [7, 8, 12, 41, 42], while also 
supporting the idea that these community effects may 
be sensitive to a number of contextual factors [43–45].

Table 1 Characteristics of the study population across intervention arms, four months post-intervention/N = 6440 children, 2785 
households

Data are n/N (%), unless otherwise noted

LLIN = Long-lasting insecticidal net. Py-PBO = Pyrethroid + Piperonyl butoxide. IRS = Indoor residual spraying. RDT = Malaria Rapid Diagnostic Test. IQR = Inter-
quartile range

Individual characteristics Pyrethroid LLIN Py‑PBO LLIN Pyrethroid LLIN + IRS Py‑PBO LLIN + IRS

Malaria infection prevalence, positive RDT 893/1656 (54%) 665/1605 (41%) 745/1582 (47%) 650/1597 (41%)

Plasmodium falciparum 435/893 (49%) 334/665 (50%) 321/745 (43%) 309/650 (48%)

P. falciparum or mixed Plasmodium spp. 458/893 (51%) 331/665 (50%) 424/745 (57%) 341/650 (52%)

Median age, years (IQR; N) 7 (4–10; 723) 7 (4–10; 699) 6 (3–10; 670) 6 (4–10; 693)

Female 848/1656 (51%) 803/1605 (50%) 787/1582 (50%) 850/1597 (53%)

Household characteristics

Median elevation, meters above sea level (IQR; N) 1334 (1287–1367; 723) 1290 (1234–1376; 670) 1274 (1243–1348; 699) 1339 (1228–1400; 693)

Households with open eaves 462/723 (64%) 463/670 (69%) 443/699 (63%) 426/693 (61%)

Households with grass/leaves & partial metal roofing 125/723 (17%) 156/670 (23%) 126/699 (18%) 134/693 (19%)

Households where the head of household 
has no formal education

168/723 (23%) 218/670 (33%) 231/699 (33%) 187/693 (27%)

Households in the lowest wealth quintile 123/723 (17%) 142/670 (21%) 121/699 (17%) 158/693 (23%)

Households in buffer areas 328/723 (45%) 312/670 (47%) 281/699 (40%) 303/693 (44%)

Table 2 Geographically-weighted logistic regression model predicting malaria infection (any Plasmodium spp.) in the study 
population, controlling for common confounders/Global N = 6440 children [Local n = 439 children]

All data is presented as exponentiated odds, or Odds Ratios representing a single step increase for each covariate

Q = Quartile. IQR = Inter-quartile range

Adjusted odds ratios

Variable Min Q1 Median Q3 Max IQR

Age (vs one year younger) 0.96 1.09 1.13 1.18 1.33 0.37

Sex (male vs female) 0.32 0.69 0.87 1.12 1.63 1.32

Elevation (vs 100 m lower) 0.08 0.31 0.50 0.68 2.29 2.21

Household has Open Eaves (open vs closed) 0.50 1.10 1.45 1.87 3.73 3.23

Roofing Material (natural vs metal) 0.24 0.67 0.93 1.29 3.67 3.43

Head of Household Schooling (vs one category lower) 0.28 0.61 0.83 1.10 4.83 4.55

Wealth Quintile (vs one category poorer) 0.64 0.82 0.88 0.95 1.20 0.56
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Fig. 3 Fitted semivariogram models with significant range parameters. Solid lines demonstrate the WLS-fitted semivariogram models of robust 
semivariance estimates for distance-lagged residual malaria infection (points). Shaded areas show the 95% confidence interval of either range 
estimates (dashed lines) or effective range estimates (dot-dash lines) as appropriate to the fitted model. n = 20 clusters
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Table 3 Fitted robust variogram model parameter estimates of residual odds of malaria infection any (Plasmodium spp.) by 
intervention allocation and cluster/N = 6440 children

Nugget Scale Range (m) Effective Range

Intervention Cluster n Form Estimate pvalue Estimate pvalue Estimate 95% CI pvalue (m)

Pyrethroid LLIN

1 143 SPH 0.18 . 0.02 . 1146 (520–1772) 0.0006 1146

9 145 SPH 0.19 <.0001 0.00 0.9999 1341 (1341–1341) . .

11 114 GAU 0.17 . 0.01 . 1643 (0–3755) 0.1237 .

12 169 SPH 0.16 <.0001 0.01 0.0900 1824 (1824–1824) . .

14 173 SPH 0.11 <.0001 0.03 <.0001 1017 (1017–1017) . .

15 121 POW 0.02 <.0001

18 105 SHE 0.20 . 0.02 . 1229 (795–1663) <.0001 1229

21 109 SHE 0.13 . 0.07 . 1504 (1281–1727) <.0001 1504

33 135 SHE 0.17 . 0.04 . 1041 (878–1204) <.0001 1041

35 175 GAU 0.19 <.0001 0.00 0.4476 1651 (1651–1651) . .

44 145 EXP 0.16 <.0001 0.07 <.0001 1320 (1320–1302) . .

45 122 SHE 0.22 . 0.03 . 741 (548–934) <.0001 741

Py-PBO LLIN

7 146 EXP 0.07 <.0001 0.16 <.0001 513 (362–663) <.0001 1538

8 147 EXP 0.19 <.0001 0.00 0.9999 1406 (1406–1406) . .

10 51 SPH 0.18 0.0015 0.00 1.0000 1402 (1402–1402) . .

26 127 SHE 0.01 . 0.01 . 829 (784–875) <.0001 829

29 145 SPH 0.08 <.0001 0.00 0.9998 649 (649–649) . .

34 145 EXP 0.19 <.0001 0.00 0.9999 1260 (1260–1260) . .

36 122 SHE 0.16 <.0001 0.01 0.0437 1745 (1745–1745) . .

37 151 SHE 0.13 <.0001 0.05 <.0001 1190 (1113–1267) <.0001 1190

38 144 EXP 0.20 <.0001 0.00 0.9999 1276 (1276–1276) . .

40 137 SHE 0.10 <.0001 0.07 . 44 (43–44) <.0001 44

42 137 EXP 0.21 <.0001 0.00 0.9999 1523 (1523–1523) . .

47 130 SHE 0.13 . 0.12 . 1665 (1021–2309) <.0001 1665

Py-PBO LLIN + IRS

4 158 EXP 0.15 . 0.09 . 1419 (653–2185) 0.0004 4257

13 170 GAU 0.15 . 0.01 . 1625 (723–2528) 0.0006 2815

20 117 GAU 0.18 <.0001 0.00 0.9999 1734 (1734–1734) . .

22 98 EXP 0.17 . 0.04 . 852 (0–1736) 0.0583 .

23 135 SPH 0.17 <.0001 0.00 0.5854 1738 (1738–1738) . .

24 116 SHE 0.11 <.0001 0.08 <.0001 940 (891–990) <.0001 940

28 131 SHE 0.19 <.0001 0.02 0.0024 1393 (1393–1393) . .

30 138 POW 0.06 <.0001

31 140 SHE 0.20 . 0.02 . 1717 (879–2555) 0.0002 1717

32 146 POW 0.06 <.0001

39 139 SPH 0.20 <.0001 0.00 0.9999 1948 (1948–1948) . .

46 109 SHE 0.14 <.0001 0.07 <.0001 709 (649–768) <.0001 709

Pyrethroid LLIN + IRS

2 126 SPH 0.15 . 0.05 . 1176 (684–1667) <.0001 1176

3 137 SPH 0.10 . 0.09 . 1353 (1098–1607) <.0001 1353

5 122 SPH 0.19 <.0001 0.01 0.3246 2101 (2101–2101) . .

6 145 SHE 0.17 . 0.04 . 976 (821–1131) <.0001 976

16 120 POW 0.08 <.0001

17 111 SPH 0.16 <.0001 0.00 0.9999 1237 (1237–1237) . .

19 120 EXP 0.22 <.0001 0.03 0.0314 2069 (2069–2069) . .
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This study has presented a unique, detailed analysis 
of the potential effect ranges of malaria vector control 
interventions for each of the 48 clusters in the study 
area, rather than examining specific subsets or global 
trends. Each cluster was uniformly assessed and mod-
elled to produce range estimates that allow for localized 
variations within the study area—and within interven-
tion arm. Furthermore, while most previous examina-
tions of the effective range of vector control interventions 
restrict their assessment of effects to households in some 
immediate proximity (e.g., households within a set dis-
tance [41] or discordant household pairs [42]), the semi-
variance approach examines all household pairs within 
half the bounded distance of the cluster area to develop 
robust estimates of the model effect range [31].

The overall model effect range of 1210 m (IQR: 958–
1691) found in this analysis suggests that the 300 m buffer 
ranges used in the trial under study [15] would be inad-
equate to completely prevent contamination between 
groups. One kilometre buffers, as were previously used in 
Muleba [46] and more recently in Benin [47], or 1500 m, 
as were employed in the western Kenyan highlands [14], 
would be much more appropriate in terms of encapsulat-
ing the majority of the modelled effects. However, there 
is a trade-off between larger buffer distances and opera-
tional factors as increasing the size of the study area and 
the number of study clusters directly impacts trial costs. 
Further to this, the semivariance ranges calculated using 
trial data reflect the effective level of global statistical 
variance which may not necessarily equate to biologically 

Table 3 (continued)

Nugget Scale Range (m) Effective Range

Intervention Cluster n Form Estimate pvalue Estimate pvalue Estimate 95% CI pvalue (m)

25 144 EXP 0.23 <.0001 0.00 0.9999 1153 (1153–1153) . .

27 134 SHE 0.17 . 0.05 . 3398 (2107–4689) 0.0002 3398

41 147 SPH 0.14 <.0001 0.01 0.0913 2746 (2746–2746) . .

43 177 GAU 0.12 . 0.16 . 2158 (1388–2927) <.0001 3738

48 122 SPH 0.13 <.0001 0.00 0.9999 1171 (1171–1171) . .

Table 4 Effective range estimates of residual odds of malaria infection (any Plasmodium spp.) by intervention allocation/N = 48 
clusters

Effect ranges (m)

Min Q1 Median Q3 Max IQR

Whole Dataset 44 958 1210 1691 4257 733

Non-IRS Clusters 44 829 1168 1504 1665 675

 Pyrethroid LLIN  741  1041  1146  1229  1504  188

 Py-PBO LLIN  44  829  1190  1538  1665  291

IRS Clusters 709 976 1535 3398 4.257 2422

 Py-PBO LLIN + IRS  709  940  1717  2815  4257  1875

 Pyrethroid LLIN + IRS  976  1176  1353  3398  3738  2222

Table 5 Semivariogram model fitted forms by intervention allocation/N = 48 clusters

Significant Range Models Non‑Significant Range Models

SPH GAU EXP SHE SPH GAU EXP SHE POW

Pyrethroid LLIN 1 0 0 4 3 2 1 0 1

Py-PBO LLIN 0 0 1 4 2 0 4 1 0

Py-PBO LLIN + IRS 0 1 1 3 2 1 1 1 2

Pyrethroid LLIN + IRS 2 1 0 2 4 2 0 0 1

Total 3 2 2 13 11 5 6 2 4
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meaningful differences in malaria transmission rates or 
malaria outcomes across the full range distance. Simula-
tions and retrospective studies that have suggested con-
tamination effects at a much smaller spatial scale, and 
having little impact on trial outcomes [48, 49]. These 
results are not necessarily incongruous with the findings 
in this study, but further analysis is needed to determine 
the impact of the present spillover on trial results.

This analysis demonstrated that there is a difference in 
the model effect ranges of IRS (1535 m, IQR: 976–3398) 
and non-IRS (1168 m, IQR: 829–1504) interventions, 
which suggests that that spillover effects will be larger 
in cRCT vector control trials with higher coverage and 
stronger efficacy. Indeed, IRS had a much quicker impact 
on prevalence [15], with its effect being detectable at 
four-month compared to the arms that received only 
LLINs. It is important to note that the IRS arm was not 
exclusively IRS; it assessed the combined effect of IRS 
and LLINs. This combination likely resulted in higher 
overall coverage of at least one intervention compared 
to arms with LLINs alone (non-IRS), as IRS does not 
require a continued commitment to use once applied. 
More consistent community coverage, and therefore a 
more robust community protective effect as seen else-
where [50], could explain the difference in model effect 
ranges identified between IRS and non-IRS arms. Alter-
natively, there may have been differential impacts of the 
trial interventions based on the vector species composi-
tion of the study area, as has been seen in a comparable 
study area [51]. While An. gambiae s.s. were far and away 
the dominant vector species in the study area, Anophe-
les arabiensis and Anopheles funestus s.l. were also pre-
sent [23]. Given the different flight patterns and resting 
behaviours of these vector species [10, 52], a concentra-
tion of a particular species in a given cluster could have 
influence on cluster-specific semivariance effect ranges—
even if these differences are adequately controlled for in 
other trial analyses. It should be noted that this analysis 
was conducted four months post-intervention when IRS 
still showed a clear protective benefit (OR 0.50 (95% CI 
0.31–0.82) compared to no IRS) [15]. With a waning effi-
cacy of interventions over time, it would be expected that 
community effect ranges would similarly diminish.

The large discrepancies in modelled effect range dis-
tances between clusters in the same intervention group 
are likely due to a combination of factors including the 
spatial arrangement of sampling points (and cluster 
households more broadly) due to topography and/or 
unobserved localized factors that may be significantly 
associated with malaria, including differences in vec-
tor populations (e.g. host preference, insecticide resist-
ance), or intervention coverage and usage [53]. Indeed, 

given the mechanism of community effects through a 
combination of mass killing and reduction in mean 
age of vectors [2, 54], which in turn greatly reduces the 
population of infectious mosquitoes and local ento-
mological inoculation rates [55–57], vector popula-
tion characteristics may greatly influence the estimated 
effect ranges. This study has used robust semivariance 
estimates to minimize this effect [35], as well as report-
ing median values and interquartile ranges to provide 
conservative estimates. Median estimates of the model 
effect ranges for each intervention type align reason-
ably with the expected dispersal ranges of An. gambiae 
s.l. [58], supporting the plausibility that these spatial 
trends are predominantly representative of commu-
nity-level intervention effects on malaria transmission. 
While it is possible that there are indeed effects rang-
ing as far as four kilometres from cluster households, 
these numbers should be considered in the picture of 
the group estimates as one might consider an outlying 
variable in any dataset [59].

Limitations
While care has been taken in the GWLR model to 
include commonly identified factors associated with 
malaria infection in the study area, unmodelled spatial 
factors are likely present in the study area that could 
create an underlying non-stationary trend—impacting 
the direct interpretability of these results as interven-
tion effects [34]. The use of “model range” throughout 
presumes that the bulk of any spatial trends remain-
ing in the model residuals are due to the effects of the 
intervention, but care should be taken in generalizing 
these results—especially to areas with substantively dif-
ferent vector species compositions.

This study excluded clusters with non-significant 
model range estimates in the analysis of effective semi-
variance ranges. These data models are likely under-
powered, due to a lack of sufficient data density in the 
semivariance estimation of each cluster [60], and may 
also be indicative of some form of residual spatial trend. 
As this secondary analysis was conceived after data col-
lection, a more robust sample was not possible. Future 
studies targeting semivariance analysis could undertake 
a larger sample to evaluate these trends.

This study did not incorporate entomological data, 
given the relatively sparse geographical coverage of 
households that were sampled for mosquitoes com-
pared to those that were included in the malaria survey. 
Future studies would benefit from examining spatial 
range effects of vector control interventions on malaria 
vector population indices to enable a more mechanistic 
understanding of these effects.



Page 12 of 14Thickstun et al. Malaria Journal          (2025) 24:184 

Conclusions
This study, which uses a robust semivariance approach 
to estimate the potential range effects of LLIN and IRS 
interventions on malaria prevalence, provides a strong 
indication that there may be a substantially larger com-
munity effect to vector-control interventions than pre-
viously thought. The estimated ranges of intervention 
spillover effects on malaria infection from a trial in 
Muleba, Tanzania, which reflect the distance over which 
malaria vector control interventions have an impact on 
malaria prevalence, extend substantially beyond current 
best practices for trial cluster buffer sizes. This is espe-
cially the case for intervention clusters utilizing IRS in 
this study. Contamination of effects between adjacent 
clusters, as exhibited in this study, may be causing meas-
ured intervention effects to trend towards the mean in 
cluster-randomized vector control trials, impacting the 
capacity of trials to determine significance differences 
between interventions under study. Future research 
should be incorporated into malaria vector control tri-
als to estimate range effects for different types of LLIN 
and IRS interventions and account for these effects in the 
interpretation of trial results.
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